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1. Introduction

The information from lattice perturbation theory (LPT) can be valuable for non-perturbative
investigations of lattice field theories. For instance LPT allows the matching of renormalization
schemes at high-energy to be determined, and it can provide useful insights on the lattice artifacts
of the observables of interest. As well known, LPT is made more difficult than its continuum coun-
terpart by the complicated expressions for vertices and propagators that normally force numerical
evaluation even for simple diagrams. Additionally, in the case of gauge theories the appearance
of new vertices at all orders of perturbation theory makes the number of diagrams grow rapidly
with the perturbative order, thus leaving only low-order results accessible to standard techniques.
Numerical stochastic perturbation theory (NSPT) was introduced some time ago [1] (see [2, 3] for
recent developments) in order to bypass these difficulties, and thus allow estimates of high-order
perturbative coefficients to be obtained. The basic idea of NSPT is to integrate numerically a dis-
crete version of the equations of stochastic perturbation theory. The method comes with two main
limitations: first of all it is not exact, a sequence of simulations with a finer and finer discretization
of the relevant equations have to be performed in order to extrapolate away the systematic errors in
the results, secondly, the numerical simulations suffer from critical slowing down as the continuum
limit of the theory is approached.

Martin Lüscher has recently proposed a new form of stochastic perturbation theory, namely
Instantaneous Stochastic Perturbation Theory (ISPT) [4], which completely eliminates these lim-
itations; this contribution presents an exploratory study of this technique. Moreover, we propose
new NSPT methods using stochastic equations other than the Langevin equation. As we shall see
this leads to more efficient numerical algorithms that can significantly alleviate the limitations of
the standard set-up. For simplicity we test these methods in a simple scalar ϕ4 theory defined on a
finite Euclidean 4-dimensional periodic lattice of size L with action given by,

S(ϕ) = ∑
x

{
1
2

∂µϕ(x)∂µϕ(x)+
1
2

m2
0ϕ(x)2 +

g0

4!
ϕ(x)4

}
. (1.1)

Here ∂µϕ(x) = [ϕ(x+aµ̂)−ϕ(x)]/a, with µ = 0, . . . ,3 defines the usual forward lattice derivative
where µ̂ is the unit vector in the direction µ and a is the lattice spacing. The parameters m0 and g0

are the bare mass and coupling, respectively.

2. ISPT

ISPT is based on the concept of trivializing maps [4]. These transform Gaussian distributed
fields ηi(x) into a stochastic field φ(x) such that,

〈φ(x1)...φ(xn)〉η = 〈ϕ(x1)...ϕ(xn)〉, (2.1)

where ϕ is the field with action (1.1), 〈· · · 〉 is the expectation value in the ϕ4 theory, and 〈· · · 〉η
denotes the average over the fields ηi(x) which satisfy

〈ηi(x)η j(y)〉η = δi j δxy, 〈ηi(x)〉η = 0. (2.2)

Without entering into the details (for which we refer to [4]), the stochastic field φ(x) can be written
as a power series in the couplings of the theory, whose coefficients are calculable functions of the
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noise fields ηi(x). For ϕ4 theory

φ(x) =
∞

∑
j,k=0

φ( j,k)(x)(δm2) jgk
0, (2.3)

where the coefficients φ( j,k)(x) depend on the values of the noise fields ηi(x). Note that the ex-
pansion is in terms of the bare coupling g0, and the mass counterterm δm2 = m2

0−m2, where m is
the renormalized mass. This method generates uncorrelated field configurations, unlike methods
based on Markov processes (see below), and it is exact in the sense that the only source of uncer-
tainly in the results comes from the stochastic evaluation of the Gaussian integrals in (2.1). Being a
diagrammatic technique, however, the number of contributions and thus the cost of evaluating the
coefficients φ( j,k) grows rapidly with the perturbative order [4].

For this work we wrote a code for the automated computation of the trivializing map φ in the
ϕ4 theory to arbitrary order in the couplings.1 As a test of our implementation we computed the
finite-volume coupling defined in [5] for several lattice volumes and mass values, and compared
the results with their analytic perturbative expansion up to three-loop order. We found excellent
agreement within the per-mill precision we reached.

3. LSPT

The original way to implement numerical stochastic perturbation theory [1] is to generate the
stochastic field φ(x) via a Markov process based on the Langevin equation (LSPT),

∂tsφ(x, ts) = ∂
2
φ(x, ts)− (m2 +δm2)φ(x, ts)−

g0

3!
φ(x, ts)3 +η(x, ts), (3.1)

where ts is the simulation time, ∂ 2 the lattice Laplacian, and η(x, ts) is a Gaussian distributed noise
field satisfying 〈η(x, ts)〉η = 0 and 〈η(x, ts)η(y, t ′s)〉η = 2δxyδ (ts− t ′s). As in ISPT, the field φ(x, ts)
is assumed to have an expansion of the form (2.3), while the noise η(x, ts) only has a lowest order
component. The expectation values of the target theory are then obtained as,

〈φ(x1, ts)...φ(xn, ts)〉η ts→∞
= 〈ϕ(x1)...ϕ(xn)〉. (3.2)

The way one proceeds is to discretize the stochastic time as ts = nε , with ε the step-size, and
integrate the Langevin equations numerically order-by-order in couplings g0 and δm2 according
to a given integration scheme. Consequently, one expects step-size errors to effect the results,
which thus need to be extrapolated away. Moreover, the fields φ(x, ts) generated in this way are
correlated to each other. On the other hand, the cost of the method scales only quadratically with
the perturbative orders in the couplings.

4. HSPT

Taking inspiration from the Langevin approach, we also considered whether using different
stochastic differential equations might improve LSPT.

1For the construction of the trivializing map we used the publicly available code provided by Martin Lüscher at
luscher.web.cern.ch/luscher/ISPT.
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One possibility is to use the Hybrid Molecular Dynamics equations (HSPT),

∂tsφ(x, ts) = π(x, ts), ∂tsπ(x, ts) = ∂
2
φ(x, ts)− (m2 +δm2)φ(x, ts)−

g0

3!
φ(x, ts)3. (4.1)

Here the momentum field π(x, ts) is also considered as a series (2.3) in the couplings, and it is

sampled from a Gaussian distribution P(π)∝ e−
π2
2 at the beginning of each trajectory. In particular,

at the start of each trajectory the momenta only have a non-zero lowest order component, while
they acquire higher-order components through the MD evolution. As in the Langevin case, the
simulation time needs to be discretized, ts = nδ t, and the MD equations integrated numerically
order-by-order in g0 and δm2 up to a time ts = τ according to some integrator. Expectation values
in the target theory are then similarly obtained as in (3.2) by averaging over the trajectories [6]. In
order to have an ergodic algorithm, one needs to randomize the trajectory lengths τ so to update all
frequency components of the field φ , including the ones of the lowest order field φ(0,0) [7].

5. KSPT

Another possibility that is worth exploring is to generate the field φ(x) through a stochastic
evolution in phase-space according to Kramers equations [8] (see also [6]) (KSPT),

∂tsφ(x, ts) = π(x, ts),

∂tsπ(x, ts) =−γπ(x, ts)+∂
2
φ(x, ts)− (m2 +δm2)φ(x, ts)−

g0

3!
φ(x, ts)3 +η(x, ts).

(5.1)

The corresponding algorithm is obtained by alternating a partial refreshment of the momentum
field, π ′ = e−γδ tπ +

√
1− e−2γδ tη , with the numerical integration of the MD equations for a time-

step, using a suitable integrator. Here η(x, ts) is a Gaussian noise field with zero mean and variance
〈η(x, ts)η(y, t ′s)〉 = δxyδ (ts− t ′s), while γ is a free parameter that may be tuned to minimize auto-
correlations. As in the Langevin case, the noise field only has a lowest order component, while the
fields φ and π have an expansion of the form (2.3). For γ = 0 the algorithm reduces to a single-step
HSPT with trajectory length τ = δ t. On the contrary, if the continuum limit of the theory is taken
keeping the parameter γ fixed in lattice units, the equations (5.1) can be shown to reduce to the
Langevin equation (3.1) [6].

6. Observables

In order to test the different methods we rely on observables defined through the gradient
flow [9]. This allows us to obtain simple and precise quantities with a well defined continuum limit.
In the case of the ϕ4 theory the gradient flow equations can be defined as [10]: ∂t ϕ̃(x, t)= ∂ 2ϕ̃(x, t),
ϕ̃(x,0) = Z−1/2

ϕ ϕ(x), where t ≥ 0 is the flow time, and Zϕ is the wavefunction renormalization.
We then consider the dimensionless quantity E = t2〈E〉, where E is given by the quartic energy
density of the field at positive flow time, i.e., 〈E〉= 〈ϕ̃(x, t)4〉= E0 +E1g0 +E2g2

0 +E3g3
0 +O(g4

0).

In particular, we are interested in studying the continuum limit of E keeping the box size L, the
mass m, and the flow time t, fixed in physical units. To this end, we introduce the dimensionless
constants, z = mL and c =

√
8t/L. The continuum limit is then taken by increasing the lattice size

L/a and decreasing the lattice mass am, while holding z and c fixed.
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The renormalization of the mass can be fixed by requiring [5],

χ2

χ∗2
=

(
1+

p̂2
∗

m2

)
, p∗ = (2π/L,0,0,0), (6.1)

where p̂2 = ∑µ p̂2
µ with p̂µ = 2sin(pµ/2), and pµ are the lattice momenta in a periodic box. χ2

and χ∗2 , are the connected two-point functions of the field ϕ(x) evaluated at momentum p = 0 and
p∗, respectively. Once the relation (6.1) is computed as a power series in both δm2 and g0, this
condition allows us to determine δm2 as a series in g0. Finally, the wavefunction renormalization
of the bare fields at t = 0 can be defined as: Z−1

ϕ = (χ∗−1
2 −χ

−1
2 )/ p̂2

∗ [5].

7. Results

In Figure 1 we present a check on the consistency of the different methods in the perturbative
computation of E . The extrapolations are compared with analytic results where available.
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Figure 1: Comparison of different methods in the determination of t2E1 and t2E2 for z = 4, c = 0.2, and
L/a = 4. The analytic result, “Exact”, the result of the extrapolation for LSPT, “Extrapolation”, as well as
the ISPT, KSPT and HSPT results are plotted near ε = 0.

In the figure we show the results for LSPT for different values of the step-size ε , and cor-
responding extrapolations ε → 0. The integration of the Langevin equations has been performed
using a 2nd order Runge-Kutta scheme: we therefore expect O(ε2) errors in the observables. The
results for KSPT and HSPT, have been obtained using a 4th order symplectic integrator for the MD
equations with step-size δ t = 0.5. This is expected to introduce O(δ t4) corrections. Given our
choices of integrators the results from HSPT, and KSPT show no sign of step-size errors within the
statistical accuracy if compared with the analytic results or ISPT. In the case of LSPT, instead, the
step-size errors are significant even though the step-sizes considered all satisfy, ε2 < δ t4; neverthe-
less the results agree with the other methods after extrapolation to ε → 0.

In Figure 2 we present the continuum scaling of the relative errors ∆Ei/Ei of the perturbative
coefficients of E as obtained with ISPT, HSPT and LSPT.2 The relative error is normalized at its
value at L/a = 4. For the error analysis in HSPT, and LSPT we employed the method described

2We note that even though the field and mass are properly renormalized, the expansion coefficients are in terms of
the bare coupling g0. The associated logarithmic divergence, however, is not expected to be relevant for our conclusions.
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in [11]. In the case of LSPT we considered two values of the step-size ε , in order to access the
dependence of the results on it. For HSPT, we kept the average trajectory length fixed to 〈τ〉 = 1,
while decreasing the step-size as (L/a)−1/2. This was done in order to keep the step-size errors
roughly constant as the continuum limit is approached. Finally, for all methods the number of
field configurations has been kept fixed as L/a is increased, and always separated by a single step
(trajectory) for LSPT (HSPT).
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Figure 2: Continuum scaling of the relative errors ∆Ei/Ei of Ei as computed with ISPT, LSPT and HSPT
(see the text for more details). The case with z = 4 and c = 0.2 is shown.

Observe how the relative errors of E in LSPT and HSPT grow roughly linearly with L/a.
This is compatible with the errors growing due to the increase of autocorrelations as (L/a)2. ISPT,
instead, shows a rather different behavior: the relative error of the perturbative coefficients Ei

grows as increasing powers of L/a as the perturbative order is increased. This is seen more clearly
in the bottom-right panel of Figure 2, where a detail of ISPT is shown. Since in ISPT the field
configurations are uncorrelated, this rapid increase in the relative errors of the coefficients must be
related to their variance. This behaviour has been elucidated by Lüscher [12], who emphasized
the generic presence of power divergences in the variance of perturbative coefficients computed
with ISPT; he also shows that such power divergences are excluded if the fields are generated using
the Langevin equations. Finally, we investigated how the integrated autocorrelation A(Ei) of the
perturbative coefficients Ei scales with L/a in HSPT. In Figure 3 we compare the case 〈τ〉= 1 with
the case when 〈τ〉 = (am)−1. For all perturbative orders we considered, the results are consistent
with the free field theory expectations [13], namely A(Ei) for 〈τ〉 = 1 grows like (L/a)2 whereas
for 〈τ〉= (am)−1 it is constant.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
0
9

NSPT in ϕ4 Marco Garofalo

0

5

10

15

20

25

0 250 500 750 1000

A
(E

i)
,
z
=

4,
c
=

0.
2

(L/a)2

E0: 〈τ〉 = 1

E1: 〈τ〉 = 1

E2: 〈τ〉 = 1

E3: 〈τ〉 = 1

〈τ〉 = (am)−1

〈τ〉 = (am)−1

〈τ〉 = (am)−1

〈τ〉 = (am)−1

Figure 3: Continuum scaling of the integrated autocorrelations A(Ei) of Ei, i = 0, . . .3, for the cases 〈τ〉= 1
and 〈τ〉= (am)−1. The points for 〈τ〉= (am)−1 are shifted along the x axis for clarity.

8. Conclusions

From this study we conclude that the variance of ISPT grows very rapidly as we increase the
order in g0. Even though it has many appealing features, this technique does not appear to be
competitive in its present form. On the other hand, defining NSPT in terms of different stochastic
equations, as the HMD or the Kramers equations, is a simple and profitable idea. Indeed, this
allows us to exploit recent algorithmic advances in the context of stochastic perturbation theory.
This will be extremely useful for more complicated theories such as QCD.
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