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The ALPHA collaboration aims to determine αs(mZ) with a total error below the percent level.
A further step towards this goal can be taken by combining results from the recent simulations of
2+1-flavour QCD by the CLS initiative with a number of tools developed over the years: renor-
malized couplings in finite volume schemes, recursive finite size techniques, two-loop renormal-
ized perturbation theory and the (improved) gradient flow on the lattice. We sketch the strategy,
which involves both the standard SF coupling in the high energy regime and a gradient flow
coupling at low energies. This implies the need for matching both schemes at an intermediate
switching scale, Lswi, which we choose roughly in the range 2-4 GeV. In this contribution we
present a preliminary result for this matching procedure, and we then focus on our almost fi-
nal results for the scale evolution of the SF coupling from Lswi towards the perturbative regime,
where we extract the Nf = 3 Λ-parameter, Λ

(3)
MS

, in units of Lswi. Connecting Lswi and thus the
Λ-parameter to a hadronic scale such as FK requires 2 further ingredients: first, the connection of
Lswi to Lmax using a few steps with the step-scaling function of the gradient flow coupling, and,
second, the continuum extrapolation of LmaxFK .
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1. Introduction

One of the long-term goals of the ALPHA-collaboration consists in a controlled and precise
determination of the strong coupling constant, αs, from experimentally well-measured hadronic
observables. In 2+1-flavour QCD the hadronic input can be obtained using gauge field ensembles
produced by Coordinated Lattice Simulations (CLS) effort [1, 2]. The 3 bare parameters, mu = md ,
ms and the coupling g0 can be fixed taking e.g. mπ , mK and FK from experiment, after correcting
for isospin breaking and electromagnetic effects. Once this is achieved, any other observable of the
theory becomes a prediction, in particular, the renormalized strong coupling at a large scale,

α
(Nf=3)
s (1000×FK), αs =

ḡ2

4π
, (1.1)

in any renormalization scheme. Obviously the final goal is to determine α
(Nf=5)
s (mZ) in the MS-

scheme of dimensional regularization. This requires a matching procedure to 4- and 5-flavour QCD
across the charm and bottom thresholds, respectively. There is some hope that perturbation theory
may be adequate to include not only the effects of the heavier bottom quark on the coupling, but
also those of the charm quark [3, 4]. This will not be discussed here. We just mention that current
phenomenological estimates of αs yield

αs(mZ) = 0.1183(12) , (1.2)

with a 1% error [5]. This is compatible with the currently available lattice results which have total
errors of similar size [6]. Using the strategy described in the following we expect a significant
reduction of this error.

2. The Λ-parameter and αs

Given the strong coupling αs = ḡ2/(4π) in a quark mass independent renormalization scheme
the corresponding Λ-parameter is defined by

Λ
(Nf) = µ

[
b0ḡ2(µ)

]−b1/(2b2
0) e−1/(2b0ḡ2(µ)) exp

{
−
∫ ḡ(µ)

0
dg
[

1
β (g)

+
1

b0g3 −
b1

b2
0g

]}
, (2.1)

where Nf denotes the fixed number of quark flavours. If the coupling constant is non-perturbatively
defined, so is the β -function and thus the Λ-parameter. Nevertheless, at high scales the perturbative
form β (g) =−b0g3−b1g5 + . . . can be used, with the universal coefficients,

b0 =
11− 2

3 Nf

(4π)2 , b1 =
102− 38

3 Nf

(4π)4 . (2.2)

The relation between the Λ-parameters in any two schemes is exactly calculable by one-loop pertur-
bation theory: for schemes X and Y the one-loop relation between the respective couplings entails
the relation,

g2
X = g2

Y + cXYg4
Y +O(g6

Y) ⇒ ΛX

ΛY
= ecXY/2b0 . (2.3)

Hence, even though the MS-scheme is only defined perturbatively, its Λ-parameter can be defined
non-perturatively and is conventionally used as a reference. Note that a 1% error on αs(mZ) trans-
lates to a 6-7% error on Λ

(5)
MS

[5], which sets the reference in terms of the precision.
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3. An approach involving 2 couplings

The approach to compute Λ
(3)
MS

followed by our collaboration has previously been described in
ref. [7] and is sketched in fig. 1. Moving up the energy scale from the hadronic to the perturbative
regimes it consists of the four separate steps:

1. Matching of a hadronic scale, e.g. FK , to the box size Lmax defined implicitly through the
gradient flow coupling of ref. [8], ḡ2

GF(Lmax) = umax. Here the value umax must be chosen
such that there is a range of common values of β = 6/g2

0, so that the limit

lim
a→0

(aFK)(β )× (Lmax/a)(β ) , (3.1)

can be taken. As the matching proceeds via the bare parameters the same lattice action must
be used as in the CLS simulations.

2. As a next step we calculate the evolution of the GF coupling from Lmax to an intermeditate
scale, Lswi = 2−3Lmax, by 3 steps up the energy scale by factors of 2. One may do a step
more or less, and the scale factor need not be 2 in all the steps. In fact, Lswi can be defined in
a variety of ways. The only thing that matters is that the relation between Lmax (and thus FK)
and a given choice of Lswi is known precisely.

3. At the intermediate scale Lswi we switch scheme to the traditional SF coupling [9, 10],
ḡ2

SF(Lswi). At this point we also change the gauge action to the Wilson plaquette action.

4. The evolution of the SF coupling is traced by doing 3-5 steps up the energy scale with scale
factor 2. At small couplings the Λ-parameter can then be extracted in units of Lswi using a
perturbative evaluation of the exponent in eq. (2.1).

We use 2 different couplings and gauge actions for technical reasons: first, the target precision
for the Λ-parameter from eq. (2.1) requires the knowledge of the 3-loop β -function, which is only
available for the SF coupling [11]. Furthermore, cutoff effects in the SF coupling have been cal-
culated to 2-loop order with the Wilson gauge action and their subtraction from the data, helps to
stabilise the continuum limit. Finally the scaling properties of the statistical errors at fixed L/a with
the scale L favour the SF coupling towards the perturbative high energy regime [7]. Combining the
advantages of both couplings seems the best strategy, the price to pay being the additional scheme
switching step.

4. Computation of LswiΛ

The scale evolution of the SF coupling ḡ2(L) can be traced by constructing the step-scaling
function (SSF)

σ(u) = ḡ2(2L)
∣∣
ḡ2(L)=u , (4.1)

as the continuum limit of lattice approximants, Σ(u,a/L). This requires to compute the SF coupling
on pairs of lattices L/a and 2L/a at the same bare parameters. We have measured Σ(u,L/a) for
lattice sizes L/a = 4,6,8 and in 3 cases for L/a = 12, and for 6 approximately tuned u-values in the
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Figure 1: A sketch of the strategy (cp. text), reproduced from ref. [7].

interval [1.08,2.012]. The critical mass has been tuned to high precision so that the corresponding
systematic effects are completely negligible. Furthermore, the knowledge of perturbation theory to
2-loop order allows to subtract the cutoff effects completely at a given perturbative order: with

δ (u,a/L) =
Σ(u,a/L)

σ(u)
−1 = δ1(L/a)×u+δ2(L/a)×u2 +O(u3), (4.2)

we may define the 2-loop perturbatively improved data,

Σ̃(u,a/L) =
Σ(u,a/L)

1+δ1(L/a)u+δ2(L/a)u2 . (4.3)

Given the data points we perform global fits to both the perturbatively improved and unimproved
data. An example for such a fit ansatz is

Σ̃(u,a/L) = u+ s0u2 + s1u3 + c1u4 + c2u5 +ρ1
a2

L2 u4, (4.4)

which we apply to all the data with L/a≥ 6. Here,

s0 = 2b0 ln2, s1 = s2
0 +2b1 ln2, (4.5)

are fixed to their perturbative values, the fit parameters c1 and c2 describe the continuum SSF and
ρ1 models the cutoff effects. The main assumption of such a global fit ansatz is the smoothness of
both the continuum SSF and the cutoff effects as a function of u. With 19 data points and 3 param-
eters the fit in eq. (4.4) has a reasonable χ2/d.o.f. = 1.0. The data points, slightly interpolated to
common values of u, are displayed together with the resulting continuum SSF in figure 2. A com-
parison with data from the literature for Nf = 0 [12], Nf = 2 [13, 14], Nf = 3 [15] and Nf = 4 [16]
is made in figure 3.
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Figure 2: Left panel: The data points interpolated to common u-values, together with the global fit function,
The rightmost point were not included in the fit. Right panel: The continuum extrapolated SSF with its error
band (shaded area) together with the data points (cp. text).

u

[σ
(u

)−
u

] 
/ 

[2
 l
n

(2
) 

u
2
]

 

 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
N

f
=0

N
f
=2

N
f
=3

N
f
=4

Figure 3: Comparison with results from the literature
for Nf = 0,2,3,4 [12, 13, 14, 15, 16]. The shaded area
corresponds to the global fit. The dashed lines show
the perturbative prediction b0 +O(u).

We now define the switching scale, Lswi,
through the SF coupling by setting,

ḡ2
SF(Lswi) = 2.012, (4.6)

which is the largest u-value for which we
have computed the SSF. Taking this value as
our starting point, we may now recursively
step up the energy scale by factors of 2, us-
ing the fitted continnum SSF, viz.

u0 = ḡ2
SF(Lswi), ui = σ(ui+1), (4.7)

where i= 0,1,2, . . .. Then, using the formula
for the Λ-parameter, eq. (2.1) and its relation
to ΛMS [10],

Λ
(3)
SF = 0.38286(2)×Λ

(3)
MS

, (4.8)

we obtain stable results already after a cou-
ple of steps. As our preliminary result we
quote

LswiΛ
(3)
MS

= 0.0802(24) , (4.9)

with a total error of 3 percent.
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Figure 4: Matching the GF and SF couplings using the line of constant physics ḡ2
SF(Lswi) = 2.012 (cp. text).

5. Matching to the GF coupling

Having finished step 4 of our strategy, we now discuss step 3, the matching to the gradient flow
coupling. We define the GF coupling in a finite volume with SF boundary conditions following
[8]. However, in order to reduce boundary effects, we restrict the sum to the chromo-magnetic
components by summing over spatial Lorentz indices only,

−1
2

3

∑
k,l=1

t2 〈Gkl(t,x)Gkl(t,x)〉|x0=T/2,T=L,t=c2L2/8,mq=0 = N (c,a/L)× ḡ2
GF(L) . (5.1)

We use both the Wilson flow [17, 18] and the O(a2) improved Zeuthen flow [19, 20] and an O(a2)
improved definition of the observable [19, 21]. For the matching we employ the Wilson plaquette
action, whereas the scale evolution (step 2 of the strategy) will use the Lüscher-Weisz gauge action
to match the set-up of CLS. We note that c defines the smoothing range in units of T = L. Staying in
the middle of the volume, x0 = T/2 and setting c = 0.3 we expect that the influence from the time
boundaries is negligible. This is further corroborated by a perturbative analysis. Then, using the
β - and κ-values that correspond to the line of constant physics (LCP) condition ḡ2(Lswi) = 2.012,
for L/a = 6,12,16 we double the lattice size, switch off the background field and thus obtain the
(preliminary) results in figure 4. As our preliminary continuum extrapolation we quote,

ḡ2
GF(2Lswi) = 2.680(10) . (5.2)

This illustrates the typical precision that can be obtained: note that this error includes an estimate
of the uncertainty in the definition of the LCP (hence the 2 kinds of error bars in fig. 4). We also
mention that the cutoff effects are naturally expressed in units of the smoothing radius, a/

√
8t =

a/(cL), which is the reason for doubling the lattice size as compared to the SF coupling.
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6. Summary

We have presented our preliminary result Λ
(3)
MS

= 0.0802(24)/Lswi, where Lswi is an interme-
diate scale, defined implicitly by ḡ2

SF(Lswi) = 2.012. Furthermore, we have matched the SF and GF
couplings with the (preliminary) result ḡ2

GF(2Lswi) = 2.680(10). To finish the project, it remains
to relate Lswi to a hadronic scale by computing the SSF for the GF coupling towards lower enery
scales, and by matching the maximal box size, Lmax, reached in this way to a hadronic scale such
as FK , as measured on the CLS gauge configurations.
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