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In this paper we determine the velocity, the energy, and estimate writhe and twist helicity contributions of
vortex filaments in the shape of torus knots and unknots �as toroidal and poloidal coils� in a perfect fluid.
Calculations are performed by numerical integration of the Biot-Savart law. Vortex complexity is parametrized
by the winding number w given by the ratio of the number of meridian wraps to that of longitudinal wraps. We
find that for w�1 vortex knots and toroidal coils move faster and carry more energy than a reference vortex
ring of same size and circulation, whereas for w�1 knots and poloidal coils have approximately same speed
and energy of the reference vortex ring. Helicity is dominated by writhe contributions. Finally, we confirm the
stabilizing effect of the Biot-Savart law for all knots and unknots tested, found to be structurally stable over a
distance of several diameters. Our results also apply to quantized vortices in superfluid 4He.
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I. INTRODUCTION

The study of vortex filament motion in an ideal fluid, and
in particular of vortex rings in presence or absence of peri-
odic displacements of the vortex axis from the circular shape
�Kelvin waves�, dates back to the late 1800s �1,2�. Despite
this long history, this study is still an active area of research
�3–5�. For example, the fact that upon large amplitude
Kelvin waves vortex rings can slow down and even reverse
their translational motion has been recognized only recently
�6–8�. Alongside the traditional interest for problems in clas-
sical fluid mechanics, additional interest is motivated by cur-
rent work on superfluid helium �9–12� and atomic Bose-
Einstein condensates �13–15�.

Here we shall be concerned with slightly more complex
vortex structures; namely vortex filaments in the shape of
torus knots and unknots in an ideal fluid. Since these vortices
are closely related to circular vortex filaments with small-
amplitude distortions on a mathematical torus, they propa-
gate in the fluid like vortex rings, by self-induction along the
central axis of the torus, and they also rotate in the meridian
plane �the poloidal plane of the torus� as their vortex core
spins around the local center of mass, inducing an additional
twist motion of the vortex around itself, that cannot be ne-
glected.

Among all possible knot types, torus knots constitute a
special family of knots amenable to particularly simple
mathematical description. These knots can be described by
closed curves wound on a mathematical torus, p times in the
longitudinal direction and q times in the meridian direction
of the torus. If p�1 and q�1 are coprime integers, then we
have standard torus knots �see Fig. 1�, whereas if the curve
winds the torus only once in either directions, then the curve
is unknotted �see Fig. 2�. If p=q=1 the curve is the standard
circle. Even though the topology of unknots is trivial, the
geometry may become rather complex, taking the shape of

toroidal or poloidal coil, according to which direction the
curve is multiply wound.

Vortex torus knots and unknots provide a good example of
relatively complex structures, where relationships between
dynamical properties such as velocity and energy, and geo-
metric and topological features, can be determined. The aim
of this paper is thus to continue and extend previous work
�16,17� toward the study of more complex vortex structures
present in turbulent flows. Here we shall investigate the
propagation velocity and the kinetic energy of vortex torus
knots and unknots in some generality, by comparing results
to a standard vortex ring of same size. Since superfluid 4He
has zero viscosity, thus providing a realistic example of an
Euler fluid, we shall choose circulation and vortex core ra-
dius as physically realistic quantities for quantized vortices
in superfluid helium, and we shall carry out this research by
direct numerical integration of the Biot-Savart law. Unlike
previous vortex dynamics calculations of quantized vorticity

FIG. 1. Examples of torus knots with winding number w�1 �on
the left� and w�1 �on the right�. For given p and q, any torus knot
Tp,q can be continuously deformed to its topologically equivalent
alternative form Tq,p; the two knots have different geometry, but
same topology, thus Tp,q�Tq,p. Three-dimensional visualization of
each knot is enhanced by centering a mathematical tube on the knot
axis.
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�18–21�, however, we shall assume that no friction force �22�
acts on the superfluid vortices; thus our results will apply to
superfluid helium at temperatures below 1 K, where the dis-
sipative effects of the normal fluid are truly negligible.

II. MATHEMATICAL BACKGROUND

A. Vortex motion under the Biot-Savart and the LIA law

We consider vortex motion in an ideal, incompressible
fluid, in an unbounded domain. The velocity field u=u�x , t�,
smooth function of the vector position x and time t, satisfies

� · u = 0 in R3, u → 0 as x → � , �1�

with vorticity � defined by

� = � � u, � · � = 0 in R3. �2�

In absence of viscosity, fluid evolution is governed by the
Euler equations and vortex motion obeys Helmholtz’s con-
servation laws �23�. Transport of vorticity is given by

��

�t
= � � �u � �� , �3�

admitting formal solutions in terms of the Cauchy equations

�i�x,t� = � j�a,0�
�xi

�a j
. �4�

From this expression we can see how both convection of
vorticity from the initial position a to the final position x, and
the simultaneous rotation and distortion of the vortex ele-
ments by the deformation tensor �xi /�a j are combined to-
gether. Since this tensor is associated with a continuous de-
formation of the vortex elements �by the diffeomorphism of
the flow map�, vorticity is thus mapped continuously from its
initial configuration ��a ,0� to the final state given by
��x , t�; hence the Cauchy equations establish a topological
equivalence between initial and final configuration by pre-
serving vorticity topology. In absence of dissipation, physical
properties such as kinetic energy, helicity, and momenta are
also conserved, together with topological quantities such as

knot type, minimum crossing number and self-linking num-
ber �24�.

The kinetic energy per unit density E is given by

E =
1

2
�

V

�u�2d3x = constant, �5�

and the kinetic helicity H by

H = �
V

u · � d3x = constant, �6�

where V is the domain volume of vorticity. Here we assume
to have only one vortex filament F in isolation, where F is
centered on the curve C of equation X=X�s� �s being the
arc-length of C�. The filament axis C is given by a smooth
space curve C without self-intersections. The filament vol-
ume is given by V�F�=�a2L, where L=L�C� is the total
length of C and a is the radius of the vortex core, assumed to
be uniformly circular all along C and much smaller than any
length scale of interest in the flow �thin-filament approxima-
tion�; this assumption is relevant �and particularly realistic�
in the context of superfluid helium vortex dynamics, where
typically a�10−8 cm.

Vortex motion is governed by the Biot-Savart law �BS for
short� given by

u�x� =
�

4�
	

C

t̂�s� � �x − X�s��
�x − X�s��3 ds , �7�

where � is the vortex circulation due to �=�0t̂, where �0 is
a constant and t̂�s�=dX /ds the unit tangent to C. Since the
Biot-Savart integral is a global functional of the vorticity,
analytical solutions in closed form other than the classical
solutions associated with rectilinear, circular and helical ge-
ometry are very difficult to obtain. Considerable analytical
progress, however, has been done by using the Localized
Induction Approximation �LIA for short� law. This equation,
first derived by Da Rios �25� and independently rediscovered
by Arms and Hama �26� �see the review by Ricca �27��, is
obtained by a Taylor’s expansion of the Biot-Savart inte-
grand from a point on C �see, for example, the derivation by
Batchelor �28��. By ignoring the rotational component of the
self-induced velocity �that in any case does not contribute to
the displacement of the vortex filament in the fluid� and non-
local terms, the LIA equation takes the simplified form

uLIA =
�c

4�
ln�	�b̂ 
 cb̂ , �8�

where c=c�s� is the local curvature of C, 	 is a measure of
the aspect ratio of the vortex, given by the radius of curva-

ture divided by the vortex core radius and b̂= b̂�s� the unit
binormal vector to C.

B. Torus knots

We consider a particular family of vortex configurations
in the shape of torus knots in R3. These are given when the
curve C takes the shape of a torus knot Tp,q �
p ,q� coprime

FIG. 2. Examples of torus unknots with winding number w
�1 �poloidal coils; on the left� and w�1 �toroidal coils; on the
right�. These unknots can be transformed to the standard circle by
continuous deformations, thus they are all equivalent to the unknot.
Three-dimensional visualization is enhanced by centering a math-
ematical tube on the curve axis.
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integers, with p�1 and q�1�, given by a closed curve
wound on a mathematical torus p times in the longitudinal
�toroidal� direction and q times in the meridian �poloidal�
direction �see Fig. 1�. When one of the integers is equal to 1
and the other to m, the curve is no longer knotted, but it
becomes an unknot, homeomorphic to the standard circle U0,
with a complex geometry. Depending on which index takes
the value m, the curve takes the shape of toroidal coil
�p=m� Um,1, or poloidal coil �q=m� U1,m �see Fig. 2�. When

p ,q� are both rational, then Tp,q is no longer a closed knot,
and the curve covers the toroidal surface completely. Here
we shall consider only curves given by 
p ,q� integers. For
given p and q, the knot Tp,q can be transformed by continu-
ous deformations to the alternative form Tq,p: hence the knots
Tp,q and Tq,p represent the same knot type: the two knots
have different geometry, but they are topologically equiva-
lent, and we write Tp,q�Tq,p.

Unknots such as toroidal coils may be used to study the
motion of thick vortex rings with internal swirl flow given by
one full turn of twist of vorticity in the vortex core; poloidal
coils, on the other hand, may provide a model of toroidal
jets.

Now, let us identify each curve with a vortex filament;
hence, we shall refer to Tp,q as a vortex torus knot and con-
sider its dynamics and energy by using the BS law �Eq. �7��
and the LIA law �Eq. �8�� to explore the effects of the geom-
etry and topology on the dynamical and the energetic prop-
erties of the vortex.

The existence of torus knot solutions to LIA were found
by Kida �29� in terms of elliptic integrals. By rewriting LIA
in cylindrical polar coordinates �r ,� ,z�, and by using stan-
dard linear perturbation techniques, small-amplitude torus
knot solutions �asymptotically equivalent to Kida’s solu-
tions� were derived by Ricca �30�. These latter give solution
curves explicitly in terms of the arc-length s,

�
r = r0 + � sin�w� ,

� =
s

r0
+

�

wr0
cos�w� ,

z =
t

r0
+ �1 +

1

w2�1/2
cos�w� ,� �9�

where r0 is the radius of the torus circular axis, ��1 is the
inverse of the aspect ratio of the vortex and w=q / p the wind-
ing number of the curve. Since the LIA is related to the
one-dimensional nonlinear Schrödinger equation �NLSE�
�27�, torus knot solutions �Eqs. �9�� correspond to helical
traveling waves propagating along the filament axis, with
wave speed � and phase = �s−�t� /r0. Thus, vortex motion
under LIA is given by a rigid body translation and rotation,
with translation velocity u= ż along the torus central axis,
and a uniform helical motion along the circular axis of the
torus given by radial and angular velocity components ṙ and
�̇. In physical terms, these waves provide an efficient mecha-
nism for the transport of kinetic energy and momenta
throughout the fluid.

By using Eqs. �9�, Ricca �31� proved the following linear
stability result:

Theorem 1. Let Tp,q be a small-amplitude vortex torus

knot under LIA. Then Tp,q is steady and stable under linear
perturbations if and only if q� p �w�1�.

This result provides a criterium for LIA stability of vortex
knots, and it can be easily extended to inspect stability of
torus unknots �i.e., toroidal and poloidal coils�. This stability
result has been confirmed for several knot types tested by
numerical experiments �17�. LIA unstable torus knot was
found to be stabilized under the BS law, presumably because
of the global induction effects of the vortex: indeed, nearby
parts of different strands of the vortex filament rotate around
each other in the meridian plane, orbiting uniformly around
the torus circular axis, thus providing an effect that induces a
more uniform velocity field. It is this global effect, absent
under the LIA law, and due to the local and nonlocal contri-
butions to the BS law, that appears to enhance the stability of
the translational motion of the vortex knot.

C. Measures of structural complexity

The winding number w=q / p and the self-linking number
Lk= pq are two topological invariants of Tp,q, thus they are
conserved under vortex evolution. Two useful measures of
geometric complexity of the vortex filament in space are
given by the writhing number Wr and the total twist number
Tw �32�. The writhing number is defined by

Wr =
1

4�
	

C
	

C

t̂�s� � t̂�s�� · �X�s� − X�s���
�X�s� − X�s���3 ds ds�,

�10�

where X�s� and X�s�� denote two points on the curve C for
any pair 
s ,s��� �0,L�. The writhing number provides infor-
mation on the amount of total coiling and distortion of the
filament axis in space. The total twist number Tw may be
written as �33�

Tw =
1

2�
	

C
dn̂

ds
� n̂� · t̂ds =

1

2�
	

C
� +

d�

ds
�ds , �11�

where the rotation rate of n̂= n̂�s� �the unit normal to C�
around the filament axis, provides a combined measure of
torsion �=��s� and internal twist �=��s� of the vorticity.
Tw is indeed a good measure of the total torsion and internal
twist of the vortex filament in space. Since the self-linking
number Lk can be expressed as the sum of Wr and Tw
�Călugăreanu–White formula�, the kinetic helicity H of vor-
tex torus knots Tp,q can be written as �33�

H = Lk�2 = pq�2 = �Wr + Tw��2, �12�

encompassing in a single expression, by Eq. �6�, dynamical
and geometric aspects of vortex motion. The right-hand-side
of the above equation provides a straightforward estimate of
kinetic helicity by avoiding the direct calculation of the in-
tegral �Eq. �6��.

For the unknots, however, we should set Lk=0, in agree-
ment with the standard vortex ring values of Wr=0 and
Tw=0. Hence, for the unknots we have Wr=−Tw.

Since under LIA the internal twist �=0 everywhere along
C, then in this case total twist reduces to total torsion and
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each term of Eq. �12� becomes proportional to global geo-
metric quantities, that is �31�

H 
 	
C

c2� ds, Wr 
 	
C

c2ds, Tw 
 	
C

� ds , �13�

that are now conserved, corresponding with the first few soli-
ton invariants of the associated NLSE.

III. NUMERICAL METHOD

All the dynamical quantities of vortex knots and unknots
are evaluated by direct numerical integration of the BS law
�Eq. �7�� and direct numerical calculation of the other prop-
erties. The numerical code is described in detail elsewhere
�34�, and it has been used also to study interaction and re-
connection of vortex bundles �35�. The vortex axis is dis-
cretized into N segments and the Biot-Savart integral is
desingularized by application of a standard cutoff technique
�18,20,34�. The time evolution is realized by using a fourth
order Runge-Kutta algorithm. Convergence has been tested
in space and time as usual, by modifying the number of
discretization points and the size of the time step.

The initial condition is given by Eq. �9�, where we have
set r0=1 cm, �=0.1, �=10−3 cm2 /s, �the value expected for
superfluid 4He�, 	=2�108 /e1/2�1 �typical of a superfluid
helium vortex core radius a=10−8 cm�. To investigate the
behavior of the unknots the term �1−1 /w2� in Eqs. �9� is
replaced by �1−1 /w2�. It is useful to compare these results
with the dynamics of a vortex ring U0 of same size and
vorticity. Thus we take a reference vortex ring of radius
r0=1 cm. The typical time step value in our calculations is
10−2 s. Convergence in time has been tested by ranging the
time step from 10−3 s to 5�10−2 s. Two examples of con-
vergence in space are shown in Fig. 3 for the torus knot T2,5
and the unknot U4,1. The calculations are performed using
constant mesh density N /L chosen following convergence
tests similar to those shown in Fig. 3. We have set
N /L=50 for poloidal unknots U1,m �m=2,3 , . . . ,7�,
N /L=20 for toroidal unknots Um,1 �m=2,3 , . . . ,7�,
N /L=30 for knots T2,q �q=3,5 ,7 ,9� and N /L=7 for knots
Tp,2 �p=3,5 ,7 ,9�. Typical errors in computing the velocity
and the energy are of the order of 10−5 cm /s and
10−7 cm5 /s2, respectively. For the reference vortex ring we
have set w=1 and N=313; then L=6.26 cm and N /L=50,
with translational velocity u0=1.38�10−3 cm /s, kinetic en-
ergy E0=8.77�10−6 cm5 /s2 and zero helicity.

IV. RESULTS: GEOMETRIC PROPERTIES, VELOCITY,
ENERGY AND HELICITY

Numerical values of calculated quantities are reported on
Tables I and II. Since geometric properties influence the ve-
locity, the energy and the helicity of vortex structures, it is
important to consider these first.

A. Total length, writhing and total twist number

Diagrams of total length and writhing of knots and un-
knots are shown in Fig. 4. The diagrams of total length re-

flect the elementary fact that the longitudinal wraps contrib-
ute to total length more than the meridian wraps. The marked
difference in the slope of the two plots in each diagram is
due to the dominant contribution to L by the longitudinal
wraps compared to that of the meridian wraps. Similar be-
havior is reflected in the kinetic energy of the system.

Similarly for the amount of coiling and distortion of the
filament axis measured by the writhing number Wr. As we
can see from the diagrams of Fig. 4, meridian wraps contrib-
ute modestly to the total writhing of the filament, the domi-
nant contribution coming from the longitudinal wraps. In this
case, however, the effects of distortion due to the presence of
meridian wraps are appreciable, especially for the T2,q knots.
Moreover, since the self-linking Lk of the vortex filament is
a topologically conserved quantity, for torus knots we have
Tw=Lk−Wr= pq−Wr and for unknots Tw=−Wr, allowing
direct computation of the total twist. Values of Tw are shown
on Tables I and II. As expected, we see that in absolute value
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FIG. 3. Two examples of convergence test given by plots of the
translational velocity u against the number N of discretization
points on the vortex axis. Similar results have been found for all
knots/unknots tested. Connecting lines are only for visualization
purposes.
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the twist increases with the number of meridian wraps. From
these values and by Eq. �12� we have an immediate informa-
tion on the relative contributions to the kinetic helicity �see
the discussion in the subsection below�.

B. Translation velocity

The translational velocity u= ż along the central axis of
knots and unknots is calculated by using the Biot-Savart law.
Absolute values are reported on Tables I and II. The dia-
grams of Fig. 5 show the normalized velocity u /u0 of knots
and unknots plotted against the winding number, where u0
denotes the translational velocity of the reference vortex
ring. The normalized velocity is greatly influenced by the
relative number of longitudinal wraps, which contribute
greatly to the total curvature of the vortex. In general the
velocity decreases with increasing winding number. Fastest
vortex systems are torus knots with highest number of lon-
gitudinal wraps. In the case of unknots we can see that me-
ridian wraps actually slow down poloidal coils U1,m, making
them traveling slower than the corresponding vortex ring.
This trend reveals that at very high winding number, torus

knots, and poloidal coils tend to reverse their velocity, thus
traveling backward in space. This curious phenomenon has
been observed independently �6,7�, and it can be justified on
theoretical grounds by information based on structural com-
plexity analysis �8,36�.

An estimate of the relationship between normalized ve-
locity u /u0 and winding number w of torus knots is obtained
by a linear regression, given by

u/u0 = �4.41 − 9.13w + 7.09w2, �w � 1� ,

1.25 − 0.04w , �w � 1� ,
� �14�

with standard deviation of 0.031.
In the limit w→0, the knot covers the toroidal surface

completely with an infinite number of longitudinal wraps,
and vorticity becomes a sheet of toroidal vorticity, with the
induced velocity purely poloidal in the interior and exterior
region of the torus, that jumps across the sheet in opposite
directions. The regression �Eq. �14�� suggests a theoretical
limit value u /u0=4.41 that seems to be independent of the
aspect ratio of the torus. In the other limit, w→�, the knot

TABLE I. Vortex knots: calculated numerical values; entries in the last column �Y/N� report whether or not a reconnection event has
taken place on or before time t.

p q w N
L

�cm� N /L Wr Tw
u

�cm/s�
E

�cm5 /s2�
E /L

�cm4 /s2�
z

�cm�
t

�s� Rec.

2 3 1.5 378 12.6 30 3.01 2.99 1.66�10−3 0.19�10−4 0.15�10−5 8.9 5300 N

2 5 2.5 385 12.9 30 5.11 4.89 1.57�10−3 0.20�10−4 0.16�10−5 14 8800 Y

2 7 3.5 397 13.2 30 7.31 6.69 1.55�10−3 0.20�10−4 0.15�10−5 13 8000 N

2 9 4.5 411 13.7 30 9.74 8.26 1.47�10−3 0.21�10−4 0.15�10−5 8 5400 Y

3 2 0.7 131 18.8 7 3.99 2.01 2.04�10−3 0.33�10−4 0.18�10−5 33 16000 Y

5 2 0.4 219 31.3 7 7.98 2.02 2.65�10−3 0.67�10−4 0.21�10−5 15 5800 Y

7 2 0.3 307 43.9 7 12.0 2.0 3.24�10−3 1.10�10−4 0.25�10−5 1 320 Y

9 2 0.2 395 56.4 7 16.0 2.0 3.81�10−3 1.60�10−4 0.28�10−5 0.4 110 Y

TABLE II. Vortex unknots: calculated numerical values; entries in the last column �Y/N� report whether or not a reconnection event has
taken place on or before time t.

p q w N
L

�cm� N /L Wr Tw
u

�cm/s�
E

�cm5 /s2�
E /L

�cm4 /s2�
z

�cm�
t

�s� Rec.

1 2 2 318 6.4 50 0.02 −0.02 1.35�10−3 0.09�10−4 0.14�10−5 11 8100 N

1 3 3 325 6.5 50 0.11 −0.11 1.30�10−3 0.09�10−4 0.14�10−5 31 23000 N

1 4 4 336 6.7 50 0.26 −0.26 1.23�10−3 0.09�10−4 0.14�10−5 8.3 6700 N

1 5 5 349 7.0 50 0.50 −0.50 1.15�10−3 0.10�10−4 0.14�10−5 24 20000 N

1 6 6 365 7.3 50 0.83 −0.83 1.06�10−3 0.10�10−4 0.14�10−5 75 7200 N

1 7 7 390 7.6 50 1.24 −1.24 0.96�10−3 0.10�10−4 0.13�10−5 0.2 160 N

2 1 0.5 250 12.5 20 0.99 −0.99 1.69�10−3 0.19�10−4 0.15�10−5 10 5900 Y

3 1 0.3 376 18.8 20 1.99 −1.99 2.01�10−3 0.32�10−4 0.17�10−5 20 9700 Y

4 1 0.2 500 25.1 20 2.98 −2.98 2.28�10−3 0.48�10−4 0.19�10−5 7.1 3100 Y

5 1 0.2 627 31.3 20 3.98 −3.98 2.58�10−3 0.65�10−4 0.21�10−5 15 5800 Y

6 1 0.2 752 37.6 20 4.97 −4.97 2.84�10−3 0.84�10−4 0.22�10−5 0.2 70 N

7 1 0.1 878 43.9 20 5.97 −5.97 3.09�10−3 1.00�10−4 0.23�10−5 0.2 50 N
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covers the torus with an infinite number of meridian wraps,
and in this case vorticity induces a toroidal jet in the interior
region.

C. Kinetic energy

The diagrams of the normalized kinetic energy per unit
density E /E0 plotted against the winding number w are
shown in Fig. 6. Calculations are done by using the Biot-
Savart law �EBS /E0� and the LIA law �ELIA /E0�. The trends
are dictated by the behavior of total length L=L�w� �cf. the
diagrams of Fig. 4�. Here the calculation of the volume inte-
gral �Eq. �5�� is replaced by the �computationally convenient�
line integral �37�

EBS =
�

2
	

C
u · X � t̂ ds . �15�

An estimate of the relationship between the normalized en-
ergy EBS /E0 of torus knots and their winding number w is

given by a nonlinear regression based on least-squares,

EBS/E0 = 2.35 + 67.03e−6.44w, �w � 1� , �16�

with root mean square deviation of 0.218.
A marked difference in these trends is obtained by calcu-

lating the normalized energy by using the LIA law; in this
case, by using Eq. �8�, we have

ELIA =
1

2
�

V

�uLIA�2d3x = � ln 	

4�
�2	

C
c2ds , �17�

that is one of the conserved quantities associated with the
LIA law �30�. Direct comparison between the diagrams of
the two energies reveals such different behaviors: for w�1
the LIA law underestimates the actual energy of the vortex
�knotted or unknotted�, whereas for w�1 the LIA provides
much higher energy values. There are two distinct reasons
for this: �i� torsion and higher-order local effects ignored by
LIA; �ii� nonlocal effects due to nearby vortex strands also
ignored by LIA. The LIA energy of T9,2 and U7,1, for ex-
ample, is about 40% less than the corresponding BS energy,
whereas T2,9 and U1,7 under LIA have 3 and 14 times more
energy than their corresponding BS counterparts. Since
higher-order local effects �including torsion and geometric
gradients� are effectively of second-order importance in the
dynamics, these differences are essentially due to the contri-
butions from the induction effects of nearby strands, cap-
tured by the BS law, but completely ignored under LIA.

Another quantity of interest is the kinetic energy per unit
length E /L. From the Tables I and II we see that for w�1
E /L can almost double. This result has interesting implica-
tions for the interpretation of experiments on superfluid tur-
bulence, particularly at low temperatures, a regime that is
dominated by Kelvin waves �38�. What is measured in the
experiments is the total vortex length per unit volume �, and
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the turbulence energy per unit volume is deduced by multi-
plying the observed vortex length per volume times the en-
ergy per unit length; by integrating the velocity field of a
straight vortex filament, the energy per unit length is esti-
mated to be E /L��2 / �4�2�ln�b /a�, where b��−1/2 is the
typical distance between vortices. Our results show that for
highly bent vortex filaments �as in the case of superfluid
turbulence, where vorticity is even fractal �39��, E /L is cer-
tainly not constant.

D. Helicity

It is interesting to investigate the effects of topology by
exploring the interplay of geometric and topological aspects
on the dynamics and the kinetic helicity of the system. For
this let us consider Fig. 7, where the velocity of a torus knot
and that of the corresponding unknot �with same number of

longitudinal or meridian wraps� are shown for comparison.
As we see in general vortex knots travel faster than their
corresponding unknots; moreover, the higher is the number
of longitudinal wraps p the faster is the translational motion,
whereas the higher is q the slower is the propagation speed.

As far as helicity is concerned, from the values of Tables
I and II and from Eq. �12� we immediately see that H in-
creases with knot �and unknot� complexity, proportionately
with Lk= pq. From the helicity decomposition in writhe and
twist contributions �Eq. �12��, we see that for “poloidal” rep-
resentations of knots, that is for Tp,q with q� p, writhe and
twist helicity increase proportionately with the relative num-
ber of wraps, whereas for “toroidal” representations of knots,
such as those given by the Tp,2 �p�2�, twist helicity remains
almost constant, and any increase in linking number is
mostly reflected in an increase in writhe helicity.

For vortex unknots, since the reference helicity of a vor-
tex ring is set to H=0 �Lk=0�, we have equal share of writhe
and twist helicity.

E. Structural stability considerations

Aspects of structural stability of vortex knots and unknots
based on permanence of knot signature and occurrence of a
reconnection event are explored. In previous work we no-
ticed the stabilizing effect of the BS law on LIA-unstable
knots �17�. Here we extend this comparison to the knots and
unknots considered. In general a vortex structure is deemed
to be structurally stable if it evolves under conservation of
topology, geometric signature and vortex coherency. Let us
consider the results reported in the Tables I and II and shown
in Fig. 8.

Since our results concern both Euler’s and superfluid dy-
namics, it is important to remark that superfluid vortices can
reconnect with each other in absence of dissipation �40,41�,
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whereas in the Euler context vortex topology is conserved;
this important difference has been recently reviewed by
Barenghi �42�. Here we adopt the following criterium: when,
during the evolution, a vortex reconnection takes place, we
stop the calculation, and deem the vortex to be structurally
unstable. The last columns of the Tables I and II refer to the
occurrence of a reconnection event at instant t. In the ab-
sence of a reconnection, we report the distance z traveled by
the vortex during the computational time t. If z is much

larger than the typical vortex size, then the knot/unknot
tested is said to be structurally stable.

From the data of Table I we see that for w�1 the space
traveled tends to decrease with increasing knot complexity:
for example, t�T3,2�� t�T9,2�. This behavior is also shown in
Fig. 8. Note that knots with w�1 are LIA-unstable. Thus,
the stabilizing effect due to the BS law is confirmed: all
knots tested for which w�1 can indeed travel a distance
which is larger than their size, before unfolding and recon-
necting.

V. CONCLUSIONS

In this paper we examined the effect of several geometric
and topological aspects on the dynamics and energetics of
vortex torus knots and unknots �i.e., toroidal and poloidal
coils�. This study is carried out by numerically integrating
the Biot-Savart law, and by comparing results for several
knots and unknots for different winding numbers w. Generic
behaviors are found for the class of knots/unknots tested, and
main results are presented by normalizing velocity and en-
ergy by the corresponding value of a standard vortex ring
�U0� of same size and circulation.

In general, for w�1 �where the number of longitudinal
wraps is larger than that of meridian wraps� the more com-
plex the vortex structure is, the faster it moves, and both
torus knots and toroidal coils move faster than U0. For
w�1 �where the relative number of meridian wraps domi-
nates� all vortex structures move essentially as fast as U0,
almost independently from their total twist. Therefore, in all
cases total twist provides only a second-order effect on the
dynamics.

We have also found that for w�1 vortex structures carry
more kinetic energy than U0, whereas for w�1 knots and
poloidal coils have almost the same energy as U0. The LIA
law �an approximation often used to replace the Biot-Savart
law, computationally more expensive� tend to underestimate
the energy of knots with w�1 and to overestimate the en-
ergy of knots with w�1. Kinetic helicity, that admits decom-
position in writhe and twist contributions, increases with
knot complexity determined by the relative number of longi-
tudinal and meridian wraps present, the latter contributing to
the twist helicity rather modestly.

Finally, by extending previous results, we can confirm the
stabilizing effect of the Biot-Savart law for knots with
w�1, LIA-unstable: all knots tested have been found to be
structurally stable regardless of the value of w, being able to
travel in the fluid for several diameters before eventually
unfolding and reconnecting.
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