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Dagum confidence intervals for inequality
measures and an application to Swiss income
data

Francesca Greselin, Leo Pasquazzi

Abstract In this work we compare parametric Dagum confidence intervals with
non parametric confidence intervals for two inequality measures, Gini’s (1914) tra-
ditional index and Zenga’s (2007) new measure. We point out some problems in
the computation of parametric Dagum confidence intervals and present a simulation
study to assess what is gained with respect to non parametricconfidence intervals
when we exploit the asymptotic efficiency of ML estimators. Finally, we employ
the results to analyze data coming from theIncome and Consumption Surveyof
Switzerland.

Key words: Gini index, Zenga index, Lognormal model, Dagum model, confidence
interval, measuring poverty and inequality.

1 Introduction

Since more than a century economists and statisticians havebeen concerned with
the problem of modeling income and wealth distributions andmeasuring inequality.
Despite the fact that data are nowadays available in very large samples, it was noted
by many authors that point estimates of inequality measuresare not quite reliable
and that comparisons should be based on confidence intervals. In this work we will
compare parametric Dagum confidence intervals with non parametric confidence
intervals. The choice of the Dagum model is due to its well known ability to fit
economic size distributions. We firstly present the resultsof a simulation study with
the aim to determine coverage accuracy and length of parametric Dagum and non
parametric confidence intervals for two inequality measures, Zenga’s new (Zenga,
2007) and Gini’s traditional index (Gini, 1914). Then
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The rest of the paper is organized as follows. The next section provides a brief
description of technical details for the computation of theconfidence intervals and
presents the simulation results. In section 3 we introduce and discuss our inferential
results on inequality in Switzerland Major Regions. Conclusions and final remarks
end the paper in section 4.

2 Asymptotic confidence intervals

Let X1,X2, ...,Xn be an i.i.d. sample from an unknown distributionF. Gini’s index
may be defined by

G(F) =

∫ 1

0
2(p−L(p;F))dp, (1)

where

L(p;F) =

∫ p
0 F−1(t)dt
∫ 1

0 F−1(t)dt
, 0< p< 1 (2)

is the Lorenz curve, while Zenga’s new measure is given by

Z(F) =

∫ 1

0

(
1− 1− p

p
· L(p;F)

1−L(p;F)

)
dp. (3)

As usual, we assume that the support ofF is a subset of the non negative real line.
Moreover, in order that the two inequality measures be well defined we need to
assume that the first moment ofF is finite.

If F̂n is the empirical CDF associated to the observed sample, we may estimate
the two inequality measures simply by plugging inF̂n instead ofF in (1), (2) and (3).
Under mild restrictions onF (Hoeffding, 1948; Greselin et al., 2009) both inequality
measures may be represented as

T(F̂n) = T(F)+
1
n

n

∑
i=1

hT(Xi ;F)+op(n
−1/2) (4)

where thehT(Xi ;F) is the influence function evaluated at the pointXi , i.e. (as usual
δX denotes the distribution with a unit mass at the pointX)

hT(Xi ;F) = lim
λ↓0

T(F +λ (δXi −F))−T(F)

λ
.

It follows that both inequality measures have normal asymptotic distribution, i.e.

√
n
(

T(F̂n)−T(F)
)

d−→ N(0,σ2
T),

whereσ2
T = VarF(hT(Xi ;F)). Let S2

T;n be a consistent estimator forσ2
T ; hence, we

may compute the non parametric normal(1−2α) confidence interval given by
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(
T(F̂n)− z1−α

ST;n√
n

;T(F̂n)+ z1−α
ST;n√

n

)
,

wherez1−α is the(1−α)-percentile of the standard normal distribution.
If F is known to belong to a parametric familyFΘ indexed by ak-dimensional

real parameter vectorθ ∈Θ ⊂ R
k, then the two functionals in (1) and (3) are func-

tions ofθ and we will simply writeT(θ ) instead ofT(Fθ ). In this case we may esti-
mateT(θ ) by T(θ̂n), whereθ̂n is the maximum likelihood estimate of the unknown
value ofθ . If T andFΘ satisfy suitable regularity conditions, then this estimator is
asymptotically normal and efficient, i.e.

√
n
(

T(θ̂n)−T(θ )
)

d−→ N(0,σ2
T(θ )), (5)

whereσ2
T(θ ) =

∂T
∂θ ′ I−1

θ
∂T
∂θ . In the variance expression∂T

∂θ andIθ indicate the (col-
umn) vector of partial derivatives ofT with respect to the components of the param-
eter vector and the information matrix at the unknown value of θ , respectively. If
σ2

T(θ ) is continuous inθ , thenσ2
T(θ̂n) is a consistent estimator ofσ2

T(θ ).
Besides the normal confidence intervals just described, we will also consider dif-

ferent types of bootstrap confidence intervals, i.e. percentile, Bias Corrected Accel-
erated Bootstrap (Bca) and t-bootstrap confidence intervals (Davison and Hinkley,
1997).

For the non parametric versions of these confidence intervals, we proceed as in
Greselin and Pasquazzi (2009) and estimate the bootstrap distributions by taking
R= 9999 resamples from the original sample (i.e. fromF̂n). As variance estimator
for σ2

T we use

S2
T;n =

1
n

n

∑
i=1

hT(Xi ; F̂n)
2,

and, following Efron (1987), we estimate the acceleration constant for the Bca con-
fidence intervals by

â=
1
6

∑n
i=1hT(Xi ; F̂n)

3

(
∑n

i=1hT(Xi ; F̂n)2
)3/2

. (6)

Heuristically, we may say that in the parametric versions ofthe confidence in-
tervals nothing changes with respect to the non parametric setting, except thatFθ̂n

plays the role of̂Fn. Indeed, the expansion corresponding to (4) in the non paramet-
ric setting, may now be replaced by

T(θ̂n) = T(θ )+
1
n

n

∑
i=1

∂ ln fθ (Xi)

∂θ ′ I−1
θ

∂T
∂θ

+op(n
−1/2), (7)

where∂ ln fθ (Xi)
∂θ is the score vector (a column vector) of thei-th sample component

Xi at the unknown true value ofθ . Thus, we may use
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hT(Xi ; θ̂n) =
∂ ln fθ (Xi)

∂θ ′

∣∣∣∣
θ=θ̂n

I−1
θ̂n

∂T
∂θ

∣∣∣∣
θ=θ̂n

(8)

instead ofhT(Xi ; F̂n) for estimating the varianceσ2
T(θ ), which results in

V2
T;n =

1
n

n

∑
i=1

hT(Xi ;Fθ̂n
)2

=
1
n

n

∑
i=1

∂T
∂θ ′

∣∣∣∣
θ=θ̂n

I−1
θ̂n

∂ ln fθ (Xi)

∂θ

∣∣∣∣
θ=θ̂n

∂ ln fθ (Xi)

∂θ ′

∣∣∣∣
θ=θ̂n

I−1
θ̂n

∂T
∂θ

∣∣∣∣
θ=θ̂n

.

(9)

In the same way we just substitutehT(Xi ; F̂n) by hT(Xi ; θ̂n) in (6) to get the estimate
of the acceleration constant for the parametric Bca confidence interval.

We shall now briefly discuss technical details for the computation of parametric
Dagum confidence intervals. First, we recall thatF belongs to the Dagum family if
its density function is given by

f (x) =
apxap−1

bap
[
1+

(
x
b

)a]p+1 , x> 0

for somea,b, p > 0 (Kleiber and Kotz, 2003). Notice that the first moment of a
Dagum distribution is finite if and only ifa> 1, and therefore the inequality mea-
sures we consider in this paper are only defined for the subfamily of Dagum distri-
butions witha> 1.

In our simulation study we used the maximum likelihood estimates from the Ital-
ian equivalent income distribution as parameter values forthe parent distribution.
Thus we simulated 10,000 samples from the Dagum distribution witha= 3.6781,
b= 19,262 andp= 0.6875 in order to estimate coverage accuracy and size of para-
metric and non parametric confidence intervals for Gini’s and Zenga’s new index.

Given an i.i.d. samplex1,x2, ...,xn, the likelihood equations for the Dagum family
are given by

n
a
+ p

n

∑
i=1

ln
(xi

b

)
− (p+1)

n

∑
i=1

ln
( xi

b

)

1+
(

b
xi

)a = 0

np− (p+1)
n

∑
i=1

1

1+
(

b
xi

)a = 0

n
p
+a

n

∑
i=1

ln
(xi

b

)
−

n

∑
i=1

ln
[
1+

(xi

b

)a]
= 0

(10)

However, no closed form solution of this system is known. TheML estimation prob-
lem is easier to handle if we observe that the natural logarithm of a Dagum random
variable follows a generalized logistic distribution withdensity function given by
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f (y) =
α
σ

e−
x−θ

σ
(

1+e−
x−θ

σ
)α+1 , −∞ < y< ∞,

where−∞ < θ < ∞ andα,σ > 0. Notice thatθ andσ are the location and scale
parameter, respectively, whileα is a shape parameter that affects asymmetry. The
parameters of the generalized logistic distribution are linked to those of the Dagum
distribution by the relations

a=
1
σ
, b= eθ , p= α.

Thus, the problem of solving the system in (10) is equivalentto the problem of
finding a solution of the likelihood equations of the generalized logisitic distribution,
which are given by

n
α
−

n

∑
i=1

ln
(

1+e−
yi−θ

σ
)
= 0

− n
σ
+

1
σ

n

∑
i=1

yi −θ
σ

− α +1
σ

n

∑
i=1

yi−θ
σ

1+e
yi−θ

σ
= 0

n
σ
− α +1

σ

n

∑
i=1

1

1+e
yi−θ

σ
= 0

(11)

We employed an iterative two-step procedure for solving this system. At stepi we
first find an updateθi andσi of the location and scale parameters through a single
Newton-Raphson step applied to the last two equations of thesystem (11). Then
we useθi and σi in the first equation in order to get an updateαi of the shape
parameter. If the likelihood function has a local maximum, this two-step procedure
will converge to it provided that the starting valuesα0, θ0, σ0 are not too far from
the solution. The initial values for this algorithm are thusof crucial importance.
We select them by least squares fitting the three quartiles ofthe generalized logistic
distribution with shape parameterα = 1 to the corresponding quartiles of the natural
logarithm of the sample observations. Since the quantile function of the generalized
logistic distribution, given by

y(t) = θ +σ ln

(
tα

1− tα

)
, 0< t < 1,

is linear inθ andσ , we find a closed form solution for the initial values. Indeed,
puttingα0 = 1 and denoting byQ1, Q2 andQ3 the quartiles of the natural logarithm
of the equivalent incomesxi , we see that the initial valuesθ0 andσ0 are given by
the least squares solution of the linear system
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Q1 = θ −σ ln3

Q2 = θ
Q3 = θ +σ ln3,

which yieldsθ0 = (Q1+Q2+Q3)/3 andσ0 = (−Q1 ln3+Q3 ln3)/(2ln23).
We will allow for each sample a maximum number of 1,000 iterations of the

two-step procedure above. If the algorithm reduces the gradient of the likelihood
function to a value smaller than 10−6 within 1,000 iterations, we test the hessian
matrix for negative definiteness at the solution. If this test is positive we conclude
that the solution is a local maximum of the likelihood equation. Notice that be-
yond a bad choice of the initial values, there may be another simple reason why
our procedure does not deliver a local maximum. Indeed, as Shao (2002) points out,
there exist points in the sample space such that a solution ofthe likelihood equa-
tions in (11), and therefore also of the system in (10), does not exist. Nevertheless,
with probability tending to 1 as the sample size increases, there exists a sequence of
solutions of the likelihood equations of the generalized logistic distribution that is
consistent and asymptotically normally distributed (Abberger and Heiler, 2000).

So how do we handle samples on which the algorithm does not deliver a local
maximum? And what happens if the algorithm finds a local maximum, but the in-
equality measures are not defined at that local maximum (i.e.the ML estimate of the
parametera is not larger than 1)? Our answer to these questions depends on whether
we are dealing with a bootstrap resample or not. In the formercase we simply dis-
card the sample and take another bootstrap resample until wereach a total of 9,999
bootstrap resamples on which the algorithm converges to a local maximum at which
the inequality measures are defined. Otherwise, if the sample we are dealing with
is one of theoriginal samples from the Dagum parent distribution of the simulation
study, we use it for estimating the probability of the subsetof the sample space on
which the ML estimates of the inequality measures do not exist. For the Dagum par-
ent distribution in our simulation study corresponding to the sample sizesn= 100,
200 and 400 these estimates are given by 0.0712, 0.0141 and 0.0010, respectively.

Let us now turn to the expressions of the inequality measuresin the Dagum
model. The Lorenz curve and Gini’s index are respectively given by (Dagum, 1977)

L(t;a,b, p) = B

(
t1/p; p+

1
a
,1− 1

a

)
, 0< t < 1 (12)

and

G(p,a,b) =
Γ (p)Γ (2p+1/a)
Γ (2p)Γ (p+1/a)

−1. (13)

In (12) we usedB(t;a,b) to indicate the beta cdf, whileΓ (x) indicates the Gamma
function in (13). Substituting the Lorenz curve (12) in the formula for Zenga’s index
(3), we get

Z(p,a,b) =
∫ 1

0

t −B
(
t1/p; p+ 1

a,1−
1
a

)

t[1−B
(
t1/p; p+ 1

a,1−
1
a

)
]
dt. (14)
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As noticed at the beginning of this section, the Lorenz curve, and thus the two in-
equality measures, are defined if and only ifa> 1.

In order to get the influence valueshT(Xi ,θ ), we need the gradient vectors of
the two inequality functionals with respect to the parameters. The simplest way to
solve this problem is to approximate the gradient by Newton’s difference quotient.
Finally, the components of the information matrix, also needed to get the influence
values, can be found, for example, in Kleiber and Kotz (2003).

Table 1. Simulation results: coverages and mean sizes.

Dagum parent distribution
1−2α 0.9 0.95 0.975 0.99 mean size 0.9 0.95 0.975 0.99 mean size
sampleNormal confidence intervals Percentile confidence intervals

size Gini - non parametric
100 0.8469 0.9088 0.9430 0.9691 0.0977 0.8759 0.9346 0.96330.9819 0.0968
200 0.8666 0.9229 0.9551 0.9752 0.0727 0.8802 0.9357 0.96440.9841 0.0722
400 0.8835 0.9384 0.9653 0.9832 0.0533 0.8897 0.9442 0.97210.9876 0.0532

Gini - parametric
100 0.7839 0.8439 0.8810 0.9042 0.0993 0.8092 0.8631 0.89150.9106 0.0994
200 0.8620 0.9175 0.9485 0.9678 0.0723 0.8730 0.9254 0.95390.9698 0.0723
400 0.8932 0.9459 0.9718 0.9862 0.0520 0.8938 0.9464 0.97260.9883 0.0520

Zenga - non parametric
100 0.8486 0.9143 0.9506 0.9748 0.1218 0.8757 0.9336 0.96430.9833 0.1210
200 0.8644 0.9240 0.9596 0.9818 0.0890 0.8815 0.9359 0.96720.9870 0.0886
400 0.8781 0.9375 0.9676 0.9857 0.0647 0.8899 0.9456 0.97190.9883 0.0646

Zenga - parametric
100 0.8081 0.8645 0.8933 0.9140 0.1234 0.8263 0.8745 0.90290.9181 0.1234
200 0.8786 0.9276 0.9561 0.9727 0.0880 0.8841 0.9324 0.95870.9747 0.0881
400 0.8962 0.9499 0.9737 0.9891 0.0625 0.8983 0.9509 0.97420.9895 0.0625

Bca confidence intervals t-bootstrap confidence intervals
Gini - non parametric

100 0.8279 0.8836 0.9213 0.9504 0.1016 0.8530 0.9135 0.94830.9725 0.1196
200 0.8514 0.9063 0.9401 0.9661 0.0758 0.8644 0.9206 0.95340.9778 0.0837
400 0.8757 0.9309 0.9581 0.9778 0.0553 0.8783 0.9339 0.96570.9833 0.0586

Gini - parametric
100 0.8182 0.8672 0.8939 0.9103 0.1045 0.8120 0.8678 0.89440.9141 0.1046
200 0.8806 0.9319 0.9584 0.9737 0.0742 0.8751 0.9290 0.95570.9714 0.0740
400 0.9004 0.9503 0.9735 0.9885 0.0526 0.8963 0.9497 0.97420.9889 0.0523

Zenga - non parametric
100 0.8363 0.8939 0.9275 0.9564 0.1213 0.8603 0.9215 0.95390.9770 0.1359
200 0.8495 0.9064 0.9425 0.9680 0.0895 0.8678 0.9242 0.95620.9816 0.0973
400 0.8744 0.9263 0.9567 0.9773 0.0654 0.8793 0.9352 0.96400.9843 0.0692

Zenga - parametric
100 0.8158 0.8677 0.8942 0.9116 0.1240 0.8251 0.8735 0.90140.9173 0.1252
200 0.8781 0.9304 0.9574 0.9744 0.0883 0.8831 0.9322 0.95890.9753 0.0886
400 0.8967 0.9505 0.9746 0.9874 0.0626 0.8994 0.9506 0.97500.9898 0.0626



8 Francesca Greselin, Leo Pasquazzi

Table 1 contains the main results of our simulations. The coverages reported in
the table are the fraction of samples (on a total of 10,000 samples) that give rise to
a confidence interval that contains the true value of the inequality measure. Besides
the coverages, the table reports also the mean sizes of the confidence intervals of
each type.

We immediately notice the low coverages of the parametric confidence intervals
for n= 100. This is due to the fact that our algorithm was not able to find a local
maximum of the likelihood function in 712 of the 10,000 samples of sizen= 100.
Forn= 200 andn= 400 the problem of non existence of the ML estimates becomes
less severe, and the parametric confidence intervals perform better. Indeed, for sam-
ple sizen= 400 the parametric confidence intervals are both shorter andhave larger
coverages than the non parametric ones.

3 An Analysis of income data in Switzerland Major Regions

This section aims at presenting how our inferential result can be exploited to ana-
lyze data coming from theIncome and Consumption Surveyof Switzerland. Cross
regional levels of income inequality will be measured by theGini and Zenga in-
dexes, their confidence intervals, both in the non parametric and in the parametric
setting. The Major regions in Switzerland are Lake Geneva Region, Espace Mittel-
land, Northwestern Switzerland, Zurich, Eastern Switzerland, Central Switzerland
and Ticino.

4 Conclusions

In this work we compared non parametric with parametric Dagum confidence inter-
vals for Gini’s and Zenga’s inequality measures in a simulation study. We used the
Dagum model both as parent distribution in the simulations and for the computa-
tion of the parametric confidence intervals. For small sample sizes the problem of
non existence of the ML estimates spoils the performance of the parametric Dagum
confidence intervals. For large samples, as the problem of non existence of local
maxima of the likelihood function becomes negligible, the parametric confidence
intervals are both shorter and have larger coverages than the non parametric ones.

Acknowledgements This research has been partially supported by the Milano Bicocca FAR 2009.
The authors wish to thank theSwiss Federal Statistical Officefor kindly supplying them microdata
from theIncome and Consumption Survey.
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non-parametric parametric Dagum
Lake Geneva Region(Sample sizen= 502)

AD - 4.5411
p-value - 0.0470 (10016)

Gini Zenga Gini Zenga
point est. 0.270879 0.593947 0.262476 0.582933

normal 0.2383÷0.3052 0.5538÷0.6390 0.2425÷0.2826 0.5562÷0.6107
perc 0.2398÷0.3056 0.5498÷0.6339 0.2423÷0.2825 0.5545÷0.6091
Bca 0.2459÷0.3181 0.5585÷0.6465 0.2438÷0.2845 0.5564÷0.6115

t-boot 0.2436÷0.3355 0.5567÷0.6686 0.2444÷0.2848 0.5572÷0.6121
Espace Mittelland (Sample sizen= 751)

AD - 176.6472
p-value - 0 (9999)

Gini Zenga Gini Zenga
point est. 0.25365 0.570771 0.257791 0.578956

normal 0.2394÷0.2685 0.5497÷0.5934 0.2423÷0.2736 0.5573÷0.6014
perc 0.2390÷0.2682 0.5479÷0.5916 0.2423÷0.2736 0.5564÷0.6005
Bca 0.2400÷0.2694 0.5502÷0.5940 0.2428÷0.2745 0.5578÷0.6022

t-boot 0.2399÷0.2695 0.5500÷0.5945 0.2432÷0.2746 0.5576÷0.6019
Northwestern Switzerland (Sample sizen= 400)

AD - 2.7296
p-value - 0.1636 (10339)

Gini Zenga Gini Zenga
point est. 0.254257 0.568909 0.256258 0.571469

normal 0.2336÷0.2762 0.5396÷0.6012 0.2346÷0.2791 0.5418÷0.6034
perc 0.2325÷0.2752 0.5360÷0.5979 0.2340÷0.2790 0.5392÷0.6014
Bca 0.2351÷0.2786 0.5408÷0.6036 0.2360÷0.2816 0.5426÷0.6050

t-boot 0.2351÷0.2800 0.5403÷0.6044 0.2360÷0.2814 0.5423÷0.6046
Zurich (Sample sizen= 531)

AD - 3.403
p-value - 0.0828 (10009)

Gini Zenga Gini Zenga
point est. 0.26549 0.587588 0.26608 0.588763

normal 0.2464÷0.2856 0.5615÷0.6159 0.2465÷0.2862 0.5627÷0.6163
perc 0.2457÷0.2848 0.5589÷0.6131 0.2464÷0.2863 0.5612÷0.6149
Bca 0.2479÷0.2872 0.5626÷0.6163 0.2478÷0.2877 0.5631÷0.6172

t-boot 0.2473÷0.2874 0.5619÷0.6177 0.2477÷0.2878 0.5632÷0.6169
Eastern Switzerland(Sample sizen= 417)

AD - 20.6457
p-value - 0.0011 (9999)

Gini Zenga Gini Zenga
point est. 0.248861 0.567391 0.251134 0.57159

normal 0.2303÷0.2688 0.5396÷0.5980 0.2315÷0.2719 0.5433÷0.6023
perc 0.2293÷0.2679 0.5366÷0.5954 0.2310÷0.2709 0.5405÷0.5995
Bca 0.2316÷0.2709 0.5407÷0.6000 0.2328÷0.2734 0.5443÷0.6033

t-boot 0.2310÷0.2704 0.5399÷0.5997 0.2331÷0.2732 0.5440÷0.6032
Central Switzerland (Sample sizen= 245)

AD - 2.2903
p-value - 0.1997 (10276)

Gini Zenga Gini Zenga
point est. 0.278121 0.603434 0.269792 0.592761

normal 0.2374÷0.3223 0.5542÷0.6602 0.2408÷0.3005 0.5546÷0.6344
perc 0.2368÷0.3214 0.5456÷0.6519 0.2397÷0.2997 0.5507÷0.6302
Bca 0.2450÷0.3358 0.5584÷0.6642 0.2436÷0.3043 0.5557÷0.6354

t-boot 0.2417÷0.3568 0.5552÷0.6890 0.2438÷0.3047 0.5564÷0.6364
Ticino (Sample sizen= 241)

AD - 1.5055
p-value - 0.634 (10183)

Gini Zenga Gini Zenga
point est. 0.252847 0.567987 0.250516 0.565618

normal 0.2191÷0.2893 0.5223÷0.6205 0.2241÷0.2784 0.5285÷0.6060
perc 0.2199÷0.2894 0.5164÷0.6140 0.2237÷0.2783 0.5252÷0.6032
Bca 0.2272÷0.3048 0.5287÷0.6315 0.2268÷0.2825 0.5296÷0.6081

t-boot 0.2244÷0.3121 0.5249÷0.6457 0.2264÷0.2814 0.5290÷0.6073

Table 1 Cross-regional levels of income inequality expressed by the Gini and the Zenga indexes,
followed by their 95% confidence intervals, in non-parametric (columns 1-2) and parametric set-
ting (columns 3-4), for Swiss Major regions.
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