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1. Introduction

The nonet of light scalar mesons formed byσ ≡ f0(500), κ ≡ K∗

0(800), a0(980) and f0(980)
is poorly understood. Compared to expectation all nine states are rather light and their ordering is
inverted. For example in a standard quark antiquark picturethea0(980) states, which haveI = 1,
must necessarily be composed of two light quarks, e.g.a0(980) ≡ d̄u, while the κ states with
I = 1/2 are made from a strange and a light quark, e.g.κ ≡ s̄u. Consequently,κ should be heavier
thana0(980), sincems> mu,d. In experiments, however, the opposite is observed, i.e.m(κ)= 682±
29MeV, whilem(a0(980)) = 980±20MeV [1]. On the other hand in a four-quark or tetraquark
picture the quark content could bea0(980) ≡ d̄us̄sandκ ≡ s̄u(ūu+ d̄d) naturally explaining the
observed ordering. Moreover, certain decay channels, e.g.a0(980) → K + K̄, indicate that besides
the two light quarks also anss̄pair is present and, therefore, also support a tetraquark interpretation.
A detailed discussion of light scalar mesons can be found e.g. in [2, 3].

In addition to the light scalar mesons there are also varioustetraquark candidates among the
heavy mesons, e.g.D∗

s0(2317) andDs1(2460) (cf. e.g. [4, 5]) or the charmonium statesX(3872),
Z(4430), Z(4050), Z(4250).

Here we report about the status of an ongoing long-term project with the aim to study possible
tetraquark candidates from first principles using lattice QCD. Parts of this work have already been
published [6, 7].

2. Lattice setup

We use gauge link configurations withNf = 2+ 1+ 1 dynamical quark flavors generated by
the European Twisted Mass Collaboration (ETMC).

We have studied several ensembles with the same rather fine lattice spacinga≈ 0.086fm. The
ensembles differ in the volume(L/a)3

×(T/a) = 203
×48, . . . ,323

×64 and the unphysically heavy
light quark mass corresponding tomπ ≈ 280MeV. . .460MeV. Details regarding these gauge link
configurations can be found in [8, 9, 10, 11, 12, 13].

Currently we ignore disconnected diagrams, which are technically rather challenging (cf. the
outlook in section 5). An important physical consequence isthat the quark number and the anti-
quark number are separately conserved for each flavor. Therefore, there is no mixing between ¯uu,
d̄d ands̄sresulting in anηs meson with flavor structure ¯ssinstead ofη andη ′.

Further lattice details and technicalities can be found in [7].

3. Four-quark creation operators

In the following we focus on thea0(980) sector, which has quantum numbersI(JP) = 1(0+).
As usual in lattice QCD we extract the low lying spectrum in that sector by studying the asymptotic
exponential behavior of Euclidean correlation functions

Cjk(t) =
〈

(O j(t))
†
Ok(0)

〉

. (3.1)

O j andOk denote suitable creation operators, i.e. operators generating thea0(980) quantum num-
bers, when applied to the vacuum state.
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Assuming that the experimentally measureda0(980) with mass 980± 20MeV is a rather
strongly bound four quark state, suitable creation operators to excite such a state are

O
KK̄ molecule
a0(980) = ∑

x

(

s̄(x)γ5u(x)
)(

d̄(x)γ5s(x)
)

(3.2)

O
diquark
a0(980) = ∑

x

(

εabcs̄b(x)Cγ5d̄c,T(x)
)(

εadeud,T(x)Cγ5se(x)
)

. (3.3)

The first operator has the spin/color structure of aKK̄ molecule (¯s(x)γ5u(x) andd̄(x)γ5s(x) corre-
spond to a kaonK and an antikaon̄K at the same positionx). The second resembles a bound diquark
antidiquark pair, where spin coupling viaCγ5 corresponds to the lightest diquarks/antidiquarks (cf.
e.g. [2, 14, 15]).

Further low lying states in this sector are the two particle statesK + K̄ andηs+ π. Suitable
creation operators to resolve these states are

O
K+K̄ two-particle
a0(980) =

(

∑
x

s̄(x)γ5u(x)

)(

∑
y

d̄(y)γ5s(y)

)

(3.4)

O
ηs+π two-particle
a0(980) =

(

∑
x

s̄(x)γ5s(x)

)(

∑
y

d̄(y)γ5u(y)

)

. (3.5)

4. Numerical results an their interpretation

We first discuss numerical results for the ensemble with the smallest volume,(L/a)3
×(T/a) =

203
×48, which corresponds to a spatial extension ofL ≈ 1.72fm. This ensemble is particularly

suited to distinguish two-particle states with relative momentum from states with two particles at
rest and from possibly existinga0(980) tetraquark states (two-particle states with relative momen-
tum have a rather large energy because one quantum of momentum
pmin = 2π/L ≈ 720MeV).

Figure 1a shows effective mass plots from a 2× 2 correlation matrix with aKK̄ molecule
operator (3.2) and a diquark-antidiquark operator (3.3). The corresponding two plateaus are around
1100MeV and, therefore, consistent both with the expectation for possibly existinga0(980) tetra-
quark states and with two-particleK + K̄ andηs+ π states, where both particles are at rest
(m(K + K̄) ≈ 2m(K) ≈ 1198MeV;m(ηs+ π) ≈ m(ηs)+m(π) ≈ 1115MeV in our lattice setup).

Increasing this correlation matrix to 4×4 by adding two-particleK + K̄ andηs+ π operators
(eqs. (3.4) and (3.5)) yields the effective mass results shown in Figure 1b. Two additional states
are observed, whose plateaus are around 1500MeV. . .2000MeV. From this 4× 4 analysis we
conclude the following:

• We do not observe a third low-lying state around 1100MeV, even though we provide opera-
tors, which are of tetraquark type as well as of two-particletype. This suggests that the two
low-lying states are the expected two-particleK + K̄ andηs+ π states, while an additional
stablea0(980) tetraquark state does not exist.

• The effective masses of the two low-lying states are of much better quality in Figure 1b
than in Figure 1a. We attribute this to the two-particleK + K̄ andηs+ π operators, which
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Figure 1: a0(980) sector,(L/a)3
× (T/a) = 203

× 48. a) Effective masses as functions of the temporal
separation, 2× 2 correlation matrix (operators:KK̄ molecule, diquark-antidiquark, eqs. (3.2) and (3.3)).
b) 4×4 correlation matrix (operators:KK̄ molecule, diquark-antidiquark, two-particleK + K̄, two-particle
ηs + π , eqs. (3.2) to (3.5)).c), d) Squared eigenvector components of the two low-lying statesfrom b) as
functions of the temporal separation.

presumably create larger overlap to those states than the tetraquark operators. This in turn
confirms the interpretation of the two observed low-lying states as two-particle states.

• To investigate the overlap in a more quantitative way, we show the squared eigenvector com-
ponents of the two low-lying states in Figure 1c and Figure 1d(cf. [13] for a more detailed
discussion of such eigenvector components). Clearly, the lowest state is ofηs + π type,
whereas the second lowest state is ofK + K̄ type. On the other hand, the two tetraquark
operators are essentially irrelevant for resolving those states, i.e. they do not seem to con-
tribute any important structure, which is not already present in the two-particle operators.
These eigenvector plots give additional strong support of the above interpretation of the two
observed low lying states as two-particle states.

• The energy of two-particle excitations with one relative quantum of momentum can be esti-
mated according to

m(1+2, p = pmin) ≈

√

m(1)2 + p2
min +

√

m(2)2 + p2
min , pmin =

2π
L

. (4.1)

Inserting the meson masses corresponding to our lattice setup,m(K) ≈ 599MeV,
m(ηs) ≈ 774MeV andm(π) ≈ 341MeV, yieldsm(K + K̄, p = pmin) ≈ 1873MeV and
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m(ηs + π, p = pmin) ≈ 1853MeV. These numbers are consistent with the effective mass
plateaus of the second and third excitation in Figure 1b. Consequently, we also interpret
them as two-particle states.

We obtained qualitatively identical results, when varyingthe light quark mass and the space-
time volume, as discussed in section 2. Corresponding plotsare shown in [7].

Using exactly the same techniques, i.e. four-quark operators of tetraquark and of two-particle
type, we also studied theκ-sector (for details cf. [7]). Again we find no sign of any four-quark
bound state besides the expected two-particle spectrum (inthis caseK + π states). Note that this
result is in contradiction to a very similar recent lattice study of theκ meson [16], where an addi-
tional low lying four-quark bound state has been observed.

5. Inclusion of singly disconnected diagrams

As mentioned in section 2 disconnected diagrams have been ignored for the results presented
so far. In this section we briefly discuss our strategy for computing such diagrams for specific
four-quark operators.

For correlation functions of four-quark operators with flavor structure ¯q1q1q̄2q3 a so-called
singly-disconnected diagram has to be computed. Tetraquark candidates with this flavor structure
are e.g. the previously discusseda0(980) ≡ s̄sd̄u (cf. Figure 2) or
D∗

s0(2317),Ds1(2460) ≡ (ūu+ d̄d)c̄s.
While for connected four-quark diagrams (i.e. all four quark propagators connect the timeslices

at time 0 and timet) standard point-to-all propagators can be used, applying exclusively such
propagators is not possible in practice for singly disconnected diagrams. The reason is that one has
to include a sum over space,∑x, at least on one of the two timeslices (wlog. at timet in Figure 2),
to project to zero momentum. This in turn requires a all-to-all propagator of quark flavorq1 on
that timeslice, due to∑x q̄1(x, t)q1(x, t) . . . (thesquark propagator at timeslicet represented by the
solid red line in Figure 2).

Since all-to-all propagators are prohibitively expensiveto compute, they are typically esti-
mated stochastically. While using a single stochastic propagator for a specific diagram typically
results in a favorable or at least acceptable signal-to-noise ratio, using a larger number of such
propagators drastically increases statistical errors. Therefore, we decided for the following strat-
egy: three quark propagators (theq1-loop at timeslice 0 and theq2 andq3 propagators connecting
the timeslices 0 andt) are realized by exact point-to-all propagators, while theremaining propaga-
tor (theq1-loop at timeslicet) is estimated stochastically, using randomZ2×Z2 timeslice sources.

First numerical tests of this strategy performed for botha0(980) and D∗

s0(2317) have been
promising in the sense that the statistical errors of the singly disconnected diagrams for the molecule
type operator (3.2) are of the same order of magnitude as the statistical errors of the corresponding
connected diagrams, when investing a comparable amount of HPC resources.

6. Conclusions and future plans

We have studied thea0(980) and theκ channel by means ofNf = 2+ 1+ 1 flavor lattice
QCD using four-quark operators of molecule, diquark and two-particle type. Besides the expected
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time 0

time t

∑x can be
omitted, because of

translational invariance

s̄ud̄s

s̄ud̄s s̄ud̄s

∑x needed,
to havep = 0

Figure 2: The singly disconnected diagram of thea0(980)≡ s̄sd̄u correlator.

two-particle spectrum (two essentially non-interacting pseudoscalar mesons) no indication of any
additional low lying state, in particular no sign of a four-quark bound state could be observed. This
suggests that both thea0(980) andκ meson have either no sizeable tetraquark component or they
are rather weakly bound unstable states.

To investigate the latter one needs to study the volume dependence of the two-particle spectrum
in the corresponding sectors (“Lüscher’s method”, cf. e.g.[17, 18, 19]). Such computations are very
challenging using lattice QCD, but first results have recently been published (cf. [20, 21]). We plan
to perform similar computations with our setup in the near future.

Moreover, certain possibly present systematic errors needto be studied, quantified and re-
moved: (1) disconnected diagrams have to be computed and included (cf. section 5); (2) lattice
discretization errors and the continuum limit has to be studied; (3) computations at even lighter
and, therefore, more realisticu/d quark masses would be desirable.
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