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Abstract

Metaheuristics are used to solve complex, untractable problems for which other approaches are
unsuitable or unable to provide solutions in reasonable times. Although computing power has grown
exponentially with the onset of Cloud Computing and Big Data, the domain of metaheuristics has
not yet taken full advantage of this new potential. In this paper we address this gap by propos-
ing HyperSpark, a metaheuristic optimization framework for the scalable execution of user-defined,
computationally-intensive metaheuristics. HyperSpark provides a way to harness the benefits (e.g.,
scalability by design) and features (e.g., a simple programming model or ad-hoc infrastructure tun-
ing) of state-of-the-art big data technology for the benefit of metaheuristic computation. We elaborate
on HyperSpark and evaluate its efficiency and generality on several different metaheuristics for the
Permutation Flow-Shop Problem (PFSP). We observe that HyperSpark results are comparable with
the best solutions of the literature and this shows clearly the great potential behind the propsed ap-
proach.

1 Introduction
The word Metaheuristic (from ancient Greek meta = "beyond, higher-level" and heuriskein = "to find")
defines a class of algorithms able to find near-optimal solutions for hard optimization problems by work-
ing on an abstract level [29] . While ordinary heuristics are explicitly designed to efficiently tackle a
specific problem, by exploiting a profound knowledge about it, metaheuristic algorithms implement a
more general optimization schema, suitable for a wider set of problems. Since metaheuristics do not
rely on problem specifics and know-how, they are flexible and easily adaptable to many different prob-
lems, and subsequently require less time to design and implement. The main shortcoming of this class
of methods is the relative inefficiency with respect to ad-hoc solutions. For these reasons, metaheuristics
are typically applied in scenarios wherefore no satisfactory heuristic is known. Literature shows plenty
of solutions that seek a substantial speed up by trading generality for performance via hybridization with
heuristics and local search based techniques. Alternatively, one can still improve performance without
trading off generality by means of parallelization. Modern parallel and distributed computation clusters
offer a powerful way to increase efficiency and effectiveness. Hence, parallel metaheuristics have been
a focus of extensive research [3].

In the last three decades many different metaheuristics have been proposed; these can be broadly
classified into trajectory-based and population-based metaheuristics [6], along with many orthogonal
variations defined by specific solution encoding, neighborhood structure definition, operators, and more.
To achieve further generality, streamline the creation of new metaheuristics, and organize the knowledge
acquired over the years some metaheuristic optimization frameworks (MOFs) have emerged. A MOF is
an abstraction that provides a diverse set of reusable components, and the basic mechanisms to selectively
change them with user-written code, thus adapting them to specific optimization problems. In [19] the
authors survey and systematically compare the existing MOFs. The major drawbacks they identified can
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be summarized as follows: (a) MOFs have very limited support for parallel and distributed execution;
(b) MOFs lack support for hyperheuristics; and (c) MOFs are not designed according to known software
engineering best practices.

From the literature overview, one thing is clear: parallel metaheuristic research has reached a point
of rather narrowed, perhaps even “siloed" view whereby the proposed approaches are designed to handle
specific problems, using specific metaheuristics implemented in specific, often closed-source technol-
ogy. This trend makes the reproducibility of existing approaches as well as the rigorous comparison of
different solutions difficult if not impossible. Also, we noticed that in response, metaheuristics research
community often reimplements existing solutions only to be able to extend them or compare them to
novel approaches. We argue that this hinders future research in the field, even more as the number of
proposed algorithms increases.

In this paper we address these drawbacks by proposing HyperSpark, a framework that supports de-
sign of parallel metaheuristics and their execution on a cluster of distributed and interconnected com-
putational nodes. HyperSpark is implemented in Scala and harnesses the features of Apache Spark,
the reference technology for Big Data processing. Moreover, the following design principles were bor-
rowed from the field of Software Engineering to design our research solution: (1) Ease-of-use - the
framework handles distribution and parallelization transparently; (2) Configurability - the framework ex-
poses configuration parameters to fine tune the execution and parallelization (e.g., number of execution
nodes, number of used cores per node, etc); (3) Flexibility - the framework exposes a new programming
model that allows users to define arbitrary parallelization strategies, run different metaheuristics at once
and define how they can be combined; (4) Cooperation - framework allows for synchronous commu-
nication among parallel instances of the algorithm and therefore supports a large class of cooperative
parallel metaheuristic algorithms; (5) Extensibility - the framework is developed in a object-oriented and
functional programming language (Scala) with mechanisms (e.g., inheritance, traits, implicits and late
binding) that facilitate the adoption of generic metaheuristic algorithms to specific problems, extensible
design and code reuse. (6) Portability - the framework inherits the portability of Apache Spark and can
run on any JVM-enabled architecture. Features (1) and (2) contribute towards parallel and distributed
computing support for metaheuristics, while (3) and (4) provide abstractions for designing hyperheuris-
tics using existing algorithms. Finally, features (5) and (6) contribute towards adopting good software
engineering practices in metaheuristics design.

The reminder of this paper is structured as follows. Section 2 introduces HyperSpark while Section 3
outlines basic implementation details and examples. In Section 4 we experiment with the widely known
permutation flow-shop problem (PFSP) [7] for preliminary evaluation purposes. We discuss results and
compare HyperSpark with existing MOFs in Section 5. Finally, Section 6 concludes the paper.

2 HyperSpark Overview
This section outlines the features of our research solution structured according to a base architecture
(see Section 2.1), its intended programming model (see Section 2.2), as well as the runtime model (see
Sec. 2.3) that underpins the execution of HyperSpark programs. More specifically, we first elaborate the
base architecture that allows the creation of arbitrary parallel algorithms. We also provide guidelines on
how to extend the base architecture with the custom user-defined code. Following on, we introduce the
flexible HyperSpark programming model and elaborate on the properties and features that allow users to
write high-level parallel metaheuristic algorithms in a simple and straightforward fashion. Moreover, we
provide an intuition on how Apache Spark maps a high-level parallel metaheuristic algorithm specified
using the HyperSpark programming model to an independent set of processes in order to effectively
parallelize the execution.

2.1 Base Architecture: Problem – Algorithm – Solution

The primary goal of our base architecture is to provide a programming model general enough to accom-
modate various representations of Problem instances solved by means of different kind of metaheuristic
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Figure 1 – Class diagram of HyperSpark base classes and traits.

Algorithms that produce sets of Solutions with some arbitrary encoding. We draw inspirations from many
previous attempts [16] to design this generic scheme, however, we choose to simplify and omit details in
order to provide higher flexibility.

The core architectural entities of HyperSpark are showed colored white in Figure 1. The architecture
is simple and consists of a single Scala trait1 and three classes that capture the main concepts enforced
by HyperSpark. The Algorithm trait represents a generic algorithm: its purpose is solving a problem,
represented as an instance of Problem class and producing a (set of) Solution object(s). The Problem
is an abstract class defined to encode the solution space and objective function of a particular problem.
Given a Solution object, a Problem object must provide a value of the objective function, typed V for
that solution. We argue that this design is simple and flexible enough to accommodate any arbitrary
combination of a problem representation, metaheuristic algorithm, and solution encoding. Users are able
to implement custom algorithms by mixing2 in the Algorithm trait and overriding their solve method.
Entities colored grey in Figure 1 exemplify how users can extend framework’s functionality. In order to
introduce a new algorithm represented by the the class UserAlgorithm one needs to mix in the Algorithm
trait. Similarly, user-defined problems and solutions need to extend their respective base classes.

In HyperSpark core there is no reference to parallelization whatsoever. This is due to the particular
policy that the framework enforces, which can be resumed with the expression, “write locally, distribute
painlessly". This means that the developer is encouraged to write plain single-threaded methods to
tackle the considered problem, as it were to be executed on a local machine. The framework takes care
of autonomously and transparently distributing the code, running it in parallel, and collecting results
following user specifications.

2.2 Programming Model

As previously seen, the first step for the developer interested in creating a parallel and distributed algo-
rithm is to provide suitable implementation for the core elements of HyperSpark, that is providing the
appropriate problem representation, solution encoding and at least one (non parallel) algorithm. With-
out lack of generality we refer to the simplest case of one single algorithm; nonetheless, HyperSpark is
able to handle seamlessly the cooperation of multiple different algorithms. This mode of operation is
especially useful when implementing hyperheuristics.

The following step consists in extending and instantiating a HyperSpark execution workflow. Fig-
ure 2 illustrates the base workflow provided by the framework. In a nutshell, HyperSpark iteratively
splits the problem, distributes the algorithm code to the available computational nodes, executes it, ag-
gregates the outcomes and uses them to feedback the process. In the following, we describe the internal
details of each phase behind this process.

Starting from a problem (solution space and objective functions), users can optionally split it into
different sub-problems. This means, for example, that the user can parallelize the algorithm and assign to
each parallel instance a different region of the solution space to explore, or a different objective function

1Traits are specific concepts from the Scala programming language similar, but more powerful than Java interfaces.
2Mixing in traits in Scala is analogous to implementing interfaces in Java. Yet mixing in is more powerful as, besides

establishing the type hierarchy, it also allows the subtype to inherit both trait’s functionality and state.
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to optimize. Splitting a problem, however, is a specific task that highly depends on the particular problem
at hand as well as its representation - this is consequently left at the discretion of the user.
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Figure 2 – Workflow of the HyperSpark.

Assuming that the problem is indeed split, for each (sub-) prob-
lem the user may specify an algorithm to solve it. There are no con-
strains on the type of algorithm that can be used as long as the user
provides a meaningful way to aggregate the outcomes (see solution
aggregation phase). The framework does not provide a default value
for the algorithm selection - this is consequently a mandatory step.
If the user specifies a single algorithm at this step it will be executed
in parallel. This use makes sense in scenarios whereby multiple
algorithm instances are set for cooperative optimization.

In the next step of the workflow in Figure 2, HyperSpark allows
the users to (optionally) specify a seeding strategy - this strategy
determines the way an initial solution is generated at each iteration
of HyperSpark (also referred to as stage). Since this step is optional,
HyperSpark does not provide initial defaults. Nonetheless, it must
be pointed out that this phase is of paramount importance when it
comes to design an effective parallel optimization as it defines a way
to implement information distribution and collaboration among the
instances of the algorithm. By way of example, at each iteration
the user can be interested in preserve the best solution and use it to
generate good seeds for the next stage.

At this point, the framework distributes and runs the algorithm.
To avoid high synchronization times the user is encouraged to im-
plement algorithms that stops after the same amount of time as Hy-
perSpark has to wait that all the algorithm complete their execution

to collect the solutions generated and combine suitably. Our programming model allows the user to
easily implement an aggregation function that combines solutions from different algorithms. In case the
user is not interested in particular re-combination strategies, the framework provides by design a simple
aggregation function that returns the solution with the minimal value obtained from the evaluation of the
objective function. Finally, the stopping condition of the entire workflow is an arbitrary predicate that
determines when HyperSpark stops its execution - this stopping condition is checked after each iteration
of the parallel execution (stage). This condition is an arbitrary predicate since it can depend on vari-
ous aspects of the execution. For instance, one can simply specify a fixed number of iterations, specify
a timeout, or a more complex condition that depends on the solution, e.g., solution precision must be
within a fixed threshold. Once the above workflow is fully instantiated for the metaheuristic at hand,
HyperSpark performs parallel and distributed execution of the selected algorithms.

2.3 Runtime Model

As previously stated, the HyperSpark architecture relies on Apache Spark project and inherits its runtime
model. Spark is a leading, efficient, general, open source Big Data processing engine. A Spark applica-
tion runs on an independent set of processes (called executors in Spark lingo) distributed on a cluster and
coordinated by a main process (called the driver). A driver program cannot decide on the node, core and
memory allocation for executors, but rather delegates this to a cluster manager. Specifically, once the
driver program is executed it connects to a cluster manager (either Mesos, YARN, or a standalone Spark
cluster manager), which allocates resources. By communicating with the cluster manager the driver pro-
gram acquires executors to run individual algorithms, sends code to execute (packaged into JAR files)
to the executors and coordinates their execution. More details on the internal Spark runtime model are
beyond the scope of this paper and further details are available on the Apache Spark homesite3.

3http://spark.apache.org/
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3 Implementation and Examples
In this section we exemplify the use of HyperSpark and provide some insights into its implementation.
Suppose we implemented a genetic algorithm from [22] for the PFSP and we wish to run 4 instances of
the algorithm in parallel. This scenario can be realized in HyperSpark as follows:
1 val problem = PFSProblem.fromResources("inst_ta054.txt")
2 val conf = new FrameworkConf()
3 .setProblem(problem)
4 .setNAlgorithms(new GAAlgorithm(), 4)
5 .setStoppingCondition(new TimeExpired(100))
6 .setDeployment("local", 4)
7 val solution = Framework.run(conf)
8 println(solution)

The first line instantiates an object of the PFSProblem class, which is our custom representation
PFSP. This is done by means of a factory method fromResources that reads the parameters of the prob-
lem from a file. Next, we create a HyperSpark configuration object called FrameworkConf that exposes
the main API of our framework. When developing the configuration object we committed to the con-
vention over configuration design paradigm. This means that all of the setter methods, excluding the
ones defining the problem and the algorithms, are optional. If the user does not set a particular property,
the framework will use a reasonable default value. The execution will not start until we execute the run
method passing the configuration object, as shown in line 7. Lines 3–6 constitute a minimalistic example
of the use of our programming model and they define a simple high-level execution workflow. In line 3
we specify that all the algorithms will solve the same problem instance. Line 4 specifies that we will exe-
cute one algorithm implemented by the solve method of class GAAlgorithm four times in parallel with no
cooperation. We set the framework to stop after 100 seconds of execution in line 5. The setDeployment
method is used to specify the modality of deployment and the number of parallel execution processes.
In this case we use the local modality that creates 4 processes on the local machine to execute the
algorithms. Other modalities include spark for using Spark standalone cluster manager, mesos for us-
ing Mesos [13] cluster manager and yarn-client or yarn-cluster for using YARN [31] cluster
manager with the driver program running either on the client or on the cluster respectively.

Notice that we specify the number of parallel algorithm instances (line 4) separately from the num-
ber of executors (line 6). In this particular example each algorithm is be executed on a single executor
by design. However, we may have specified a larger number of executors, with some of them remain-
ing idle during the execution. Conversely, if we have specified a smaller number of executors, some
instances would have been executed on the same executor, at the discretion of Spark internal execution
management mechanisms. Moreover, depending on the number of cores assigned to the executor such
instances of the algorithm would be executed either sequentially (in the case we set a number of instances
greater than the number of cores) or in parallel (in any other case). The number of cores assigned to each
executor is specified within the Spark configuration.

In the next example we show the execution of algorithms that cooperate synchronously, as well as
exemplify the fine-tuning of Spark-specific configurations. The following code runs 100 instances of the
cooperative hybrid genetic algorithm from [35] implemented in the HGAlgorithm class in parallel on the
same problem as in the previous example. The cooperation is facilitated by adopting an appropriate seed-
ing strategy and setting a number of stages greater that 1 (line 7). On the one hand, the seeding strategy
provides a function that generates a seed solution for each instance at stage n altering the results of the
solution aggregation phase at stage n− 1. In this particular case the solution aggregation return the min-

1 val problem = PFSProblem.fromResources("inst_ta054.txt")
2 val conf = new FrameworkConf()
3 .setProblem(problem)
4 .setNAlgorithms(new HGAlgorithm(), 100)
5 .setSeedingStrategy(new SlidingWindow(sqrt(problem.numOfJobs).toInt))
6 .setStoppingCondition(new TimeExpired(100))
7 .setStages(5)
8 .setDeployment("spark", 20)
9 .setProperty(spark.executor.cores,5)

10 .setProperty(spark.executor.memory,8g)
11 val solution = Framework.run(conf)
12 println(solution)
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TABLE 1
LIST OF ALGORITHMS IMPLEMENTED IN HYPERSPARK-PFSP LIBRARY

Algorithm Authors Year Ref. Name
NEH Nawaz, Enscore and Ham 1983 [15] NEH
Iterated Greedy Ruiz and Stützle 2007 [23] IG
Genetic Algorithm Reeves 1995 [22] GA
Hybrid Genetic Algorithm Zheng and Wang 2003 [35] HG
Simulated Annealing Osman and Potts’s addaption for PFSP 1989 [18] SA
Improved Simulated Annealing Xu and Oja 1990 [33] ISA
Taboo Search Taillard 1990 [27] TS
Taboo Search with backjump tracking Novicki and Smutnicki 1996 [17] TSAB
Ant Colony Optimization Dorigo and Stützle 2010 [9] ACO
Max Min Ant System Stützle 1997 [26] MMAS
mMMAS Rajendran and Ziegler 2004 [21] MMMAS
PACO Rajendran and Ziegler 2004 [21] PACO

imal makespan solution found during a stage whereas the seeding strategy, named SlidingWindow,
operates selecting w contiguous elements (window) of a base permutation and randomly permuting the
others. Then the window is shifted one position. The process is repeated until a new solution is generate
for each instance of the algorithm.

In line 7 we determine the number of stages in the workflow we expect the framework to execute.
Consequently, the framework executes each stage in roughly 20 seconds to account for the 100 second
stopping condition. At the end of each stage the outcomes of each instance are aggregated and reported
to the next stage to allow for a suitable cooperation mechanism. Lastly, we deploy the executors using
the Spark standalone cluster manger (line 8); we modify the number of cores (line 9) and amount of
memory in gigabytes (line 10) that we request from the cluster manager to allocate for each executor.

4 Evaluation

The aim of this Section is to present the experiments carried out to evaluate HyperSpark and discuss the
achieved results. In the scope of our evaluation, we set out to address two research questions, namely,
(1) is the overhead introduced by HyperSpark acceptable in the context of parallel cooperative opti-
mization? And (2) are the algorithms implemented using HyperSpark competitive with respect to the
state-of-the-art?

In response to these questions, we carried out two different experiments, both rotating around the
application of HyperSpark in addressing the Permutation Flow Shop Problem (PFSP) problem, a well-
knownNP-Complete optimization problem. This problem is consistent with our analysis since it comes
with the well-known Taillard’s benchmark [28], which consists of 120 instances providing different
processing times, number of jobs (ranging from 20 to 500) and number of machines (from 5 to 20). Each
job/number of machines combination features 10 instances. Also, another reason behind the selection of
PFSP as case study is the fact that, for each problem instance, the optimal (or the best) makespan is known
and freely available. In layman’s terms, PFSP can be defined as a set J of n jobs that need to be processed
on a set M of m machines. Every job has to go through all the machines in the same predetermined order.
Without loss of generality we can reorder the machines in such a way that each job has to visit them in
order, from machine 1 to machine m. Each job is associated with a fixed, non-negative, and known in
advance processing time for each machine. This is denoted pij , for each j ∈ J and i ∈M . Furthermore,
at any point in time, each machine can process at most one job and each job can be processed by (at most)
one machine. As a consequence each machine of the line processes the same sequence of jobs. The aim of
this problem is to find a particular sequence that optimize a certain performance metric. Research on the
PFSP introduced several distinct optimization criteria. The most commonly studied objective (also the
one used in this work) is the minimization of the maximum completion time (i.e., Makespan), Cmax =
maxnj=1{Cmj}, where Cmj is the completion time of job j on machine m. Makespan minimization
is directly related with the maximization of machine utilization and reduction of the work-in-progress.
Following the well known Graham classification scheme, PFSP is F/prmu/Cmax. For the purposes of
the evaluation we implemented a library of algorithms (listed in Table 1) published in literature for the
considered case study problem. This library is open-source, integral part of the contributions conveyed
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in this paper, and shipped directly within our distribution of HyperSpark4. All the algorithms are single-
threaded and coded in Scala without any speed up, sharing/reusing as much as code as possible, i.e.,
following the software engineering principles of modularization and code-reuse. Furthermore, in both
experiments the algorithms are stopped after n ·m/2 · 60 milliseconds of CPU time, as in [30]. In this
way, more time is assigned to larger and harder-to-solve instances.

Finally, for the experiments we exploited a workbench cluster consisting of 10 virtual machines, each
having 8 CPU cores running at 2.4 GHz and 15 GB of RAM at their disposal for a total of 80 CPU cores
and 150 GB in total available for the computations. The Apache Spark environment (version 1.5) was
installed in “Standalone" mode, meaning that it manages both application scheduling and provisioning
of hardware resources on its own, without any separate optimization or resource manager. This mode
of operation has proven to greatly hamper the performance [24, 34] and actually allowed us to evaluate
our research solution harnessing the baseline and improvement-free performance that HyperSpark is
able to deliver. Conversely, in future work we plan to experiment with HyperSpark assessing possible
performance boosts using specific resource managers for Apache Spark.

4.1 Experiment 1 – Framework overhead estimation

The aim here is to evaluate the overhead introduced by the framework due to context creation (initializa-
tion, denoted ωI ), data and code distribution to the nodes and synchronization (parallelization, ωP ) and
context termination (ωT ) with respect to the cluster and instance size. Therefore, we set up the following
experiment. We increased the number of cores available as much as possible linearly. More precisely
we consider configurations with 1, 8, 16, 32, 40 cores respectively. Then, five Taillard’s instances of size
20, 50, 100, 200 and 500 jobs have been randomly chosen; each one of them is solved 5 times using one
algorithm from our library (namely IG) without cooperation (number of stages equal to 1). Notice that
such a choice does not reduce the generality of the experiment since the algorithm and cooperation are
factors that have no influence on the overhead.

Table 2 reports an excerpt from the data harvested in the experiment. Based on them, we can observe
that the overhead due to parallelism and synchronization ωP depends on either the cluster and instance
size going from 3 to 47 seconds. Initialization hinges on the cluster size only; however, the growth is
quite limited, remaining in the range 5-13 seconds. Termination overhead, instead is constant and less
than 1 second. Moreover, by increasing the problem size, we noticed that the impact of the total overhead
in percentage (

∑
ω), which shows quite high values (up to 70%) on small instances, accounts only for

7-14% for the instance with 500 jobs. All previous observations lead to the conclusion that the proposed
solution, which shows an excessive overhead on small problems, can be, instead, considered suitable to
large optimization problems, that is, those that would benefit the most from HyperSpark parallelism.

4.2 Experiment 2 – Solution Quality Evaluation

To evaluate the capability to achieve state-of-the-art results we set up an experimental campaign on a
cluster with 20 cores. All 120 available instances have been solved 10 times using two algorithms,
namely IG and HG, with three different seeding strategies and the average relative percentage deviation
(RPD) with respect to the best known solution is calculated. We select IG and HG among other algo-
rithms implemented in the library as they resulted the most performing ones in preliminary tests. Three
different seeding strategies have been considered; since their description is out of the scope of this pa-
per we report only their acronyms: SS, SPSW and SPFW. The interested reader is referred to [25] for
further details. In Table 3 we report the aggregate results of this second experiment. We observe that
all the considered algorithms return similar results, which are on average about 2% worst than the best
know solutions for the PFSP. This is a very good outcome considering the early stage of our HyperSpark
prototype an the fact that the considered algorithms have been implemented, as previously outlined,
without any particular optimization. In conclusion, we can state that the parallelization-synchronization
approach implemented in HyperSpark is promising and can lead, even in the prototypical form outlined
in this article, to results which are comparable to the state-of-the-art.

4https://github.com/deib-polimi/hyperspark
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TABLE 2
TIME OVERHEAD ANALYSIS.

Inst.Inst.Inst. # CPU# CPU# CPU time (s)time (s)time (s) ωP (s)ωP (s)ωP (s) ωI (s)ωI (s)ωI (s) ωT (s)ωT (s)ωT (s)
∑

ω (%)
∑

ω (%)
∑

ω (%)
ta001 1 15.0 2.8 5.8 0.6 61.3
ta001 8 16.2 2.9 7.2 0.2 63.6
ta001 16 20.6 4.7 7.6 0.6 62.6
ta001 24 25.9 6.5 9.4 0.4 63.1
ta001 32 30.9 7.8 11.8 0.6 65.2
ta001 40 36.9 10.3 12.8 0.6 64.1
ta111 1 341.5 18.1 5.2 0.2 6.9
ta111 8 346.4 20.9 4.4 0.2 7.4
ta111 16 367.9 36.4 4.8 0.4 11.3
ta111 24 371.7 32.6 6.2 0.4 10.5
ta111 32 382.3 37.3 7.2 0.6 11.8
ta111 40 405.3 46.3 11.8 0.8 14.5

TABLE 3
AVERAGE RPD FROM BEST KNOWN SOLUTION FOR METHODS (IG, HG)

PARALLELIZED WITH SS, SPSW AND SPFW STRATEGIES

RPD (%)

HG IG HG IG HG IG
|J ||J ||J | |M ||M ||M | SS SS SPSW SPSW SPFW SPFW
50 5 0.18 0.10 0.15 0.06 0.15 0.06

10 2.24 1.74 2.27 1.74 2.28 1.75
20 3.42 2.87 3.50 2.62 3.52 2.67

100 5 0.19 0.10 0.21 0.16 0.21 0.16
10 1.32 1.11 1.38 1.50 1.38 1.49
20 3.98 3.58 4.17 3.96 4.17 4.02

200 10 0.87 1.05 0.92 1.03 0.90 1.03
20 3.65 3.76 3.73 3.87 3.76 3.87

avg. 1.98 1.79 2.04 1.87 2.05 1.88

5 Related work

The framework presented in this paper is related and inspired by other works that can be roughly classi-
fied into two groups: parallel MOFs and the use of BigData for metaheuristics.

The first group corresponds to the current state-of-the-art MOFs that support parallel execution:
ECJ [1], ParadisEO [8], EvA2 [14], MALLBA [2], and jMetal [10]. However, none of the MOFs above
exposes a programming model to support the design of hyperheuristics. In addition, JMetal does not sup-
port distributed execution, while the rest of the MOFs provide limited flexibility in parallel metaheuristic
design. More specifically, they do not support a class of metaheuristics that performs local search using
parallel and distributed neighborhood exploration [19]. The second group consists of a large body of
work the details of which are beyond the scope of this paper. They use different BigData technologies to
implement particular algorithms [4, 20, 32] or a particular class of algorithms [5, 11, 12].

A work that shares some analogies with our framework (as MOF over Spark) is presented in [20].
However, the authors extend the jMetal [10] framework only to accommodate the streaming feature of
Apache Spark without fully exploiting the parallel and distributed execution capabilities of Spark.

6 Conclusions

Research in optimization is an important field aiming at tackle hard problems often using sub-optimal
algorithm as metaheuristics. There were many attempts to reconcile diversity and complexity of different
approaches within many metaheuristic optimization frameworks (MOFs). However, these solutions lack
(a) support for parallel and distributed execution; (b) support for design and execution of hyperheuristics,
as well as (c) software engineering best practices in their design. In this paper we outline, evaluate, and
discuss HyperSpark, a framework for execution of parallel metaheuristics implemented on top of the
Apache Spark framework. We aimed at providing support for modern parallel metaheuristics following
sound software engineering principles like, ease-of-use, configurability, flexibility, cooperation, extensi-
bility, and portability. We realized a preliminary experimental evaluation to validate the approach. We
can safely state that, despite some limitations mainly due to its prototype nature, HyperSpark has shown
a great potential when dealing with large problem instances.

As future work, we plan to provide better framework support for problem splitting, as well as ex-
perimenting further with hyperheuristic algorithms and their impact in HyperSpark. Moreover, we are
looking into harnessing Scala and Java interoperability to integrate HyperSpark with more mature MOFs
such as jMetal5 [10]. Finally, we are planning to investigate HyperSpark extensions that facilitate asyn-
chronous communication for better cooperative optimization.
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