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The conjecture that several recently observed mesons have a structure, which is not dominated by
an ordinary quark-antiquark pair, but by a four-quark structure, is being actively investigated both
theoretical and experimentally. Such a state may be characterized as a mesonic molecule or as
a diquark-antidiquark pair. Lattice QCD provides a theoretically sound framework to study such
states. To quantitatively investigate the internal structure of such mesons, one needs to precisely
compute correlation matrices containing several interpolating operators including two and four
quarks. Here we discuss certain technical aspects of such correlation matrices suited to study
tetraquark candidates with JP = 0+ and flavor structure q1q̄2q3q̄3, e.g. the a0(980) meson, the
D∗s0 meson and some of the charged cc̄ X states. Some numerical results for the a0(980) meson
are presented.
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1. Motivation

Our understanding of the light scalar meson sector (quantum numbers JP = 0+) is still incom-
plete [1, 2, 3]. The observed mass ordering of σ , κ , f0(980) and a0(980) is inverted compared to
expectations from conventional qq̄ quark model calculations. Moreover, when assuming a qq̄ struc-
ture, it is hard to explain the mass degeneracy of f0(980) and a0(980). However, the interpretation
of this meson sector assuming a four-quark structure is rather straightforward. The expected mass
ordering is consistent with experimental results and due to an additional ss̄ pair the degeneracy of
f0(980) and a0(980) is not surprising (cf. Figure 1).

Several lattice QCD studies of the light scalar mesons have been published in the last couple of
years [4, 5, 6, 7, 8, 9, 10]. In this work we continue our investigation of the a0(980) meson [11, 12,
13, 14, 15, 16, 17] and briefly discuss the applicability of our methods and codes to other systems,
the D∗s0 meson and some of the charged cc̄ X states. In particular the investigation of tetraquark
candidates with two heavy and two light quarks seems promising, since recent computations in the
static limit predict a bound state [18, 19].

2. Interpolating operators and the correlation matrix

Our investigations are based on a 6×6 correlation matrix

C jk(t) =
〈
O j(t2)Ok†(t1)

〉
, t = t2− t1. (2.1)

The interpolating operators O j generate quantum numbers I(JP) = 1(0+),

O1 = Oqq̄ =∑
x

(
d̄xux

)
(2.2)

O2 = OKK̄, point =∑
x

(
s̄xγ5ux

)(
d̄xγ5sx

)
(2.3)

O3 = Oηsπ , point =∑
x

(
s̄xγ5sx

)(
d̄xγ5ux

)
(2.4)

O4 = OQQ̄ =∑
x

εabc

(
s̄x,b(Cγ5)d̄T

x,c

)
εade

(
uT

x,d(Cγ5)sx,e

)
(2.5)

O5 = OKK̄, 2-part =∑
x,y

(
s̄xγ5ux

)(
d̄yγ5sy

)
(2.6)

O6 = Oηsπ , 2-part =∑
x,y

(
s̄xγ5sx

)(
d̄yγ5uy

)
, (2.7)

where C is the charge conjugation matrix. The operator Oqq̄ generates a standard quark-antiquark
state, while all other operators generate four-quark states. OKK̄, point and Oηsπ , point are of mesonic
molecule structure (KK̄ and ηsπ), while OQQ̄ corresponds to a diquark-antidiquark pair (we use
the lightest (anti)diquarks with spin structure Cγ5 [20, 21, 22]). These three operators are intended
to model the expected structures of possibly existing four-quark bound states, i.e. of tetraquarks.
The remaining two operators OKK̄, 2-part and Oηsπ , 2-part independently generate two mesons (K+ K̄
and ηs +π) and, hence, should be suited to resolve low-lying two-particle scattering states.

In Figure 2 the correlation matrix C jk is shown in a graphical way in terms of diagrams, where
each line represents a quark propagator. Clearly there are disconnected diagrams and diagrams,
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Figure 1: Spectrum of light scalar mesons (JP = 0+). Experimental results (left); Theoretical expectation
within the conventional quark model (qq̄ structure) (center); Theoretical expectation assuming a four-quark
structure (right).

where quarks propagate within a timeslice. Computing these diagrams precisely is very challenging
(cf. section 3 and [17]).
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Figure 2: Diagrammatic representation of the 6× 6 correlation matrix C jk containing the interpolating
operators (2.2) to (2.7). The diagrams only reflect the spatial quark propagation. Even though elements with
j,k ∈ {2,3,4} appear to be identical, they differ in their spin and color structures.

Note that the correlation matrix given in Eq. (2.1) is also suited to studying the D∗s0 meson,
when replacing the quark flavors according to u→ s, d→ c and s→ u,d. Similarly, one can explore
certain charged charmed tetraquarks, when replacing s→ c.

3. Techniques to compute the correlation matrix elements

A number of diagrams of the correlation matrix shown in Figure 2 are challenging to com-
pute, in particular disconnected diagrams or diagrams, where quarks propagate within a times-
lice. Our strategy is to combine several standard techniques including (a) fixed-source propagators,
(b) stochastic timeslice-to-all propagators, (c) the one-end trick and (d) sequential propagators (cf.
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[17] and references therein). For most diagrams there are a couple of possibilities, where in many
cases the most efficient combination with respect to the required HPC resources and the obtained
statistical accuracy can only be identified after extensive numerical tests and/or analytical consid-
erations. Examples dealing with C11 and the disconnected diagram of C46 can be found in [17].
Below we briefly discuss another example, C15. A complete and detailed discussion of the full
correlation matrix will be part of an upcoming publication.

The matrix element

C15(t) =−
〈

∑
x,y,z

tr
(

Gs(z, t1;y, t1)†
γ5Gu(x, t2;z, t1)†

γ5Gd(x, t2;y, t1)
)〉

(3.1)

(quark propagators are denoted by Gq) can e.g. be computed by combining the one-end trick and
the technique of sequential inversions. The one-end trick realizes an implicit summation over a
timeslice, which can be either at t1 (case (a)) or at t2 (case (b)),

(a): −〈∑x,z tr
(
[φ s(z)δz0,t1 ]

†
γ5Gu(x, t2;z, t1)†

seq. inversion

γ5φ d(x)
)〉

→−
〈

∑
x

tr
(

ψ
u/s(x)†

γ5φ
d(x)

)〉
(3.2)

(b): −
〈

∑y,z tr
(

φ d(y)†γ5 Gs(y, t1;z, t1)γ5φ
u(z)

seq. inversion

)〉
→−

〈
∑
y

tr
(

φ
d(y)†

γ5ψ
s/u(y)

)〉
(3.3)

(cf. also Figure 3). At first glance both options seem to be equivalent. Note, however, that the
computation of the sequential propagator (the blue lines in Figure 3), requires for case (a) only
2 inversions of the Dirac matrix, while for case (b) tmax/a+ 1 inversions are necessary to obtain
C15(t) for 1≤ t ≤ tmax. Clearly, proceeding as in (a) is more efficient than proceeding as in (b).
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Figure 3: Two possibilities to compute C15 using the one-end trick and sequential propagators. Both meth-
ods show comparable errors, but method (b) requires with t/a+1 inversions a more computational effort.

4. Numerical results

At the moment we are performing computations as described in section 2, section 3 and
Ref. [17] using around 500 Wilson clover gauge link configurations with 2+1 dynamical quark

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
9
6

Computation of correlation matrices for tetraquark candidates with JP = 0+ Joshua Berlin

0

0.2

0.4

0.6

0.8

1

1.2
a 

E
nef

f

 n=0
 n=1

0

0.2

0.4

0.6

0.8

1

1.2
 n=0
 n=1
 n=2
 n=3

0

0.2

0.4

0.6

0.8

1

 5  10  15  20

n=0

|v
j(n

) |2

t/a

KK, point
ηsπ, point
KK, 2part
ηsπ, 2part

0

0.2

0.4

0.6

0.8

1

 5  10  15  20

n=1

t/a

KK, point
ηsπ, point
KK, 2part
ηsπ, 2part

0

0.2

0.4

0.6

0.8

1

1.2

 5  10  15  20
 0

 500

 1000

 1500

 2000

 2500

a 
E

nef
f

E
 [M

eV
]

t/a

 n=0
 n=1
 n=2
 n=3
 n=4

Figure 4: (top left) Effective masses from the 2×2 correlation matrix containing OKK̄,point and Oηsπ ,point.
(top right) Effective masses from the 4× 4 correlation matrix containing additionally OKK̄,2-part and
Oηsπ ,2-part. (The horizontal lines correspond to expected energies of the two-meson states K+ K̄ and ηs +π ,
where both mesons are at rest and with one relative quantum of momentum.) (center left and right) Squared
eigenvector components obtained from the 4× 4 correlation matrix. (bottom) Effective masses from the
5×5 correlation matrix containing additionally OQQ̄.

flavors generated by the PACS-CS collaboration [23]. The lattice size is 323×64, the lattice spac-
ing a≈ 0.09fm and the light u/d quark mass corresponds to mπ ≈ 300MeV. Since computations
are ongoing and statistical accuracy is currently rather limited, we neglect in a first analysis dia-
grams of the correlation matrix, where quarks propagate within a timeslice, e.g. the diagram shown
in Figure 3 and all diagrams with closed quark loops. Consequently, C1 j =C j1 = 0 for j = 2, . . . ,6,
i.e. the correlation matrix shown in Figure 2 is reduced to a 5×5 matrix containing the interpolating

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
9
6

Computation of correlation matrices for tetraquark candidates with JP = 0+ Joshua Berlin

operators O2, . . . ,O6.
We determine effective masses Eeff

n and corresponding eigenvectors vn by solving the standard
generalized eigenvalue problem

C(t)vn(t, tr) = λn(t, tr)C(tr)vn(t, tr) , En
t large
= Eeff

n (t, tr) =
1
a

ln
(

λn(t, tr)
λn(t +a, tr)

)
(4.1)

with tr = a.
Effective masses from the 2×2 correlation matrix containing only the mesonic molecule op-

erators OKK̄,point and Oηsπ ,point are shown in Figure 4 (top left). There are two states at around
1GeV, i.e. roughly consistent with the expected mass of the a0(980) meson [24] as well as with
the two-meson states K + K̄ and ηs +π in our lattice setup.

Similarly, effective masses from the 4×4 correlation matrix containing additionally the two-
meson operators OKK̄,2-part and Oηsπ ,2-part are shown in Figure 4 (top right). The same two low-lying
states around 1GeV are obtained, but the corresponding plateaus are reached at smaller temporal
separations t and exhibit less statistical fluctuations. The energies of the second and third excita-
tions are significantly larger, consistent with the expected energies of two-meson states with one
relative quantum of momentum. This indicates that the two low-lying states are of two-meson
type, i.e. neither of the two corresponds to a bound four-quark state, which can be identified with
the a0(980) meson. This is further supported by the squared eigenvector components of v0 and v1

obtained from the 4×4 correlation matrix, which are also shown in Figure 4 (center left and right).
Results of an analogous analysis of a 5× 5 correlation matrix containing also the diquark-

antidiquark operator OQQ̄ are shown in Figure 4 (bottom). Since no additional state at around
1GeV appears, the conclusions are essentially the same as for the 4×4 correlation matrix: It thus
seems that when neglecting quark propagation within a timeslice, and given the unphysical value
of the pion mass we are investigating, the a0(980) meson is not a rather stable four-quark state
of mesonic molecule or diquark-antidiquark type. (Cf. also [12] for a more detailed very similar
discussion.)
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