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Dagum confidence intervals for inequality
measures and an application to Swiss income
data

Francesca Greselin, Leo Pasquazzi

Abstract In this work we compare parametric Dagum confidence interwaih
non parametric confidence intervals for two inequality nuees, Gini's (1914) tra-
ditional index and Zenga’s (2007) new measure. We point omtesproblems in
the computation of parametric Dagum confidence intervalgaesent a simulation
study to assess what is gained with respect to non parancefrfcdence intervals
when we exploit the asymptotic efficiency of ML estimatormafy, we employ
the results to analyze data coming from theome and Consumption Survef/
Switzerland.

Key words: Giniindex, Zengaindex, Lognormal model, Dagum model, awrfte
interval, measuring poverty and inequality.

1 Introduction

Since more than a century economists and statisticians these concerned with
the problem of modeling income and wealth distributionsmre@suring inequality.
Despite the fact that data are nowadays available in vegg lsamples, it was noted
by many authors that point estimates of inequality measamesot quite reliable
and that comparisons should be based on confidence intervéiss work we will
compare parametric Dagum confidence intervals with nonnpairéc confidence
intervals. The choice of the Dagum model is due to its wellvkna@bility to fit
economic size distributions. We firstly present the resaflesssimulation study with
the aim to determine coverage accuracy and length of par@nDetgum and non
parametric confidence intervals for two inequality measurenga’s new (Zenga,
2007) and Gini's traditional index (Gini, 1914). Then
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The rest of the paper is organized as follows. The next segtiovides a brief
description of technical details for the computation of thafidence intervals and
presents the simulation results. In section 3 we introdudedéscuss our inferential
results on inequality in Switzerland Major Regions. Cosaus and final remarks
end the paper in section 4.

2 Asymptotic confidence intervals

Let X3, Xp,..., Xy be an i.i.d. sample from an unknown distributiBn Gini’s index
may be defined by

1
G(F) = [ 2(p—L(p:F))dp. (1)
where
B JEFL(t)at
 JeF(ydt

is the Lorenz curve, while Zenga’s new measure is given by

aF)%f<11pp.15&;L))dp @3)

As usual, we assume that the supporEas a subset of the non negative real line.
Moreover, in order that the two inequality measures be wefinéd we need to
assume that the first momentfefs finite.

If F is the empirical CDF associated to the observed sample, weestamate
the two inequality measures simply by pluggingrninstead of= in (1), (2) and (3).
Under mild restrictions of (Hoeffding, 1948; Greselin et al., 2009) both inequality
measures may be represented as

L(p;F) <p<1 2

T(F) =T<F)+%_ihT(>ﬁ:F>+op<n1/2) @)

where theht (Xi; F) is the influence function evaluated at the pofnti.e. (as usual
Ox denotes the distribution with a unit mass at the p&int

' A10 A ’

It follows that both inequality measures have normal asytiptlistribution, i.e.
Vi(T(F) -T(F)) <5 N(0.0?),

whereo? = Vare (hr (X;;F)). Let S, be a consistent estimator fo; hence, we
may compute the non parametric norrtial- 2a) confidence interval given by
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<T(Fn) - Zla%;T(Fn) + Zla%) ;
wherez;_ is the(1— o)-percentile of the standard normal distribution.

If F is known to belong to a parametric famifg indexed by &-dimensional
real parameter vectd ¢ © c RX, then the two functionals in (1) and (3) are func-
tions of 8 and we will simply writeT (0) instead ofT (Fg). In this case we may esti-
mateT (8) by T(6,), wheref, is the maximum likelihood estimate of the unknown
value of 6. If T and.Zg satisfy suitable regularity conditions, then this estionéd
asymptotically normal and efficient, i.e.

Vi(T(B) -T(0)) < N(0,0(6)), (5)
whereo?(0) = 251,12% . In the variance expressidf; andl g indicate the (col-
umn) vector of partial derivatives df with respect to the components of the param-
eter vector and the information matrix at the unknown valié arespectively. If
o2(0) is continuous inf, theno?(6y) is a consistent estimator o (6).

Besides the normal confidence intervals just described, Walao consider dif-
ferent types of bootstrap confidence intervals, i.e. peilegBias Corrected Accel-
erated Bootstrap (Bca) and t-bootstrap confidence intezdvison and Hinkley,
1997).

For the non parametric versions of these confidence interuwed proceed as in
Greselin and Pasquazzi (2009) and estimate the bootstsébdtions by taking
R = 9999 resamples from the original sample (i.e. frﬁm As variance estimator
for 02 we use

170 ~
§;n = ﬁ i;hT(Xi;Fn)a

and, following Efron (1987), we estimate the acceleratiomstant for the Bca con-
fidence intervals by

g— } Siihr(X; l€n)?’

6 _
(Zinzl hT(Xi;Fn)Z)
Heuristically, we may say that in the parametric versionthefconfidence in-
tervals nothing changes with respect to the non paramaettiing, except thalFén

plays the role ofy.. Indeed, the expansion corresponding to (4) in the non petram
ric setting, may now be replaced by

7 ©

12 9Infe(X), 40T

T(6h) =TO+L3 G s g Hoe(n ), (7)

where‘?'”af%(x‘) is the score vector (a column vector) of thih sample component
X; at the unknown true value &. Thus, we may use



4 Francesca Greselin, Leo Pasquazzi

hT(Xi;én) B %g'(m 6=6n 5"1 Z_; 6=6n ®
instead othr (X;; /) for estimating the variance?(8), which results in
10
VTZ:n = ﬁi;hT(xﬁF@n)z
10 0T|aonfeX)|  anfex)| | goT| O
”i; 00'|g_g, & 00 o5 00" o & 90|gg,

In the same way we just substitiie(X;; ﬁn) by hr (X;; @n) in (6) to get the estimate
of the acceleration constant for the parametric Bca condiel@rterval.

We shall now briefly discuss technical details for the corapah of parametric
Dagum confidence intervals. First, we recall thabelongs to the Dagum family if
its density function is given by

apxar-t

= , x>0
b0 1+ (§)7°

for somea,b,p > 0 (Kleiber and Kotz, 2003). Notice that the first moment of a
Dagum distribution is finite if and only i& > 1, and therefore the inequality mea-
sures we consider in this paper are only defined for the sulfafiDagum distri-
butions witha > 1.

In our simulation study we used the maximum likelihood eaties from the Ital-
ian equivalent income distribution as parameter valuesterparent distribution.
Thus we simulated 1000 samples from the Dagum distribution with= 3.6781,
b= 19,262 andp = 0.6875 in order to estimate coverage accuracy and size of para-
metric and non parametric confidence intervals for Ginid Zenga’s new index.

Given an i.i.d. samplgy, xo, ..., X, the likelihood equations for the Dagum family
are given by

n i N In(%
Sy Py In ()-(p+ Dy 71: ((;))a _0o
np—(p+1)|l?1)%a:0 (10)

Ep+aiiln (%) —in in[1+ (%ﬂ ~0

However, no closed form solution of this system is known. Wheestimation prob-
lem is easier to handle if we observe that the natural |dgarif a Dagum random
variable follows a generalized logistic distribution witbnsity function given by
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_x—0
g

a €
p= a+1’
o (1+e*XT)

where—o < 8§ < 0 anda,o > 0. Notice thatd and o are the location and scale
parameter, respectively, white is a shape parameter that affects asymmetry. The
parameters of the generalized logistic distribution arkdd to those of the Dagum
distribution by the relations

—o0 <y <o,

, p=a.
Thus, the problem of solving the system in (10) is equivatenthe problem of

finding a solution of the likelihood equations of the genigral logisitic distribution,
which are given by

n —iln (1+e’¥) —0

n 10 Y — a+1 n Yi*
——+—Z' Z (11)
0 0 o 1+ea
n_ a+1Z

o Z11+e

We employed an iterative two-step procedure for solving flyistem. At stepwe
first find an updaté; and g; of the location and scale parameters through a single
Newton-Raphson step applied to the last two equations ofystem (11). Then
we usef and g; in the first equation in order to get an updateof the shape
parameter. If the likelihood function has a local maximulnis two-step procedure
will converge to it provided that the starting valueg 6y, gp are not too far from
the solution. The initial values for this algorithm are thafscrucial importance.
We select them by least squares fitting the three quartildseajeneralized logistic
distribution with shape parameter= 1 to the corresponding quartiles of the natural
logarithm of the sample observations. Since the quantiletfan of the generalized
logistic distribution, given by

a

t
1-ta

y(t)9+aln( ), O<t<1,

is linear in6 and g, we find a closed form solution for the initial values. Indeed
puttingap = 1 and denoting b®;, Q> andQs the quartiles of the natural logarithm
of the equivalent incomes, we see that the initial value® and gy are given by
the least squares solution of the linear system
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Q=6-0In3
Q=16
Qz3=0+0In3,

which yields6 = (Q1 + Q2+ Q3)/3 andagp = (—Q1In3+ Q3In3)/(2In?3).

We will allow for each sample a maximum number gDQO iterations of the
two-step procedure above. If the algorithm reduces theigmadf the likelihood
function to a value smaller than 1®within 1,000 iterations, we test the hessian
matrix for negative definiteness at the solution. If thig tegositive we conclude
that the solution is a local maximum of the likelihood eqoatiNotice that be-
yond a bad choice of the initial values, there may be anotingpls reason why
our procedure does not deliver a local maximum. Indeed, as §&002) points out,
there exist points in the sample space such that a solutitimedikelihood equa-
tions in (11), and therefore also of the system in (10), da¢®rist. Nevertheless,
with probability tending to 1 as the sample size increa$esetexists a sequence of
solutions of the likelihood equations of the generalizegidtic distribution that is
consistent and asymptotically normally distributed (Afgse and Heiler, 2000).

So how do we handle samples on which the algorithm does noedel local
maximum? And what happens if the algorithm finds a local maximbut the in-
equality measures are not defined at that local maximuntifeeML estimate of the
parametea s not larger than 1)? Our answer to these questions depandsather
we are dealing with a bootstrap resample or not. In the focase we simply dis-
card the sample and take another bootstrap resample untdagé a total of P99
bootstrap resamples on which the algorithm converges tced toaximum at which
the inequality measures are defined. Otherwise, if the samplare dealing with
is one of theoriginal samples from the Dagum parent distribution of the simutatio
study, we use it for estimating the probability of the sulisehe sample space on
which the ML estimates of the inequality measures do not.exas the Dagum par-
ent distribution in our simulation study correspondingtie sample sizes = 100,
200 and 400 these estimates are given 9y 02, 00141 and @010, respectively.

Let us now turn to the expressions of the inequality measurése Dagum
model. The Lorenz curve and Gini's index are respectivelgigby (Dagum, 1977)

L(t;a,b,p):B(tl/p;eré,l—g), 0O<t<1 (12)
and r(p)r(2p+1/a)
. p p a

GlPab) = o prija) (13)

In (12) we used(t; a,b) to indicate the beta cdf, whilE (x) indicates the Gamma
function in (13). Substituting the Lorenz curve (12) in tbemiula for Zenga’s index
(3), we get

1t B(tYPprll 1
Z(pab)— [ LB RPE oL (14)

o t{1-B(tVrp+1,1-1)]
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As noticed at the beginning of this section, the Lorenz cuavel thus the two in-
equality measures, are defined if and onlg it 1.

In order to get the influence valués (X, 6), we need the gradient vectors of
the two inequality functionals with respect to the paramsetéhe simplest way to
solve this problem is to approximate the gradient by Nevgdalifference quotient.
Finally, the components of the information matrix, alsodexzbto get the influence
values, can be found, for example, in Kleiber and Kotz (2003)

Table 1. Simulation results: coverages and mean sizes.

Dagum parent distribution
1-2a 0.9 0.95 0.975 0.99 mean size 0.9 0.95 0.975 0.99 mean size
sampleNormal confidence intervals Percentile confidence interval
size Gini - non parametric
100 0.8469 0.9088 0.9430 0.9691 0.0977 0.8759 0.9346 0.06839 0.0968
200 0.8666 0.9229 0.9551 0.9752 0.0727 0.8802 0.9357 0.0&841 0.0722
400 0.8835 0.9384 0.9653 0.9832 0.0533 0.8897 0.9442 0.0BBI/6 0.0532
Gini - parametric
100 0.7839 0.8439 0.8810 0.9042 0.0993 0.8092 0.8631 0.8%MMH6 0.0994
200 0.8620 0.9175 0.9485 0.9678 0.0723 0.8730 0.9254 0.0%8®8 0.0723
400 0.8932 0.9459 0.9718 0.9862 0.0520 0.8938 0.9464 0.0B&B3 0.0520
Zenga - non parametric
100 0.8486 0.9143 0.9506 0.9748 0.1218 0.8757 0.9336 0.06833 0.1210
200 0.8644 0.9240 0.9596 0.9818 0.0890 0.8815 0.9359 0.0&BZ0 0.0886
400 0.8781 0.9375 0.9676 0.9857 0.0647 0.8899 0.9456 0.0PBB3 0.0646
Zenga - parametric
100 0.8081 0.8645 0.8933 0.9140 0.1234 0.8263 0.8745 0.0®AB1 0.1234
200 0.8786 0.9276 0.9561 0.9727 0.0880 0.8841 0.9324 0.03FA7 0.0881
400 0.8962 0.9499 0.9737 0.9891 0.0625 0.8983 0.9509 0.9B8B5 0.0625
Bca confidence intervals t-bootstrap confidence intervals
Gini - non parametric
100 0.8279 0.8836 0.9213 0.9504 0.1016 0.8530 0.9135 0.04825 0.1196
200 0.8514 0.9063 0.9401 0.9661 0.0758 0.8644 0.9206 0.0%348 0.0837
400 0.8757 0.9309 0.9581 0.9778 0.0553 0.8783 0.9339 0.0&BB3 0.0586
Gini - parametric
100 0.8182 0.8672 0.8939 0.9103 0.1045 0.8120 0.8678 0.8®4411 0.1046
200 0.8806 0.9319 0.9584 0.9737 0.0742 0.8751 0.9290 0.03FA4 0.0740
400 0.9004 0.9503 0.9735 0.9885 0.0526 0.8963 0.9497 0.0B8B9 0.0523
Zenga - non parametric
100 0.8363 0.8939 0.9275 0.9564 0.1213 0.8603 0.9215 0.038¥0 0.1359
200 0.8495 0.9064 0.9425 0.9680 0.0895 0.8678 0.9242 0.0516 0.0973
400 0.8744 0.9263 0.9567 0.9773 0.0654 0.8793 0.9352 0.0&8A3 0.0692
Zenga - parametric
100 0.8158 0.8677 0.8942 0.9116 0.1240 0.8251 0.8735 0.0@®143 0.1252
200 0.8781 0.9304 0.9574 0.9744 0.0883 0.8831 0.9322 0.0%8%3 0.0886
400 0.8967 0.9505 0.9746 0.9874 0.0626 0.8994 0.9506 0.0HD8 0.0626
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Table 1 contains the main results of our simulations. Thee@yes reported in
the table are the fraction of samples (on a total of0DD samples) that give rise to
a confidence interval that contains the true value of theuakty measure. Besides
the coverages, the table reports also the mean sizes of tifiel@ace intervals of
each type.

We immediately notice the low coverages of the parametnididence intervals
for n=100. This is due to the fact that our algorithm was not ablertd & local
maximum of the likelihood function in 712 of the @0 samples of size = 100.
Forn= 200 anch = 400 the problem of non existence of the ML estimates becomes
less severe, and the parametric confidence intervals pelfetter. Indeed, for sam-
ple sizen = 400 the parametric confidence intervals are both shortenawel larger
coverages than the non parametric ones.

3 An Analysis of income data in Switzerland Major Regions

This section aims at presenting how our inferential resaitt lse exploited to ana-
lyze data coming from thencome and Consumption SurvefySwitzerland. Cross
regional levels of income inequality will be measured by @iai and Zenga in-

dexes, their confidence intervals, both in the non parameatril in the parametric
setting. The Major regions in Switzerland are Lake Genegid®e Espace Mittel-

land, Northwestern Switzerland, Zurich, Eastern Switzed] Central Switzerland
and Ticino.

4 Conclusions

In this work we compared non parametric with parametric Dagonfidence inter-
vals for Gini's and Zenga's inequality measures in a simohastudy. We used the
Dagum model both as parent distribution in the simulatioms far the computa-
tion of the parametric confidence intervals. For small sansptes the problem of
non existence of the ML estimates spoils the performandeeoparametric Dagum
confidence intervals. For large samples, as the problem fer@stence of local
maxima of the likelihood function becomes negligible, tfegmetric confidence
intervals are both shorter and have larger coverages tleamoth parametric ones.

Acknowledgements This research has been partially supported by the Milanodgiz FAR 2009.
The authors wish to thank tt&wiss Federal Statistical Offider kindly supplying them microdata
from thelncome and Consumption Survey
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non-parametric parametric Dagum
La e Geneva Reglor(SampIe S|ze1 502%J

AD
_ ‘00470 (10016)

p-value -

Gini Zenga Gini Zenga

pointest.  0.270879 0.593947 0.262476 0.582933
normal 0.2383-0.3052 0.55380.6390 0.2425.0.2826 0.55620.6107
perc 0.2398-0.3056 0.54980.6339 0.24230.2825 0.55450.6091
Bca 0.2459-0.3181 0.5585-0.6465 0.24380.2845 0.5564-0.6115
t-boot 0.2436-0.3355 0.55670.6686 0.2444-0.2848 0.55720.6121

Espace Mittelland (Sample Sézg]4?2751)

AD - 176.
p-value - 0 (9999)
Gini Zenga Gini Zenga
0.570771 0.257791 0.578956

point est. 0.25365
normal 0.2394-0.2685 0.5497:0.5934 0.24230.2736 0.55730.6014
perc 0.2396-0.2682 0.5479-0.5916 0.24230.2736 0.5564-0.6005
Bca 0.2406-0.2694 0.55020.5940 0.24280.2745 0.55780.6022
t-boot 0.2399-0.2695 0.5508-0.5945 0.24320.2746 0.5576:0.6019
AD Northwestern Switzerland (Samgle sizen = 400)
p-value o - 0. 1636 (10339)
Gini Zenga Gini Zenga
pointest.  0.254257 0.568909 0.256258 0.571469
normal 0.2336-0.2762 0.5396-0.6012 0.2346:0.2791 0.54180.6034
perc 0.2325-0.2752 0.5366:0.5979 0.2346:0.2790 0.53920.6014
Bca 0.235%-0.2786 0.54080.6036 0.2366-0.2816 0.5426:0.6050
t-boot 0.235%-0.2800 0.5403-0.6044 0.2366-0.2814 0.54230.6046
Zurich (Sample sizen :???4)1%))3

AD - .
p-value o - 10.0828 (10009)
Gini Zenga Gini Zenga
point est. 0.26549 0.587588 0.26608 0.588763
normal 0.2464-0.2856 0.5615-0.6159 0.2465-0.2862 0.56270.6163
perc 0.2457-0.2848 0.55890.6131 0.2464-0.2863 0.56120.6149
Bca 0.2479-0.2872 0.5626-0.6163 0.24780.2877 0.563%0.6172
t-boot 0.2473-0.2874 0.5619-0.6177 0.24770.2878 0.56320.6169

Eastern Switzerland (Sample sizen = 417)
20.6457

AD

p-value o - 0.0011 (9999)
Gini Zenga Gini Zenga

pointest.  0.248861 0.567391 0.251134 0.57159
normal 0.2303-0.2688 0.5396:0.5980 0.23150.2719 0.5433-0.6023
perc 0.2293-0.2679 0.5366-0.5954 0.2316-0.2709 0.54050.5995
Bca 0.2316-0.2709 0.54070.6000 0.23280.2734 0.54430.6033
t-boot 0.231@-0.2704 0.5399-0.5997 0.23310.2732 0.5446:0.6032

Central Switzerland (Sample siza = 245)
2.2903

AD
p-value o - 0.1997 (10276)
Gini Zené;a Gini Zenga
0.603434 0.269792 0.592761

pointest.  0.278121
normal 0.2374-0.3223 0.55420.6602 0.24080.3005 0.5546-0.6344
perc 0.2368-0.3214 0.5456-0.6519 0.23970.2997 0.55070.6302
Bca 0.245@-0.3358 0.5584-0.6642 0.2436:0.3043 0.5557.0.6354
t-boot 0.2417%-0.3568 0.55520.6890 0.24380.3047 0.5564-0.6364
Ticino (Sample sizen = 241%
AD -
p-value o - 0.634 (10183)
Gini Zené;a Gini Zenga
pointest.  0.252847 0.567987 0.250516 0.565618
normal 0.219%0.2893 0.52230.6205 0.22410.2784 0.52850.6060
perc 0.2199-0.2894 0.5164-0.6140 0.22370.2783 0.52520.6032
Bca 0.2272-0.3048 0.5287.0.6315 0.22680.2825 0.5296-0.6081
t-boot 0.2244-0.3121 0.5249-0.6457 0.2264-0.2814 0.5296:0.6073

Table 1 Cross-regional levels of income inequality expressed byGhmi and the Zenga indexes
followed by their 95% confidence intervals, in non-paramegrolumns 1-2) and parametric set-

ting (columns 3-4), for Swiss Major regions.
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