Existence and uniqueness for BSDEs driven by a general random measure, possibly non quasi-left-continuous

Elena Bandini*

Abstract

We study the following backward stochastic differential equation on finite time horizon driven by an integer-valued random measure μ on $\mathbb{R}_{+} \times E$, where E is a Lusin space, with compensator $\nu(d t, d x)=d A_{t} \phi_{t}(d x)$: $$
Y_{t}=\xi+\int_{(t, T]} f\left(s, Y_{s-}, Z_{s}(\cdot)\right) d A_{s}-\int_{(t, T]} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x), \quad 0 \leq t \leq T .
$$

The generator f satisfies, as usual, a uniform Lipschitz condition with respect to its last two arguments. In the literature, the existence and uniqueness for the above equation in the present general setting has only been established when A is continuous or deterministic. The general case, i.e. A is a right-continuous nondecreasing predictable process, is addressed in this paper.

Keywords: Backward stochastic differential equations; random measures.
AMS MSC 2010: Primary 60H10; secondary 60G57.
Submitted to ECP on June 7, 2015, final version accepted on September 28, 2015.
Supersedes arXiv:arXiv: 1506.02249.

1 Introduction

Backward Stochastic Differential Equations (BSDEs) have been deeply studied since the seminal paper [13]. In [13], as well as in many subsequent papers, the driving term was a Brownian motion. BSDEs with a discontinuous driving term have also been studied, see, among others, [14], [1], [9], [15], [2], [3], [5], [7].

In all the papers cited above, and more generally in the literature on BSDEs, the generator (or driver) of the backward stochastic differential equation, usually denoted by f, is integrated with respect to a measure $d A$, where A is a nondecreasing continuous (or deterministic and right-continuous as in [5]) process. The general case, i.e. A is a right-continuous nondecreasing predictable process, is addressed in this paper. It is worth mentioning that Section 4.3 in [7] provides a counter-example to existence for such general backward stochastic differential equations. For this reason, the existence and uniqueness result (Theorem 4.1) is not a trivial extension of known results. Indeed, in Theorem 4.1 we have to impose an additional technical assumption, which is violated by the counter-example presented in [7] (see Remark 4.3(ii)). This latter assumption reads as follows: there exists $\varepsilon \in(0,1)$ such that (notice that $\Delta A_{t} \leq 1$)

$$
\begin{equation*}
2 L_{y}^{2}\left|\Delta A_{t}\right|^{2} \leq 1-\varepsilon, \quad \text { P-a.s., } \forall t \in[0, T] \tag{1.1}
\end{equation*}
$$

[^0]where L_{y} is the Lipschitz constant of f with respect to y. As mentioned earlier, in [5] the authors study a class of BSDEs with a generator f integrated with respect to a deterministic (rather than predictable) right-continuous nondecreasing process A, even if this class is driven by a countable sequence of square-integrable martingales, rather than just a random measure. They provide an existence and uniqueness result for this class of BSDEs, see Theorem 6.1 in [5], where the same condition (1.1) is imposed (see Remark 4.3(i)). However, the proof of Theorem 6.1 in [5] relies heavily on the assumption that A is deterministic, and it can not be extended to the case where A is predictable, which therefore requires a completely different proof.

The results obtained in this paper can be particularly useful in the study of control problems related to piecewise deterministic Markov processes by means of BSDEs methods, see Remark 4.5.

The paper is organized as follows: in Section 2 we introduce the random measure μ and we fix the notation. In Section 3 we provide the definition of solution to the backward stochastic differential equation and we solve it in the case where $f=f(t, \omega)$ is independent of y and z (Lemma 3.6). Finally, in Section 4 we prove the main result (Theorem 4.1) of this paper, i.e. the existence and uniqueness for our backward stochastic differential equation.

2 Preliminaries

Consider a finite time horizon $T \in(0, \infty)$, a Lusin space (E, \mathcal{E}), and a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$, with $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ right-continuous. We denote by \mathcal{P} the predictable σ-field on $\Omega \times[0, T]$. In the sequel, given a measurable space (G, \mathcal{G}), we say that a function on the product space $\Omega \times[0, T] \times G$ is predictable if it is $\mathcal{P} \otimes \mathcal{G}$-measurable.

Let μ be an integer-valued random measure on $\mathbb{R}_{+} \times E$. In the sequel we use a martingale representation theorem for the random measure μ, namely Theorem 5.4 in [11]. For this reason, we suppose that $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is the natural filtration of μ, i.e. the smallest right-continuous filtration in which μ is optional. We also assume that μ is a discrete random measure, i.e. the sections of the set $D=\{(\omega, t): \mu(\omega,\{t\} \times E)=1\}$ are finite on every finite interval. However, the results of this paper (in particular, Theorem 4.1) are still valid for more general random measure μ for which a martingale representation theorem holds (see Remark 4.4 for more details).

We denote by ν the $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-compensator of μ. Then, ν can be disintegrated as follows

$$
\begin{equation*}
\nu(\omega, d t, d x)=d A_{t}(\omega) \phi_{\omega, t}(d x) \tag{2.1}
\end{equation*}
$$

where A is a right-continuous nondecreasing predictable process such that $A_{0}=0$, and ϕ is a transition probability from $(\Omega \times[0, T], \mathcal{P})$ into (E, \mathcal{E}). We suppose, without loss of generality, that ν satisfies $\nu(\{t\} \times d x) \leq 1$ identically, so that $\Delta A_{t} \leq 1$. We define A^{c} as $A_{t}^{c}=A_{t}-\sum_{0<s \leq t} \Delta A_{s}, \nu^{c}(d t, d x)=1_{J^{c} \times E} \nu(d t, d x), \nu^{d}(d t, d x)=\nu(d t, d x)-\nu^{c}(d t, d x)=$ $1_{J \times E} \nu(d t, d x)$, where $J=\{(\omega, t): \nu(\omega,\{t\} \times d x)>0\}$.

We denote by $\mathcal{B}(E)$ the set of all Borel measurable functions on E. Given a measurable function $Z: \Omega \times[0, T] \times E \rightarrow \mathbb{R}$, we write $Z_{\omega, t}(x)=Z(\omega, t, x)$, so that $Z_{\omega, t}$, often abbreviated as Z_{t} or $Z_{t}(\cdot)$, is an element of $\mathcal{B}(E)$. For any $\beta \geq 0$ we also denote by \mathcal{E}^{β} the Doléans-Dade exponential of the process βA, which is given by

$$
\begin{equation*}
\mathcal{E}_{t}^{\beta}=e^{\beta A_{t}} \prod_{0<s \leq t}\left(1+\beta \Delta A_{s}\right) e^{-\beta \Delta A_{s}} . \tag{2.2}
\end{equation*}
$$

3 The backward stochastic differential equation

The backward stochastic differential equation driven by the random measure μ is characterized by a triple (β, ξ, f), where $\beta>0$ is a positive real number, and:

Existence and uniqueness for BSDEs driven by a general random measure

- $\xi: \Omega \rightarrow \mathbb{R}$, the terminal condition, is an \mathcal{F}_{T}-measurable random variable satisfying $\mathbb{E}\left[\mathcal{E}_{T}^{\beta}|\xi|^{2}\right]<\infty ;$
- $f: \Omega \times[0, T] \times \mathbb{R} \times \mathcal{B}(E) \rightarrow \mathbb{R}$, the generator, is such that:
(i) for any $y \in \mathbb{R}$ and $Z: \Omega \times[0, T] \times E \rightarrow \mathbb{R}$ predictable $\Longrightarrow f\left(\omega, t, y, Z_{\omega, t}(\cdot)\right)$ predictable;
(ii) for some nonnegative constants L_{y}, L_{z}, we have

$$
\begin{align*}
& \left|f\left(\omega, t, y^{\prime}, \zeta^{\prime}\right)-f(\omega, t, y, \zeta)\right| \leq L_{y}\left|y^{\prime}-y\right| \\
& +L_{z}\left(\int_{E}\left|\zeta^{\prime}(x)-\zeta(x)-\Delta A_{t}(\omega) \int_{E}\left(\zeta^{\prime}(z)-\zeta(z)\right) \phi_{\omega, t}(d z)\right|^{2} \phi_{\omega, t}(d x)\right. \\
& \left.+\Delta A_{t}(\omega)\left(1-\Delta A_{t}(\omega)\right)\left|\int_{E}\left(\zeta^{\prime}(x)-\zeta(x)\right) \phi_{\omega, t}(d x)\right|^{2}\right)^{1 / 2}, \tag{3.1}
\end{align*}
$$

for all $(\omega, t) \in \Omega \times[0, T], y, y^{\prime} \in \mathbb{R}, \zeta, \zeta^{\prime} \in L^{2}\left(E, \mathcal{E}, \phi_{\omega, t}(d x)\right)$;
(iii) $\mathbb{E}\left[\left(1+\sum_{0<t \leq T}\left|\Delta A_{t}\right|^{2}\right) \int_{0}^{T} \mathcal{E}_{t}^{\beta}|f(t, 0,0)|^{2} d A_{t}\right]<\infty$.

Remark 3.1. The measurability condition (i) on f is somehow awkward, however it seems to be unavoidable. Indeed, we notice that the same condition is imposed in [7], assumption (2.8), and a similar condition is imposed in [6], assumption (3.2). We also observe that at page 4 of [7], the authors provide some examples of assumptions on f which imply the measurability condition (i) above (see in particular assumption (2.10) in [7]).

Given (β, ξ, f), the backward stochastic differential equation takes the following form

$$
\begin{equation*}
Y_{t}=\xi+\int_{(t, T]} f\left(s, Y_{s-}, Z_{s}(\cdot)\right) d A_{s}-\int_{(t, T]} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x), \quad 0 \leq t \leq T \tag{3.2}
\end{equation*}
$$

Definition 3.2. For every $\beta \geq 0$, we define $\mathbb{H}_{\beta}^{2}(0, T)$ as the set of pairs (Y, Z) such that:

- $Y: \Omega \times[0, T] \rightarrow \mathbb{R}$ is an adapted càdlàg process satisfying

$$
\begin{equation*}
\|Y\|_{\mathbb{H}_{\beta, Y}^{2}(0, T)}:=\left(\mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{t}^{\beta}\left|Y_{t-}\right|^{2} d A_{t}\right]\right)^{1 / 2}<\infty \tag{3.3}
\end{equation*}
$$

- $Z: \Omega \times[0, T] \times E \rightarrow \mathbb{R}$ is a predictable process satisfying

$$
\begin{align*}
\|Z\|_{\mathbb{H}_{\beta, Z}^{2}(0, T)}:= & \left(\mathbb { E } \left[\int_{(0, T]} \mathcal{E}_{t}^{\beta} \int_{E}\left|Z_{t}(x)-\hat{Z}_{t}\right|^{2} \nu(d t, d x)\right.\right. \\
& \left.\left.+\sum_{0<t \leq T} \mathcal{E}_{t}^{\beta}\left|\hat{Z}_{t}\right|^{2}\left(1-\Delta A_{t}\right)\right]\right)^{1 / 2}<\infty \tag{3.4}
\end{align*}
$$

where

$$
\hat{Z}_{t}=\int_{E} Z_{t}(x) \nu(\{t\} \times d x), \quad 0 \leq t \leq T .
$$

For every $(Y, Z) \in \mathbb{H}_{\beta}^{2}(0, T)$, we denote

$$
\|(Y, Z)\|_{\mathrm{H}_{\beta}^{2}(0, T)}^{2}:=\|Y\|_{\mathrm{H}_{\beta, Y}^{2}(0, T)}^{2}+\|Z\|_{\mathrm{H}_{\beta, Z}^{2}(0, T)}^{2} .
$$

Remark 3.3. (i) Notice that the space $\mathbb{H}_{\beta}^{2}(0, T)$, endowed with the topology induced by $\|\cdot\|_{H_{\beta}^{2}(0, T)}$, is an Hilbert space, provided we identify pairs of processes $(Y, Z),\left(Y^{\prime}, Z^{\prime}\right)$ satisfying $\left\|\left(Y-Y^{\prime}, Z-Z^{\prime}\right)\right\|_{\mathbb{H}_{\beta}^{2}(0, T)}=0$.
(ii) Suppose that there exists $\gamma \in(0,1]$ such that $\Delta A_{t} \leq 1-\gamma$, for all $t \in[0, T], \mathbb{P}-$ a.s.. Then Z belongs to $\mathbb{H}_{\beta, Z}^{2}(0, T)$ if and only if $\sqrt{\mathcal{E}^{\beta}} Z$ is in $L^{2}(\Omega \times[0, T] \times E, \mathcal{P} \otimes \mathcal{E}, \mathbb{P} \otimes \nu(d t, d x))$, i.e.

$$
\mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{t}^{\beta} \int_{E}\left|Z_{t}(x)\right|^{2} \nu(d t, d x)\right]<\infty
$$

Definition 3.4. A solution to equation (3.2) with data (β, ξ, f) is a pair $(Y, Z) \in \mathbb{H}_{\beta}^{2}(0, T)$ satisfying equation (3.2). We say that equation (3.2) admits a unique solution if, given two solutions $(Y, Z),\left(Y^{\prime}, Z^{\prime}\right) \in \mathbb{H}_{\beta}^{2}(0, T)$, we have $(Y, Z)=\left(Y^{\prime}, Z^{\prime}\right)$ in $\mathbb{H}_{\beta}^{2}(0, T)$.
Remark 3.5. Notice that, given a solution (Y, Z) to equation (3.2) with data (β, ξ, f), we have (recalling that $\beta \geq 0$, so that $\mathcal{E}_{t}^{\beta} \geq 1$)

$$
\begin{aligned}
\mathbb{E}\left[\int_{(0, T]} \int_{E}\left|Z_{t}(x)-\hat{Z}_{t}\right|^{2} \nu(d t, d x)+\sum_{0<t \leq T}\left|\hat{Z}_{t}\right|^{2}\left(1-\Delta A_{t}\right)\right] & =\|Z\|_{\mathrm{H}_{0, Z}^{2}(0, T)}^{2} \\
& \leq\|Z\|_{\mathrm{H}_{\beta, Z}^{2}(0, T)}^{2}<\infty
\end{aligned}
$$

This implies that the process $\left(Z_{t} 1_{[0, T]}(t)\right)_{t \geq 0}$ belongs to $\mathcal{G}^{2}(\mu)$, see (3.62) and Proposition 3.71-(a) in [12]. In particular, the stochastic integral $\int_{(t, T]} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x)$ in (3.2) is well-defined, and the process $M_{t}:=\int_{(0, t]} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x), t \in[0, T]$, is a square integrable martingale (see Proposition 3.66 in [12]).

Lemma 3.6. Consider a triple (β, ξ, f) and suppose that $f=f(\omega, t)$ does not depend on (y, ζ). Then, there exists a unique solution $(Y, Z) \in \mathbb{H}_{\beta}^{2}(0, T)$ to equation (3.2) with data (β, ξ, f). Moreover, the following identity holds:

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{E}_{t}^{\beta}\left|Y_{t}\right|^{2}\right]+\beta \mathbb{E}\left[\int_{(t, T]} \mathcal{E}_{s}^{\beta}\left(1+\beta \Delta A_{s}\right)^{-1}\left|Y_{s-}\right|^{2} d A_{s}\right] \\
& +\mathbb{E}\left[\int_{(t, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|Z_{s}(x)-\hat{Z}_{s}\right|^{2} \nu(d s, d x)+\sum_{t<s \leq T} \mathcal{E}_{s}^{\beta}\left|\hat{Z}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& =\mathbb{E}\left[\mathcal{E}_{T}^{\beta}|\xi|^{2}\right]+2 \mathbb{E}\left[\int_{(t, T]} \mathcal{E}_{s}^{\beta} Y_{s-} f_{s} d A_{s}\right]-\mathbb{E}\left[\sum_{t<s \leq T} \mathcal{E}_{s}^{\beta}\left|f_{s}\right|^{2}\left|\Delta A_{s}\right|^{2}\right], \tag{3.5}
\end{align*}
$$

for all $t \in[0, T]$.

Proof. Uniqueness. It is enough to prove that equation (3.2) with data $(\beta, 0,0)$ has the unique (in the sense of Definition 3.4) solution $(Y, Z)=(0,0)$. Let (Y, Z) be a solution to equation (3.2) with data $(\beta, 0,0)$. Since the stochastic integral in (3.2) is a square integrable martingale (see Remark 3.5), taking the conditional expectation with respect to \mathcal{F}_{t} we obtain, \mathbb{P}-a.s., $Y_{t}=0$, for all $t \in[0, T]$. This proves the claim for the component Y and shows that the martingale $M_{t}:=\int_{(0, t]} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x)=0$, P-a.s., for all $t \in[0, T]$. Therefore, the predictable bracket $\langle M, M\rangle_{T}=0, \mathbb{P}$-a.s., where we recall that (see Proposition 3.71-(a) in [12])

$$
\langle M, M\rangle_{T}=\int_{(0, T]} \int_{E}\left|Z_{t}(x)-\hat{Z}_{t}\right|^{2} \nu(d t, d x)+\sum_{0<t \leq T}\left|\hat{Z}_{t}\right|^{2}\left(1-\Delta A_{t}\right) .
$$

This concludes the proof, since $\|Z\|_{\mathbb{H}_{\beta, Z}^{2}(0, T)}^{2} \leq \mathbb{E}\left[\mathcal{E}_{T}^{\beta}\langle M, M\rangle_{T}\right]=0$.

Identity (3.5). Let (Y, Z) be a solution to equation (3.2) with data (β, ξ, f). From Itô's formula applied to $\mathcal{E}_{s}^{\beta}\left|Y_{s}\right|^{2}$ it follows that (recall that $d \mathcal{E}_{s}^{\beta}=\beta \mathcal{E}_{s-}^{\beta} d A_{s}$)

$$
\begin{align*}
d\left(\mathcal{E}_{s}^{\beta}\left|Y_{s}\right|^{2}\right) & =\mathcal{E}_{s-}^{\beta} d\left|Y_{s}\right|^{2}+\left|Y_{s-}\right|^{2} d \mathcal{E}_{s}^{\beta}+\Delta \mathcal{E}_{s}^{\beta} \Delta\left|Y_{s}\right|^{2} \\
& =\mathcal{E}_{s-}^{\beta} d\left|Y_{s}\right|^{2}+\left|Y_{s-}\right|^{2} d \mathcal{E}_{s}^{\beta}+\left(\mathcal{E}_{s}-\mathcal{E}_{s-}^{\beta}\right) d\left|Y_{s}\right|^{2} \\
& =\mathcal{E}_{s}^{\beta} d\left|Y_{s}\right|^{2}+\left|Y_{s-}\right|^{2} d \mathcal{E}_{s}^{\beta} \\
& =2 \mathcal{E}_{s}^{\beta} Y_{s-} d Y_{s}+\mathcal{E}_{s}^{\beta}\left(\Delta Y_{s}\right)^{2}+\beta \mathcal{E}_{s-}^{\beta}\left|Y_{s-}\right|^{2} d A_{s} \\
& =2 \mathcal{E}_{s}^{\beta} Y_{s-} d Y_{s}+\mathcal{E}_{s}^{\beta}\left(\Delta Y_{s}\right)^{2}+\beta \mathcal{E}_{s}^{\beta}\left(1+\beta \Delta A_{s}\right)^{-1}\left|Y_{s-}\right|^{2} d A_{s}, \tag{3.6}
\end{align*}
$$

where the last equality follows from the identity $\mathcal{E}_{s-}^{\beta}=\mathcal{E}_{s}^{\beta}\left(1+\beta \Delta A_{s}\right)^{-1}$. Integrating (3.6) on the interval $[t, T]$, we obtain

$$
\begin{align*}
\mathcal{E}_{t}^{\beta}\left|Y_{t}\right|^{2}= & \mathcal{E}_{T}^{\beta}|\xi|^{2}+2 \int_{(t, T]} \mathcal{E}_{s}^{\beta} Y_{s-} f_{s} d A_{s}-2 \int_{(t, T]} \mathcal{E}_{s}^{\beta} Y_{s-} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x) \tag{3.7}\\
& -\sum_{t<s \leq T} \mathcal{E}_{s}^{\beta}\left(\Delta Y_{s}\right)^{2}-\beta \int_{(t, T]} \mathcal{E}_{s}^{\beta}\left(1+\beta \Delta A_{s}\right)^{-1}\left|Y_{s-}\right|^{2} d A_{s} .
\end{align*}
$$

Now, notice that

$$
\begin{equation*}
\Delta Y_{s}=\int_{E} Z_{s}(x)(\mu-\nu)(\{s\} \times d x)-f_{s} \Delta A_{s} \tag{3.8}
\end{equation*}
$$

Thus

$$
\begin{align*}
\left|\Delta Y_{s}\right|^{2}= & \left|\int_{E} Z_{s}(x)(\mu-\nu)(\{s\} \times d x)\right|^{2}+\left|f_{s}\right|^{2}\left|\Delta A_{s}\right|^{2} \\
& -2 f_{s} \Delta A_{s} \int_{E} Z_{s}(x)(\mu-\nu)(\{s\} \times d x) . \tag{3.9}
\end{align*}
$$

Plugging (3.9) into (3.7), we find

$$
\begin{align*}
& \mathcal{E}_{t}^{\beta}\left|Y_{t}\right|^{2}+\beta \int_{(t, T]} \mathcal{E}_{s}^{\beta}\left(1+\beta \Delta A_{s}\right)^{-1}\left|Y_{s-}\right|^{2} d A_{s}+\sum_{t<s \leq T} \mathcal{E}_{s}^{\beta}\left|\int_{E} Z_{s}(x)(\mu-\nu)(\{s\} \times d x)\right|^{2} \\
& =\mathcal{E}_{T}^{\beta}|\xi|^{2}+2 \int_{(t, T]} \mathcal{E}_{s}^{\beta} Y_{s-} f_{s} d A_{s}-2 \int_{(t, T]} \mathcal{E}_{s}^{\beta} Y_{s-} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x) \\
& -\sum_{t<s \leq T} \mathcal{E}_{s}^{\beta}\left|f_{s}\right|^{2}\left|\Delta A_{s}\right|^{2}+2 \sum_{t<s \leq T} \mathcal{E}_{s}^{\beta} f_{s} \Delta A_{s} \int_{E} Z_{s}(x)(\mu-\nu)(\{s\} \times d x) \tag{3.10}
\end{align*}
$$

Notice that

$$
\begin{align*}
& \mathbb{E}\left[\sum_{t<s \leq T} \mathcal{E}_{s}^{\beta}\left|\int_{E} Z_{s}(x)(\mu-\nu)(\{s\} \times d x)\right|^{2}\right] \\
& =\mathbb{E}\left[\int_{(t, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|Z_{s}(x)-\hat{Z}_{s}\right|^{2} \nu(d s, d x)+\sum_{t<s \leq T} \mathcal{E}_{s}^{\beta}\left|\hat{Z}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] . \tag{3.11}
\end{align*}
$$

We also observe that the two stochastic integrals

$$
\begin{aligned}
M_{t}^{1} & :=\int_{(0, t]} \mathcal{E}_{s}^{\beta} Y_{s-} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x) \\
M_{t}^{2} & :=\sum_{0<s \leq t} \mathcal{E}_{s}^{\beta} f_{s} \Delta A_{s} \int_{E} Z_{s}(x)(\mu-\nu)(\{s\} \times d x)
\end{aligned}
$$

are martingales. Therefore, taking the expectation in (3.10) and using (3.11), we end up with (3.5).
Existence. Consider the martingale $\tilde{M}_{t}:=\mathbb{E}\left[\xi+\int_{(0, T]} f_{s} d A_{s} \mid \mathcal{F}_{t}\right], t \in[0, T] . \tilde{M}$ admits a right-continuous modification M (see e.g. Corollary 2.48 in [10]). Then, by the martingale representation Theorem 5.4 in [11] and Proposition 3.66 in [12] (noting that M is a square integrable martingale), there exists a predictable process $Z: \Omega \times[0, T] \times E \rightarrow \mathbb{R}$ such that

$$
\mathbb{E}\left[\int_{(0, T]} \int_{E}\left|Z_{t}(x)-\hat{Z}_{t}\right|^{2} \nu(d t, d x)+\sum_{0<t \leq T}\left|\hat{Z}_{t}\right|^{2}\left(1-\Delta A_{t}\right)\right]<\infty
$$

and

$$
\begin{equation*}
M_{t}=M_{0}+\int_{(0, t]} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x), \quad t \in[0, T] . \tag{3.12}
\end{equation*}
$$

Set

$$
\begin{equation*}
Y_{t}=M_{t}-\int_{(0, t]} f_{s} d A_{s}, \quad t \in[0, T] . \tag{3.13}
\end{equation*}
$$

Using the representation (3.12) of M, and noting that $Y_{T}=\xi$, we see that Y satisfies (3.2). When $\beta>0$, it remains to show that Y satisfies (3.3) and Z satisfies (3.4). To this end, let us define the increasing sequence of stopping times

$$
\begin{aligned}
S_{k}=\inf & \left\{t \in(0, T]: \int_{(0, t]} \mathcal{E}_{s}^{\beta}\left|Y_{s-}\right|^{2} d A_{s}\right. \\
& \left.+\int_{(0, t]} \mathcal{E}_{s}^{\beta} \int_{E}\left|Z_{s}(x)-\hat{Z}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq t} \mathcal{E}_{s}^{\beta}\left|\hat{Z}_{s}\right|^{2}\left(1-\Delta A_{s}\right)>k\right\}
\end{aligned}
$$

with the convention $\inf \emptyset=T$. Computing the Itô differential $d\left(\mathcal{E}_{s}^{\beta}\left|Y_{s}\right|^{2}\right)$ on the interval [$0, S_{k}$] and proceeding as in the derivation of identity (3.5), we find

$$
\begin{align*}
& \mathbb{E}\left[\int_{\left(0, S_{k}\right]} \mathcal{E}_{s}^{\beta} \int_{E}\left|Z_{s}(x)-\hat{Z}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq S_{k}} \mathcal{E}_{s}^{\beta}\left|\hat{Z}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& +\beta \mathbb{E}\left[\int_{\left(0, S_{k}\right]} \mathcal{E}_{s}^{\beta}\left(1+\beta \Delta A_{s}\right)^{-1}\left|Y_{s-}\right|^{2} d A_{s}\right] \\
& \leq \mathbb{E}\left[\mathcal{E}_{S_{k}}^{\beta}\left|Y_{S_{k}}\right|^{2}\right]+2 \mathbb{E}\left[\int_{\left(0, S_{k}\right]} \mathcal{E}_{s}^{\beta} Y_{s-} f_{s} d A_{s}\right] . \tag{3.14}
\end{align*}
$$

Let us now prove the following inequality (recall that we are assuming $\beta>0$)

$$
\begin{equation*}
\mathcal{E}_{t}^{\beta}\left(\int_{(t, T]}\left|f_{s}\right| d A_{s}\right)^{2} \leq\left(\frac{1}{\beta}+\beta \sum_{t<s \leq T}\left|\Delta A_{s}\right|^{2}\right) \int_{(t, T]} \mathcal{E}_{s}^{\beta}\left|f_{s}\right|^{2} d A_{s} . \tag{3.15}
\end{equation*}
$$

Set, for all $s \in[0, T]$,

$$
\begin{aligned}
& \bar{A}_{s}:=\frac{\beta}{2} A_{s}^{c}+\sum_{0<r \leq s, \Delta A_{r} \neq 0}\left(\sqrt{1+\beta \Delta A_{r}}-1\right), \\
& \underline{A}_{s}:=-\frac{\beta}{2} A_{s}^{c}-\sum_{0<r \leq s, \Delta A_{r} \neq 0} \frac{\sqrt{1+\beta \Delta A_{r}}-1}{\sqrt{1+\beta \Delta A_{r}}} .
\end{aligned}
$$

Denote by $\overline{\mathcal{E}}$ (resp. $\underline{\mathcal{E}}$) the Doléans-Dade exponential of the process \bar{A} (resp. \underline{A}). Using Proposition 6.4 in [12] we see that

$$
\begin{equation*}
1=\underline{\mathcal{E}}_{s} \overline{\mathcal{E}}_{s}, \quad\left(\overline{\mathcal{E}}_{s}\right)^{2}=\mathcal{E}_{s}^{\beta}, \quad \forall s \in[0, T] . \tag{3.16}
\end{equation*}
$$

Existence and uniqueness for BSDEs driven by a general random measure

Then, we conclude that

$$
\begin{aligned}
\mathcal{E}_{t}^{\beta}\left(\int_{(t, T]}\left|f_{s}\right| d A_{s}\right)^{2} & =\mathcal{E}_{t}^{\beta}\left(\int_{(t, T]} \underline{\mathcal{E}}_{s-} \overline{\mathcal{E}}_{s-}\left|f_{s}\right| d A_{s}\right)^{2} \\
& \leq\left(\frac{1}{\beta}+\beta \sum_{t<s \leq T}\left|\Delta A_{s}\right|^{2}\right) \int_{(t, T]} \mathcal{E}_{s}^{\beta}\left|f_{s}\right|^{2} d A_{s}
\end{aligned}
$$

where we used the inequality $\mathcal{E}_{s-}^{\beta} \leq \mathcal{E}_{s}^{\beta}$ (which follows from (2.2)) and

$$
\begin{aligned}
\mathcal{E}_{t}^{\beta} \int_{(t, T]}\left(\underline{\mathcal{E}}_{s-}\right)^{2} d A_{s} & =\mathcal{E}_{t}^{\beta} \frac{\left(\underline{\mathcal{E}}_{t}\right)^{2}-\left(\underline{\mathcal{E}}_{T}\right)^{2}}{\beta}+\mathcal{E}_{t}^{\beta} \beta \sum_{t<s \leq T}\left(\underline{\mathcal{E}}_{s-}\right)^{2} \frac{\left|\Delta A_{s}\right|^{2}}{1+\beta \Delta A_{s}} \\
& \leq \frac{1}{\beta}+\beta \sum_{t<s \leq T}\left|\Delta A_{s}\right|^{2},
\end{aligned}
$$

where the last inequality follows from $\frac{1}{1+\beta \Delta A_{s}} \leq 1$ and identities (3.16). Now, using (3.13) and (3.15) we obtain

$$
\begin{align*}
\mathcal{E}_{t}^{\beta}\left|Y_{t}\right|^{2} & =\mathcal{E}_{t}^{\beta}\left|\mathbb{E}\left[\xi+\int_{(t, T]} f_{s} d A_{s} \mid \mathcal{F}_{t}\right]\right|^{2} \\
& \leq 2 \mathbb{E}\left[\mathcal{E}_{t}^{\beta}|\xi|^{2} \mid \mathcal{F}_{t}\right]+2 \mathbb{E}\left[\mathcal{E}_{t}^{\beta}\left(\int_{(t, T]}\left|f_{s}\right| d A_{s}\right)^{2} \mid \mathcal{F}_{t}\right] \\
& \leq 2 \mathbb{E}\left[\left.\mathcal{E}_{T}^{\beta}|\xi|^{2}+\left(\frac{1}{\beta}+\beta \sum_{0<s \leq T}\left|\Delta A_{s}\right|^{2}\right) \int_{(0, T]} \mathcal{E}_{s}^{\beta}\left|f_{s}\right|^{2} d A_{s} \right\rvert\, \mathcal{F}_{t}\right] . \tag{3.17}
\end{align*}
$$

Denote by m_{t} a right-continuous modification of the right-hand side of (3.17). We see that $m=\left(m_{t}\right)_{t \in[0, T]}$ is a uniformly integrable martingale. In particular for every stopping time S with values in $[0, T]$, we have, by Doob's optional stopping theorem,

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{E}_{S}^{\beta}\left|Y_{S}\right|^{2}\right] \leq \mathbb{E}\left[m_{S}\right] \leq \mathbb{E}\left[m_{T}\right]<\infty \tag{3.18}
\end{equation*}
$$

Notice that $\left(1+\beta \Delta A_{s}\right)^{-1} \geq \frac{1}{1+\beta} \mathbb{P}$-a.s. Using the inequality $2 a b \leq \gamma a^{2}+\frac{1}{\gamma} b^{2}$ with $\gamma=\frac{\beta}{2(1+\beta)}$, and plugging (3.18) (with $S=S_{k}$) into (3.14), we find the estimate

$$
\begin{aligned}
& \frac{\beta}{2(1+\beta)} \mathbb{E}\left[\int_{\left(0, S_{k}\right]} \mathcal{E}_{s}^{\beta}\left|Y_{s-}\right|^{2} d A_{s}\right] \\
& +\mathbb{E}\left[\int_{\left(0, S_{k}\right]} \mathcal{E}_{s}^{\beta} \int_{E}\left|Z_{s}(x)-\hat{Z}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq S_{k}} \mathcal{E}_{s}^{\beta}\left|\hat{Z}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& \leq 2 \mathbb{E}\left[\mathcal{E}_{T}^{\beta}|\xi|^{2}\right]+2 \mathbb{E}\left[\left(\frac{1}{\beta}+\beta \sum_{0<s \leq T}\left|\Delta A_{s}\right|^{2}\right)\left(\int_{(0, T]} \mathcal{E}_{s}^{\beta}\left|f_{s}\right|^{2} d A_{s}\right)\right] .
\end{aligned}
$$

From the above inequality we deduce that

$$
\begin{align*}
& \mathbb{E}\left[\int_{\left(0, S_{k}\right]} \mathcal{E}_{s}^{\beta}\left|Y_{s-}\right|^{2} d A_{s}\right] \\
& +\mathbb{E}\left[\int_{\left(0, S_{k}\right]} \mathcal{E}_{s}^{\beta} \int_{E}\left|Z_{s}(x)-\hat{Z}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq S_{k}} \mathcal{E}_{s}^{\beta}\left|\hat{Z}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& \leq c(\beta)\left(\mathbb{E}\left[\mathcal{E}_{T}^{\beta}|\xi|^{2}\right]+\mathbb{E}\left[\left(\frac{1}{\beta}+\beta \sum_{0<s \leq T}\left|\Delta A_{s}\right|^{2}\right) \int_{(0, T]} \mathcal{E}_{s}^{\beta}\left|f_{s}\right|^{2} d A_{s}\right]\right), \tag{3.19}
\end{align*}
$$

Existence and uniqueness for BSDEs driven by a general random measure
where $c(\beta)=2+\frac{4(1+\beta)}{\beta}$. Setting $S=\lim _{k} S_{k}$ we deduce

$$
\begin{aligned}
& \mathbb{E}\left[\int_{(0, S]} \mathcal{E}_{s}^{\beta}\left|Y_{s-}\right|^{2} d A_{s}\right]+\mathbb{E}\left[\int_{(0, S]} \mathcal{E}_{s}^{\beta} \int_{E}\left|Z_{s}(x)-\hat{Z}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq S} \mathcal{E}_{s}^{\beta}\left|\hat{Z}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& <\infty, \quad \mathbb{P} \text {-a.s., }
\end{aligned}
$$

which implies $S=T$, P-a.s., by the definition of S_{k}. Letting $k \rightarrow \infty$ in (3.19), we conclude that Y satisfies (3.3) and Z satisfies (3.4), so that $(Y, Z) \in \mathbb{H}_{\beta}^{2}(0, T)$.

4 Main result

Theorem 4.1. Suppose that there exists $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
2 L_{y}^{2}\left|\Delta A_{t}\right|^{2} \leq 1-\varepsilon, \quad \text { P-a.s., } \forall t \in[0, T] . \tag{4.1}
\end{equation*}
$$

Then there exists a unique solution $(Y, Z) \in \mathbb{H}_{\beta}^{2}(0, T)$ to equation (3.2) with data (β, ξ, f), for every β satisfying

$$
\begin{equation*}
\beta \geq \frac{\frac{L_{y}^{2}}{\hat{L}_{z, t}^{2}}+\frac{2 \hat{L}_{z, t}^{2}}{1-\delta+2 \hat{L}_{z, t}^{2} \Delta A_{t}}}{1-\Delta A_{t}\left(\frac{L_{y}^{2}}{\hat{L}_{z, t}^{2}}+\frac{2 \hat{L}_{z, t}^{2}}{1-\delta+2 \hat{L}_{z, t}^{2} \Delta A_{t}}\right)}, \quad \text { P-a.s., } \forall t \in[0, T] \tag{4.2}
\end{equation*}
$$

for some $\delta \in(0, \varepsilon)$ and strictly positive predictable process $\left(\hat{L}_{z, t}\right)_{t \in[0, T]}$ given by

$$
\begin{equation*}
\hat{L}_{z, t}^{2}=\max \left(L_{z}^{2}+\delta, \frac{(1-\delta) L_{y}}{\sqrt{2(1-\delta)}-2 L_{y} \Delta A_{t}}\right) \tag{4.3}
\end{equation*}
$$

Remark 4.2. (i) Notice that when condition (4.1) holds the right-hand side of (4.2) is a well-defined nonnegative real number, so that there always exists some $\beta \geq 0$ which satisfies (4.2).
(ii) Observe that condition 4.1 does not involve L_{z}, i.e. the Lipschitz constant of f with respect to its last argument.

Proof of Theorem 4.1. The proof is based on a fixed point argument that we now describe. Let us consider the function $\Phi: \mathbb{H}_{\beta}^{2}(0, T) \rightarrow \mathbb{H}_{\beta}^{2}(0, T)$, mapping (U, V) to (Y, Z) as follows:

$$
\begin{equation*}
Y_{t}=\xi+\int_{(t, T]} f\left(t, U_{s-}, V_{s}\right) d A_{s}-\int_{(t, T]} \int_{E} Z_{s}(x)(\mu-\nu)(d s, d x), \quad 0 \leq t \leq T \tag{4.4}
\end{equation*}
$$

By Lemma 3.6 there exists a unique $(Y, Z) \in \mathbb{H}_{\beta}^{2}(0, T)$ satisfying (4.4), so that Φ is a well-defined map. We then see that (Y, Z) is a solution in $H_{\beta}^{2}(0, T)$ to the BSDE (3.2) with data (β, ξ, f) if and only if it is a fixed point of Φ.

Let us prove that Φ is a contraction when β is large enough. Let $\left(U^{i}, V^{i}\right) \in \mathbb{H}_{\beta}^{2}(0, T)$, $i=1,2$, and set $\left(Y^{i}, Z^{i}\right)=\Phi\left(U^{i}, V^{i}\right)$. Denote $\bar{Y}=Y^{1}-Y^{2}, \bar{Z}=Z^{1}-Z^{2}, \bar{U}=U^{1}-U^{2}$, $\bar{V}=V^{1}-V^{2}, \bar{f}_{s}=f\left(s, U_{s-}^{1}, V_{s}^{1}\right)-f\left(s, U_{s-}^{2}, V_{s}^{2}\right)$. Notice that

$$
\begin{equation*}
\bar{Y}_{t}=\int_{(t, T]} \bar{f}_{s} d A_{s}-\int_{(t, T]} \int_{E} \bar{Z}_{s}(x)(\mu-\nu)(d s, d x), \quad 0 \leq t \leq T \tag{4.5}
\end{equation*}
$$

Existence and uniqueness for BSDEs driven by a general random measure

Then, identity (3.5), with $t=0$, becomes (noting that $\mathbb{E}\left[\mathcal{E}_{0}^{\beta}\left|\bar{Y}_{0}\right|^{2}\right]$ is nonnegative)

$$
\begin{align*}
& \beta \mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta}\left(1+\beta \Delta A_{s}\right)^{-1}\left|\bar{Y}_{s-}\right|^{2} d A_{s}\right] \\
& +\mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{Z}_{s}(x)-\hat{\bar{Z}}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq T} \mathcal{E}_{s}^{\beta}\left|\hat{\bar{Z}}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& \leq 2 \mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \bar{Y}_{s-} \bar{f}_{s} d A_{s}\right]-\mathbb{E}\left[\sum_{0<s \leq T} \mathcal{E}_{s}^{\beta}\left|\bar{f}_{s}\right|^{2}\left|\Delta A_{s}\right|^{2}\right] \tag{4.6}
\end{align*}
$$

From the standard inequality $2 a b \leq \frac{1}{\alpha} a^{2}+\alpha b^{2}, \forall a, b \in \mathbb{R}$ and $\alpha>0$, we obtain, for any strictly positive predictable processes $\left(c_{s}\right)_{s \in[0, T]}$ and $\left(d_{s}\right)_{s \in[0, T]}$,

$$
\begin{aligned}
2 \mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \bar{Y}_{s-} \bar{f}_{s} d A_{s}\right] \leq & \mathbb{E}\left[\int_{(0, T]} \frac{1}{c_{s}} \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} d A_{s}^{c}\right]+\mathbb{E}\left[\sum_{0<s \leq T} \frac{1}{d_{s}} \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} \Delta A_{s}\right] \\
& +\mathbb{E}\left[\int_{(0, T]} c_{s} \mathcal{E}_{s}^{\beta}\left|\bar{f}_{s}\right|^{2} d A_{s}^{c}\right]+\mathbb{E}\left[\sum_{0<s \leq T} d_{s} \mathcal{E}_{s}^{\beta}\left|\bar{f}_{s}\right|^{2} \Delta A_{s}\right] .
\end{aligned}
$$

Therefore (4.6) becomes

$$
\begin{align*}
& \mathbb{E}\left[\int_{(0, T]}\left(\beta-\frac{1}{c_{s}}\right) \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} d A_{s}^{c}\right]+\mathbb{E}\left[\sum_{0<s \leq T}\left(\beta\left(1+\beta \Delta A_{s}\right)^{-1}-\frac{1}{d_{s}}\right) \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} \Delta A_{s}\right] \\
& +\mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{Z}_{s}(x)-\hat{\bar{Z}}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq T} \mathcal{E}_{s}^{\beta}\left|\hat{\bar{Z}}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& \leq \mathbb{E}\left[\int_{(0, T]} c_{s} \mathcal{E}_{s}^{\beta}\left|\bar{f}_{s}\right|^{2} d A_{s}^{c}\right]+\mathbb{E}\left[\sum_{0<s \leq T}\left(d_{s}-\Delta A_{s}\right) \mathcal{E}_{s}^{\beta}\left|\bar{f}_{s}\right|^{2} \Delta A_{s}\right] \tag{4.7}
\end{align*}
$$

Now, by the Lipschitz property (3.1) of f, we see that for any predictable process $\left(\hat{L}_{z, s}\right)_{s \in[0, T]}$, satisfying $\hat{L}_{z, s}>L_{z}, \mathbb{P}$-a.s. for every $s \in[0, T]$, we have

$$
\begin{equation*}
\left|\bar{f}_{s}\right|^{2} \leq 2 L_{y}^{2}\left|\bar{U}_{s-}\right|^{2}+2 \hat{L}_{z, s}^{2}\left(\int_{E}\left|\bar{V}_{s}(x)-\hat{\bar{V}}_{s}\right|^{2} \phi_{s}(d x)+1_{\left\{\Delta A_{s} \neq 0\right\}} \frac{1-\Delta A_{s}}{\Delta A_{s}}\left|\hat{\bar{V}}_{s}\right|^{2}\right) \tag{4.8}
\end{equation*}
$$

for all $s \in[0, T]$. For later use, fix $\delta \in(0, \varepsilon)$ and take $\left(\hat{L}_{z, s}\right)_{s \in[0, T]}$ given by (4.3). Notice that the two components inside the maximum in (4.3) are nonnegative (the first being always strictly positive, the second being zero if $L_{y}=0$) and uniformly bounded, as it follows from condition (4.1). Plugging inequality (4.8) into (4.7), and using the following identity for \bar{Z} (and the analogous one for \bar{V})

$$
\begin{aligned}
& \mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{Z}_{s}(x)-\hat{\bar{Z}}_{s}\right|^{2} \nu(d s, d x)+\sum_{0<s \leq T} \mathcal{E}_{s}^{\beta}\left|\hat{\bar{Z}}_{s}\right|^{2}\left(1-\Delta A_{s}\right)\right] \\
& =\mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{Z}_{s}(x)\right|^{2} \nu^{c}(d s, d x)\right]+\mathbb{E}\left[\sum_{0<s \leq T} \mathcal{E}_{s}^{\beta}\left(\left|\widehat{\left.\bar{Z}_{s}\right|^{2}}-\left|\hat{\bar{Z}}_{s}\right|^{2}\right)\right],\right.
\end{aligned}
$$

we obtain

$$
\begin{align*}
& \mathbb{E}\left[\int_{(0, T]}\left(\beta-\frac{1}{c_{s}}\right) \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} d A_{s}^{c}\right]+\mathbb{E}\left[\sum_{0<s \leq T}\left(\beta\left(1+\beta \Delta A_{s}\right)^{-1}-\frac{1}{d_{s}}\right) \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} \Delta A_{s}\right] \\
& +\mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{Z}_{s}(x)\right|^{2} \nu^{c}(d s, d x)\right]+\mathbb{E}\left[\sum_{0<s \leq T} \mathcal{E}_{s}^{\beta}\left(\widehat{\left.\bar{Z}_{s}\right|^{2}}-\left|\hat{\bar{Z}}_{s}\right|^{2}\right)\right] \\
& \leq 2 L_{y}^{2} \mathbb{E}\left[\int_{(0, T]} c_{s} \mathcal{E}_{s}^{\beta}\left|\bar{U}_{s-}\right|^{2} d A_{s}^{c}\right]+2 \mathbb{E}\left[\int_{(0, T]} c_{s} \hat{L}_{z, s}^{2} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{V}_{s}(x)\right|^{2} \nu^{c}(d s, d x)\right] \\
& +2 L_{y}^{2} \mathbb{E}\left[\sum_{0<s \leq T}\left(d_{s}-\Delta A_{s}\right) \mathcal{E}_{s}^{\beta}\left|\bar{U}_{s-}\right|^{2} \Delta A_{s}\right] \\
& +2 \mathbb{E}\left[\sum_{0<s \leq T}\left(d_{s}-\Delta A_{s}\right) \hat{L}_{z, s}^{2} \mathcal{E}_{s}^{\beta}\left(\widehat{\left.\bar{V}_{s}\right|^{2}}-\left|\hat{\bar{V}}_{s}\right|^{2}\right)\right] . \tag{4.9}
\end{align*}
$$

Set $b_{s}:=\min \left(\beta-\frac{1}{c_{s}}, \beta\left(1+\beta \Delta A_{s}\right)^{-1}-\frac{1}{d_{s}}\right)$ and $a_{s}:=2 \hat{L}_{z, s}^{2} \max \left(c_{s}, d_{s}-\Delta A_{s}\right), s \in[0, T]$. Then, inequality (4.9) can be rewritten as (recalling that $\hat{L}_{z, s}>0$)

$$
\begin{align*}
& \mathbb{E}\left[\int_{(0, T]} b_{s} \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} d A_{s}^{c}\right]+\mathbb{E}\left[\sum_{0<s \leq T} b_{s} \mathcal{E}_{s}^{\beta}\left|\bar{Y}_{s-}\right|^{2} \Delta A_{s}\right] \\
& +\mathbb{E}\left[\int_{(0, T]} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{Z}_{s}(x)\right|^{2} \nu^{c}(d s, d x)\right]+\mathbb{E}\left[\sum_{0<s \leq T} \mathcal{E}_{s}^{\beta}\left(\left|\widehat{\left.\bar{Z}_{s}\right|^{2}}-\left|\hat{\bar{Z}}_{s}\right|^{2}\right)\right]\right. \\
& \leq \mathbb{E}\left[\int_{(0, T]} \frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}} a_{s} \mathcal{E}_{s}^{\beta}\left|\bar{U}_{s-}\right|^{2} d A_{s}^{c}\right]+\mathbb{E}\left[\sum_{0<s \leq T} \frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}} a_{s} \mathcal{E}_{s}^{\beta}\left|\bar{U}_{s-}\right|^{2} \Delta A_{s}\right] \\
& +\mathbb{E}\left[\int_{(0, T]} a_{s} \mathcal{E}_{s}^{\beta} \int_{E}\left|\bar{V}_{s}(x)\right|^{2} \nu^{c}(d s, d x)\right]+\mathbb{E}\left[\sum_{0<s \leq T} a_{s} \mathcal{E}_{s}^{\beta}\left(\widehat{\left.\hat{V}_{s}\right|^{2}}-\left|\hat{\bar{V}}_{s}\right|^{2}\right)\right] . \tag{4.10}
\end{align*}
$$

It follows from (4.10) that Φ is a contraction if:
(i) there exists $\alpha \in(0,1)$ such that $a_{s} \leq \alpha, \mathbb{P}-$ a.s. for every $s \in[0, T]$;
(ii) $\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}} \leq b_{s}, \mathbb{P}$-a.s. for every $s \in[0, T]$.

Let us prove that (i) and (ii) hold. Condition (i) is equivalent to ask that there exists $\alpha \in(0,1)$ such that, for all $s \in[0, T]$,

$$
c_{s} \leq \frac{1-\alpha}{2 \hat{L}_{z, s}^{2}}, \quad d_{s} \leq \frac{1-\alpha}{2 \hat{L}_{z, s}^{2}}+\Delta A_{s}, \quad \mathbb{P} \text {-a.s. }
$$

Then we choose $\alpha=\delta$, where $\delta \in(0, \varepsilon)$ was fixed in the statement of the theorem, and c_{s}, d_{s} given by

$$
\begin{equation*}
c_{s}=\frac{1-\delta}{2 \hat{L}_{z, s}^{2}}, \quad d_{s}=\frac{1-\delta}{2 \hat{L}_{z, s}^{2}}+\Delta A_{s} \tag{4.11}
\end{equation*}
$$

for all $s \in[0, T]$, so that (i) holds true. Concerning (ii), we have, for all $s \in[0, T], \mathbb{P}$-a.s.,

$$
\min \left(\beta-\frac{1}{c_{s}}, \beta\left(1+\beta \Delta A_{s}\right)^{-1}-\frac{1}{d_{s}}\right) \geq \frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}
$$

which becomes

$$
\begin{equation*}
\beta \geq \frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{c_{s}}, \quad \beta \geq \frac{\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{d_{s}}}{1-\Delta A_{s}\left(\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{d_{s}}\right)} \tag{4.12}
\end{equation*}
$$

Existence and uniqueness for BSDEs driven by a general random measure
where for the last inequality in (4.12) we need to impose the additional condition

$$
1-\Delta A_{s}\left(\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{d_{s}}\right)>0
$$

This latter inequality can be rewritten as

$$
\begin{equation*}
L_{y}^{2} \Delta A_{s}<\hat{L}_{z, s}^{2}\left(1-\frac{\Delta A_{s}}{d_{s}}\right)=\frac{(1-\delta) \hat{L}_{z, s}^{2}}{1-\delta+2 \hat{L}_{z, s}^{2} \Delta A_{s}} \tag{4.13}
\end{equation*}
$$

where the last equality follows from the definition of d_{s} in (4.11). From (4.3), and since in particular

$$
\hat{L}_{z, s}^{2} \geq \frac{(1-\delta) L_{y}}{\sqrt{2(1-\delta)}-2 L_{y} \Delta A_{s}}>\frac{(1-\delta) L_{y}^{2} \Delta A_{s}}{1-\delta-2 L_{y}^{2}\left|\Delta A_{s}\right|^{2}}, \quad \text { P-a.s., } \forall s \in[0, T]
$$

it follows that inequality (4.13) holds. Finally, concerning (4.12), we begin noting that

$$
\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{c_{s}}<\frac{\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{d_{s}}}{1-\Delta A_{s}\left(\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{d_{s}}\right)},
$$

as it can be shown using (4.11). Now, let us denote

$$
\frac{\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{d_{s}}}{1-\Delta A_{s}\left(\frac{L_{y}^{2}}{\hat{L}_{z, s}^{2}}+\frac{1}{d_{s}}\right)}=H_{s}\left(\hat{L}_{z, s}^{2}\right),
$$

where, for every $s \in[0, T]$,

$$
H_{s}(\ell)=\frac{h_{s}(\ell)}{1-\Delta A_{s} h_{s}(\ell)}, \quad h_{s}(\ell)=\frac{L_{y}^{2}}{\ell}+\frac{2 \ell}{1-\delta+2 \ell \Delta A_{s}}, \quad \ell>0
$$

Notice that H_{s} attains its minimum at $\ell_{s}^{*}=\frac{(1-\delta) L_{y}}{\sqrt{2(1-\delta)}-2 L_{y} \Delta A_{s}}$. This explains the expression of the second component inside the maximum in (4.3). In conclusion, given $\left(\hat{L}_{z, s}\right)_{s \in[0, T]}$ as in (4.3) we obtain a lower bound for β from the second inequality in (4.12), which corresponds to (4.2).

Remark 4.3. (i) In [5] the authors study a class of BSDEs driven by a countable sequence of square-integrable martingales, with a generator f integrated with respect to a rightcontinuous nondecreasing process A as in (3.2). Similarly to our setting, A is not necessarily continuous, however in [5] it is supposed to be deterministic (instead of predictable). Theorem 6.1 in [5] provides an existence and uniqueness result for the class of BSDEs studied in [5] under the following assumption ($2 L_{y, t}^{2}$ corresponds to c_{t} and ΔA_{t} corresponds to $\Delta \mu_{t}$ in the notation of [5]):

$$
\begin{equation*}
2 L_{y, t}^{2}\left|\Delta A_{t}\right|^{2}<1, \quad \forall t \in[0, T] \tag{4.14}
\end{equation*}
$$

where $L_{y, t}$ is a measurable deterministic function uniformly bounded such that (3.1) holds with $L_{y, t}$ in place of L_{y}. As showed at the beginning of the proof of Theorem 6.1 in [5], if (4.14) holds (and A is as in [5]), then there exists $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
2 L_{y, t}^{2}\left|\Delta A_{t}\right|^{2} \leq 1-\varepsilon, \quad \forall t \in[0, T] . \tag{4.15}
\end{equation*}
$$

This proves that when condition (4.14) holds then (4.15) is also valid, since in our setting we can take $L_{y, t} \equiv L_{y}$.
(ii) Section 4.3 in [7] provides a counter-example to existence for BSDE (3.2) when A is discontinuous, as it can be the case in our setting; the rest of the paper [7] studies BSDE (3.2) with A continuous. Let us check that the counter-example proposed in [7] does not satisfy condition (4.1). In [7] the process A is a pure jump process with a single jump of size $p \in(0,1)$ at a deterministic time $t \in(0, T]$. The Lipschitz constant of f with respect to y is $L_{y}=\frac{1}{p}$. Then

$$
2 L_{y}^{2}\left|\Delta A_{t}\right|^{2}=2
$$

if t is the jump time of A, so that condition (4.1) is violated.
Remark 4.4. Suppose that μ is an integer-valued random measure on $\mathbb{R}_{+} \times E$ not necessarily discrete. Then ν can still be disintegrated as follows

$$
\nu(\omega, d t, d x)=d A_{t}(\omega) \phi_{\omega, t}(d x)
$$

where A is a right-continuous nondecreasing predictable process such that $A_{0}=0$, but ϕ is in general only a transition measure (instead of transition probability) from $(\Omega \times[0, T], \mathcal{P})$ into (E, \mathcal{E}). Notice that when μ is discrete one can choose ϕ to be a transition probability, therefore $\phi(E)=1$ and $\nu(\{t\} \times E)=\Delta A_{t}$ (a property used in the previous sections). When μ is not discrete, let us suppose that ν^{d} can be disintegrated as follows

$$
\begin{equation*}
\nu^{d}(\omega, d t, d x)=\Delta A_{t}(\omega) \phi_{\omega, t}^{d}(d x), \quad \phi_{\omega, t}^{d}(E)=1, \tag{4.16}
\end{equation*}
$$

where ϕ^{d} is a transition probability from $(\Omega \times[0, T], \mathcal{P})$ into (E, \mathcal{E}). In particular $\nu^{d}(\{t\} \times$ $E)=\Delta A_{t}$. Then, when (4.16) and a martingale representation theorem for μ hold, all the results of this paper are still valid and can be proved proceeding along the same lines. As an example, (4.16) holds when μ is the jump measure of a Lévy process, indeed in this case ΔA_{t} is identically zero.

Remark 4.5. As an application of the results presented in this paper, suppose that μ is the jump measure of a Piecewise Deterministic Markov Process (PDMP) X with values in E. We follow the notation introduced in [8], Chapter 2, Section 24 and 26. Denoted by $\left(T_{n}\right)_{n}$ the jump times of the process X, the random measure μ can be written as

$$
\mu(d t, d x)=\sum_{n=1}^{\infty} \delta_{\left(T_{n}, X_{T_{n}}\right)}(d t, d x)
$$

Moreover, according to (26.2) in [8], the compensator of μ has the form

$$
\begin{equation*}
\nu(\omega, d t, d x)=\left(\lambda\left(X_{t-}(\omega)\right) d t+d p_{t}^{*}(\omega)\right) Q\left(X_{t-}(\omega), d x\right) \tag{4.17}
\end{equation*}
$$

where Q and λ are respectively the transition rate measure and the jump rate of the process X, and

$$
p_{t}^{*}=\sum_{n=1}^{\infty} 1_{\left\{t \geq T_{n}\right\}} 1_{\left\{X_{\left.T_{n}-\in \Gamma\right\}}\right.}
$$

is the process counting the number of jumps of X from the active boundary $\Gamma \subset \partial E$ (for the precise definition of Γ see page 61 in [8]).

From (4.17) we see that decomposition (2.1) for ν holds with $d A_{t}(\omega)=\lambda\left(X_{t-}(\omega)\right) d t+$ $d p_{t}^{*}(\omega)$ and $\phi_{\omega, t}(d x)=Q\left(X_{t-}(\omega), d x\right)$. In particular, A is predictable (not deterministic) and discontinuous, with jumps $\Delta A_{t}=1_{\left\{X_{t-} \in \Gamma\right\}}$. In this case condition (4.1) can be written as

$$
\begin{equation*}
L_{y}<\frac{1}{\sqrt{2}} \tag{4.18}
\end{equation*}
$$

Existence and uniqueness for BSDEs driven by a general random measure

The fact that the above condition is only on L_{y}, rather than on L_{z}, is particularly important in the study of control problems related to PDMPs by means of BSDEs methods (successfully implemented in the diffusive framework). This latter turns out to be technically involved and is the subject of a work in progress by the author, where, in particular, a rigorous formulation of the optimal control problem and precise assumptions are provided. Here, we just say that when control problems are considered then $L_{y}=0$ and condition (4.18) is automatically satisfied. We also emphasize that, as expected, the main difficulties arise from the presence of discontinuities at the boundary of the domain.

References

[1] Barles, G., Buckdahn, R. and Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochastics and Stochastics Reports, 60, (1997), 57-83. MR-1436432
[2] Becherer D.: Bounded solutions to backward SDEs with jumps for utility optimization and indifference hedging. The Annals of Applied Probability, 16, (2006), 2027-2054. MR-2288712
[3] Carbone, R., Ferrario, B. and Santacroce, M.: Backward stochastic differential equations driven by càdlàg martingales. Theory Probab. Appl., 52, (2008), 304-314. MR-2742510
[4] Cohen, S.: A martingale representation theorem for a class of jump processes. arXiv:1310.6286v1
[5] Cohen, S. and Elliott, R. J.: Existence, uniqueness and comparisons for BSDEs in general spaces. The Annals of Probability, 40, (2012), 2264-2297. MR-3025717
[6] Confortola, F. and Fuhrman, M.: Backward stochastic differential equations and optimal control of marked point processes. SIAM Journal on Control and Optimization, 51, (2013), 3592-3623. MR-3105784
[7] Confortola, F., Fuhrman, M. and Jacod, J.: Backward stochastic differential equations driven by a marked point process: an elementary approach, with an application to optimal control. arXiv:1407.0876
[8] Davis, M.H.A.: Markov models and optimization. Monographs on Statistics and Applied Probability 49, Chapman and Hall, London, 1993. MR-1283589
[9] El Karoui, N. and Huang, S. J.: A general result of existence and uniqueness of backward stochastic differential equations. In Backward Stochastic Differential Equations (Paris, 19951996). Pitman Research Notes in Mathematics Series, Longman, Harlow, 364, (1997), 27-36. MR-1752673
[10] He, S., Wang, J. and Yan, Y.: Semimartingale theory and stochastic calculus. Science Press Bejiing New York, 1992. MR-1219534
[11] Jacod, J.: Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31, (1975), 235-253. MR-0380978
[12] Jacod, J.: Calcul stochastique et problèmes de martingales. Lecture Notes in Mathematics 714, Springer, Berlin, 1979. MR-0542115
[13] Pardoux, E. and Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett., 14, (1990), 55-61. MR-1037747
[14] Tang, S. J. and Li, X. J.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim., 32, (1994), 1447-1475. MR-1288257
[15] Xia, J.: Backward stochastic differential equation with random measures. Acta Math. Appl. Sinica (English Ser.), 16, (2000), 225-234. MR-1779016

Acknowledgments. The author would like to thank Prof. Jean Jacod for his helpful discussions and valuable suggestions to improve this paper.

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS ${ }^{1}$)
- Non profit, sponsored by $\mathrm{IMS}^{2}, \mathrm{BS}^{3}, \mathrm{PKP}^{4}$
- Purely electronic and secure (LOCKSS ${ }^{5}$)

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Politecnico di Milano, Dipartimento di Matematica, Italy; ENSTA ParisTech, Unité de Mathématiques appliquées, Palaiseau, France. E-mail: elena.bandini@polimi.it

[^1]: ${ }^{1}$ OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
 ${ }^{2}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{3}$ BS: Bernoulli Society http://www.bernoulli-society.org/
 ${ }^{4}$ PK: Public Knowledge Project http://pkp.sfu.ca/
 ${ }^{5}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

