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Abstract

The large success of the Cloud computing, its strong impact on the ICT
world and on everyday life testifies the maturity and effectiveness this paradigm
achieved in the last few years. Presently, the Cloud market offers a multitude
of heterogeneous solutions; however, despite the undeniable advantages, Cloud
computing introduced new issues and challenges. In particular, the heterogene-
ity of the available Cloud services and their pricing models makes the identifica-
tion of a configuration that minimizes the operating costs of a Cloud application,
guaranteeing at the same time the Quality of Service (QoS), a challenging task.
This situation requires new processes and models to design software architec-
tures (SAs) and predict costs and performance considering together the large
variability in price models and the intrinsic dynamism and multi-tenancy of
the Cloud environments. This work aims at providing a novel mathematical ap-
proach to this problem presenting a queueing theory based Mixed Integer Linear
Program (MILP) to find a promising multi-cloud configuration for a given soft-
ware architecture. The effectiveness of the proposed model has been favorably
evaluated against first principle heuristics currently adopted by practitioners.
Furthermore, the configuration returned by the model has been also used as ini-
tial solution for a local-search based optimization engine, which exploits more
accurate but time-consuming performance models. This combined approach
has been shown to improve the quality of the returned solutions by a 37% on
average and reducing the overall search time by 50% with respect to state of
the art heuristics based on tiers utilization thresholds.
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1. Introduction

In the last few years Cloud computing has emerged as one of the most inno-

vative computing paradigm. The advent of Cloud has meant several advantages

for companies, mainly streamlining and speeding up a part of the process of

realization and maintenance of applications, eventually resulting in a large cost5

reduction. For this reason, every day we witness companies moving their in-

frastructure, or part of it, on public and hybrid Cloud platforms. Nonetheless,

new issues have appeared that are attracting the interest of both researchers

and practitioners. One of the main problems that arises when moving to the

Cloud is the watchful identification of services to adopt. The ever-increasing10

number of Cloud providers and the growth of services offered by each of them,

in fact, makes complex to spot the most suitable and cost-effective configura-

tions to host the application at hand. Furthermore, moving from an on-premise

infrastructure to the Cloud also poses some problems regarding the Quality

of Service (QoS) and responsibility in case of downtimes and failures. Cloud15

providers tend to address these issues negotiating a Service Level Agreements

(SLAs) with their customers, pledging to honor certain levels of QoS. However,

most of these SLAs provide for discounts on the price of leased services as a

penalty for not complying with the agreement. Amazon EC2 SLA, for instance,

offers 99.95% of up-time over a month and, claims that the company will use20

commercially reasonable efforts to provide the pledged up-time; however, in

case such a value is not achieved users are granted a 10% discount on service

cost. This policy might be reasonable for non-critical applications but users

with stricter requirements on availability, or other QoS metrics, have no choice

but to set up and run their own infrastructure. Moreove, cloud service outages25

are far to be uncommon. At the time of wirting only during the very last month

several issues have been reported ranging from few minutes to several hours

[1, 2].

A solution to this problem might come from the variety of the Cloud offers

itself; instead of relying on one provider, consider the advantage coming form30

2



exploiting several Cloud platforms at once. For instance, as Amazon and Mi-

crosoft advertise at the time of writing a similar SLA with 99.95% of availability,

an application deployed on both Clouds can benefit from a combined 99.9999%

availability. Furthermore, using multiple providers could allow to dynamically

distribute the incoming traffic among the Clouds so as to exploit the hourly35

differences in pricing with the aim of reducing the operating costs.

Many are the reasons that have so far prevented the fulfillment of the

depicted multi-cloud scenario, among them there is the propensity of Cloud

providers to provide customized and proprietary technology stacks that make

longer and more problematic, in a word uneconomical, the process of imple-40

menting, deploying and managing a multi-cloud applications. As a consequence

of this strategy, the clients are de facto locked in a particular environment. For

this reason, presently the choice of the provider and services is one of the first

steps to take in the process of designing a software architecture (SA) for a Cloud

application. Furthermore, as previously introduced, seeking for a tight-fitting45

selection of Cloud services to host the application is already challenging for the

single Cloud case, when several providers must be considered, the set of pos-

sible deployment alternatives grows so dramatically fast to make the problem

soon intractable. To make matters worse, while information on architectures

and costs are openly available, when it comes to performance things get really50

complicated. Not only, in fact, to model and evaluate applications is a complex

process per se, when the dynamism of the Cloud comes into play we enter a

pioneering field of research with still no established tools and techniques [3, 4].

In literature have been proposed so far several analytic performance mod-

els designed to predict the behavior of software systems at architecture design55

phase; yet few works provides models that take into consideration peculiarities of

the Cloud and there is, to the best of our knowledge, still no attempt to address

the problem of multi-cloud architecture design optimization. Further, classical

models assumes that the workload, the hardware configuration and its perfor-

mance to be constant in time [5], whilst Cloud environments are inherently60

multi-tenant, geographically distributed and virtualized, causing performance
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variability over time depending on the congestion level and the competition

for resources among the different applications. Further, Cloud platforms often

provide tools to dynamically adapt a running application to fluctuations in the

workload in order to control certain non-functional requirements (as average65

response time); such adaptive mechanisms must be also reckoned with at the

time of estimating the overall operating costs.

Finally, the problem of representing in a meaningful way an application and

the related deployment process on a multi-cloud environment along with the

implementation of tools capable to effectively assess the related performance and70

costs represents only one side of the coin. The other is the problem of exploring

the solution space of feasible solutions (i.e., those that meet some user-defined

non-functional requirements) seeking the minimum cost deployment over time

for the application under study. This problem is described in this work by means

of a set of 24 intertwined Capacity Allocation (CA) problems representing a75

multi-cloud configuration for the reference day; it can be demonstrated to be

non-linear, NP-Hard and hence intractable even for simpler cases that do not

consider the workload variability over time [6, 5]. Such situation imposes the

use of state-of-the-art optimization techniques designed to heuristically explore

the solution space selectively addressing only the most promising zones.80

Within the framework of MODAClouds1 EU FP7 project [7], we envisioned

a workflow, a stack of meta-models following the Model Driven Engineering

(MDE) paradigm, and an integrated platform with the aim of easing the re-

alization of multi-cloud platform-independent applications streamlining pivotal

processes of architecture design, service selection, implementation, deployment85

and runtime management. Specifically, the cornerstones of this approach are

the Cloud independence and the multi-cloud enabling technologies. The former

trait, is achieved by means of a develop once, run everywhere approach based of

a middleware layer (a.k.a. CPIM library [8]) that abstracts the commonalities

of the various Cloud environments hiding their peculiarities. The second result90

1www.modaclouds.eu
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is guaranteed by a wide set of tools for application management; inter alia,

the multi-cloud data synchronization service (Hegira4Clouds [9]) is worth to be

mentioned.

In this paper we introduce one of the components of the MODAClouds

ecosystem: SPACE4Cloud, which is responsible for the design-time assessment95

and optimization of multi-cloud applications. The tool cleverly combines dis-

tinct optimization techniques, namely local search algorithms and mathematical

programming. In particular, here we detail and validate, highlighting the effec-

tiveness within the overall approach, a Mixed Integer Linear Program (MILP),

built to solve in a first approximation the multi-cloud time-dependent capacity100

allocation problem basing on queuing network models.

The remainder of the paper is organized as follows. In Section 2 the back-

ground is briefly introduced. The optimization process is presented in Section 3,

whereas Section 4 illustrates the experimental campaign the optimization model

underwent and analyzes the outcomes. A detailed State-of-the-art review is re-105

ported in Section 5. Conclusions are finally drawn in Section 6.

2. Background: Architecture Modeling and Analyses

In this section we discuss the Model Driven Engineering paradigm we de-

veloped within the MODAClouds project and how this can be used to model

and optimize multi-Cloud applications with the aim of performing the quality110

analyses at the basis of our approach. A key element of MDE is the use of

Domain-Specific Languages (DSL) [10, 11] to describe the Model of the prob-

lem at hand. These family of languages offers the flexibility required to address

specialized domains by providing a limited set of concepts with well-defined re-

lationships. Just as a language (with its syntax and semantics) allows to express115

the deepest ideas, so a DSL supports the designer in modeling an application

in several respects. In this work we make use of Palladio Component Model

(PCM) and Palladio Bench [12] for Quality of Service (QoS) evaluation. PCM

is a DSL for the description of component-based architecture and analysis of
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non-functional requirements; however, PCM is limited to legacy non-Cloud sys-120

tems and QoS can be assessed only for the workload peak. On the contrary,

Cloud based platforms are dynamic, and time-dependent parameters are essen-

tial to correctly assess performance and costs (indeed, the resources allocated

vary also during the day if the Cloud elasticity is carried out). In a previous

work [13] we provided PCM with new constructs for modeling the diverse nature125

of the Cloud (varying workload, virtualized resources, services, parameters, etc.)

allowing the user to fully specify multi-Cloud applications and a cost model to

evaluate the execution costs.

The next logical step is to use the model as a base for the assessment of

some properties of interest. Depending on which property has to be analyzed,130

the model can be used as it is or it has to be transformed into a different one,

suitable to be automatically evaluated. Several models, specifically designed

for the QoS assessment, have been presented in literature; within MODAClouds

Layered Queuing Networks (LQNs) [14] have been adopted. LQN formalism al-

lows performance etimation considering both hardware and software contention.135

Solvers like LINE [4] or LQNS [14] can be used to solve this family of models

numerically, without the need of simulating them and derive estimation of per-

formance indicators like response time or resource utilization. The aim of this

paper is to present an optimization approach capable of helping application

developers to find an optimized deployment configuration that minimize costs140

and guarantee QoS. The adequacy of LQN models to represent real systems

and analyze their performance, expecially int he context of multi-tier and cloud

application has been shown in [15].

In our work we exploit the built-in Palladio transformation engine to auto-

matically derive LQN performance models from the higher level PCMs. In the145

context of web applications usually the workload has daily pattern, for this rea-

son one of the extensions we implemented for the PCM formalism concerns the

definition of a variable workload over 24 hours. The LQN model alone cannot

be used to represents such variability, we overcome this limitation by generating

24 LQN models, one for each hour of the day. This little trick also enables us to150
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represent effectively the elasticity of a Cloud by varying the number of virtual

resources in each hourly model. The choice of using time slots of one hour has

also been guided by the fact that most of the cloud providers offer a pay by

the hour policy. Moreover, since the focus of our research is on multi-Cloud

applications, for each considered provider a whole set of 24 LQNs is generated155

and solved.

So far we considered the scenario in which the application designer defines

the application, decides the set of providers and for each of them the type and

number of virtualized resources to use. The objective is evaluating this config-

uration to check whether it meets some non-functional requirements expressed160

in terms of costs and performance. The result can be satisfactory or not; in

the latter case the designer can perform a what-if analysis, iteratively modify-

ing the original model. This process can be very long and tedious even having

at disposal a fast solver due to large number of alternative offers available on

the market. A second scenario sees the designer establishing certain conditions165

in form of constraints, whether they are architectural (predicating, e.g., on

components deployment or restricting the candidate set of VMs for application

execution) or QoS related (e.g., setting an upper bound on application request

average execution time), and lets the tool to explore independently the space of

solutions with the goal of fulfilling the requirements and minimizing the cost.170

To support this case PCM had to be further extended to include new concepts

such as Constraint, Target Resource, Metric and Aggregation to cite a few. For

more details on the proposed PCM extension the reader is referred to [16]. A

concrete example of constraints, instead, is discussed at the end of this Section.

In the rest of this section we exemplify the use of our extended PCM models175

by considering one of the industry case study developed within MODAClouds.

In particular we discuss the case of a software system named ADOxx and de-

veloped by BOC2 [17] reviewing and clarifying the modeling concepts expressed

so far. ADOxx is a meta-modeling platform used to build and customize BOC

2boc-eu.com
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ADOxx meta-modeling platform
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Figure 1: ADOxx meta-modeling platform: Extended PCM instance of the case study.
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other tools. Typically, this platform is installed alongside the required compo-180

nents on customers’s premises leaving with them the burden of provisioning and

maintaining the infrastructure. However, in an effort to attract a larger clientele

the company decided to move to the Cloud their platform.

Figure 1 depicts in a compact way the main elements of the software archi-

tecture describing ADOxx. Neither all PCM models nor all the associated pieces185

of information are presented in the Figure; yet this figure is able to represent

the core of the application, define the system boundaries and provide insights

about the possible interactions between the user and the system as well as some

of the interactions internal to the system itself.

A classical partition in 3-tiers (Presentation, Business and Persistence layers)190

comprises the base structure of the platform. The Deployment model reported

in sub-figure 1(c) presents the allocation of the application components on com-

putational nodes modeling cloud-independent resources, highlighting their in-

teractions. The presentation tier, implemented by a webserver running ADOxx

Presentation component, manages interactions with end users; the business tier195

hosts all the application logic and a cache system, whilst the persistence tier,

hosting the ADOxx Database component, manages users’ data. Each tier in-

teracts with the others in order to provide a set of functionalities to the end

user. In order to further specify the internal behavior of the system, showing

the interactions among the interfaces exposed by the tiers, two examples of or-200

chestration models are also reported in the sub-figure 1(d). In particular, these

models outline the (stochastic) chains of calls of functionalities necessary to ex-

ecute a certain user request. Information about the resource demands (related

to a reference resource) and call probabilities is also reported for the checkLogin

and the reportGeneration functionality, respectively.205

Since the characteristics of load the system is subject to represent a fac-

tor of paramount importance for the analysis of performance, this information

is also provided (see sub-figure 1(a), Workload profile). In particular, the in-

coming traffic is defined by two properties: the workload type, which is Open

and a request rate, that varies overtime following a daily bimodal distribution.210
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However, the workload composition (i.e., the percentage of requests for each

functionality exposed by the presentation tier) is further characterized within

the Usage model, which also describe the users’ behavior in interacting with the

ADOxx platform. In the context of our case study the workload is composed

by requests generated by users that exploit ADOxx for their modeling and re-215

porting activities. As shown in sub-figure 1(e) two main classes of users can

identified: Modelers, representing the 20% of users, log in to the system, alter

the models by loading, modifying, and saving, and eventually, log out. Most of

the users, however, belong to the second class. Those users, after the login, in-

teract with the dashboard accessing the information they need, and generating220

a report before leaving.

Finally, the sub-figure 1(b) sketches a Cloud deployment for the considered

architecture. Since reliability and responsiveness is an issue for the company,

the infrastructure is replicated on two different Clouds to reduce the distance

between the data-centers and the user, making the system less susceptible to225

Internet performance variability. This choice has also been motivated by avail-

ability concerns. Since the application is freely available to users, any failure

could damage the corporate image leading to potential loss. Information about

the availability of the considered Cloud environments is also present in the

model. It is important to notice that this model is agnostic with respect to230

the technology used to host each component and can be re-used across many

different platforms. Furthermore, the deployment diagram shows that all the

three layers are separately deployed on different Cloud resources, in the Figure

referred to as resource containers (e.g., VMs in a IaaS environment, or PaaS

workers/containers). Ultimately, each resource is decorated with performance,235

cost and replication information. As a matter of fact, each tier can be hosted

by several replicas of the selected resource container in order to manage traffic

variations and guarantee satisfactory QoS.

To conclude the overview of modeling concepts a few words must be spent

on those features of the language enabling the user to express desired non-240

functional aspects. As said PCM models have been extended to support a
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-checkLogin()
-loadModel()
-saveModel()
-generateReport()
-updateDashboard()
-logout()

<<Interface>>

ADOxx Presentation

TargetResource: “generateReport”
Metric: "ResponseTime"
Aggregation: "Avg"
Unit: "s"
LowerThan: 10

TargetResource: “saveModel”
Metric: "ResponseTime"
Aggregation: “Avg”
Unit: "s"
LowerThan: 4

(a) QoS constraints defined over an interface

TargetResource: “Business tier”
Metric: “Utilization”
Aggregation: "Avg"
Unit: “%”
LowerThan: 80

TargetResource: “Business tier”
Metric: “RAM”
Unit: “GB”
GreaterThan: 8

Business tier

Backend

Cache

(b) Architectural constraints defined over an
auto-scaling group

Figure 2: Examples of constraints that can be specified on the software architecture

QoS-aware design-time software optimization. In particular, the language has

been provided with new constructs allowing the definition of both QoS and

Architectural constraints. As a matter of fact, all the interfaces exposed to the

final user, or intern to the system itself, can be annotated with QoS properties,245

whilst Architectural restrictions can be associated with deployment concepts.

Sub-figure 2(a) shows two examples of QoS constraints that can be defined

on the interface exposed by the presentation layer. The topmost constraint ex-

presses the fact that the functionality in charge of generating a report should

have an average response time lower than 10 seconds. Similarly, the other250

bounds the average response time of saveModel functionality to 4 seconds. Sub-

figure 2(b) presents two Architectural constraints, which can be expressed on

the abstract resource used to host the software components of the application.

Those constraints predicate the the average CPU utilization and on the min-

imum amount of RAM necessary to host the components of that tier, respec-255

tively.

3. Optimization Process

In this section we showcase the hybrid optimization approach we propose to

solve the capacity allocation problem for an application to be hosted on multiple

clouds.260

As in [18] and [19], in this work we propose a two-step approach to the

problem. In the first step a model-to-model transformation is performed to

obtain a Mixed Integer Linear Problem (MILP) from a set of models in the
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Extended PCM format. The core of this transformation is the mapping between

the elements of an SA onto those of a M/G/1 queuing network implementing265

processor sharing policy. Such operation, described in details in Section 3.2,

allows to calculate the average response time for an open workload in a closed

form. The resulting MILP model is fed into and solved by a suitable solver.

The objective of this phase is to get an initial solution for the local-search-

based optimization algorithm, which represents the second step of our approach;270

this algorithm iteratively improves such first software architecture by heuris-

tically exploring the space of possible multi-clouds alternative configurations.

Each configuration is represented by a set of several hourly LQN models for

each Cloud provider, as described in Section 2, which are more expressive and

accurate, albeit at the expense of a higher computation time.275

PCM Extension

 

PCM
M/G/1
=) MILP

 

PCM =) LQN

Local Search

Optimizer
MILP
Solver

 

Initial Solution

LQN

Solver

 

Final Solution

SPACE4Cloud

Figure 3: Solution generation workflow

Figure 3 depicts the workflow of the overall optimization process. As ex-

plained in Section 2 the specification of the software architecture is provided

in PCM format with an accompanying extension. The information contained

in these models is used to generate a first-approximation MILP model that is

later on solved by a suitable solver. The output of this stage is a multi-cloud280

configuration consisting in the set of providers, the distribution among them of

the incoming workload, and the type and number of resources for each applica-

tion tier. Such information is used in the creation of the initial solution for the

Local search optimizer ; it is worth to be noticed that, since the building block

for every solution handled by the optimized is a LQN representing the elements285

of the SA, we exploit the PCM2LQN [20] to generate a single LQN that is then
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cloned and modified to represent a multi-cloud environment observed over a

daily horizon. Finally, the optimizer, which implements a heuristic local-search

engine, returns an optimized solution in which the daily execution costs are

minimized, while fulfilling the required QoS levels.290

In the reminder of this section the capacity allocation problem addressed in

this work is described (Section 3.1) while the analytical and local-search-based

optimization stages are detailed in Sections 3.2 and 3.3, respectively.

3.1. Search Problem Formulation

As introduced in Section 2, an application can be modeled by means of a295

software architecture, whose basic elements, the components, implement a set of

functionalities, referred to as F . Components are grouped into tiers as a whole

deployment unit. Let us denote by I the set of tiers that support the execution

of several components; each tier is allocated on multiple homogeneous resources,

e.g., VMs in the IaaS scenario, that evenly share the incoming workload. Being300

P the set of available providers, Vp is the set of available resources types for a

particular provider p ∈ P. Moreover, let T be the set defined by the N time

intervals in which the reference day has been split (i.e. 24), each resource type

v ∈ Vp is characterized by cost and performance information as the leasing price

Cv,t, which might change over the time horizon, the amount of memory Mv,305

alongside the number and speed of cores possibly associated with the resource.

Each user interacts with the application executing a sequence of requests

according to a defined users’ usage model; the set of possible requests is referred

to as K ⊆ F . Each request k ∈ K is supported by a set of chains of functionality

calls Uk. Each chain represents a sequence of calls to functionalities (i.e., an310

execution path [21]) necessary to carry out request k and is denoted by Σk. Fur-

thermore in each execution path each functionality is associated with a certain

probability value. The orchestration models presented in sub-figure 1 are exam-

ple of execution paths. Unfortunately, the considered industrial use case is not

complex enough to include all possible scenarios, for this reason hereinafter we315

refer to the example reported in Figure 4. In the picture we consider two classes
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Figure 4: Chains of functionality calls for request classes k1 and k2

of requests, namely k1 and k2 and six functionalities F = {f1 . . . f6} distributed

over three tiers. k1 and k2 are implemented by (and coincide with) f1 and f2 .

The blue lines highlight three execution paths for request k1 whilst the red lines

represent the only execution path defined for request k2. Finally, functionality320

f4 lays on three different execution paths from the two request classes.

The number of requests that the application has to process in a particular

time interval t is denoted by Λt; this workload is unevenly split among the Cloud

providers. The amount of workload processed by each provider is denoted by

Λp,t with p ∈ P. In a multi-cloud scenario the minimum number of providers to325

be selected is given by π, whilst the minimum workload share for each selected

cloud provider is given by γ.

We make the common assumption that the request blending of the incoming

workload is constant, as in [22, 23, 24], that is the proportions (αk) among the

classes of requests do not vary over time, that is each request k is associated with330

a workload Λk,t = αkΛt. In the reference example of Figure 4 the dependence on

time and provider has been dropped for sake of readability. Each functionality f

is also associated with a share of the incoming workload αf that does not depend

on time; therefore the workload for functionality f can be expressed as: Λf,t =

αfΛt. The latter statement can be easily proven by considering the underlying335

Discrete Time Markov Chain (DTMC) constituted by all the execution paths
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spawned form k. Let pkf be the stationary probability of functionality f over Uk,

the workload to be served by f can be calculated as: Λft =
∑

k∈K αkΛtpkf =

αfΛt. In the example functionality f4 is subject to a workload that is equal

to λ14 + λ34 + λ24 that are the components of the workload due to the three340

afferent execution paths.

Since

pk1f4 = p14 + p13 · p34

pk2f4 = p24
345

and

λ24 = α2 · p24 · Λ

λ14 + λ34 = α1 · (p14 + p13 · p34)Λ

αf can be calculated as: α2 · p24 + α1 · (p14 + p13 · p34).

We complete the description of the problem, adding the to picture the possi-350

bility to further specify the problem with a set of QoS requirements, expressed

in terms of thresholds on the average or expected response times Rk and maxi-

mum unavailability U , and a set of architectural constraints predicating on the

minimum amount of memory required by a cloud resource to host a particular

tier, represented by M i. Similarly, constraints on the maximum replication fac-355

tor N i (e.g., the maximum number of cloud resources that can be associated

with a certain tier i) can be expressed.

Overall, we outlined a multi-cloud capacity allocation problem whose goal is

to find the cheapest deployment capable to fulfill QoS requirements and archi-

tectural constraints for each hour of the reference day. To this aim, we identify360

the following decision variables for the problem:

• xp, that is a binary variable representing the provider selection sub-problem,

it assumes value of 1 if provider p is selected to host the application, 0

otherwise;
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System parameters
Index
T Reference time horizon
I Set of application tiers
F Set of functionalities
Fe Set of functionalities located in the same tier with functionality e
K Set of class of requests, K ⊆ F
Σk Execution path of class of request k ∈ K
P Set of cloud providers
Vp Set of resource types available at provider p ∈ P
Parameters
Λt Requests rate at time t
αf Percentage of requests of functionality f in the workload
µf,v Maximum service rate of requests of functionality f when executed

on a resource of type v ∈ Vp
Cv,t Cost of a resource of type v at hosted in provider p at time t
Mv Memory of a resource of type v in provider p

M i Minimum amount of memory required to host tier i

N i Maximum number of resources (VMs or PaaS containers) used to host
a tier i

Rk Maximum average response time for requests of class k
γ Minimum percentage of workload processed by a provider
π Minimum number of cloud providers
Ap Availability of provider p

U Maximum unavailability specified by the user

Table 1: Optimization model parameters.

Optimization model decision variables.
xp Binary variable that is equal to 1 if provider p is selected, 0 otherwise
zi,v,t Integer variable representing the number of virtual resources of type v assigned

to the i-th resource pool at time t
wi,v Binary variable that is equal to 1 if the resource type v, of provider p, is

assigned to the i-th tier and equal to 0 otherwise
Λp,t Real variable that specifies the amount of workload assigned to the provider p

at time t.

Table 2: Optimization model decision variables.

• wi,v, that is a binary variable equal to 1 if the resource of type v ∈ Vp is365

assigned to the i-th tier of the application, 0 otherwise;

• zi,v,t, an integer variable that specifies the number of replicas of resource

of v ∈ Vp type (either a IaaS VM or a PaaS worker/container), assigned

to the i-th tier at time t;

• Λp,t is an integer variable that specifies the amount of workload assigned370

to the provider p at time t.

Table 1 and Table 2 summarizes all the introduced parameters and variables.
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3.2. Analytic Optimization

The optimization model presented in this section aims at describing a multi-

cloud capacity time-dependent allocation problem described in Section 3.1 whose375

objective is the minimization of the execution costs of a cloud application.

min
Z

∑
t∈T

∑
p∈P

∑
v∈Vp

∑
i∈I

Cv,tzi,v,t (1)

Subject to: ∑
p∈P

xp ≥ π (2)

∑
v∈Vp

wi,v = xp ∀p ∈ P, ∀i ∈ I (3)

xp γ Λt ≤ Λp,t ∀p ∈ P, ∀t ∈ T (4)

Λp,t ≤ Λt xp ∀p ∈ P, ∀t ∈ T (5)∑
p∈P

Λp,t = Λt ∀t ∈ T (6)

wi,v ≤ zi,v,t ∀t ∈ T ,∀p ∈ P, ∀v ∈ Vp, ∀i ∈ I (7)

zi,v,t ≤ N i wi,v ∀t ∈ T ,∀p ∈ P, ∀v ∈ Vp, ∀i ∈ I (8)∑
v∈Vp

wi,vMv ≥M i ∀p ∈ P, ∀i ∈ I (9)

∑
p∈P

(ln(1−Ap)xp) ≤ ln(Ū) (10)

∑
v∈Vp

(1− µeR
′
e Sv)zi,v,t ≤ Λp,t µeR

′
e

∑
c∈Ke

αc
µc

∀t ∈ T , ∀k ∈ K, ∀e ∈ Σk,∀p ∈ P (11)

xp ∈ {0, 1} ∀p ∈ P (12)

wi,v ∈ {0, 1} ∀p ∈ P, ∀v ∈ Vp, ∀i ∈ I (13)

zi,v,t ∈ Z+ ∀t ∈ T ,∀p ∈ P, ∀v ∈ Vp, ∀i ∈ I (14)

Λp,t ∈ R+ ∀t ∈ T ,∀p ∈ P (15)

This cost represents the objective function (Formula 1) and can be derived as the

sum of all costs related to the utilization of Cloud resources considering all application

tiers i, time intervals t, selected providers p and the corresponding selection of resource

types v. In the most general case the application might be replicated over multiple380

providers to provide guarantees on its availability. The minimum number of providers

to be selected to this aim is bounded by inequality 2. Each Cloud provider offers

different type of resources, we use the set Vp to identify the resources offered by
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provider p. The binary variable, wi,v denotes the assignment of a certain type v of

resource, among those offered by provider p, to host tier i. The two binary variables385

just introduced are used in Constraints 3 to guarantee that only a single type of

resource is assigned to each application tier for each selected provider. Vice versa

these constraints also guarantees that, if a provider is not selected (i.e. xp = 0), its

resource types can not host any application tier.

Constraints 4, 5 and 6 are related to the incoming flow of requests and how it is390

split among the providers over time. In particular, Constraints 4 reflects the minimum

partition of workload γ that has to be served by each provider, and Constraints 5

guarantees that requests are only directed to selected providers. Finally, Constraints 6

forces all incoming requests to be served.

As previously introduced, variables wi,v represent the binding between a resource395

type and an application tier. This variable alone does not convey the information

about the number of replicas of that resource to be used over time. To this end we

introduced the set of integer variables zi,v,t. The two Constraints 7 and 8 represent

upper and lower bounds to the number of replicas of resources of type v, assigned to

tier i within each Cloud at time t. Another important effect of these constraints is400

to force all resources assigned to a certain tier to be of the same type. Constraints 9

provide a bound on the minimum amount of RAM needed by the resources selected

to host each tier.

All the constraints presented so far define requirements that shape the structure

of the solution but do not address directly the QoS of the application; we call them405

Architectural requirements. The last two families of constraints, instead, are related

to the QoS of the application and are called QoS requirements.

Constraint 10 is used to ensure a minimum level of availability for the system.

Let Ap be the availability of Cloud provider p, the unavailability, defined ad 1 − Ap,

represents the probability of provider p to be unavailable. Since our application can410

be deployed on multiple hosts we consider the entire application unavailable is all the

hosting providers (i.e., those for which xp = 1) are unavailable. Since the failures

of different providers can be considered as independent events, the availability of the

application is given by
∏
p∈P

(1− Ap)xp . In Constraint 10 this value has been bounded

by a maximum unavailability value U leading to:
∏
p∈P

(1−Ap)xp ≤ U . By applying415

the logarithm to both sides of the formula we get constraint 10.
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Inequalities 11, instead, impose an upper bound on the average response time of

requests. It has been derived using the M/G/1 queuing model as described next. The

processing of a request of class k might involve the execution of other functionalities in

the system, deployed on the same as well on different tiers possibly hosted on different

resource types; so the average response time of requests belonging a certain class can

be express as the summation of the response time of all the functionalities along every

execution path Σk originated in k, this set is called Uk. The response time of class k

is given by:

Rk =
∑
e∈Σk

∑
Σk∈Uk

pk,eRe,ve (16)

where pk,e represents (as introduced in Section 3.1) the probability that a request of

class k triggers the execution of a functionality e ∈ {Σk : Σk ∈ Uk} ,

Notice that for sake of readability we do not consider at this point the dependence

neither on provider p nor on time t; moreover we make explicit the dependence on the420

adopted deployment by means of symbol ve, which refers to the particular resource

hosting the execution of functionality e.

As a consequence of the choice of modeling tiers as M/G/1 queues, we can write a

formulation for the average response time of a certain functionality taking into account

the functionalities whose components are located on the same tier, that is:

Re,v =

1

µe,v

1−
∑
c∈Fe

Λc
µc,v zie,v

(17)

where ie is the tier hosting functionality e whilst µe,v represents the maximum service

rate of the system when processing a request of functionality e hosted by a virtual

resource v. Moreover, notice that Λc is the share of workload due to functionality c425

co-located with e.

In order to reduce the expression we make explicit the dependence of µe,v on

the hosting resource v using a machine-independent maximum service rate µc and a

scaling factor Sv that depends on the machine: µe,v = µeSv, where Sv represents the

proportion between the speed of resource of type v, and a reference resource. Further,430

we can express Λc according to probability αc and the incoming workload as Λc = αcΛ.
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Therefore, Equation 16 can be expressed as:

Rk =
∑
e∈Σk

pk,e

1

µeSve

1− Λ

zie,veSve

∑
c∈Fe

αc
µc

≤ Rk (18)

and constrained to be lower than a certain threshold Rk.

Unfortunately the constraint expressed above is non-linear and, since this charac-

teristic is expected to affect negatively the performance of the model, we opted for

bypassing this issue by splitting this constraint into a set of stricter constraints on all

the sub-functionalities involved in the execution of request k, that is:

Re,ve ≤ R
′
e ∀k ∈ K ∀e ∈ Σk ∀Σk ∈ Uk (19)

and some algebra we get:

ΛµeR
′
e

∑
c∈Fe

αc
µc
≤ (µeR

′
e Sve − 1) zie,ve (20)

recalling that
∑
v∈Vp Svzie,v,t = Sve zie,ve,t, we obtain Constraints 11.

At this point, we are left with the task of generating the thresholds R
′
e in such a

way that

Rk ≥
∑
e∈Σk

pk,eR
′
e

but also trying to reduce their impact of the feasibility of the MILP solution.435

To this end, we opt for splitting the threshold in proportion to the functionality

demands in the call chain. We recall that the demand of a certain functionality f ,

referred to as De = 1
µe

, is the average time required to execute e on the reference

resource (that in this case a reference VM) [25]. Specifically, we first derive, for every

functionality e and for each execution path Σk such that e ∈ Σk, the demand ratio

dividing De by the demand of the entire execution path DΣk , as in Formula 21.

re,Σk =
De
DΣk

=
De∑

f∈Σk

Df
(21)

By using this ratio to split the user-defined response time threshold Rk across

functionalities in the call chain, we get a set of new constraints on the response time
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of each functionality e when executed within the execution path Σk: R
′
e,Σk

= re,ΣkRk.

As a consequence of this definition we get that

∑
e∈Σk

R
′
e,Σk

= R
′
k. (22)

Since a request of class k can have multiple execution paths passing for each

functionality involved in its execution chain, we use the most stringent constraint

to remove the dependency on the specific execution path, that is:

R
′
e = min

Σk∈Uk
R
′
e,Σk

(23)

From equation 22 and 23 we get:

Rk ≥
∑
e∈Σk

R
′
e ∀Σk ∈ Uk (24)

Finally, recalling that the an execution chain is essentially a DTMC, we obtain:

Rk ≥
∑

Σk∈Uk

pΣk

∑
e∈Σk

R
′
e =

∑
Σk∈Uk

∑
e∈Σk

pe,kR
′
e (25)

where pΣk denotes the probability associated with a single execution path.440

It is worth to be noticed that the problem presented in this section is NP-hard

since, as shown in [26], it is equivalent to a bi-level optimization problem. Nevertheless,

with state-of-the-art solvers we are able to find a global optimal solution for this

problem in reasonable time, as shown in Section 4.

3.3. Local Search Optimization445

The aim of this section is to provide a brief description of the optimization algo-

rithm implemented withing SPACE4Cloud [27, 26], the tool that we used to further

optimize the solution obtained from the MILP optimization phase. Even if the global

MILP optimal solution can be identified, such solution can be further improved since

SPACE4Cloud, as said, exploits a different representation of the original multi-cloud450

problem. As a matter of fact, it employs LQN models to represent the application

and its interactions with the environment. LQNs are able to provide more accurate

performance estimates since they explicitly consider applicative layers as well as hard-

ware and software contention. Unfortunately, LQNs are a time-consuming tools and
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for this reason the space of possible multi-cloud time-dependent software architectures455

has to be explored in the most efficient way in order to avoid to evaluate unpromising

configurations. For this reason a heuristic approach has been adopted.

The rationale of the optimization engine implemented by SPACE4Cloud consists

in characterizing the problem in two-level decision sets and in iteratively using two

different local search strategies (one for each set) to improve an initial solution (Hy-460

bridization). The upper-level local search is devoted to the selection of the most

suitable resource type per tier and per provider considering eventual user-defined ar-

chitectural constraints; a multi-start Tabu-search [28] like sub-routine is in charge of

this task. In a nutshell, this procedure randomly selects one of the tiers of the architec-

ture and modifies the related resource type according to a selection process based on465

a roulette-wheel, or fitness proportionate, mechanism. This selection method is com-

monly used in genetic algorithms but has been demonstrated to be beneficial also in

other approaches. When a local optimum is found (after some iterations of both local

searches) the optimization process is re-executed from a new configuration expressly

generated to address the search toward poorly explored zones of the solution space.470

Such a multi-start tabu mechanism is implemented via two memory structures: a short

term and a long term one. The goal of the short memory is to avoid cycles in the

upper-level search phase of the algorithm. The long term memory, in turn, is used to

store the frequency of assignments and evaluations for a particular provider, resource

type and tier with the aim to implement an aspiration criterion (for the multi-start475

mechanism) that allows the algorithm to escape from local optima, breaking free from

constraints imposed by the short term memory.

The lower-level procedure, instead, implements a Greedy Randomized Adaptive

Search (GRASP) [29] technique to optimize the number of replicas of the assigned

resource for each tier; the goal is to find the minimum number of resources and the480

best distribution of the workload among the Cloud providers for each tier to fulfill

the QoS requirements. This procedure is applied independently, and in parallel, on

all providers and all periods of the reference time horizon and terminates when a

further reduction in the number of replicas or change in the workload distribution

would leads to an unfeasible solution. Notice that since higher-level decisions can lead485

to the generation of an infeasible solution, before the GRASP phase can be applied the

feasibility must be re-established by enacting a progressive increment of the number
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resources of each tier.

4. Experimental Results

This section reports the results of the scalability and quality optimization analyses490

performed for a variety of software architectures with the aim to prove the soundness

and usefulness of our approach. Section 4.1 briefly presents the experimental setup.

The scalability analysis for the solution of the MILP problem formulation is discussed

in Section 4.2, whereas Section 4.3 summarizes the performance of our hybrid opti-

mization in a comparison with first principle policies that can be implemented at IaaS495

providers based on thresholds on tier utilization.

4.1. Experimental Setup

As introduced in Section 3.1, the problem of finding the optimal allocation of ser-

vices to application tiers presents several decision dimensions. Using the experience we

gathered during the analysis of the case study we identified the main factors influencing500

the time needed to derive a quality solution using the proposed hybrid approach.

Our optimization problem can be roughly characterized in terms number of providers

(|P|), number of tiers (|I|) of the application under analysis and number of function-

alities (|F|). However, whereas, the size of P and I do have a direct effect on the

size of the solution space of the problem discussed in Section 3.1, the |F| does not505

affect directly the optimization procedure; yet it has an impact on the complexity of

the LQN performance model. Solving an LQN model is a time-consuming task and

the optimization procedure is often required to evaluate a great number of them; in

the worst case one model per hour of the day and for each Cloud provider must be

evaluated and this must be repeated for each of the hundreds of solutions that might510

be generated throughout the optimization process.

The analysis we performed are intended to be representative of real Cloud appli-

cations. To assess the soundness and scalability of the proposed approach we built a

benchmark consisting of a set of 42 randomly generated instances obtained varying the

performance parameters according to the ranges used by other literature approaches515

[30, 31, 32, 33] and from a real system [34] (see Table 3). Resource costs and capacities

have been taken from Amazon EC2, Microsoft Azure, and Flexiscale.
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Since most of real world applications are composed by two or three tiers [35] [34]

we restrict ourself to generating instances with only two and three tiers varying the

number of functionalities from a minimum of 6 up to a maximum of 12. All the520

generated software architectures (i.e., the benchmark instances) expose three func-

tionalities allocated on the first tier that typifies a web server or an application proxy.

The invocation of each functionality by the end user triggers the execution of a chain

of functionalities hosted on the other tiers. Finally, the assignment of functionality to

tiers depends on the considered |F| and |I| in such a way to balance the load generated525

across all the tiers of the system. This choice has been made in order to challenge the

optimization algorithm; in this way the local-search algorithm is forced to optimize all

the application tiers at once since none of them appear to be more critical than the

others.

Since QoS constraints are important to avoid flat naive configurations, we paid530

attention in generating them meaningfully. Suitable constraints on the execution time

of the three functionalities offered by the system are therefore derived by summing up

the demands along the execution paths of each functionality, across all the involved

tiers, and multiplying this value by 10, as in [21, 30]. Amazon EC2 m3.medium has

been used as a reference virtual machine to generate resource-independent demands.535

We have, thereafter, introduced an architectural constraint specifying that the first

and third tier of each architecture have to be hosted on virtual machines with at least

2GB of memory. We did not specify any constrain on the second tier in order to allow

the algorithm to explore a wider space of configurations. Both single and multi-cloud

scenarios (with 2 and 3 providers) are considered. In the two multi-cloud scenario,540

we imposed an additional constraint requiring that, if a provider is selected, it has to

serve at least 20% of the incoming workload.

Workloads have been generated by considering the trace of a large Web system

including almost 100 servers. The trace contains the number of sessions, on a per-

hour basis, over a one-year period. The trace follows a bimodal distribution with545

peaks around 11.00 a.m. and 4.00 p.m. Multiple workloads have been obtained by

adding random white noise to each sample as in [30] and [36].

The ranges of the considered model parameters are reported in Tables 3 and 4 for

sake of completeness.

In order to guarantee statistical independence of our scalability results (note that550
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Parameter Range

αk [0.1; 1] %
pk,f [0.01; 0.5]
µf,v [50; 2800] req/sec
Cv,t [0.06; 1.06] $ per hour

M i [1;4] GB
N 5000

Rk [0.005; 0.01] sec

Table 3: Ranges of model parameters.

Parameter Range

Number of providers |P| [1; 3]
Number of tiers |I| [1; 3]
Number of time Intervals |T | [1; 24]
Number of Requests Classes |K| 3
Number of Functionalities |F| [6; 12]
Number of resource types |Vp| [1; 12]

Table 4: MILP sets cardinalities.

the second optimization step includes random moves), for each test each of the 42

different instances we considered was solved 25 times, leading to a total of 1.050

experiments.

All the experiments reported in this section have been performed on a VirtualBox

virtual machine based on Ubuntu 12.10 server with four virtual CPUs hosted on a555

Xeon E5530 and 6GB of memory. ILOG CPLEX 12.2.0.0 3 has been used as MILP

solver.

4.2. Scalability analysis

Figure 5 shows the detailed results of the scalability analysis for architectures of

2 and 3 tiers and deployments on 1 to 3 Cloud providers. Each value reported in the560

figures is averaged over 25 runs.

In particular, Figure 5(a) shows that the time spent in solving the MILP formu-

lation is only marginally affected by the number of functionalities the architecture

implements. This behavior was expected, since the number of functionalities has the

only effect to increase the number of response time constraints, modeled by equa-565

tions 11 in the model presented in Section 3.2. Since this increment is quite limited,

the effect on the solver execution time is modest. Both |I| and |P| have, instead,

an important impact on the solution time with larger times observed for the 3-tier

instances (see Figure 5(b)). However, it is worth to be noticed that the time increases

almost linearly even in the worst case the time is always restrained, legitimizing the use570

within a wider optimization approach. The simplest model, in fact, has been solved

in 30.26 seconds (for the 2-tier/1-provider problem) whilst the most difficult one in

60.74 seconds (for the 3-tier/3-provider problem).

3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Figure 5: Scalability analysis of the proposed MILP formulation.

Detailed results of the scalability analysis are reported in columns named Time(s)

and σTimeσTimeσTime(s) of Table 5. For each instance the table details the number of Cloud575

providers, tiers and functionalities of the application specified in the model. The

average and the standard deviation of the time required to solve the MILP problem

are reported.

4.3. Solution quality evaluation

The aim of this Section is to assess the quality of the solution obtained using580

the proposed MILP formulation and its impact on the outcomes of SPACE4Cloud.

Moreover, we evaluate the behavior of the proposed formulation comparing it with first

principle heuristics, widely used in practice [32, 33], which can be roughly described

by the following two rules of thumb:

1. For every tier, select the cheapest VM type available at the Cloud provider585

satisfying (if stated) memory constraints represented by Equation 9;

2. Similarly to the auto-scaling policy commonly implemented by IaaS providers

[37], the number of VMs allocated for each tier is determined such that the

average CPU utilization is below a given threshold ρ.

To analyze a wider range of behaviors we implemented two possible contending heuris-590

tics as in [33], namely Heur60 and Heur80 by setting ρ = 0.6 and ρ = 0.8, respectively.

Figure 6 shows the trace of the execution of the optimization implemented by

SPACE4Cloud using as initial point the solution obtained by the Heur60 heuristic,

in gray, and the one derived by our approach, in black. On the x axis the overall

optimization time is reported (including the time required to determine the initial595

solution by the MILP or the heuristic and the local search execution time), while the

y axis reports the Cloud daily resource cost.
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Figure 6: Comparison of execution traces of SPACE4Cloud when using the MILP initial
solution or the Heur60 initial solution

This trace has been obtained by instrumenting SPACE4Cloud in order to report

how the cost of the solution changes during the optimization process. The trace in

Figure 6 comes from one of the comparison runs we performed but is representative of600

most of the behaviors. More details on the results of other runs are given in Table 5.

In particular we have first analyzed the difference in cost between the first feasible

solution found by the optimization run starting from the heuristic solution and by the

MILP approach, marked as ∆in. This value shows the distance between the staring

points of the two optimization runs. Positive ∆in values indicate that the solution605

found by the MILP approach is cheaper than the one obtained by the heuristic. The

initial gap on the x axis represents the time required to generate the initial solution

by solving the MILP formulation of the problem. The ∆out, shows the difference of

the cost of the best solution found by the two optimization runs, this value represents

the final savings obtained by using the MILP initial solution in place of the Heur60.610

Positive values indicate reduction in cost obtained by the MILP heuristic. Finally

we analyze the ∆time which represents the time saved in the optimization process.

Positive values indicate a reduction in the time required by the optimization process

performed by SPACE4Clouds when using as initial solution the one derived by the

MILP formulation of the problem. Negative values indicate a growth in the time615

required for the optimization.

Even if the evaluation of the MILP solution introduces an initial delay, the per-
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formance of the local search is significantly improved. In this specific case the final

solution is around 55% cheaper, while the time required by the local search to identify

the final local optimum is reduced by half.620

Table 5 summarizes the results achieved in the columns on the right side, under the

Quality Evaluation header. The results reported in each column have been obtained by

considering 210 total runs of SPACE4Cloud starting from an initial solution generated

either by using our MILP approach, the Heur60 or the Heur80 heuristics. Columns

∆in, ∆out and ∆time report the relative percentage gain/loss when using the MILP625

approach to generate the initial solution with respect to the heuristic approach.

With respect to the Heur60 heuristic, the average cost reduction of the final solution

obtained by SPACE4Cloud when using as initial solution the one generated by our

MILP approach is of 37%. The average reduction in the time required to find the

solution is of 50% With respect to the Heur80 heuristic, the average cost reduction630

of the final solution obtained by SPACE4Cloud is of 37% and the average reduction

in the time required to find the solution is of 22%. When three Cloud providers

are considered, the time required to perform the optimization of SPACE4Cloud when

using the initial solution generated by MILP is sometimes larger than the one required

when starting from the Heur80. Nevertheless, comparing the final solution obtained635

by those runs show that the solution found using the MILP approach is, on average,

27% cheaper.

5. Related Work

Our work lays in the Model-Driven Quality Prediction (MDQP) research area.

MDQP starts from a description of the software system in terms of UML models, in640

order to support quality prediction; the Object Management Group (OMG) introduced

two particular flavors of UML tailored for this purpose: the UML Schedulability,

Performance and Time (SPT) profile [38] and the UML Modelling and Analysis of Real-

time Embedded (MARTE) systems profile [39]. These profiles support the modeling

of resource allocation and the definition of non-functional properties.645

Many other approaches share the same idea of extending design-time models in

order to support performance analysis and QoS requirements; in particular the Palladio

Component Model (PCM) [12], developed by Becker et al., provides a language that

can be used to model the architecture of an application, its deployment and users’
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Scalability Quality Evaluation
MILP vs Heur60 MILP vs Heur80

|P||P||P| |I||I||I| |F||F||F| Time(s) σTimeσTimeσTime(s) ∆in %∆in %∆in % ∆out %∆out %∆out % ∆time %∆time %∆time % ∆in %∆in %∆in % ∆out %∆out %∆out % ∆time %∆time %∆time %

1

2

6 30.26 0.89 76.9% 32.5% 57.8% 69.6% 35.2% 25.9%
7 30.69 0.88 82.5% 49.8% 47.1% 77.0% 45.2% 9.4%
8 30.83 0.72 83.8% 47.8% 22.7% 78.7% 28.1% 68.3%
9 32.87 1.05 90.5% 36.0% 67.5% 82.4% 33.7% 66.6%
10 34.03 1.06 87.1% 34.0% 60.5% 82.9% 29.8% 52.3%
11 31.99 1.44 89.6% 42.8% 57.1% 86.2% 39.6% 49.9%
12 34.02 1.69 89.8% 44.0% 46.6% 86.4% 33.3% 56.2%

3

6 47.31 1.68 72.1% 37.3% 57.7% 63.9% 38.1% 43.1%
7 50.25 3.58 75.4% 39.3% 49.0% 68.4% 43.7% 18.3%
8 47.93 2.53 80.6% 42.9% 58.4% 74.5% 39.6% 54.6%
9 47.42 2.42 83.3% 36.0% 74.1% 78.0% 36.3% 52.0%
10 47.03 1.64 85.4% 45.4% 21.3% 80.8% 39.5% 43.8%
11 46.74 1.66 87.2% 44.2% 50.0% 83.1% 42.3% 41.9%
12 44.83 1.36 89.2% 46.9% 46.2% 85.7% 47.6% 19.0%

2

2

6 37.45 0.71 86.0% 39.1% 68.7% 85.1% 44.5% 43.6%
7 39.20 0.81 89.0% 36.2% 68.1% 84.4% 43.9% 43.0%
8 39.67 1.13 91.4% 36.3% 71.5% 87.3% 43.3% 62.7%
9 39.04 1.36 92.5% 42.4% 76.7% 90.9% 53.1% 67.5%
10 40.06 0.90 92.8% 40.4% 73.9% 90.6% 48.4% 69.2%
11 41.87 1.62 93.5% 44.5% 74.9% 92.3% 53.3% 56.2%
12 40.55 2.37 93.9% 40.8% 78.4% 92.3% 46.5% 60.9%

3

6 50.32 2.89 81.3% 35.7% 68.5% 80.3% 40.1% 52.6%
7 52.66 1.34 86.2% 38.7% 59.2% 80.9% 43.1% 22.1%
8 52.30 1.00 89.7% 38.2% 64.0% 86.2% 45.9% 43.3%
9 50.89 1.42 90.1% 41.1% 65.0% 88.1% 46.8% 48.6%
10 51.37 1.26 91.2% 40.5% 67.3% 86.9% 45.3% 57.9%
11 52.48 1.07 92.5% 44.5% 77.9% 88.7% 47.7% 67.3%
12 50.99 1.00 93.0% 40.2% 80.4% 91.8% 48.0% 68.1%

3

2

6 40.47 8.33 76.6% 22.6% 37.7% 73.2% 17.9% -27.2%
7 42.71 0.84 81.0% 19.6% 25.3% 74.6% 17.3% -59.5%
8 44.45 3.21 84.3% 30.3% 31.5% 80.2% 28.2% -33.4%
9 43.45 1.13 87.8% 37.8% 26.0% 86.8% 35.6% -20.4%
10 44.96 0.95 89.0% 37.5% 38.9% 83.4% 34.7% -13.7%
11 46.65 2.13 90.5% 33.3% -2.5% 88.3% 31.8% -79.1%
12 44.73 2.99 91.8% 35.1% 41.3% 88.0% 33.6% -40.1%

3

6 55.71 1.69 74.2% 25.8% 39.2% 66.5% 22.5% -68.2%
7 55.62 1.86 76.9% 28.2% 25.5% 73.7% 25.3% -71.9%
8 59.19 1.90 82.0% 31.2% 40.8% 79.2% 28.8% 36.9%
9 59.71 1.67 83.0% 28.7% 33.6% 80.8% 25.8% -2.0%
10 60.42 1.91 84.6% 29.8% 40.4% 80.4% 27.7% -7.3%
11 60.74 1.42 86.9% 23.9% 26.0% 82.7% 21.6% -28.7%
12 58.28 1.83 88.3% 30.2% 26.9% 87.8% 27.5% -34.9%

Table 5: Results of the Scalability and Quality Evaluation analysis.
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behavior with particular concern for QoS characteristics. Such models can then be650

analyzed by means of a simulation engine [40] or transformed into a Layered Queuing

Network (LQN) model and analyzed by LQN solvers (like LINE [4] or LQNS [41])

to derive performance metrics. Other approaches that perform transformation from

design-time models to performance ones can be found in surveys [42, 43, 44] that

provide a good coverage of the most important approach for performance prediction655

at design-time. The outcome of the MDQP process has been used as starting point

for design-time performance optimization in different works.

In order to present how similar optimization problems have been approached in the

literature, we use a classification partially derived by the one presented in [45], which

is suited to describe a broad range of similar approaches. This taxonomy has the am-660

bition to be as general as possible presenting: semi-automated framework embedding

rules and the knowledge of anti-patterns (Rule-based category), problem-independent

optimization techniques (Metaheuristic category) and solutions relying on reasoning

techniques to tackle the problem of constraint satisfaction (Generic Design Space Ex-

ploration category).665

Rule-based approaches. This category groups together approaches that em-

bed performance knowledge into feedback rules. The general flow of optimization ap-

proaches that falls in this category is to evaluate a candidate solution to derive perfor-

mance indicators and then apply rules, by means of model-to-model transformations,

in order to improve the system architecture in a semi-automatic way. The baseline for670

this approach is the Query, View, Transformation language defined by OMG that has

been adopted and extended by many approaches such as [45] with the addition of feed-

back rules. Among the rule based approaches we can identify the framework PUMA

by Woodside et al., [46] that support JESS feedback rules. Other approaches, like [47]

or [48], focus on the identification of anti-patterns on existing systems, specified by675

a set of rules, the main limitation of these approaches is that most of them they are

language specific. A key difference between the works related to the identification of

performance anti-patterns and our work is that usually performance anti-patterns are

mostly related to the architecture of the application and do not consider its deploy-

ment, our approach on the other hand is focused on the identification of an optimized680

deployment of the application. In our approach, however, architectural anti-pattern

can be identified as side effect. In the context of distributed systems a rule based ap-
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proach for configuration optimization, according to QoS metrics, has been proposed in

[49]. In[50] is proposed an approach that comprises a trade-off analysis of competing

Non-Functional Requirements (NFR) in order to find critical components for one or685

more NFR. Their work involves manual intervention for the specification and selection

of transformation rules with the objective to find an architecture that satisfies NFR

in a process of consecutive refinements.

Metaheuristics. Metaheuristic approaches aim at exploring the space of pos-

sible solutions using high-level algorithms, often inspired by biology or physics. The690

Automated Quality-driven Optimization of Software Architecture (AQOSA) frame-

work [51], for instance, allows the optimization of multiple criteria exploring the design

space by means of an evolutionary algorithm in order to derive a set of Pareto optimal

solutions. A similar approach, based on a genetic algorithm is the ArcheOpterix pre-

sented in [52]. A specialization of such work in the context of embedded system has695

been proposed in [53] in order to optimize reliability and energy consumption. An-

other genetic algorithm based approach with focus on service composition id presented

in [54]. Genetic algorithms usually effective in solving multidimensional optimization

problems but need to evaluate a high number of solution. If the time needed to eval-

uate objective functions over the solutions is considerable evolutionary approaches700

are not applicable. In such a situation approaches that keeps alive a single or just

a couple of solutions, like the one by Ouzineb et al. [55] based on a Tabu Search

heuristic, are more convenient. An approach similar to the one presented in this work

has been proposed in [19], where an hybrid bi-level Tabu Search was used to optimize

the deployment of an application on a single cloud provider.705

[18] address the problem of deriving deployment decisions using an approach sim-

ilar to the one presented in this work. Authors make use of an analytic optimization

problem to derive a promising initial population for an evolutionary algorithm. In this

work they deal with the optimization of conflicting three objectives, namely cost and

response time and availability. The main differences between this and our work lies710

in the fact that in [18] only legacy in-house enterprise systems are considered while

here we take into account the uniqueness of the Cloud environment to develop a fully

new software architecture optimization approach able to deal also with the multi-cloud

scenario. Ultimately, in [6] is proposed a combined metaheuristic-simulation approach

to solve the problem of migrating existing enterprise software to Cloud platforms. A715
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combination of a specific Cloud environment, deployment architecture, and runtime

reconfiguration rules are considered. The design space is explored by means of a ge-

netic algorithm while a simulator is charged with the solution performance evaluation.

Although there are some similarities, many are the differences. To start with our

approach is not suitable for legacy systems since it has been designed to help QoS de-720

signers to design multi-Cloud ready application, moreover we explicitly consider both

architectural and QoS constraints during the search process. Finally our approach

takes into consideration deployment scenarios over a daily horizon leading to multiple

capacity allocation solutions, each one tailored to one hour of the day.

Generic Design Space Exploration (GDSE) are frameworks that are725

not particularly tailored for some problem instances but provide a way to explore a

general space of possible solutions encoding feedback rules into a Constraint Satisfac-

tion Problem. An example of such a framework is DeepCompass [56] that is suited to

optimize component based application on multiprocessor systems. A similar approach

based on boolean trees is presented in [57], the approach is general but can be spe-730

cialized to take QoS aspects into consideration. Also a general approach is presented

in [58], that provides a language to specify constraints and allows the generation of

candidate solution by means of different solvers.

A different approach is Formula, presented in [59]. It consists in the specification

of the problem as a satisfiability problem and use the Z3 Satisfiability Modulo Theory735

solver to derive solutions compliant with the design specification. To do so, Formula

makes use of logic programs to specify non-functional requirements and transform

these constraints along with the application models and meta-models into first-order

logic relations.

6. Conclusion740

In this paper we present a matheuristic approach for the multi-cloud capacity

allocation problem wherein a MILP formulation, based on queue-theory results, is

solved with the goal of identifying a promising initial solution to be, thereafter, fed

to a local-search optimization procedure. The proposed hybrid approach is meant to

yield a reduction of development time, the running costs, and the overall quality of745
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a multi-cloud application by providing an automated and effective search procedure,

able to identify more and better design alternatives.

To demonstrate the suitability of the proposed MILP model for large-sized prob-

lems, a scalability analysis has been performed and discussed, showing that, as a

matter of fact, existing state-of-the-art solvers can solve the largest formulation in at750

most one minute.

Furthermore, the hybrid approach to optimization presented in this work has been

proven to be effective in improving the local-search outcomes in terms of both quality

and optimization time (we observed a 37% reduction of the costs on average) with

respect to commonly adopted first principles heuristics based on utilization thresholds.755

Future work will concern on the one hand the validation of the proposed approach

on additional industry case-studies whilst on the other it will be extended to entail

the QoS assessment and optimization of Big Data software systems.
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