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BACKGROUND A puzzling feature of the long QT syndrome (LQTS) is that family members carrying the same mutation

often have divergent symptoms and clinical outcomes.

OBJECTIVES This study tested the hypothesis that vagal and sympathetic control, as assessed by spectral analysis of

spontaneous beat-to-beat variability of RR and QT intervals from standard 24-h electrocardiogram Holter recordings,

could modulate the severity of LQTS type 1 (LQT1) in 46 members of a South-African LQT1 founder population carrying

the clinically severe KCNQ1 A341V mutation.

METHODS Nonmutation carriers (NMCs) (n ¼ 14) were compared with mutation carriers (MCs) (n ¼ 32), 22 with and

10 without major symptoms. We assessed the effect of circadian rhythm and beta-blocker therapy over traditional

time and frequency domain RR and QT variability indexes.

RESULTS The asymptomatic MCs differed significantly from the symptomatic MCs and from NMCs in less vagal control

of heart rate and more reactive sympathetic modulation of the QT interval, particularly during daytime when arrhythmia

risk for patients with LQT1 is greatest.

CONCLUSIONS The present data identified an additional factor contributing to the differential arrhythmic risk

among patients with LQT1 carrying the same mutation. A healthy autonomic control confers a high risk, whereas patients

with higher sympathetic control of the QT interval and reduced vagal control of heart rate are at lower risk. This

differential “autonomic make-up,” likely under genetic control, will allow refinement of risk stratification within families

with LQTS, leading to more targeted management. (J Am Coll Cardiol 2015;65:367–74) © 2015 by the American College

of Cardiology Foundation.
D espite major progress in the understanding
(1,2) and management (1,3,4) of congenital
long QT syndrome (LQTS), several un-

solved questions of high clinical relevance remain.
One of the most puzzling, and most emotionally
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disquieting for the affected families, is represented
by the unequal arrhythmic risk present among
family members who carry the same disease-causing
mutation. Foreseeing a benign or life-threatening
outcome, even among genetically affected siblings,
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ABBR EV I A T I ON S

AND ACRONYMS

AMC = asymptomatic

mutation carrier

BB = beta-blocker

HFaRR = high-frequency power

computed over the RR series

and expressed in absolute units

LFaRTe = low-frequency power

computed over the RTe series

and expressed in absolute units

LQT1 = long QT syndrome

type 1

LQTS = long QT syndrome

MC = mutation carrier

NMC = nonmutation carrier

SMC = symptomatic

mutation carrier
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proves problematic for physicians caring for
these patients.

Over the last decade, this challenge
prompted numerous attempts to identify
“modifier genes,” genetic variants associated
with a higher or lower arrhythmic risk (2,5).
The current view holds that these modifiers
include factors that either modify the un-
derlying arrhythmogenic myocardial sub-
strate or affect the probability and magnitude
of arrhythmia-triggering events (2). The
former include proteins that likely contribute
to the balance of inward and outward cur-
rents operating during the cardiac action
potential, and several of these have already
been identified (6–10), and the latter include
genes modulating differences in sympathetic
and vagal responses (11–13).
SEE PAGE 375
The present study aimed at expanding the under-
standing of the relationship between neural control
and arrhythmic risk in LQTS. Two concepts, pre-
liminary for the design of our study, were: 1) the focus
should be on patients with LQTS type 1 (LQT1)
because they are at risk specifically during sympa-
thetic activation (14); and 2) these patients with LQT1
should all be from a single founder population and
thus have the same mutation to avoid the phenotypic
variability attributed to mutation heterogeneity.
Founder populations represent the ideal human
model to study modifier genes (6).

We previously showed that LQT1 asymptomatic
mutation carriers (AMCs) were more likely to have a
lower heart rate (11), lower baroreflex sensitivity (11),
and smaller heart rate decrease at the end of an ex-
ercise stress test than symptomatic mutation carriers
(SMCs) (12). The last 2 findings point to a protective
effect of reduced vagal reflexes. A limitation of our
studies is that although they provided novel data
about vagal control in patients with LQTS, we had no
specific information on the sympathetic control at the
ventricular level.

Analysis of the spontaneous changes of the heart
period and QT interval provides indexes that allow
noninvasive inferences on the autonomic modulation
directed to the sinus node and the ventricles (15–17).
The power of the respiratory-related heart period
changes in the high-frequency band (HF) (0.15 to 0.5
Hz) decreases with the vagal withdrawal progres-
sively induced by graded head-up tilt (18–20). By
contrast, the magnitude of fluctuations of the QT in-
terval in the low-frequency band (LF; 0.04 to 0.15 Hz)
positively correlates with the inclination of the tilt
nejacc.org/ by Peter Schwartz on 01/28/2015
table (21,22), suggesting that QT variability and sym-
pathetic control are directly linked (23,24). The com-
bination of these 2 indexes (i.e., the HF power of
heart period variability and the LF power of QT vari-
ability) provides a unique possibility to dissect vagal
and sympathetic influences on the heart and to test
whether different autonomic patterns might help
distinguish AMCs and SMCs.

We tested this hypothesis in a well-characterized
LQT1 South African founder population in which all
the affected members carry KCNQ1 A341V, one of the
LQTS mutations with the most severe phenotype
(25–27). This relatively common mutation (26) pro-
duces a 50% reduction in basal IKs current and in vitro
severe reduction in cAMP responsiveness due to fail-
ure to phosphorylate KCNQ1 at the N-terminal S27 (28).

METHODS

STUDY POPULATION AND PROTOCOL. The study
population only included members of the 25 families
constituting the South African LQT1 founder popu-
lation carrying the KCNQ1 A341V mutation (25–27).
Holter recordings were performed in 46 of the family
members, 32 MCs and 14 non-MCs (NMCs), who
served as controls. The MCs were further subdivided
into SMCs or AMCs according to having experienced
or not, regardless of therapy, either syncope (fainting
spells with transient but complete loss of con-
sciousness) or aborted cardiac arrest requiring re-
suscitation. We defined AMC as an individual who
had reached age 20 years without cardiac events
while not being treated with beta-blocker (BB) ther-
apy. The 3 groups were of similar age, with the me-
dian ranging between 35 and 39 years. All patients
were studied off BB therapy (BBoff), and 28 of the 32
MCs (87.5%) were also studied on BB therapy (BBon),
which was almost always propranolol. BBoff corre-
sponded to a plasma concentration of propranolol
<20 ng/ml. Patient selection depended mostly on the
physical proximity of their residence to the Stellen-
bosch area in the Western Cape and on their will-
ingness to visit the clinic a few times for the Holter
recordings.

The study protocol consisted of the acquisition
of 74 Holter recordings (12-lead 24-h; Mortara In-
strument Inc., Milwaukee, Wisconsin). The sampling
rate was 180 Hz. The analyses were carried out on
lead II and were performed during daytime (2:00 PM to
6:00 PM) or nighttime (12:00 AM to 4:00 AM). The protocol
adhered to the principles of the Declaration of Helsinki
for medical research involving human subjects. All
probands and family members provided written
informed consent for clinical and genetic evaluations,



FIGURE 1 BBoff in NMCs, AMCs, and SMCs During Daytime
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RR (C), RTe variance, s2

RTe (D), high-frequency power of the RR series expressed in

absolute units, HFaRR (E), and low-frequency power of the RTe series expressed in absolute

units, LFaRTe (F) assessed off beta-blocker therapy (BBoff) in nonmutation carriers (NMCs),

asymptomatic mutation carriers (AMCs), and symptomatic mutation carriers (SMCs) during

the daytime (2:00 to 6:00 PM). Values are mean þ SD. *p < 0.05.
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as approved by the ethical review boards of the Uni-
versity of Stellenbosch, Vanderbilt University, and the
University of Pavia.

VARIABILITY SERIES EXTRACTION AND DATA

ANALYSIS. Electrocardiogram (ECG) recordings were
pre-processed to limit broadband noise and cancel
baseline wandering (29). Heart period was approxi-
mated as the temporal distance between 2 consecu-
tive R-wave peaks (RR) on the ECG. The R-wave peak
was detected using a derivative-threshold algorithm,
and its occurrence was fixed using parabolic inter-
polation. The T-wave end was located according to a
threshold on the absolute first derivative set as a
fraction (i.e., 30%) of the absolute maximal first de-
rivative value computed on the T-wave downslope
(29). The temporal distance between R-wave peak
and T-wave end (RTe) was taken as an approximation
of QT interval automatically measured from the ECG
recording (30). All R-wave peak detections were
carefully checked. Erroneous identifications were
corrected and missed beats were manually inserted.
The cubic spline interpolation technique was applied
over those RR and RTe values that were directly
influenced by the occurrence of nonsinus beats. RR
and RTe beat-to-beat series were extracted from 24-h
Holter monitoring during daytime and nighttime. We
considered frames of 250 cardiac beats. After the RR
and RTe means (mRR and mRTe) were calculated, the RR
and RTe series were linearly detrended. RR and RTe
variances (s2

RR and s2
RTe) were calculated from

detrended series.
Spectral analysis was performed via a parametric

approach exploiting the autoregressive model (31).
Briefly, the autoregressive model describes the beat-
to-beat series in the time domain as a linear com-
bination of p past samples weighted by constant
coefficients plus a zero mean random white noise.
The Levinson-Durbin recursion algorithm was used
to estimate, directly from the data, the coefficients
of the autoregressive model and the white noise
variance. The number of coefficients, p, was chosen
according to the Akaike figure of merit. Power
spectral density was computed from the model co-
efficients and the white noise variance. The power
spectral density was factorized into spectral com-
ponents, the sum of which provides the entire po-
wer spectral density. A spectral component was
labeled LF if its central frequency was in the LF
band, and it was classified as HF if its central fre-
quency was in the HF band (15). The LF and HF
powers were defined as the sum of the powers of all
LF and HF spectral components, respectively. We
assessed the HF power over RR series (HFaRR) as an
ded From: http://content.onlinejacc.org/ by Peter Schwartz on 0
index of vagal modulation (32,33) and the LF power of
RTe series (LFaRTe) as an index of sympathetic modu-
lation (21,22). HFaRR and LFaRTe were expressed in
absolute units (ms2). All the considered indexes
(i.e., mRR, mRTe, s2

RR, s2
RTe, HFaRR, and LFaRTe) were

calculated for each frame. Analysis was iterated with
50% overlap over the entire period, thus resulting in a
distribution of parameters. The median of the dis-
tribution was extracted for successive statistical
analyses (34).
STATISTICAL ANALYSIS. One-way analysis of vari-
ance (Dunnett test for multiple comparisons), or
Kruskal-Wallis 1-way analysis of variance on ranks
(Dunn test for multiple comparisons) when appro-
priate, was applied to check whether NMCs, AMCs,
and SMCs could be distinguished based on the
1/28/2015



FIGURE 2 BBoff in
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considered parameters. Two-way repeated-measures
analysis of variance (1-factor repetition, Holm-Sidak
test for multiple comparisons) was performed to
evaluate the significance of circadian rhythm of the
time and frequency domain parameters in MCs (i.e.,
AMCs and SMCs were assessed during daytime and
nighttime). Two-way repeated-measures analysis of
variance (Holm-Sidak test for multiple comparisons)
was performed to evaluate the significance of changes
of time and frequency domain parameters induced by
BB in MCs (i.e., AMCs and SMCs were assessed BBoff
and BBon). If heterogeneity of variance was detected
according to either the Bartlett test or, when appro-
priate, the Levene test, the data were log-transformed
before the application of 1- or 2-way analysis of vari-
ance. Values are reported as mean � SD. The
AMCs and SMCs During Daytime and Nighttime
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statistical analysis was carried out using a commercial
statistical program (Sigmastat, version 3.0.1, Systat
Software, San Jose, California). A p value <0.05 was
considered significant.

RESULTS

COMPARISON BETWEEN NMCs AND MCs. Figure 1
shows that although mRR was similar among SMCs
and NMCs, it was longer in AMCs (Figure 1A). As ex-
pected, both AMCs and SMCs had longer mRTe than
NMCs (Figure 1B). Analysis of RR variability revealed
no significant differences between the 3 groups
(Figures 1C and 1E). By contrast, analysis of RTe vari-
ability differentiated AMCs from SMCs: indeed, s2

RTe

(Figure 1D) and LFaRTe (Figure 1F) were greater in
AMCs compared with SMCs. Importantly, the LFaRTe
of AMCs was significantly greater than that of NMCs
(Figure 1F). Thus, AMCs appeared to have a sympa-
thetically mediated greater variability of the QT
interval.

CIRCADIAN RHYTHM OF AUTONOMIC ACTIVITY IN MCs.

Figure 2A shows that mRR lengthened during night-
time in both AMCs and SMCs. During both daytime
and nighttime, AMCs tended to have longer mRR than
SMCs (Figure 2A). Also mRTe exhibited a circadian
rhythmicity in MCs (Figure 2B). Although s2

RR

increased during nighttime in SMCs, this value
remained unchanged in AMCs (Figure 2C). Con-
versely, s2

RTe decreased during nighttime in AMCs,
whereas it did not change in SMCs (Figure 2D). During
daytime, s2

RTe was larger in AMCs than in SMCs,
whereas no difference was observed during night-
time (Figure 2D). HFaRR (Figure 2E) and LFaRTe
(Figure 2F) confirmed the differences observed in
Figures 2C and 2D, respectively, and suggested a
greater reactivity of the vagal control of heart rate in
SMCs and of the sympathetic control of the QT in-
terval in AMCs.

EFFECT OF BETA-BLOCKERS. Figure 3A shows that
BB therapy lengthened mRR in both groups, but elon-
gated mRTe only in SMCs (Figure 3B). Further, brady-
cardia induced by BBs was significantly greater in
AMCs than in SMCs (Figure 3A). BB therapy signifi-
cantly increased s2

RR in SMCs, whereas treatment did
not affect this value in AMCs (Figure 3C). Conversely,
BBs significantly decreased s2

RTe in AMCs, whereas
treatment did not influence this parameter in SMCs
(Figure 3D). The difference between s2

RTe in AMCs
and SMCs observed in BBoff disappeared in BBon
(Figure 3D). HFaRR (Figure 3E) and LFaRTe (Figure 3F)
confirmed the differences observed in Figures 3C
and 3D, respectively, and corroborated that, in



FIGURE 3 BBoff and BBon in AMCs and SMCs During Daytime
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response to BBs, there was a larger reactivity of the
vagal control of heart rate in SMCs and of the sym-
pathetic control of QT interval in AMCs, as observed
with the circadian changes.

DISCUSSION

The present study significantly extends our previous
work, which identified differences in autonomic re-
sponses, especially in vagal reflexes, between pa-
tients with LQT1 with and without cardiac events
(11,12). The main novel finding here is the previ-
ously unsuspected fact that AMCs have a greater de-
gree of sympathetic modulation directed to the
ventricles than SMCs, and this is especially evident in
daytime, when the arrhythmic risk for patients with
LQT1 is higher (14). Contrary to common wisdom, this
finding—which is directly associated with a higher
variability of the QT interval—suggests that a greater
sympathetic drive to the ventricles is a protective
factor in LQT1. These new observations make an
important contribution to our understanding of the
physiological mechanisms underlying the otherwise
puzzling phenomenon of patients carrying the same
disease-causing mutation but with much lower
arrhythmic risk (Central Illustration).

Additionally, we observed greater reactivity of the
sympathetic control of the QT interval and lesser
reactivity of the vagal regulation of heart rate in
AMCs compared with SMCs. Indeed, markers of
sympathetic modulation derived from QT interval
variability in AMCs decreased during nighttime or on
BB therapy, whereas they were unmodified in SMCs.
Conversely, indexes of vagal modulation derived
from RR variability in SMCs increased during night-
time or on BB therapy while remaining unchanged in
AMCs. The present results are relevant to a better
understanding of LQT1, offering a clue to a more so-
phisticated approach to risk stratification, and help
dissect the mechanisms underlying the efficacy of
therapeutic interventions.
AUTONOMIC CONTROL OF HEART RATE. AMCs ten-
ded to have lower baseline heart rates, as reported
previously (25), but the difference was significant
only compared with NMCs. During daytime, time and
frequency domain indexes derived from heart rate
variability did not distinguish SMCs from AMCs.
Circadian changes in heart rate were present in both
the AMCs and SMCs, but nighttime RR variability was
significantly greater only in the SMCs. In addition, the
RR interval variability was greater in the SMCs than in
the AMCs in response to BBs. Overall, the data
pointed to greater vagally mediated RR control in
SMCs, thus increasing the likelihood of abrupt
ded From: http://content.onlinejacc.org/ by Peter Schwartz on 0
changes in the RR interval that would produce a
proarrhythmic effect in patients with LQT1. These
data fit with and extend our previous observations
(11,12). The extension is mainly the consequence
of the evaluation of frequency domain heart rate
variability parameters computed from 24-h Holter
recordings in individuals both BBon and BBoff. We
observed larger increases in heart rate variability
power in the HF band, a widely recognized index of
vagal modulation directed to the sinus node (15,18–
20), during nighttime and under BB therapy in SMCs
compared with AMCs. This supports the conclusion
that SMCs show greater reactivity in the vagal control
of heart rate compared with AMCs and that a sluggish
vagal responsiveness to challenges is a protective
factor in LQT1.
1/28/2015



CENTRAL ILLUSTRATION Differences in Autonomic
Control in Patients With LQT1 Account for Divergent
Arrhythmic Risk

Asymptomatic patients with long QT syndrome type 1 (LQT1) have higher

than normal sympathetic control of the QT interval as assessed by the power

of QT variability in the low-frequency (LF) band, whereas the autonomic

responses of symptomatic individuals with LQT1 and healthy controls are

similar.

TABLE 1 Distinguish

Reference

Previous studies

Present study

AMCs ¼ asymptomatic m
symptomatic mutation carr
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AUTONOMIC CONTROL OF THE QT INTERVAL. The
data on the RTe interval, an accurate proxy for
the QT interval, provide unexpected and novel in-
sights regarding the autonomic control of ventricular
repolarization in patients with LQT1. Indeed, the
analysis of RTe variability demonstrated significant
differences between AMCs and SMCs. Both the
overall magnitude of RTe variability and its portion
in the LF band were greater in AMCs. Because these
indexes can be used as markers of sympathetic
ing Features of LQT1 AMCs

Distinguishing Features

Lower heart rate than SMCs (11)

Smaller post-exercise heart rate reduction than SMCs (12)

Lower baroreflex sensitivity than SMCs (11)

Lower heart rate than SMCs

Lower increase in heart rate variability during nighttime than SMCs

Lower increase in heart rate variability in response to BBs than SMCs

Greater QT variability than both SMCs and NMCs

Greater decrease in QT variability during nighttime than SMCs

Greater decrease in QT variability in response to BBs than SMCs

utation carriers; BB ¼ beta-blocker; LQT1 ¼ long QT syndrome type 1; SMCs ¼
iers.

ntent.onlinejacc.org/ by Peter Schwartz on 01/28/2015
modulation directed to the ventricles (16,17,21–24),
our finding supports the conclusion that AMCs have a
greater degree of sympathetic control. It is most
intriguing that this greater sympathetic control of
ventricular repolarization differentiates the AMCs
not only from the SMCs but also from the NMCs. This
observation indicates that the group with abnormal
autonomic responses is not, as one might have
thought, the one with cardiac events but rather the
asymptomatic group. We had reached an almost
identical conclusion when examining baroreflex
sensitivity, a very different but equally important
autonomic parameter (11).

A greater degree of sympathetic control of ven-
tricular repolarization implies a greater ability to
adapt QT duration to rapid changes of the RR interval.
This factor proves key to survival when heart rate
increases rapidly and the QT interval must shorten
appropriately to avoid the R-on-T phenomenon
because when depolarization encroaches the vulner-
able period of the T-wave, ventricular fibrillation
likely occurs. This general concept is especially
important for survival in patients with LQT1, given
their impairment of the IKs current that is essential
for the control of repolarization during heart rate
increases.

This finding and the related analysis permit the
following interpretation of what underlies the indi-
vidual and hitherto mysterious propensity to be or
not be a symptomatic patient with LQT1. We already
demonstrated that the KCNQ1 A341V mutation is a
highly malignant one, with 80% of the MCs suffering
major cardiac events (26). If a carrier of this mutation
has a “normal” autonomic control, he/she will very
likely develop life-threatening arrhythmias. The
possibility of reducing this risk depends on either
“external” protection, such as that afforded by the
effective antiadrenergic therapies available (3), or
“internal” protection, such as a spontaneous or
genetically mediated autonomic modulation charac-
terized by reduced vagal control of heart rate (11,12)
associated with enhanced sympathetic control of
ventricular repolarization, as we demonstrated here.
This is why the AMCs are different, in terms of
autonomic control, not only from the SMCs but also
from the NMCs.

The effect of BB therapy, assessed by internal
control analysis, also provided interesting data. As
expected, the RR interval increased significantly in
both groups, but once again, the more interesting
finding came from the analysis of RTe variability.
The magnitude of the RTe changes was significantly
reduced in the AMCs, whereas it was unmodified in
the SMCs, largely because it was already very low.



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Members of

families with long QT syndrome type 1 with the same mutation

have disparate symptoms and clinical outcomes. Asymptomatic

patients often have greater than normal sympathetically medi-

ated variations in QT interval but less reactive vagal control of

heart rate, whereas the autonomic responses of individuals at

high risk are similar to those of normal controls.

TRANSLATIONAL OUTLOOK: Variations in autonomic

control characteristics may help explain why patients with the

same mutation may face divergent arrhythmic risk, but further

studies are needed to translate these observations into targeted

strategies for clinical management.
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The reduction of RTe variability in the AMCs could
raise concerns at first glance, but this is just one
more case in medicine of an apparently negative
side effect of therapy overshadowed by a more
powerful protective effect; a classic example of this is
the coronary vasoconstrictor effect of BBs being
overcome by the reduction in oxygen consumption
secondary to the heart rate reduction. For these
AMCs, the loss in RTe variability is more than
compensated by the RR increase and, above all, by the
prevention of the arrhythmogenic effects of norepi-
nephrine release. Analogously, the RR lengthening
can compensate for the decrease of the RTe variability
observed at nighttime in AMCs in the absence of BB
therapy.

Furthermore, the observed decrease of RTe vari-
ability during the nighttime and in response to BB
therapy in AMCs suggests a more important reactivity
of the sympathetic control to challenges in AMCs
compared with SMCs that again can be taken as an
indication of the more flexible regulation of the QT
interval in AMCs than in SMCs.

Finally, an important question for the under-
standing of the concepts underlying these observa-
tions and for their clinical translation: Is the
propensity for different autonomic responses an in-
dependent, genetically controlled variable in respect
to the presence/absence of the disease-causing mu-
tation? For this to be true, it would be necessary that
both patterns of autonomic responsiveness be pre-
sent in both MCs and NMCs. This has indeed already
been demonstrated by the fact that although barore-
flex sensitivity differs significantly between SMCs
and AMCs, the distribution of baroreflex responses is
the same between MCs and NMCs (11). This proves
that the coexistence between disease-causing muta-
tions with autonomic responses that are divergent
and carrying opposite influences on outcome is due to
chance.
CLINICAL IMPLICATIONS. Even though good clinical
management requires that all carriers of an LQTS-
causing mutation who have a prolonged QT interval
be treated with BBs (3), the ability to stratify patients
based on arrhythmic risk would allow a more targeted
therapeutic strategy. When the findings from the
present study are integrated with those from our 2
previous analyses of autonomic parameters (11,12), a
single coherent picture emerges.

Patients with LQT1 can, rather confidently, be
stratified at low arrhythmic risk if they have a rela-
tively low heart rate at rest, a relatively low baroreflex
sensitivity, a sluggish heart rate reduction at the end
of an exercise stress test, and, as shown here, active
sympathetic control of ventricular repolarization and
ded From: http://content.onlinejacc.org/ by Peter Schwartz on 0
reduced vagal control of heart rate (Table 1). The
converse is true for those with the opposite pattern,
who can justifiably be regarded as at high risk.

STUDY LIMITATIONS. The conclusions of the study
are based on indirect noninvasive indexes of vagal
and sympathetic modulations. Future studies should
test them against direct measures of the autonomic
function.

CONCLUSIONS

We have learned a lot about the differential
arrhythmic risk related to the characteristics of the
specific mutations and their interaction with more
common genetic variants. In this study, the data
identified an additional factor contributing to the
differential arrhythmic risk among patients with LQT1
carrying the same mutation. The combination of the
individual genetic make-up (with the knowledge of
the electrophysiological actions of the LQTS-causing
mutations through their impact on ionic currents)
and clinically quantifiable parameters describing
autonomic function (as derived from routine 24-h
Holter recordings) will significantly refine our clin-
ical decision making for the benefit of our patients.
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