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Abstract: We carry out an exploratory study of the isospin one a0(980) and the isospin

one-half κ scalar mesons using Nf = 2 + 1 + 1 Wilson twisted mass fermions at one

lattice spacing. The valence strange quark is included as an Osterwalder-Seiler fermion

with mass tuned so that the kaon mass matches the corresponding mass in the unitary

Nf = 2 + 1 + 1 theory. We investigate the internal structure of these mesons by using a

basis of four-quark interpolating fields. We construct diquark-diquark and molecular-type

interpolating fields and analyse the resulting correlation matrices keeping only connected

contributions. For both channels, the low-lying spectrum is found to be consistent with

two-particle scattering states. Therefore, our analysis shows no evidence for an additional

state that can be interpreted as either a tetraquark or a tightly-bound molecular state.
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1 Introduction

The Naive Quark Model (NQM) is — despite its simplicity — surprisingly successful in

qualitatively describing the experimentally observed meson and baryon spectrum. This

success has led us to think of mesons and baryons as qq̄ and qqq bound states, respectively.

In particular, no mesonic state incompatible with the quantum numbers of a qq̄ system has

been confirmed, yet. However, there are a few exceptions [1, 2] which cannot be described

in the NQM. One prominent example is the Roper resonance, another not less prominent

one is the presence of too many scalar states (i.e with quantum numbers JPC = 0++) with

mass below 2 GeV as compared to the expectation from the NQM. These scalars are the

f0(600) or σ, f0(980), f0(1370), f0(1500) and f0(1710) with isospin 0, the K∗
0 (800) or κ

and K∗
0 (1430) with isospin 1/2, and the a0(980) and a0(1450) with isospin 1.

This excess of states compared to the NQM expectation suggests that the picture

of mesons as qq̄ bound states is too simplistic and it has to be complemented by other
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quarkonic and gluonic structures. Consequently, it has been speculated that some of these

particles are tetraquark states, i.e. bound states of two quarks and two antiquarks, or pre-

dominantly gluonic in nature. For example, according to one favoured interpretation [2],

the states f0(1370), f0(1710), K
∗
0 (1430) and a0(1450) might indeed have dominant qq̄ com-

ponents, as expected in the NQM but the state f0(1500) might be, predominantly, the

lightest (0++) glueball [3], and the lightest of the scalar states might constitute a nonet

with a dominant tetraquark contribution [1, 4–8]. While such an interpretation is adopted

by other authors, e.g. [9], there are also different scenarios discussed in the literature, as

for example in [10, 11].

Experimentally, many of the aforementioned scalar resonances are difficult to resolve

as they have large decay widths and several decay channels that sometimes open up only

within a short energy interval. The question whether a physical state is dominated by a

qq̄, a tetraquark, a glueball or other hybrid wavefunctions is then typically investigated

through the analysis of its production and decay modes. These are directly accessible in

experiments and can be often measured rather accurately. This justifies the high experi-

mental activity [11, 12] in investigating the composition of these states. It is thus crucial

to develop a deeper theoretical understanding for the internal structure of these states.

A theoretical understanding from first principles requires a non-perturbative method.

Since Quantum Chromodynamics (QCD) is the theory of strongly coupled quarks and glu-

ons, such a non-perturbative method is provided by lattice QCD. But investigating the

states in lattice QCD is also a challenging endeavour: the distinction between scattering

states, resonances and bound states is subtle on a Euclidean lattice with finite space-

time volume. In fact, there is no continuum spectrum in a finite spatial volume and the

Hamiltonian has only discrete eigenvalues. In order to disentangle these different physical

phenomena it is necessary to study the volume dependence of the discrete eigenvalues of the

Hamiltonian [13–16]. In particular, the coefficients of the large volume expansion of the dis-

crete eigenvalues are related to the phase shifts of the scattering process. Moreover, as the

volume increases, the eventual resonances produce ”avoided level crossings” of eigenvalues.1

This method requires the extraction of more than the ground state in a channel with

given quantum numbers. These excited states are increasingly difficult to extract with

sufficient precision, even though the field has recently seen tremendous progress in the

methodology. An additional complication is the appearance of fermionic disconnected

contributions, which are notoriously noisy. Therefore, the available lattice results on scalar

mesons and possibly existing tetraquark states are still limited (cf. e.g. [18–25]). Certainly

more and in particular independent investigations are needed to gain a better understanding

of these scalar states.

In this paper we perform an exploratory study of the a0(980) and the κ using Wilson

twisted mass fermions. It is the first study of this kind with Nf = 2 + 1 + 1 dynamical

quark flavours, using gauge configurations provided by the European Twisted Mass (ETM)

collaboration [26–29]. Note that in particular the dynamical strange quark might be im-

portant for studying scalar resonances. In this exploratory investigation we address the

1Note, however, that also the threshold may display the same phenomenon [17].
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question, whether or not these states could be consistent with a tetraquark or a molecule

interpretation. We focus on the precise computation of correlation functions of operators

with quantum numbers of the a0(980) and κ mesons using four quark interpolating fields

ignoring fermionic disconnected contributions. The latter implies that there is no mixing

among four quark, two-quark and gluonic states. Apart from obvious technical advantages

and having a testbed of our method, there is another important reason for working in

this approximation: in [20] bound states close to threshold in the I = 0 and the I = 1/2

channels have been found in the same approximation. These bound states, found in ad-

dition to the expected scattering states, were interpreted as a possible indication for a

tetraquark nature of the corresponding states. In our study, performed with a similar op-

erator basis, but a different lattice discretisation, we do not observe such a bound state

in the I = 1/2 channel. Moreover, we also do not observe it in the I = 1 channel, which

was not considered in [20]. Note that parts of this work have recently been presented in a

conference proceeding [30].

The reason for focussing on the a0 and the κ are the following: the a0 has isospin

I = 1, i.e. when choosing Iz = ±1 only a single disconnected contribution is ignored. The

κ meson, on the other hand, mixes only with the K + π channel.

The paper is organised as follows: in section 2 we introduce the lattice formulation

followed by a discussion of the operator basis in section 3; the results of our study are

discussed in section 4 and we conclude in the last section.

2 Lattice setup

2.1 Lattice actions

This work is based on gauge link configurations generated by the ETM collaboration [26–29]

with the Iwasaki gauge action [31] and Nf = 2 + 1 + 1 flavours of twisted mass quarks.

The light degenerate (u, d) quark doublet is described by the standard Wilson twisted

mass action [32],

Slight[χ
(l), χ̄(l), U ] = a4

∑

x

χ̄(l)(x)
(

DW(m0) + iµγ5τ3

)

χ(l)(x), (2.1)

while for the heavy (c, s) sea quark doublet the twisted mass formulation for non-degenerate

quarks of [33] has been used,

Sheavy[χ
(h), χ̄(h), U ] = a4

∑

x

χ̄(h)(x)
(

DW(m0) + iµσγ5τ1 + τ3µδ

)

χ(h)(x). (2.2)

In both cases DW denotes the standard Wilson Dirac operator,

DW(m0) =
1

2

(

γµ

(

∇µ +∇∗
µ

)

− a∇∗
µ∇µ

)

+m0, (2.3)

while χ(l) = (χ(u), χ(d)) and χ(h) = (χ(c), χ(s)) are the quark fields in the so-called twisted

basis. For reasons explained in [34] the same value of the standard quark mass parameter

m0 has been used in both sectors.
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Ensemble β (L/a)3 × T/a µl µσ µδ µs
a mPS # of

(fm) (MeV) configs

A30.32 1.90 323 × 64 0.0030 0.150 0.190 0.02280 0.086 284 672

A40.32 323 × 64 0.0040 0.02322 324 200

A40.24 243 × 48 0.0040 0.02300 332 1259

A40.20 203 × 48 0.0040 0.02308 341 500

A50.32 323 × 64 0.0050 0.02336 362 431

A80.24 243 × 48 0.0080 0.02328 455 1225

Table 1. Gauge link ensembles considered in this paper. The notation follows [28].

When tuning the theory to maximal twist, automatic O(a) improvement for physical

quantities applies [33, 35]. This tuning has been done by adjusting m0 such that the PCAC

quark mass in the light quark sector vanishes (cf. [28] for details).

At maximal twist in a massless quark renormalisation scheme the renormalised quark

masses are related to the bare parameters µσ and µδ by

mR
s = Z−1

P

(

µσ −
ZP

ZS
µδ

)

, mR
c = Z−1

P

(

µσ +
ZP

ZS
µδ

)

(2.4)

ref. [33], where ZP and ZS are the renormalisation constants of the non-singlet pseudoscalar

and scalar densities. In our simulations the values of µσ and µδ have been adjusted by

requiring that the resulting lattice kaon and D meson masses approximately assume their

physical values [28, 36, 37].

For the computation of observables we use a twisted mass discretisation for valence

s quarks, which is different from the sea s quarks (2.2). It is given by (2.1) with χ(l) →

χ(s) = (χ(s+), χ(s−)) and µl → µs. We do this, to avoid the problem of mixing between s

and c quarks, which is discussed in detail in [36, 37]. Note that there are two possibilities

to realize a valence s quark, χ(s+) and χ(s−), which differ in the sign of the twisted mass

term, ±iµsγ5. Strategies and consequences of choosing s+ or s− are discussed in detail

in sections 3.1.2 and 3.2.2. The bare strange quark mass µs has been chosen such that

kaon masses computed within this mixed action setup with flavour structure s̄+d and s̄−u

(which are degenerate and known to have less discretisation errors than their s̄+u and s̄−d

counterparts [40–42]) agree with kaon masses computed in the unitary setup [36, 37], i.e.

using (2.2) also for valence s quarks.

In this work we consider six gauge link ensembles with simulation parameters given in

table 1. They differ in the space-time volume (L/a)3×T/a and in the light u/d quark mass

µl. The lattice spacing a ≈ 0.086 fm is the same for all ensembles. More details regarding

these ensembles can be found in [28].

The discussion of meson and four-quark creation operators (cf. section 3) and their

quantum numbers is more convenient with quark fields in the “physical basis”, (u, d) and

(s+, s−). This physical basis is related to the “twisted basis” (χ(u), χ(d)) and (χ(s+), χ(s−))

– 4 –



J
H
E
P
0
4
(
2
0
1
3
)
1
3
7

t0 t

(a) Connected contribution.

t0 t

(b) Singly disconnected contribution.

t0 t

(c) Doubly disconnected contribution.

Figure 1. Relevant contributions to a four-quark operator two point function.

introduced in (2.1) and (2.2) according to

(

u

d

)

= eiγ5τ3ω/2
(

χ(u)

χ(d)

)

,

(

s+

s−

)

= eiγ5τ3ω/2
(

χ(s+)

χ(s−)

)

, (2.5)

where ω is the twist angle, which we have tuned to maximal twist, i.e. ω = π/2.

When computing temporal correlation functions 〈O†
j(t2)Ok(t1)〉, where Oj and Ok are

e.g. meson or four-quark creation operators, we only consider quark propagators connecting

time t1 and t2, but ignore propagation of quarks within the same timeslice, e.g. from t1
to t1. For mesons this amounts to neglecting so-called disconnected diagrams. For four-

quark operators e.g. of tetraquark or two-meson type both singly and doubly disconnected

contributions (cf. (b) and (c) of figure 1) are omitted. Consequences of not considering

disconnected diagrams are discussed in the following sections.

Finally it should be mentioned that at finite lattice spacing isospin and parity are

not good quantum numbers in twisted mass lattice QCD. These symmetries are broken

by terms proportional to O(a). Consequently, when doing spectroscopy, one has to take

mixing with states of opposite parity and different isospin into account. Of course, in

the continuum limit these symmetries are restored and QCD is recovered. Mixing in the

context of a0(980) and κ is discussed in detail in sections 3.1.1 and 3.2.1.

2.2 The pseudoscalar meson spectrum

Since a pair of pseudoscalar mesons is rather light and can have the same quantum num-

bers as the scalar mesons a0(980) and κ, these are the most relevant scattering states to

consider. Their masses are approximately equal to the sum of the two masses of the cor-

responding individual mesons. Therefore, a precise and comprehensive knowledge of the

meson spectrum is important for our analysis.

As we ignore disconnected contributions, the η ≡ ūu + d̄d meson and the neutral

π ≡ ūu−d̄d become degenerate and there is an η/η′-like meson with valence quark structure

s̄s, but no light ūu or d̄d valence quarks, which we denote by ηs.

– 5 –



J
H
E
P
0
4
(
2
0
1
3
)
1
3
7

ensemble mπ(ūd,d̄u) mπ(ūu−d̄d) mK(s̄+d,s̄−u) mK(s̄+u,s̄−d) mηs(s̄+s−) mηs(s̄+s+,s̄−s−)

A30.32 284(1) 494(6) 576(7) 704(2) 876(1)

A40.20 341(2) 599(3) 774(2)

A40.24 332(1) 530(7) 593(1) 723(2) 882(1)

A40.32 324(7) 588(5) 779(2)

A50.32 362(7) 601(9) 783(2)

A80.24 455(1) 625(3) 635(1) 753(1) 885(1)

Table 2. The pseudoscalar meson spectrum in MeV with disconnected diagrams neglected. Omit-

ted mass values are not needed in the context of the tetraquark study presented in this paper.

Another particularity stems from the valence action used for the strange quarks dis-

cussed above. The kaon and the ηs can be constructed using s+ and/or s− strange quarks,

resulting in different values for the meson masses at finite value of the lattice spacing.

Similarly, in Wilson twisted mass lattice QCD the neutral (connected-only) and charged

pion mass values differ.

All meson masses relevant for our investigation are collected in table 2.

3 Creation operators and analysis details

In this study we exclusively consider creation operators with four quarks (two quarks and

two antiquarks). The structure of our four-quark operators is oriented at phenomeno-

logical expectations and ranges from four-quark bound states (molecules formed by two

mesons and bound diquark-antidiquark pairs) to two essentially non-interacting mesons

(two-particle operators).

Of course, standard quark-antiquark operators, e.g. d̄u for a0(980) and s̄u for κ, would

also be of interest. However, since we neglect disconnected diagrams (cf. section 2.1),

such two-quark operators do not generate overlap to trial states created by four-quark

operators. Consequently, in our setup four-quark operators and quark-antiquark operators

probe different sectors, which is, why we do not consider the latter in the following. In a

subsequent improved study we plan to include disconnected diagrams and to combine two-

and four-quark operators in a single correlation matrix.

Information regarding the used four-quark operators is summarised in table 3. The

operators will be discussed in more detail below.

3.1 Creation operators, a0(980) sector (quantum numbers I(JP ) = 1(0+))

The expected low-lying spectrum in the a0(980) sector (≈ 1000MeV) is the following:

• A two-particle η + π and a two-particle η′ + π state.

– In nature:

∗ Mass m(η + π) ≈ 548MeV + 140MeV = 688MeV [12].

∗ Mass m(η′ + π) ≈ 958MeV + 140MeV = 1098MeV [12].

– 6 –
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ensemble
quark gauge

type
Dirac structure

smearing smearing a0(980) κ

A30.32

Gaussian APE

KK̄ molecule γ5, γµ, γµγ5 −

A40.24
ηsπ molecule γ5 −

Kπ molecule − γ5, γµ, γµγ5

A80.24 diquark Cγ5, C Cγ5, C

A40.20

no no

KK̄ molecule γ5 −

diquark Cγ5 −

K + K̄ two-particle γ5 −

ηs + π two-particle γ5 −

Gaussian APE

KK̄ molecule γ5, γµ −

ηsπ molecule γ5 −

diquark Cγ5, C −

A40.32 Gaussian APE

KK̄ molecule γ5, γµ −

ηsπ molecule γ5 −

diquark Cγ5, C −

A50.32 Gaussian APE
KK̄ molecule γ5, γµ −

diquark Cγ5, C −

Table 3. Four-quark creation operators.

– In our lattice setup:

∗ Due to neglect of disconnected diagrams η has flavour structure ūu + d̄d

and is degenerate with the neutral pion (cf. section 2.2); the η + π state

is orthogonal to any trial state obtained by using an operator containing s

quarks, i.e. can be ignored in the following.

∗ Due to neglect of disconnected diagrams η′ becomes ηs (cf. section 2.2);

masses m(ηs + π) ≈ m(ηs) +m(π) depend on the gauge link ensemble and

can be read off from table 2.

• A two-particle K + K̄ state.

– In nature: mass m(K + K̄) ≈ 2× 496MeV = 992MeV [12].

– In our lattice setup: masses m(K + K̄) ≈ 2m(K) depend on the gauge link

ensemble and can be read off from table 2.

• Possibly a bound a0(980) state (might be of quark-antiquark, molecule or diquark-

antidiquark type), mass m(a0(980)) = 980± 20MeV [12].

To be able to resolve these low-lying states, we consider the following operators:

– 7 –
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• Molecule type operators:

OKK̄ molecule
a0(980)

=
∑

x

(

s̄(x)γ5u(x)
)(

d̄(x)γ5s(x)
)

(3.1)

Oηsπ molecule
a0(980)

=
∑

x

(

s̄(x)γ5s(x)
)(

d̄(x)γ5u(x)
)

. (3.2)

These operators create trial states, which share essential properties of mesonic

molecules: (1) all four quark positions are correlated, i.e. centered around x; (2)

due to Gaussian quark smearing (cf. section 3.3.1) the state is not point-like, but has

a certain extension (≈ 1 fm for our choice of smearing parameters; cf. also eq. (27)

in [47]); (3) the spin and color structure is chosen identical to that of two individ-

ual mesons.

Since pseudoscalar mesons (mesons with spin structure γ5) are the lightest mesons

in a given flavour sector, one expects possible molecular bound states to be of

pseudoscalar-pseudoscalar type. We also consider molecule type operators with γ5
replaced by γj and by γjγ5. These operators enlarge our correlation matrices and

allow us to study also excited states, in particular two-particle states with relative

momentum (cf. section 4).

• Diquark type operator:

Odiquark
a0(980)

=
∑

x

(

ǫabcs̄b(x)Cγ5d̄
c,T (x)

)(

ǫadeud,T (x)Cγ5s
e(x)

)

. (3.3)

These operators create trial states, which share essential properties of bound diquark-

antidiquark pairs: (1) all four quark positions are correlated and (2) the state has an

extension of ≈ 1 fm (as for molecule type operators); (3) the spin and color structure

is chosen such that the two quarks form a diquark and the two antiquarks form an

antidiquark.

Diquarks with spin structure γ5 are known to be the lightest [1, 38, 39], which is, why

we use γ5 in this operator. We also consider diquark type operators with γ5 replaced

by 1. As before, the main reason is to enlarge our correlation matrices allowing us

to study also excited states.

• Two-particle type operators:

OK+K̄ two-particle
a0(980)

=

(

∑

x

s̄(x)γ5u(x)

)(

∑

y

d̄(y)γ5s(y)

)

(3.4)

Oηs+π two-particle
a0(980)

=

(

∑

x

s̄(x)γ5s(x)

)(

∑

y

d̄(y)γ5u(y)

)

. (3.5)

These operators resemble states with two non-interacting mesons: (1) the positions

of the quark and the antiquark at x are correlated as well as those of the quark and

the antiquark at y, whereas the two quark-antiquark pairs centered around x and

y are uncorrelated; (2) the spin and color structure of each quark antiquark pair is

– 8 –
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chosen identical to that of a meson; (3) the “mesons” have an extension of ≈ 1 fm.

Therefore, these operators should be particularly suited to resolve two-particle K+K̄

and ηs + π states.

Note that terms with x = y in (3.4) and (3.5) also appear in the molecule opera-

tors (3.1) and (3.2), which is, why two-particle K + K̄ and ηs + π states can also

be resolved, even though only molecule and diquark operators are used. However,

the generated overlap to two-particle states is significantly larger, when two-particle

operators are applied, which in turn results in a signal of better statistical quality (cf.

the numerical results in section 4.1). This again justifies the labeling of our operators

by “molecule type”, “diquark type” and “two-particle type”.

3.1.1 Mixing due to twisted mass symmetry breaking

In twisted mass lattice QCD both parity P and isospin I are broken by O(a). Consequently,

one has to take mixing with states of opposite parity and different isospin into account.

When there is mixing with rather light states (lighter than those one is interested in), prob-

lems arise: correlators are slightly contaminated by weakly decaying exponentials, which

become dominant at large temporal separations, at which masses are usually determined.

Before we discuss mixing due to twisted mass symmetry breaking, it is important, to

understand the effects arising by neglecting disconnected diagrams in more detail. In such

a setup the valence quark flavour structure is conserved, i.e. quark-antiquark pairs can

neither be created nor annihilated. For a0(980) this implies that any state that mixes with

the trial states created by our operators (cf. (3.1) to (3.5)) must have valence quark flavour

structure ud̄ss̄.

This observation is particularly important, when discussing parity mixing, because at

first glance there seem to be states of opposite (negative) parity, which are light, namely

pions I(JP ) = 1(0−). However, since pions only have a u and a d̄ valence quark, but no

ss̄ pair, they are orthogonal to any state we probe with our four-quark operators. On the

other hand ud̄ss̄ four-quark states with negative parity are expected to be rather heavy,

e.g. could be a pseudoscalar meson and a scalar meson like K + κ.

Since the z-component of isospin Iz is a quantum number, and since we study the

Iz = +1 sector, isospin mixing can only take place with I ≥ 2 states. In principle there

could be mixing with rather light I = 2 π + π states, but as mentioned above this is

prevented by neglecting disconnected diagrams, which enforce valence flavour structure

ud̄ss̄, i.e. I = 1 and Iz = +1.

To summarise, for the a0(980) sector I(JP ) = 1(0+) mixing due to twisted mass

symmetry breaking is not expected to cause any problems. This is confirmed by our

numerical results (no additional unexpected states are observed, the effective mass plateaux

quality is good and does not seem to be contaminated by mixing; cf. section 4).

3.1.2 Different twisted mass realizations of the s quark

In our mixed action setup the s quark can be realized with either a twisted mass term

+iµsγ5 or −iµsγ5 denoted by s+ and s−, respectively (cf. also section 2.1). Consequently,
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the ss̄ pair appearing in our creation operators can be s+s̄+, s−s̄−, s+s̄− or s−s̄+. In the

continuum limit all four choices yield identical results. At finite lattice spacing, however,

results are different due to discretisation errors.

For mesons, it is known that using a quark and an antiquark with different twisted mass

signs significantly reduces discretisation errors [40–42]. With this in mind s+s̄− should be

the optimal choice for the operators (3.1), (3.4) and (3.5).

It is not clear, whether this mixed realization is optimal also for diquarks (opera-

tor (3.3)). For this reason, we also used s+s̄+ (or s−s̄−, which yields exactly the same

result). Another advantage is the possibility to also compute disconnected diagrams (which

we plan to do in the near future), which is not possible, when using s+s̄−.

Performing computations both with s+s̄+ as well as with s+s̄− is not only a valuable

cross check of numerical results, but also provides a first estimate of the magnitude of

discretisation errors at our current value of the lattice spacing. In section 4 numerical

results are presented and discussed in this context.

3.2 Creation operators, κ sector (quantum numbers I(JP ) = 1/2(0+))

The expected low-lying spectrum in the κ sector (≈ 700MeV) is the following:

• A two-particle K + π state.

– In nature: mass m(K + π) ≈ 496MeV + 140MeV = 636MeV [12].

– In our lattice setup: masses m(K + π) ≈ m(K) + m(π) depend on the gauge

link ensemble and can be read off from table 2.

• Possibly a bound κ state (might be of quark-antiquark, molecule or diquark-antidi-

quark type), mass m = 682 ± 29MeV [12]. Such a state has been observed in the

lattice study reported in [20], but not in the one in [43]. Note that disconnected

contributions are neglected in our calculations, like in [20].

To be able to resolve these low-lying states, we proceed similar as for a0(980) and

consider the following operators:

• Molecule type operator:

OKπ molecule
κ =

=
∑

x

(

(

s̄(x)γ5u(x)
)(

ū(x)γ5u(x)
)

+
(

s̄(x)γ5d(x)
)(

d̄(x)γ5u(x)
)

+
(

s̄(x)γ5s(x)
)(

s̄(x)γ5u(x)
)

)

; (3.6)

to be able to check and compare with results of a recent similar lattice tetraquark

study of κ [20], we also consider molecule type operators with γ5 replaced by γj and

by γjγ5. Such a structure corresponds to a bound state of a pair of vector mesons

(γj) and pair of axial vector mesons (γjγ5), which are significantly heavier than

pseudoscalar mesons (γ5). Therefore, we do not expect them to be very helpful to

resolve low lying states, which is confirmed by our numerical results (cf. section 4.3).

They are, however, useful for the extraction of excited states.
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• Diquark type operator:

Odiquark
κ =

∑

x

(

ǫabcs̄b(x)Cγ5d̄
c,T (x)

)(

ǫadedd,T (x)Cγ5u
e(x)

)

; (3.7)

note that γ5 diquark flavour combinations [s̄ū][uu] and [s̄s̄][su] do not exist, due to

the Grassmann property of the quark fields, i.e. [uu] = [s̄s̄] = 0. Hence, in contrast to

the molecule operator (3.6) there is no sum over light quark flavours in the diquark

operator (3.7); as before, we also consider diquark type operators with γ5 replaced

by 1; since a diquark with spin structure 1 is known to be heavier than a diquark

with spin structure γ5 [38, 39], we mainly use it to resolve excited states.

Both our numerical results for a0(980) and the above mentioned lattice study of κ [20]

indicate that two-particle scattering states can be resolved with four-quark operators, where

all quarks are located at the same point (e.g. operators (3.6) and (3.7)). Therefore, in con-

trast to our study of a0(980) we do not consider operators of two-particle type. This allows

to save a significant amount of computer time, because two-particle operators require dif-

ferent inversions of the Dirac operator (timeslice propagators instead of point propagators;

cf. section 3.3.2).

3.2.1 Mixing due to twisted mass symmetry breaking

In contrast to the a0(980) sector, mixing introduces additional low-lying states in the κ

sector, which have to be understood and resolved. These additional states have their origin

in two-particle K + π states with I = 3/2 (an I = 1/2 kaon and an I = 1 pion can either

form an I = 1/2 or I = 3/2 state).

In QCD, where isospin is conserved, these states are degenerate. One can linearly

combine the degenerate Iz ∈ {−1/2,+1/2} kaons and Iz = {−1, 0,+1} pions with appro-

priate Clebsch Gordan coefficients to form states with defined isospin I = 1/2 and I = 3/2.

Note, however, that any other linear combination is still an eigenstate of the QCD Hamil-

tonian, i.e. when discussing eigenstates of the Hamiltonian defined isospin is an option, but

not a necessity.

In twisted mass lattice QCD isospin is broken by O(a), i.e. u and d as well as s+ and s−

quarks are treated differently. The important consequence in the context of this discussion

is that the Iz = −1/2 kaon s̄+d is lighter than the Iz = +1/2 kaon s̄+u. Similarly there is a

splitting of pion masses, where the Iz = ±1 pions (d̄u and ūd) are lighter than their Iz = 0

counterparts (ūu − d̄d). While in QCD any linear combination of these kaons and pions

is an eigenstate of the Hamiltonian, this splitting determines specific linear combinations,

which are eigenstates in twisted mass lattice QCD: there is a (K + π) ≡ (s̄+u+ (ūu− d̄d))

state and a (K + π) ≡ (s̄+d+ d̄u) state; the two mesons in the first state are heavier than

the two mesons in the second state (cf. table 2). Note that both combinations have I = 1/2

and I = 3/2 contributions of the same order of magnitude, i.e. are not even close to isospin

eigenstates. Thus, when determining the low lying spectrum, one needs to resolve I = 1/2

as well as I = 3/2 K + π states.
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To summarise, for the κ sector I(JP ) = 1/2(0+) mixing due to twisted mass symmetry

breaking will double the number of two-particle K + π states contained in our correlation

matrices. This theoretical expectation is confirmed by our numerical results (cf. section 4).

3.2.2 Different twisted mass realizations of the s quark

As mentioned in the previous section, we realize the s quark via s+.

Using s− would yield on a quantitative level slightly different numerical results. The

reason is that one would observe a (K + π) ≡ (s−u + (ūu − d̄)d) state and a (K + π) ≡

(s−d + d̄u) state, i.e. each of the two states contains one “heavy version” of a meson

and one “light version” of a meson. Of course, in the continuum limit s+ and s− yield

identical results.

The results presented in this paper exclusively correspond to s+.

3.3 Computation of correlation matrices

We compute separate correlation matrices for a0(980) and κ,

Cjk(t2 − t1) =
〈

(Oj(t2))
†Ok(t1)

〉

, (3.8)

where Oj and Ok denote the creation operators (3.1) to (3.7). Technical details of these

computations are explained in the following.

3.3.1 Smearing techniques

To improve the overlap to the low-lying states of interest, we use Gaussian smearing of

quark fields [44, 45] with APE smeared spatial links [46]. Detailed equations can be found

e.g. in [47]. We use APE smearing parameters αAPE = 0.5 and NAPE = 20. Gaussian

smearing is done with κGauss = 0.5 and NGauss = 50 for most ensembles. Only for A40.20

we used NGauss = 30 instead of NGauss = 50. For lattice spacing a ≈ 0.086 fm these

parameters are inside a region, in which the overlap between mesonic trial states and the

K and D meson is rather large [36].

3.3.2 Propagator computation

For correlation matrix elements (3.8), where both Oj and Ok are molecule and/or diquark

operators, we use point source inversions of Gaussian smeared quark fields, i.e. twelve inver-

sions per gauge link configuration and quark flavour. This yields point-to-all propagators

for smeared quarks, which are exact, but which do not allow to exploit spatial transla-

tional invariance of the correlation matrix elements, to increase their statistical precision.

In order to reduce correlations, however, we have chosen a random position for the source

vector for each gauge configuration.

For correlation matrix elements, where at least one of the operators Oj and Ok is a

two-particle operator, the situation is different: here the standard one-end trick [48] can be

applied twice, allowing a stochastic estimation of timeslice-to-all propagators. For each ap-

plication of the one-end-trick we generated an independent stochastic timeslice source with
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Z2×Z2 noise, where the source time slice has been chosen randomly for each gauge configu-

ration. Computing correlation matrix elements with stochastic timeslice-to-all propagators

is rather efficient, because they allow to exploit spatial translational invariance, which in

turn reduces gauge noise significantly. Moreover, correlations between two two-particle op-

erators require timeslice-to-all propagators, which are prohibitively expensive to compute

using point source inversions.

3.4 Analysis of correlation matrices

To extract energy levels from N ×N correlation matrices, we solve the generalised eigen-

value problem

C(t)~vn(t) = λn(t, t0)C(t0)~v
n(t) , n = 0, . . . , N − 1 (3.9)

(cf. e.g. [49] and references therein). For a lattice with infinite temporal extension T the

eigenvalues λn(t, t0) are proportional to e−Ent for sufficiently large t, where En are the

energies of the N lowest energy eigenstates.

However, for lattices with periodic finite temporal extensions and sectors, where light

two-particle states exist (in our case two pseudoscalar mesons; cf. sections 3.1 and 3.2),

the interpretation of the eigenvalues λn(t, t0) is no longer simple. For example a diagonal

correlator Cjj(t), which is dominated by a two-particle state with energy En shows the

following behaviour for 0 ≪ t ≪ T [18, 20, 50]:

Cjj(t) =
∣

∣

∣
An

j

∣

∣

∣

2 (

e−Ent + e−En(T−t)
)

+
∣

∣

∣
Bn

j

∣

∣

∣

2 (

e−m1te−m2(T−t) + e−m2te−m1(T−t)
)

, (3.10)

where m1 and m2 denote the masses of the corresponding single-particle states and An
j and

Bn
j are operator dependent and problem specific constants. The “Bn

j term” corresponds to

the “m1 particle” traveling forward in time, while the “m2 particle” is traveling backwards

in time, and vice versa. This term leads to a drastic and characteristic deviation of effective

masses from their plateaux values at larger temporal separations. For example in figure 2b

this effect is clearly visible for t/a>
∼ 15.

In [20] eq. (3.10) was fitted to the eigenvalues λn(t, t0) to extract the energy levels En.

In this project, however, several two-particle states with rather different single-particle

masses contribute: in the a0(980) sector K + K̄ and ηs + π are the relevant states (cf.

section 3.1); for κ, due to twisted mass symmetry breaking, light and heavy kaons and

pions need to be considered (cf. section 3.2). Since a proper treatment of all these two-

particle states yields an equation significantly more complicated than (3.10) with too many

parameters to perform stable fits, we follow a different route.

First note that the Bn
j term in (3.10) is suppressed by ≈ e−min(m1,m2)T . Since An

j and

Bn
j are of the same order of magnitude, the Bn

j term becomes irrelevant for sufficiently small

t or T − t. Hence, we extract the energy levels considering small temporal separations only.

We restrict all our effective mass analyses to t, T − t<∼T/4, which seems to be a rather

conservative choice. Possibly present excited state contributions are taken into account

by fitting two exponentials to each of the eigenvalues λn(t, t0) of interest, fitting range
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tmin ≤ t ≤ tmax. t0, tmin and tmax have been chosen such that χ2/dof<∼ 1. Moreover, we

varied the values of t0, tmin and tmax to check and confirm the stability of our fitting results.

Currently, we ignore possible correlations between different eigenvalues λm(t, t0) and

λn(t, t0), m 6= n and also possible correlations in t. In principle such correlations could be

taken into account by estimating a corresponding covariance matrix, which has, however,

a couple of thousand entries. The number of available statistical samples, which is equal

to the number of gauge link configurations (cf. table 1), is not sufficient to estimate such a

covariance matrix accurately, which is why we do not take correlations into account. In the

majority of cases the above mentioned uncorrelated χ2/dof is significantly below 1 providing

some indication that the two fitted exponentials model our lattice results quite well.

4 Numerical results and their interpretation

4.1 a0(980): tetraquark and two-particle operators, ensemble A40.20

We start by discussing a0(980) (I(J
P ) = 1/2(0+)) results obtained using ensemble A40.20

(cf. table 1). This ensemble with rather small spatial extension (L ≈ 1.72 fm) is particularly

suited to distinguish two-particle states with relative momentum from states with two

particles at rest and from possibly existing a0(980) tetraquark states (two-particle states

with relative momentum have a rather large energy because one quantum of momentum

pmin = 2π/L ≈ 720MeV).

Figure 2a shows effective mass plots from a 2×2 correlation matrix with aKK̄ molecule

operator (3.1) and a diquark-antidiquark operator (3.3), flavour combination s+s̄− (cf.

section 3.1.2). The corresponding energies extracted from the two plateaus are given in

table 4 and they are consistent both with the expectation for possibly existing a0(980)

tetraquark states and with two-particle K + K̄ and ηs + π states, where both particles

are at rest (m(K + K̄) ≈ 2m(K) ≈ 1198MeV; m(ηs + π) ≈ m(ηs) + m(π) ≈ 1115MeV;

cf. table 2).

Increasing this correlation matrix to 4 × 4 by adding two-particle K + K̄ and ηs + π

operators (eqs. (3.4) and (3.5)) yields the effective mass results shown in figure 2b. Two

additional states are observed with energies given in table 4. From this 4 × 4 analysis we

conclude the following:

• We do not observe a third low-lying state around 1000MeV, even though we provide

operators, which are of tetraquark type as well as of two-particle type. This suggests

that the two low-lying states are the expected two-particle K + K̄ and ηs + π states,

while no additional stable a0(980) tetraquark state is detected.

• The effective masses of the two low-lying states are of much better quality in fig-

ure 2b than in figure 2a. We attribute this to the two-particle K + K̄ and ηs + π

operators, which appear to create larger overlap to those states than the tetraquark

operators. This in turn confirms the interpretation of the two low-lying states as

two-particle states.
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Figure 2. a0(980) sector, A40.20 ensemble. (a) Effective masses as a function of the temporal

separation, 2× 2 correlation matrix (local operators: KK̄ molecule, diquark-antidiquark, eqs. (3.1)

and (3.3)). Horizontal lines indicate the expected two-particle K + K̄ and ηs + π energy levels.

(b) 4×4 correlation matrix (local operators: KK̄ molecule, diquark-antidiquark, two-particleK+K̄,

two-particle ηs+π, eqs. (3.1) to (3.5)). (c), (d) Squared eigenvector components of the two low-lying

states from (b) as a function of the temporal separation.

• To investigate the overlap in a more quantitative way, we show the squared eigenvec-

tor components of the two low-lying states in figure 2c and figure 2d (cf. [37] for a

more detailed discussion of such eigenvector components). Clearly, the lowest state is

of ηs+π type, whereas the second lowest state is of K+ K̄ type. On the other hand,

the two tetraquark operators are essentially irrelevant for resolving those states, i.e.

they do not seem to contribute any structure, which is not already present in the

two-particle operators. These eigenvector plots give additional strong support of the

above interpretation of the two low lying states as two-particle states.

• The energy of two-particle excitations with one relative quantum of momentum can

be estimated by

m(1 + 2, p = pmin) ≈
√

m(1)2 + p2min +
√

m(2)2 + p2min , pmin =
2π

L
. (4.1)
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Insertingm(K), m(ηs) andm(π) from table 2, yieldsm(K+K̄, p = pmin) ≈ 1873MeV

and m(ηs + π, p = pmin) ≈ 1853MeV for the A40.20 ensemble. These numbers are

consistent with the effective mass plateaus of the second and third excitation in

figure 2b. Consequently, we also interpret them as two-particle states.

Figure 2a and figure 2b also demonstrate an important technical aspect: two-particle

states can be resolved by tetraquark operators, i.e. two-particle operators are not necessarily

needed, to extract the full spectrum. Since we are mainly interested in possibly existing

states with a strong tetraquark component, we restrict the correlation matrices computed

for other ensembles to four-quark operators (cf. table 3). This allows to save a significant

amount of computer time, because two-particle operators require different inversions of the

Dirac operator (timeslice propagators instead of point propagators; cf. section 3.3.2).

4.2 a0(980): tetraquark operators, many ensembles

We have analysed the six ensembles listed in table 1 with respect to a0(980) in a similar

way as explained in section 4.1.

As already mentioned above the main difference is that this time we exclusively use

tetraquark operators (3.1) to (3.3), but no two-particle operators (3.4) and (3.5). To be

able to resolve more than two low-lying states, we supplement the molecule operators

and the diquark-antidiquark operator by versions, where γ5 has been replaced by γj and

γjγ5 (molecule) and by 1 (diquark-antidiquark). More detailed information including e.g.

smearing parameters, number of gauge link configurations, etc. are collected in table 3.

On a qualitative level our findings agree for all ensembles, i.e. are as reported in the

previous subsection (effective mass plots are collected in figure 3): there are always two

low-lying states, whose masses are consistent with the expected masses of the two-particle

K + K̄ and ηs + π states (cf. figure 4 and table 4); higher excitations (the third, forth,

etc. extracted state) are in all cases significantly heavier and consistent with two-particle

excitations with one relative quantum of momentum (cf. eq. (4.1)).

To summarise, in the lattice setup and ensembles we are studying there is no indication

of any additional low-lying tetraquark state.

4.3 κ: tetraquark operators, many ensembles

The analysis for the κ sector (I(JP ) = 1/2(0+)) closely parallels the analysis of the a0(980)

sector presented above.

We consider correlation matrices containing aKπ molecule operator (3.6) and analogue

versions with γ5 replaced by γj and γjγ5 as well as an diquark-antidiquark operator ((3.7)

and a similar operator with γ5 replaced by 1). More detailed information including e.g.

smearing parameters, number of gauge link configurations, etc. are collected in table 3.

As has been explained in section 3.2.1 in twisted mass lattice QCD isospin I is not a

quantum number. Therefore, it is not sufficient to only resolve I = 1/2 two-particle K +π

states. One has to take into account also mixing with I = 3/2 two-particle K+π states, i.e.

it is necessary to resolve these two types of low-lying two-particle states at the same time.
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Figure 3. a0(980) sector, various ensembles, some of them with twisted mass strange quarks

s+s̄+, others with s+s̄−. Effective masses as a function of the temporal separation. Horizontal

lines indicate the expected two-particle K + K̄ and ηs + π energy levels.

Effective mass plots for ensembles A30.32, A40.24 and A80.24 (cf. table 1) are shown

in figure 5 together with the expected energy levels of two-particle K + π states (obtained

via eq. (4.1) and the meson masses collected in table 2). While effective mass plateaus

– 17 –



J
H
E
P
0
4
(
2
0
1
3
)
1
3
7

a0(980) sector κ sector

m(K) +m(K̄)
m(ηs) +m(π)

n=2
n=1

m(π+) [GeV]

m
[G

eV
]

0.50.40.40.30.30.20.20.20.1

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8
m(K) +m(π) (heavy combination)
m(K) +m(π) (light combination)

n=2
n=1

m(π+) [GeV]

m
[G

eV
]

0.50.40.40.30.30.20.20.20.1

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

Figure 4. The two lowest energy levels E0 and E1 obtained by our simulations in the a0(980)

(s+s̄+ only) and in the κ sector (cf. also table 4) as a function of mπ+ . Additionally, the energy

levels of the non-interacting states are included as solid lines.

ensemble t0 tmin tmax E0 in MeV E1 in MeV

a0(980) A40.24 2 5 12 1199(43) 1343(24)

(s+s̄+) A30.32 3 7 16 1078(129) 1327(66)

A80.24 3 4 12 1321(39) 1408(31)

a0(980) A40.20 1 5 12 1073(48) 1195(51)

(s+s̄−) A40.32 3 7 16 1098(77) 1210(40)

A50.32 5 6 16 1130(77) 1236(48)

κ A30.32 3 7 16 888(30) 1243(72)

A40.24 3 5 12 905(47) 1316(87)

A80.24 3 5 12 1060(50) 1345(150)

Table 4. The two lowest energy levels E0 and E1 in the a0(980) and in the κ sector (cf. also

figure 4).

are consistent with these expected two-particle energy levels, there is no indication of any

additional low lying state, i.e. of a possibly existing bound κ state.

While this is suggested by experimental data, it contradicts the findings of a simi-

lar recent lattice study of κ [20]. Currently we have no explanation for this qualitative

discrepancy of two rather similar lattice computations (same operators, no disconnected

diagrams, similar quark masses). In this context it is interesting to note that some of

the authors of [20] have recently also studied the κ including disconnected diagrams [43].

In contrast to their previous result [20] an additional bound state is not anymore found.

While this does not explain the discrepancy of our results and their results in [20], it clearly

signals that disconnected diagrams might play a very important role, when studying light

scalar mesons. We have already started to explore the inclusion of disconnected diagrams

in our computations from a technical point of view. First results have been presented at a

recent conference [51].

Results for the two lowest energy levels are collected in figure 4 and table 4.
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Figure 5. κ sector, various ensembles. Effective masses as a function of the temporal separation.

Horizontal lines indicate the expected two-particle K + π energy levels.

5 Conclusions and outlook

This work represents a first necessary step in the long term project of studying the scalar

mesons and their properties on the lattice. The main goal of this work was to develop

and test those techniques that can be effectively exploited for studying the contribution of

four-quark operators in mesons, especially in the context of the twisted mass formulation

of lattice QCD.

In particular we computed the low-lying spectrum in the a0(980) and κ sectors by

employing trial states designed to have a substantial overlap with both two-particle and

possibly existing tetraquark states. With our ensembles we did not see additional states

beside those that can be identified with the expected two-particle spectrum. In fact for

all our ensembles we observed two low lying states in correspondence with the K + K̄ and

ηs + π thresholds in the a0(980) sector and the K + π (I = 1/2 and I = 3/2) threshold

in the κ sector. The next states appear roughly consistent with excitations of the first

quantum of momentum (2π/L) on top of those thresholds. This is somewhat difficult to

reconcile with the additional state found by [20] in the κ, in spite of the rather similar

lattice setups.
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We find that the low lying spectrum has essentially exclusively overlap to two-particle

trial states. This suggests that the states that we see are, indeed, the expected two-

particles states at the threshold and not tightly bound states either of molecular type or

diquark-antidiquark type.

On the basis of this, we can conclude that either our choice of operators has negligible

overlap with the wave function of the resonances a0(980) and κ, or that our volumes are

not large enough to identify those states.

These conclusions can be strengthened by studying more volumes, by introducing

twisted boundary conditions [52] and by studying further trial states of different type. As

for the latter, it will be crucial to combine four quarks with traditional quark-antiquark

operators, but disconnected diagrams will be necessary for that. As for the volume de-

pendence, we plan to use the finite volume formulae of Lüscher [13–15, 53, 54] and their

extensions to multiple channels developed in [55–58]. At present, our limited number of

volumes is insufficient for such an analysis. Corresponding computations are in progress.

Another possible development consists in studying four-quark states that include the

charm quark. This is a natural extension thanks also to the presence of a dynamical charm

quark in the ETMC gauge configurations. This direction is also being explored in particular

in the context of the tetraquark candidates D∗
s0 and D∗

s1.
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