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Abstract

Cancer cells share several metabolic traits, including aerobic production of lactate from glu-

cose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron

flow. It is still unclear how these metabolic rearrangements, which may involve different

molecular events in different cells, contribute to a selective advantage for cancer cell prolif-

eration. To ascertain which metabolic pathways are used to convert glucose and glutamine

to balanced energy and biomass production, we performed systematic constraint-based

simulations of a model of human central metabolism. Sampling of the feasible flux space

allowed us to obtain a large number of randomly mutated cells simulated at different gluta-

mine and glucose uptake rates. We observed that, in the limited subset of proliferating cells,

most displayed fermentation of glucose to lactate in the presence of oxygen. At high utiliza-

tion rates of glutamine, oxidative utilization of glucose was decreased, while the production

of lactate from glutamine was enhanced. This emergent phenotype was observed only

when the available carbon exceeded the amount that could be fully oxidized by the available

oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this met-

abolic pattern is optimal to maximize biomass and ATP production; it requires the activity of

a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to

the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic

reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced

metabolic changes. We validated computational results through an extension of Flux Bal-

ance Analysis that allows prediction of metabolite variations. Taken together these findings
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offer new understanding of the logic of the metabolic reprogramming that underlies cancer

cell growth.

Author summary

Hallmarks describing common key events in initiation, maintenance and progression of

cancer have been identified. One hallmark deals with rewiring of metabolic reactions

required to sustain enhanced cell proliferation. The availability of molecular, mechanistic

models of cancer hallmarks will mightily improve optimized personal treatment and new

drug discovery. Metabolism is the only hallmark for which it is currently possible to derive

large scale mathematical models, which have predictive ability. In this paper, we exploit a

constraint-based model of the core metabolism required for biomass conversion of the

most relevant nutrients—glucose and glutamine—to clarify the logic of control of cancer

metabolism. We newly report that, when available oxygen is not sufficient to fully oxidize

available glucose and glutamine carbons–a situation compatible with that observed under

normal oxygen conditions in human and in cancer cells growing in vitro—utilization of

glutamine by reductive carboxylation and conversion of glucose and glutamine to lactate

confer advantage for biomass production. Redox homeostasis can be maintained through

the use of different alternative pathways. In conclusion, this paper offers a logic interpreta-

tion to the link between metabolic rewiring and enhanced proliferation, which may offer

new approaches to targeted drug discovery and utilization.

Introduction

Cancer is a network disease [1] resulting from a variable combination of genetic and epigenetic

alterations and selection of selfish cells, which maximize their fitness at the expense of the

organism [2]. Despite the high morphological, genetic and molecular heterogeneity [3], cancer

cells share a restricted number of essential alterations in cell physiology, better known as hall-

marks [4]. A reorganization of the hallmarks [5] identifies in the enhanced, unrestricted cell

growth the basic property of cancer cells.

This property requires an extensive reorganization of metabolic fluxes [6–9], characterized

by an enhancement in aerobic glycolysis—the well-known Warburg effect [10]—and by the

utilization of glutamine as a source of both carbon and nitrogen to support cellular biosynthe-

ses. While the involvement of glucose in cancer cell metabolism has been widely studied, its

integration with the utilization of glutamine through a reductive carboxylation pathway [11–

18] leaves many aspects unresolved, given that the two pathways appear to be decoupled [19],

but somehow coordinated [20]. These perturbations in key metabolic pathways not only pro-

pel cells towards malignancy, but also drive changes in the tissue microenvironment–ulti-

mately helping cells to break through the physical constraints of their surrounding stroma and

to evade immune recognition [21]. A deeper understanding on how cancer metabolic rewiring

(CMR) drives initiation, maintenance and progression of the disease would thus be of consid-

erable interest.

In order to integrate sets of experimental data and to formulate new testable hypotheses,

complex biological systems–such as human metabolism that involves thousands of metabolites

and reactions—need to be formally described by mathematical models. In this regard, con-

straint-based modeling and in particular Flux Balance Analysis (FBA), which is based on the
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definition and manipulation of stoichiometric matrices and was originally developed for the

optimization of microbial strains, is rapidly gaining popularity within life sciences [22]. FBA

allows to identify a phenotype that maximizes a certain objective (typically growth) among all

the possible flux patterns compatible with the steady state assumption. In biological terms,

these flux patterns may result from the expression and catalytic competence of the correspond-

ing enzymes according to substrate availability, or, to use our terminology, from different

wirings.

FBA may be applied to genome-wide metabolic networks [23, 24], which include the stoi-

chiometry of the vast majority of chemical reactions that are catalyzed by enzymes encoded by

the human genome. These maps have been effectively exploited as a scaffold for ‘omic’ data

integration, proving able to identify essential genes and reporter metabolites in metabolic dis-

orders and cancer [24–26]. In data-driven FBA studies of cancer metabolism [27, 28], aerobic

glycolysis has been typically imposed on the network. However, if we want to derive the design

principles that control metabolic rewiring in cancer cells and link them to enhanced prolifera-

tion, we need to let CMR emerge from the simulated boundary conditions.

Being highly detailed, genome-wide models require many assumptions on in-vivo nutrient

utilization rates. Moreover, when the aim is to investigate the plethora of admissible wirings,

rather than to determine optimality, their computation becomes demanding and may give ori-

gin to a combinatorial explosion of different flux patterns, which fuels mere details while

masking the major regulatory connections. Manually curated core models including hundreds

of metabolites, selected for the specific purpose of the analysis, help to overcome the problems

above [29, 30]. We therefore expect them to increase the knowledge on the system and gener-

ate novel, experimentally testable predictions.

In this study, we aim to identify the regulatory principles that link the utilization of glucose

and glutamine in originating the Warburg effect, and ultimately in driving cancer cell growth.

We manually reconstructed a core stoichiometric model designed to evaluate the contribution

of glucose and glutamine to enhanced growth, hence the name ENGRO1 (ENhanced

GROwth). By exploring the space of admissible wirings of the ENGRO1 model, we newly iden-

tified and rationalized intense aerobic glycolysis and glutamine reductive carboxylation as the

fittest emergent strategy that supports cancer cell growth under conditions reported to be gen-

erated by oncogenic activation: sustained glucose and glutamine uptake. This emergent phe-

notype is observed only when the available carbon exceeds the amount that could be fully

oxidized by the available oxygen, a condition that is entirely physiological. We validated our

predictions by analyzing the metabolic behavior of murine K-ras transformed fibroblasts,

grown in high glucose together with either low or high glutamine availability.

Results

ENGRO1 metabolic network reconstruction

In the context of FBA, nutritional conditions are simulated either by imposing a specific

uptake flux or by specifying the maximal rate allowed for nutrient consumption reactions. We

will refer to the latter case as a constraint on nutrient availability, bearing in mind that it

should be interpreted as a constraint on intracellular rather than on extracellular nutrient

availability, the relationship between the two being non-linear and controlled by complex sig-

naling networks [31].

Given that the actual consumption rate of each individual nutrient in vivo is undetermined,

we wanted to systematically evaluate the typical response of a human metabolic network to dif-

ferent boundary conditions. For the sake of feasibility, we limited our analysis to glucose and
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glutamine—the most abundant nutrients in plasma [32] as well as the major cancer nutrients

—disregarding the metabolism of other minor carbon sources.

The metabolic network ENGRO1, designed to evaluate the contribution of glucose and glu-

tamine to biomass formation, was therefore manually reconstructed. The network includes the

catabolic pathways of glucose and glutamine and the anabolic reactions necessary for the main

building blocks of biomass: amino acids and fatty acids (palmitate), together composing 80%

of the dry cellular weight [23]. We focused on the pathways that are known to be utilized by

cancer cells as reviewed in [20] and depicted in Fig 1. Reaction stoichiometry and directional-

ity was taken from genome-wide databases Recon 2 [23] and the HMR [24]. When conflicts

were detected between the two sources, we consulted the KEGG database [33, 34]. We manu-

ally handled feasibility problems of model simulations, based on literature. To streamline the

analysis of ENGRO1 emergent properties, we lumped those reactions that necessarily operate

together, a common practice in metabolic network modeling [35]. With one exception, all

metabolites and reactions belong to a single, lumped intracellular compartment that includes

cytosolic, mitochondrial and membrane reactions. Only Acetyl-CoA has two separate pools,

one pool being devoted to fatty acid synthesis. The obtained model is structurally free from

thermodynamically infeasible loops, a recognized problem in genome-wide models [36].

Biochemical properties of flux pattern ensembles able to promote growth

Although cancer cells proliferate under conditions that restrain growth of normal cells, their

growth rate does not necessarily coincide with the global optimum: indeed, it has been argued

that a 5% improvement in growth rate would suffice to provide a selective advance to cancer

cells [32]. We have little knowledge about the different ways in which a cancer cell may obtain

a selective advance: however, we can deduce the probability distribution for all the allowed

states, from a few boundary conditions.

Instead of focusing on the optimal response to a nutrient change (standard FBA), we exam-

ined the typical properties of the ensemble of theoretical wirings whose generic properties sta-

tistically match those of cancer cells, an approach similar to the one first applied to the study of

gene regulatory networks [37]. To effectively sample the space of admissible wirings, we

exploited the method proposed in [38] based on multi-weighted random objective functions.

In biological terms, each wiring represents a virtual cell within a population of randomly altered

gene expression profiles. By way of example, genetic or epigenetic activation of a gene encoding

a metabolic enzyme would correspond to an attempt to increase the flux through that enzyme,

while the mutational activation of a regulatory gene should do so for a set of such fluxes.

Because the precise boundary conditions of cancer cells in vivo and in vitro are largely vari-

able and mostly unknown, with special regard to oxygen consumption rates, we simulated the

response of 50,000 wirings to a modulation of either the glucose or glutamine uptake flux,

while the maximal oxygen consumption rate (i.e., oxygen availability) was kept constant across

all the experiments.

Although the 50,000 in silico cells displayed considerable variability in flux patterns, Fig 2A

shows that certain patterns emerged: for instance, wirings simulated with higher carbon avail-

ability tended to produce more lactate. Strikingly, despite the constant level of oxygen con-

sumption, we observed a decrease in the rate of the forward aconitase reaction (citrate to

isocitrate), with increasing glutamine uptake rates. The aconitase forward flux is a proxy of the

operational activity of the TCA cycle as a cycle.

Despite the high utilization of nutrients, ENGRO1 wirings on the average do not exhibit

biomass production (the median and mode value of the biomass production fluxes are 0).

Therefore, lacking a prerequisite for cell proliferation, these simulated cells would not be
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classified as tumorigenic (Fig 2A). The distinguishing properties of this non-growing, as well

as of other ensembles, can help to uncover the design principles of metabolic growth.

We thus partitioned the total population into distinct sub-populations that respond differ-

ently to nutritional conditions. Based on the interest raised by aerobic production of lactate, a

Fig 1. ENGRO1 model. Pathways and reactions included in ENGRO1. A crossed circle symbol indicates exchange reactions.

https://doi.org/10.1371/journal.pcbi.1005758.g001
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Fig 2. Ensembles of different metabolic responses to altered boundary conditions. Different uptake fluxes are

imposed for glucose and glutamine within the range [0, 20]. While varying one parameter, the availability of the other is left

at its baseline value (G:20 mM h-1; Q:20 mM h-1; O2:20 mM h-1). For each parameterization, the set of 50,000 multi-

weighted objective functions is optimized. For the total sample (panel A) and for the different identified subsets (panels
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first filter was applied to investigate the mode of utilization of glutamine: the cyclic mode of

TCA cycle was reduced by glutamine in 98% of cell types (Ensemble B in Fig 2B). Less than 2%

of cell types show a nearly constant aconitase flux with a null growth rate (Fig 2C). We dis-

sected the variability in biomass production rates of Ensemble B (Fig 2B), filtering out more

than 90% cells that do not grow (Ensemble D—Fig 2D). When comparing proliferative against

non-proliferative wirings, we realized that reversion of the aconitase flux (citrate to isocitrate)

from positive (forward) to negative (backward), as the glutamine flux increases, is only detect-

able in the subset of growing cells (Ensemble E—Fig 2E), indicating that exploitation of reduc-

tive carboxylation of glutamine supports cell growth. A non-negligible fraction of the growing

cells (8%, Fig 2G), did not show redirection of glucose to lactate: therefore, the increase in the

glycolytic to oxidative ATP flux ratio (AFR) (27) that has been associated with the Warburg

effect [39] is not a necessary condition for growth. In the large majority of cases (92%) reduc-

tive carboxylation of glutamine accompanies the redirection of glucose to lactate (Fig 2F), indi-

cating a link between these two phenotypes.

Taken together, results in Fig 2 indicate that, despite identical boundary conditions, only a

subset of wirings succeeds to grow, being characterized by the ability to utilize glutamine

through a reverse aconitase flux and to produce lactate.

Predicted ENGRO1 behavior in limiting-glutamine is experimentally

verified in cancer cells

The proliferative wirings identified above are heterogeneous, but share some generic proper-

ties: we thus tested whether they could also be found in a cancer cell line grown in similar

nutrient conditions. Fig 3 compares experimental results obtained by growing K-ras-trans-

formed NIH-3T3 murine fibroblasts [40, 41], in media supplemented with either high or low

glutamine (Gln), following the same experimental protocol reported in [42], against the alter-

ations in fluxes that were computationally predicted for proliferative wirings (Ensemble E),

under conditions of high or low glutamine uptake (Fig 3A).

To increase the sample size of Ensemble E, we constrained biomass to be produced and

simulated a new sample of 50.000 random objective functions at high and low glutamine.

Growth and metabolism of both the in silico cells (Fig 3A) and the cell line (Fig 3B and 3C)

showed glutamine dependence.

We could quantitatively validate the decrease in the ratio of lactate produced to glucose

consumed at low glutamine. The model also correctly predicted that the lactate/glucose ratio

exceeds 2 at high glutamine (Fig 3A), indicating that some glutamine is converted to lactate.

Attempts to include information on metabolite levels into FBA computations, by allowing a

set of metabolites to escape the steady state assumption, have been proposed [23, 30, 43, 44].

Along with biochemical interpretations, we thus repeated the 50.000 simulations in Fig 3A,

adding a virtual efflux reaction for the set of experimentally measured metabolites. If the flux

through the virtual efflux reaction was significantly increased in low glutamine, we indicated

the corresponding metabolite as increased (Fig 3A); if the flux was significantly decreased, we

marked the metabolite as decreased.

We correctly predicted an increase in pyruvate, acetyl-Coa and hydrogen peroxide (H2O2):

the experimental concentration of these metabolites is indeed increased in low glutamine (Fig

3C and 3D).

B-G), the average flux value of aconitase (green), biomass synthesis (blue), lactate secretion (magenta) and oxygen uptake

(cyan) is reported as a function of glutamine (left or top insets) or glucose (right or bottom insets).

https://doi.org/10.1371/journal.pcbi.1005758.g002
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Fig 3. ENGRO1 and NIH-Ras mouse fibroblast sensitivity to glutamine limitation. A) Sensitivity of

Ensemble E models to a reduction in glutamine availability from 20 to 2.5 mM h-1. Red arrows/boxes

correspond to statistically significant increased fluxes/metabolites (p-value<0.05), blue arrows to decreased

fluxes/metabolites; dashed-grey arrows to non-significant variations. Variations in fluxes always refer to the

forward net flux. The arrow thickness is proportional to the Z-score. For the ratio LACT/Glc (production/

consumption) average and standard deviations are reported. (B) Proliferation curve of NIH-Ras mouse

fibroblasts grown in 4 mM Gln (HQ) and 0.5 mM Gln (LQ). The cells were collected and counted at the

indicated time points. The glucose and lactate absolute quantifications in spent media, and the ratio between

the two, were performed by GC-MS. Lactate dehydrogenase (LDH) enzyme activity was measured by

enzymatic assay. (C) Intracellular relative metabolite abundances of AcCoA, LACT, Glc, Pyr, Mal, Succ, Fum
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Besides, the TCA intermediates Citrate, α-ketoglutarate, Malate, Fumarate are correctly

predicted to be down-regulated in low glutamine. Our prediction of a decrease in succinate

level did not match the experimental result (Fig 3C). The inaccurate prediction for this metab-

olite may be due to intrinsic limits of FBA, which is not able to capture regulatory effects [45,

46], such as the responsiveness of Complex II (succinate dehydrogenase) respiration flux to

changes in the ATP/ADP ratio (see S2 Text for a more accurate but complex tentative

prediction).

We correctly predicted the decreased level of most amino acids (glutamate, aspartate, gly-

cine, alanine, methionine, cysteine), but we failed to predict the slight increase in the level of

serine. This minor inconsistency may derive from the fact that in our simulation we did not

supply external serine.

We did not predict ornithine and putrescine to be significantly changed because these

metabolites display a large variability in our sample. Efflux of ornithine and putrescine are

indeed energetically equivalent in ENGRO1 network (cofactors are not involved in the step

from ornithine to putrescine). We did not predict glucose to be significantly changed, as exper-

imentally detected.

Hence, the extended computational analysis was able to capture with a good degree of accu-

racy how the levels of many metabolites respond to glutamine shortage, giving support to the

reliability of the ENGRO1 model and of our ensemble approach. A similar pattern of response

has been obtained by a biochemical interpretation of the experimental findings (see S2 Text).

Sustained glutamine utilization makes aerobic glycolysis optimal for

cancer growth

In the previous sections we used a random sampling approach coupled with parameter scan of

glutamine and glucose uptake rates to highlight that in the presence of glutamine there is a

trend (for many but not all sampled objectives) to increase the amount of glucose that is con-

verted to lactate. After having validated most model predictions using a murine cancer cell

line, in this and the following sections we use standard FBA to understand, from a theoretical

point of view, if the preference for glutamine is related to ATP and/or biomass optimization

and how this preference is affected by the boundary conditions, i.e. the relative availability of

oxygen, glucose and glutamine.

First, we analyzed the situation in which glutamine is supplied in a small quantity, just suffi-

cient to provide the nitrogen for growth (Fig 4A). In this condition, the interplay between oxy-

gen, glucose and growth behaves as expected: i) in a situation of fully oxidative metabolism–

stoichiometrically given by an oxygen-over-glucose availability ratio (O2GR) of at least 6

(black dots in Fig 2A)—an increase in glucose uptake (red arrows in Fig 4A) provides a consid-

erable improvement of growth. On the contrary, an increase in oxygen (yellow arrows in Fig

4A) has no effect on growth, since at any O2GR over 6 it can fully oxidize the available glucose;

ii) all extra glucose supplied will decrease the O2GR and will thus be fermented to lactate

measured by GC/MS. Pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH) and isocitrate

dehydrogenase (IDH2) enzyme activity. To compare more easily the magnitude of change induced by the low

glutamine condition, the concentration of each metabolite in the high glutamine condition is always taken as

1.0, regardless of it absolute value. (D) Relative metabolite abundance of non-essential amino acids as

analyzed by GC/MS. Intracellular total ROS levels measured by using 5 mM DCFH2-DA staining.

Mitochondrial ROS levels measured by MitoSOX Red mitochondrial superoxide indicator. To compare more

easily the magnitude of change induced by the low glutamine condition, the concentration of each metabolite

in the high glutamine condition is always taken as 1.0, regardless of it absolute value. All the experiments

were performed on NIH-Ras grown in 4 mM Gln and 0.5 mM for 144 h. Error bars indicate the standard

deviations (n = 5).

https://doi.org/10.1371/journal.pcbi.1005758.g003

Glutamine-dependent lactate production promotes cancer cell growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005758 September 28, 2017 9 / 29

https://doi.org/10.1371/journal.pcbi.1005758.g003
https://doi.org/10.1371/journal.pcbi.1005758


Fig 4. ENGRO1 biomass optimization for different boundary conditions. A) ENGRO1 maximal growth

rate (z-axis and coloring) as a function of glucose (G) and oxygen availability when glutamine availability is

constant (Q:1). The arrows represent example mutational paths in the fitness landscape. The insets represent

2D-slices of the 3D mesh when oxygen availability takes value 6. B) The growth rate (over G) and lactate

secretion (over G) as a function of glutamine availability (indicated as the glutamine over glucose ratio QGR),

Glutamine-dependent lactate production promotes cancer cell growth
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(Fig 4A inset). iii) the higher the glucose consumption, the lower the sensitivity of the growth

rate to a decrease in oxygen availability (red rectangle in Fig 4A). This last property is worthy

of consideration: the established up-regulated glucose consumption of cancer cells might

already suffice to make the growth of cancer cells less dependent on oxygen than the growth of

normal cells.

The relationship between oxygen availability and glucose fermentation becomes more com-

plex when glutamine enters the equation. If we set the O2GR, for instance, to 2, the provision

of extra glutamine, despite providing an appreciable advantage in terms of growth (Fig 4B,

left), comes at the cost of further glucose diverted to lactate (Fig 4B, right). Indeed, we show in

the insets of Fig 4C that glutamine decreases the pyruvate dehydrogenase flux and increases

the fraction of glucose fermented to lactate expected for a given O2GR, thereby making aerobic

glycolysis optimal for growth. Fig 4C reports the lactate efflux and the pyruvate dehydrogenase

(PDH) flux of the optimal growing cell as a function of glutamine and oxygen uptake. A peak

in lactate secretion is detected in correspondence with non-negligible values of oxygen and

with a null PDH flux, indicating that no pyruvate is converted to acetyl-CoA and thus all oxy-

gen is utilized to partially oxidize glutamine and none to fully oxidize glutamine or glucose to

CO2. For any value of glutamine availability, a corresponding O2GR level for which all glucose

is redirected to lactate could be identified (inset in Fig 4C). We refer to this O2GR level as criti-

cal O2GR. A similar metabolic rewiring is remarkably observed at critical O2GR, regardless of

the corresponding QGR (glutamine over glucose availability) value (S1 Fig). Results are also

robust to variations in the amino acid composition of proteins (S1 Fig).

Notably, although we simulated the modulation of oxygen consumption by altering the

boundary on oxygen intracellular availability, comparable effects were observed when con-

straining the capacity of Complex I to carry flux, and thus to accept NADH electrons, to

mimic mitochondrial dysfunction (S2 Fig).

CMR is characterized by a branched TCA cycle and coincides with the

fittest growth-promoting wiring

Although cancer cells divert most—but not necessary all—glucose to lactate, to better under-

stand the principles governing the utilization of glutamine carbon in cancer cells, we focused

on the extreme condition identified above in which all glucose is preferentially redirected to

lactate (critical oxygen condition identified above). Without loss of generality, we arbitrarily

picked a critical oxygen boundary conditions. Notice that similar conclusions would be

derived for different values of the ratio between glucose and glutamine consumption, by

accordingly adjusting the utilization of oxygen (S1 Fig).

Fig 5A reports a representative optimal flux distribution at critical O2GR. It can be observed

that the TCA “cycle” works in a branched non-cyclic mode, in which the α-ketoglutarate

(AKG) originating from glutamine (virtually all glutamine is converted to glutamate and then

to AKG) takes a reverse path to isocitrate and then fatty acid biosynthesis (for about 20%) and

a clockwise path to malate (for about 80%) which is eventually converted to pyruvate and then

lactate. Excess TCA intermediates not contributing to biomass (including part of the OAA

when the O2GR takes value 3 (O2:6 (mM h-1), G:3 (mM h-1)). C) Lactate efflux (z-axis) and PDH flux (color

scale) scaled on glucose uptake as a function of QGR and O2GR. Red points highlight the O2GR level for

which maximum lactate secretion is observed. Left inset: level of oxygen to be considered critical as a function

of QGR. Critical oxygen is computed both as the point in which lactate secretion is at the maximum (blue dots)

and the point in which PDH reaches its minimum (red dots). Right inset: pyruvate dehydrogenase flux as a

function of glutamine availability (QGR) for different oxygen availability values (the O2GR value is reported on

top of the corresponding curve).

https://doi.org/10.1371/journal.pcbi.1005758.g004
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Fig 5. Flux patterns at critical O2GR. A) ENGRO1 flux distribution that maximizes growth at critical O2GR (O2: 38 mM h-1;

G: 10 mM h-1; Q: 40 mM h-1) as per S1 Table. The color and thickness of arrows scale with the flux intensity. Dashed grey

lines are associated with null fluxes. The direction of the flux is indicated by the point of the arrow that is colored. Shaded

shapes encompass reactions that show variability in optimal solutions. B-E) Examples of alternative flux patterns in optimal

solutions.

https://doi.org/10.1371/journal.pcbi.1005758.g005
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derived from the synthesis of citrate that fuels fatty acid biosynthesis) are preferentially dis-

posed via conversion to lactate. The pentose-phosphate pathway is not active, reflecting the

fact that our model does not account for synthesis of nucleic acids, a small fraction of cellular

biomass. The electron transport chain is nearly equally distributed between oxidation of

FADH and NADH, which also generates hydrogen peroxide (H2O2). H2O2 is totally removed

by the coordinated action of glutathione peroxidase and glutathione reductase, with NADPH

serving as an electron donor, despite the possibility to remove H2O2 without energy costs via a

demand reaction. Besides lactate, another major toxic product is excreted: the ammonia that is

not used for protein synthesis is removed as such, without using the ATP-costly urea cycle.

The overall flux pattern that maximizes growth, hereinafter referred to as branched TCA

cycle even though TCA is not working as a cycle, is in line with literature reporting experimen-

tal findings. Conversion of most glucose to lactate in spite of oxygen availability has been

observed in many cancer cell lines or tumors [6, 7], as well as decoupling of glucose and gluta-

mine pathways, with glutamine largely sustaining biomass production [19, 47, 48], and excess

nitrogen elimination through sustained ammonia efflux [49–51]. Reductive carboxylation of

glutamine has been recognized to drive fatty acid synthesis [15, 17, 19, 52]. Glutamine was

identified as the major respiratory fuel [13, 53, 54], while lactate derivation from both glucose

and glutamine has been reported for MYC-dependent cancer cells [49]. As far as we know,

there is no previous direct attempt to evaluate the lactate over glucose ratio at low and high

glutamine. However, results obtained using a more severe nutritional perturbation (i.e., gluta-

mine starvation on six tumor cell lines able to grow in the absence of glutamine) are qualita-

tively consistent with the predictions of our model. In the only cell lines in which the ratio

between lactate produced/glucose consumed is affected by more than 10% in the absence of

glutamine, the observed change in the lactate produced/glucose consumed ratio is decreased

in glutamine-depleted cells [55]. Finally, reduction of oxidation of glucose carbon entering the

TCA cycle by glutamine has been reported [56]. In conclusion, literature data reinforce the

notion that the behavior observed in our model cell line and the predictions of our computa-

tional model do not refer to a specific case, but describe a metabolic rewiring that may occur

in a variety of tumor cell lines, putting forward the idea that this competition between glucose

and glutamine may play a determinant role in cancer cell growth.

CMR may be controlled by various redox pathways

We examined if the flux pattern in Fig 5A was the only possible one for the fittest cell.

When enumerating optimal solutions, we found that 44 alternative metabolic paths, sharing

the same boundary conditions, produce the same maximal growth rate. Remarkably, all of

them follow the branched TCA cycle mode described above.

It has been already reported that variability in the optimal solution space is captured by a

small number of sub-networks constituted by reactions with variable flux [57]. Accordingly,

only the four sub-networks shaded in Fig 5A show alternative flux patterns (examples in Fig

5B–5E). For instance, the sub-network within the shaded polygon (in Fig 5A), diseregarding

pyruvate carboxylase, includes: phospho-enol-pyruvate carboxykinase; pyruvate kinase,

NADP and NAD dependent malic enzyme and malate dehydrogenase. Because the TCA

cycle is working in a non-cyclic mode, this set of reactions allows to maintain the steady

state by removing glutamine-derived TCA cycle intermediates: oxaloacetate (OAA) which is

derived from the citrate, produced by glutamine-dependent reductive carboxylation, the co-

produced AcCoA being utilized for fatty acids biosynthesis and malate deriving from fuma-

rase, which, by means of the reactions in this subnetwork, can be converted into pyruvate

and then secreted as lactate. The more relevant options to remove OAA and malate are
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reported in Fig 5B–5E. Note that malate dehydrogenase and PEP carboxykinase fluxes are

completely positively correlated (S3 Fig): when PEP carboxykinase is off, malate dehydroge-

nase must work in the backward mode (reduction of OAA to malate); on the contrary

when malic enzyme is off and malate dehydrogenase works to oxidize malate to OAA, PEP

carboxykinase must carry all the flux from TCA to pyruvate. Another group of reactions

allowing for metabolic plasticity (shaded oval in Fig 5A) is composed by NAD dependent

and NADP dependent isocitrate dehydrogenase (IDH), which both can convert AKG to Iso-

citrate. As both reactions are reversible, different modes are possible to obtain the same net

amount of isocitrate. Note that NAD-IDH and NADP-IDH never work in the same direc-

tion in optimal solutions, as confirmed by the complete negative correlation between the

two (S3 Fig).

It can be observed that the four sub-systems involve redox factors and may therefore influ-

ence one another (S3 Fig). For instance, when the isocitrate dehydrogenase sub-network is

working in the NADPH to NAD+ trans-hydrogenation mode, the other sub-networks must

provide the NADPH needed, as shown by the strong anti-correlation between NADP-depen-

dent IDH and the sum of the fluxes of NADPH producing reactions: glutamate dehydrogenase

and malic enzyme (S3 Fig). Along similar lines, when the flux of NAD-IDH is in the NAD gen-

eration mode (negative flux from isocitrate to citrate), needed NADH is partially produced by

GDH and malic enzyme (as suggested by the partial negative correlation between NAD-IDH

and NADH production by GDH and malic enzyme in S3 Fig). Notably, (i) the net NADPH

produced by NADP dependent malic enzyme, glutamate dehydrogenase and IDH and the

fixed amount produced by MTDH1 always equals that consumed by fatty acids biosynthesis,

glutathione oxidase and proline biosynthesis and (ii) the net NAD produced by NAD depen-

dent malic enzyme, glutamate dehydrogenase and IDH and by malate dehydrogenase must

match the quantity of NADH required to feed Complex I respiratory chain, lactate dehydroge-

nase and proline synthesis.

A role for redox control in CMR has been anticipated in [20]. The presently observed vari-

ability in redox patterns is interesting since it may provide a novel partial explanation for the

reported metabolic plasticity of cancer cells [58], which would be generated by genetic and epi-

genetic variations that lead to the emergence of distinct subpopulations that were selected on

the basis of an enhanced growth rate. Redox reprograming deserves more in-depth investiga-

tions in the future with compartmentalized and more extended models.

Glutamine to lactate yields more ATP per O2 as compared to glucose to

CO2

We have shown that glutamine utilization makes aerobic glycolysis optimal for growth. Never-

theless, the results of our ensemble approach (Fig 2) indicated that glutamine addition inhibits

glucose oxidation in almost all simulated cells (either proliferative or not), regardless of the

gene-expression dependent active wiring. How can a network structure constrain the flux pat-

tern that strongly? A possible explanation is that most random metabolic functions have ATP

production as co-objective to counterbalance ATP-demanding reactions.

To investigate this hypothesis, we compared the previously obtained flux distribution at

critical oxygen that maximizes growth (Figs 5A and 6A) against the one maximizing ATP pro-

duction (namely the maintenance reaction flux). Consistently with the hypothesis, also the lat-

ter showed no oxidation of glucose (Fig 6B). As expected it does not fully utilize glutamine,

conversely it makes use of only 63% of available glutamine (S2 Table), it shows null growth

and no reductive carboxylation of glutamine. It follows that the TCA cycle is not branched but

works in a truncated mode.
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Fig 6. Qualitative representation of the TCA cycle flux mode associated with different optimization problems.

Red arrows indicate carbon fluxes deriving from glutamine, while blue arrows indicate carbon fluxes deriving from

glucose. For each optimization, the value of the objective function value is reported on top of the scheme and it is

normalized over the corresponding objective value of the control model. Left panels refer to the solution of biomass

maximization problems, whereas right panels refer to the solution of ATP maximization problems. A-B) Optimal
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We wanted to verify that a cyclic TCA mode was still possible for ENGRO1 at critical oxy-

gen, so we forced it by inhibiting lactate secretion (Fig 6C and 6D). In this situation glucose

was preferred as anaplerotic precursor, resulting in a modest drop in both biomass formation

and ATP production.

Noteworthy, the preference for a branched TCA cycle is maintained when glutamine is the

unique carbon source (Fig 6E and 6F), even when lactate secretion is prevented (Fig 5G and

5H), provided that pyruvate accumulation is allowed. These results suggest that a branched

TCA may be compatible also with glutamine carbon tracer experiments in which lactate is

found unlabeled.

Taken together these observations indicate that glutamine is the preferred precursor for

biomass production because it optimizes the ATP/O2 yield. The glutamine to lactate flux mode

improves the ATP production over oxygen consumption ratio by 5% as compared to the glu-

cose to CO2 mode. Glutamine to lactate coupled with glutamine driven fatty acids synthesis

improves the biomass production rate by 5% with respect to glucose to CO2 and glucose driven

fatty acids synthesis. The correlation between lactate secretion and the ATP cost to make bio-

mass further supports this contention (S4 Fig).

The strength of this preference for glutamine seems to depend on the ATP/oxygen ratio

(P/O) ratio for FADH and NADH, and thus on the fraction of the electrons flowing through

Complex I that ends up in superoxide anion (S4 Fig), as was also confirmed by analytical stoi-

chiometric computations (S3 Table).

Discussion

In this work, we exploited a novel constraint-based approach, based on the systematic evalua-

tion of the possible wirings of the metabolic network required for the formation of biomass

from glucose and glutamine, under different nutritional conditions. The first discovery pre-

sented in this paper is the identification of boundary conditions that taken together promote

the emergence of cancer metabolic rewiring.

In the presence of an increased uptake of glucose and glutamine, the availability of intracel-

lular oxygen is not sufficient to fully oxidize all carbon provided by both glucose and gluta-

mine. This oxidative bottleneck is not given by the actual oxygen concentration per se, but

rather by the ratio between the ability to consume oxygen and the available nutrients, i.e., glu-

cose and glutamine. A condition in which there are less than 6 usable O2 molecules per glucose

molecule may be typical for cancer cells. Detailed calculations—based on oxygen consumption

rates reported in [59] and glucose consumption rates reported in [60] and in Fig 3—are

extended in Materials and Methods. They indicate that even under the atmospheric conditions

of our cell cultures, the oxygen consumption is not 6 times as much as that of glucose, there-

fore fitting within the boundary conditions described above. Also in vivo the oxygen to glucose

ratio in the blood supply is at least 3 times less than the 6 required for complete respiration

(see Materials and methods). The elevated glutamine consumption rates of cancer cells make

this oxidative bottleneck even more effective. The oxygen concentration in peripheral tissues

might be even much lower as conditions change dynamically between the periphery and the

center of a tumor [61], as well as during its natural history. For instance, most solid tumors

face a period of actual poor oxygen availability before neo-angiogenesis begins. During this

solutions of control model (O2: 38 mM h-1; G: 10 mM h-1; Q: 40 mM h-1). C-D) Optimal solutions when lactate

secretion is inhibited. E-F) Optimal solutions when no glucose is available. G-H) Optimal solutions when no glucose is

available, lactate production is blocked and pyruvate is allowed to accumulate.

https://doi.org/10.1371/journal.pcbi.1005758.g006
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period cells better able to cope with low oxygen conditions—or carrying mutations leading to

a mitochondrial dysfunction limiting the ability of Complex I to accept electrons from NADH

[62, 63] that would mimic actual oxygen limitation–are likely to be selected for. These cells

would internalize more glucose than what can be fully oxidized. Indeed, various oncogenes

have been reported to cause stimulated uptake of nutrients. In general, the rewiring here

described should become advantageous for highly proliferating cells, such as cancer cells. Its

associated possible drawbacks, such as the excretion of potentially toxic lactate and ammonia,

would make it less favorable for normal, slowly proliferating or resting cells.

We have quantitatively shown that high glucose uptake rates have the side benefit of making

growth rates less sensitive to oxygen variations. As most cancer cells result from mutation and

selection, tumors might therefore have fixed, through mutations, advantageous phenotypes

into their genotype. In such a situation with high mutation rates, the population will tend to

lose (through mutations and thereby permanently) all activities it does not depend upon.

Following the agreement with a wealth of literature, as well as experimental validation, of

main ENGRO1 model predictions, we analyzed the global in silico flux distribution that sus-

tains CMR. We were able to integrate and rationalize the role of the various pathways observed

in independent studies on cancer metabolism, as follows:

• Glutamine utilization follows a branched TCA cycle, which proceeds clockwise from gluta-

mine/AKG to oxaloacetate and malate, or counter-clockwise from AKG to citrate, then to

acetyl-CoA going to fatty acids plus oxaloacetate going to malate.

• Glucose is almost fully fermented to lactate even in the presence of oxygen.

• Glutamine is not completely respired, but it is rather converted to lactate or pyruvate.

By exploiting FBA, we investigated the relationship between different flux modes and their

associated growth capability. We discovered that CMR is characterized by the following novel

design principles:

• A large number of different metabolic routes may generate a CMR, by differential use of

redox potential, while fatty acid synthesis gains a significant role as an acceptor of electrons,

mostly coming from the assimilation of glutamine.

• Glutamine utilization promotes aerobic glycolysis, making the latter advantageous for

growth, because it makes it energetically more favorable. This effect is enhanced by Reactive

Oxygen Species (ROS) production by Complex I, with a stricter preference for the use of glu-

tamine as an anaplerotic precursor when ROS production increases.

Aerobic production of lactate from glucose does not utilize all chemical potential of its sub-

strate, thus it is generally regarded as unfit. Our results indicate that this is not the case. The

phenomenon we observed in silico at limiting oxygen is not simply the fermentation of spare

glucose, but a competition for oxygen between glutamine and glucose. The limiting amount of

oxygen is preferentially used for the oxidation of the NADH and FADH2 generated when glu-

tamine is converted to building blocks and lactate. As all available glucose is converted to lac-

tate, we put forward a novel interpretation to what is classically understood as the ‘Warburg

effect’.

As boundary conditions change, so do the flux distributions of virtual cells that allow–possi-

bly sub-optimal—biomass accumulation under a variety of conditions, suggesting how cancer

cells might be able to follow different metabolic routes in vivo, if the tumor environment

imposes different constraints. In particular, we showed that fermentation of glutamine to

lactate (that we call WarburgQ effect) is able to sustain growth even when glutamine is the
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exclusive simulated carbon source, suggesting how WarburgQ cells would be able to evade

therapies that target only glycolysis.

In conclusion, our paper offers for the first time a “logic” to the central role of the metabolic

hallmarks in cancer biology, logic that was envisioned in [4]. As the generalizability of predic-

tions of metabolomics through FBA methods needs further research, it should be useful to

engage in stable isotope-labeling studies and detailed mathematical analyses of the results to

confirm our findings further. In the next-future, the general traits of cancer metabolic rewiring

identified with our approach will be better detailed by means of more fine-grained models,

taking into account compartmentalization and the role of metabolic shuttles, hence opening

the way to more efficient approaches to drug discovery and to precision medicine not only for

cancer, but also for other diseases in which a remodeling of metabolism has a relevant role,

such as metabolic syndrome, ageing and neurodegeration.

Methods

ENGRO 1 model reconstruction

Once the pathways to be included were selected, we checked that each reaction in the model

was able to carry flux. We included a minimal set of exchange reactions. We avoided compart-

mentalization of metabolites, paying attention that this simplification would not affect the

energetic requirements for biomass. We associated a probability p to produce ATP and a prob-

ability pROS = (1 − p) to produce ATP to NADH oxidation in the respiratory chain. Biomass

formation is expressed in terms of ATP, non-essential amino acids and palmitate require-

ments. Thermodynamically infeasible loops were first identified with the algorithm presented

in [36] and then structurally removed by adjusting the metabolic network accordingly. All

modeling choices are better detailed in S1 Text.

The resulting ENGRO1 model includes 84 reactions and 67 metabolites belonging to the

following pathways: glycolysis and lactic acid fermentation (10 reactions); TCA cycle (9 reac-

tions); oxidative phosphorylation and mitochondrial ROS generation (2 reactions); glutamine

reductive carboxylation (4 reactions); glutathione biosynthesis and oxidation (10 reactions);

urea cycle (5 reactions); fatty acid synthesis (2 reactions); pentose phosphate pathway (5 reac-

tions) and biosynthesis of the main non-essential amino acids (13 reactions). The complete

network definition together with the biomass composition is given in the S1 File (Excel file

compatible with: RAVEN Toolbox [64]). The model is also available in RAVEN and FAME

[65] compliant SBML format (S2 File). A vector image of the model is also provided (S3 File),

which can be easily handled by FAME.

Flux Balance Analysis (FBA)

FBA requires a stoichiometric matrix S and a set of constraints that impose the upper and

lower bound of fluxes. The steady state constraint is defined by the equation dx/dt = S � v = 0,

where dx/dt are time derivatives of metabolite concentrations represented by the product of

the m×n matrix S times the vector of fluxes v = (v1, v2, . . ., vn), where vi is the flux of reaction i,
n is the number of reactions, and m is the number of metabolites. The ensemble of functional

states that the system can reach given a boundary condition I determines the feasible solutions

space F = S\I. By exploiting linear programming, FBA allows for optimization of the flux

through a weighted sum of fluxes. In particular, we used the COBRA Toolbox [66] and the

GLPK solver.

Because FBA only returns a single solution, we exploited Flux Variability Analysis [67] to

assess the flux variation range consistent with the maintenance of the maximal growth

obtained with FBA.
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Enumeration of optimal solutions

To analyze the complete set of flux distributions that maximize growth, we identified all the

extreme points that lie at the intersection of the convex polytope given by the linear constraints

and the hyperplane of the optimal objective function value, which correspond to alternate

optima, as in [68]. The problem is formulated as a recursive Mixed Integer Linear Program-

ming (MILP) problem that has a set of constraints for changing the basis and identifying a

new extreme point corresponding to one of the alternate optima [68]. The method returns all

the alternative paths in the metabolic networks that are consistent with optimal growth. Meta-

bolic distributions that follow the same path, also in terms of reaction directionality, but with

different flux values will not be taken into account.

Sampling in the region of feasible solutions

As a complement to classic FBA, Monte-Carlo approaches are emerging with the aim of

exploring the entire region of feasible flux distributions [69]. The dominant algorithm of

choice to uniformly sampling inside the region of allowed solutions is the so-called "Hit-and-

Run" [69]. In this work, we exploited instead a recently proposed alternative approach [38, 70]:

the simplex method with a random set of objective functions to be maximized. The maximiza-

tion of each of these objective functions gives a corner in the space of solutions. Besides what

already reported in [70] another major advantage of sampling via random objective functions

is the possibility to sample metabolic responses to perturbations [38].

Multi-weighted random objective functions

In [70], random objective functions were generated by selecting random pairs of reactions. To

maximize the variability of sampled solutions, we instead allow any number of reactions to

take part in the OF as in [38, 71]. To further increase the variance of the corresponding set of

flux distributions, when randomly assigning a weight to each flux in the computation of the

different objective values, we introduce a bias towards 0. This prevents almost all fluxes to par-

take to any objective function, as this will result in more similar outcomes. We pick a different

bias value for each sampled objective function.

The fraction τ of considered reactions is randomly drawn with uniform probability in (0,

1]. Any selected reaction is then assigned a random weight ci that is uniformly tossed from the

interval (0,1]. An instance j of the objective functions zj is defined as zj ¼
Xn

i¼1
civi, where ci

takes value 0 with probability τ and a random value with uniform probability in [0,1] with

probability 1-τ.

Every zj is assigned an optimal solution ŝj with standard FBA.

Assessment of deregulated flux after a nutrient perturbation

To determine the fluxes that were most sensitive to glutamine deprivation, we sampled the

solution space of the model at control and at low glutamine conditions, exploiting the optimi-

zation of a random set of multi-weighted objective functions as in [38, 70]. For each flux, we

then determined a Z-score that quantifies its significance of change and that can be positive or

negative. Z is computed as Z ¼ ð �X1 �
�X2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n þ
s2

2

n

q

, where �X1 is the average of the flux in con-

dition 1 (high glutamine), �X2 is the average of the flux in condition 2 (low glutamine), s2
1

is the

variance for condition 1, s2
2

is the variance for condition 2, and n is the sample size.
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Determination of sample size

We chose n = 50,000 as a reasonable sample size, as greater samples would not result in a sig-

nificant improvement in the estimation of the Z-scores nor of the standard error of the mean

(S5 Fig), which takes value 0.1 at most.

Ensemble analysis of different metabolic responses

To identify ensembles of metabolic responses abiding by specific constraints, we sampled

many metabolic responses (corresponding to different objective functions) and then filtered

them according to Boolean (true-false) expressions which must return true for each ensemble

member. We define a metabolic response as the modification in fluxes resulting from a specific

nutritional perturbation (e.g., glucose or glutamine consumption rate variation). The pertur-

bation is simulated by varying the flux boundaries of the corresponding reaction. As an exam-

ple, a metabolic response pertains to Ensemble E if and only if the biomass production flux is

greater than 0 for at least one of the simulated glutamine and/or glucose uptake rates. For a

more formal description of the method, the reader is referred to [38].

Cell culture and proliferation

Mouse embryonic fibroblast K-Ras-transformed NIH3T3-derived cells [40–42, 72] were rou-

tinely grown in Dulbecco’s modified Eagle’s medium containing 4 mM L-glutamine, 100 U/μl

penicillin and 100 mg/ml streptomycin supplemented with 10% newborn calf serum (complete

growth medium) at 37˚C in a humidified atmosphere of 5% CO2. Cells were plated at a density

of 3000 cells/cm2 in 6-well plates in normal medium. Culture medium was replaced after 18

hours with a normal medium containing 4 mM Gln or a low Gln medium (0.5 mM gluta-

mine). The cells were collected and counted after 54, 72 and 144 hours. Media and serum were

purchased from Life Technologies Invitrogen (Carlsbad, CA, USA).

Enzymatic assays

Kit for assay of acetyl-CoA and enzyme activities were purchased from BioVision (Milpitas, CA,

USA) and used according to the manufacturer’s protocols. Raw data are provided in S4 File.

Reactive Oxygen Species level measurements

The total ROS levels were measured using the DCFDA Cellular Ros Detection Assay Kit from

Abcam (Cambridge, UK) according to manufacter’s instructions. Mitochondrial ROS levels

were measured using 5 μM MitoSOX Red mitochondrial superoxide indicator (Molecular

Probes) in HBSS/Ca/Mg for 10 min at 37˚C. Fluorescence was measured at excitation/emis-

sion wavelengths of 510/580 nm, respectively, using a Cary Eclipse Fluorescence Spectropho-

tometer. Raw data are provided in S4 File.

Intracellular metabolic profiling

After 144 hours of growth, the metabolites were extracted and analyzed by gas chromatogra-

phy-mass spectrometry (GC-MS) as previously described [19] and the spent media were col-

lected and filtered. 120-μl of ice-cold acetonitrile was added to 40 μl of media and vortexed at

4˚C for 2 minutes, and the mixture was incubated on ice for 5 minutes and centrifuged at max-

imum speed for 10 minutes. A 100-μl volume of the aqueous phase was collected in a new tube

and evaporated under nitrogen flow at 37˚C. Derivatization was performed as described [72].

A GC/MS analysis was performed as previously described. A 1-μl volume of sample was

injected in a 1:10 split mode at 250˚C. The GC was performed as previously described [72].
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The GC/MS data processing and metabolite quantification were performed using Agilent

Muss Hunter software.

The following metabolites were detected: glutamine, glutamate, aspartate, glycine, serine,

alanine, trehalose, methionine, lysine, tyrosine, cysteine, ornithine, putrescine, glucose, pyru-

vate, lactate, citrate, succinate, fumarate, malate, acetyl-CoA. Raw data are provided in S4 File.

Calculation of the glucose over oxygen availability ratio of cancer cells in

vivo and in vitro

According to the oxygen uptake rates catalogued for a variety of cells (including normal and

cancer cells) in [59], the cellular oxygen consumption rate spans from 0.01�10−13 to 3.5�10−13

mMol per cell per second. We measured a glucose consumption rate of 5.8�10−13 mMol/sec

per cell, while Jain et al. [60] reported values up to 2.10−13 mMol/sec per cell which would

require 12.10−13 for complete respiration. Oxygen consumption is not 6 times as much as glu-

cose, and thus–according to our terminology–an oxidative bottleneck is apparent for cancer

cells growing in vitro.

The condition of limiting oxygen should also prevail in vivo. Let us approximately evaluate

the molar ratio between oxygen and glucose in human blood:

• The concentration of oxygen in the blood (oxygen, dissolved plus hemoglobin bound, in 100

milliliter of blood) corresponds to a volume V of 20 ml of oxygen gas at a pressure P of 760

mmHg [73] and at a temperature of 310 Kelvin (T = 310K˚)

• By using the ideal gas law P�V = n�R�T, where R is the universal gas constant 62 L�mmHg

K-1�mol-1, we can obtain the moles n of oxygen per liter of blood.

• n = P�V/(R�T) = (760 � 0.2)/(62�310) ~ 8 mMol/liter.

Another procedure to compute n is to start form the hemoglobin concentration in blood,

which we found in literature [73] to be 15g/100mL.

• Because the molar weight of hemoglobin is 64, the concentration of hemoglobin in blood is

2.3�10−03 mol/litre.

• If we assume a maximal saturation for oxygen, we have 4 oxygen molecules bound to each

hemoglobin.

• Therefore, n = 2.3�10−04 �4 ~ 9 mMol/liter.

The two alternative procedures return a similar order of magnitude for the maximum con-

centration of oxygen in blood (in the range 8 to 9 mMol/liter). The level of glucose in blood is

around 5 mol/liter [61]. Therefore, we can consider the oxygen-to-glucose ratio in blood to be

closer to 1:1 than to 6:1.

Both glucose and oxygen are ultimately delivered to the tissue (extracellular environment)

not by diffusion but by convection by the blood. Therefore, at maximum consumption of glu-

cose from the blood, at most 2 molecules of oxygen would be available per glucose molecule. If

one hypothetical cell were to consume avidly all the glucose that is supplied by the blood in a

given unit of time, that cell would not have enough oxygen to completely oxidize such glucose

in that unit of time.

Supporting information

S1 Fig. ENGRO1 biomass optimization for different boundary conditions (supplement to

Fig 4). All data derive from Flux Variability Analysis in experiments that maximize biomass
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production. All reported fluxes do not show variability in optimal solutions. All glucose avail-

able is always fully consumed in these simulations. A) Growth rate (z-axis) and oxygen uptake

(color scale) scaled on glucose uptake as a function of QGR and O2GR. The level of O2GR for

which a plateau is reached (optimal O2GR) increases with the QGR (purple dots). For high

O2GR a plateau is not reached within the considered range. S2 Fig show 2D slices of the 3D-

mesh. B) Ratio between the flux trough Complex I and Complex II driven respiratory chain

(z-axis and color scale) as a function of QGR and O2GR. Red dots highlight the value of the

ratio when O2GR is critical. Full glutamine utilization takes place at Critical O2GR (panel C),

when the PDH flux is 0 and the respiratory chain is fed exclusively by glutaminolysis leading

to almost equal NADH (Complex I) and FADH (Complex II) oxidation, the ratio of NADH

oxidation over FADH oxidation being around 1.2. C) Glutamine uptake (z-axis) and ammonia

efflux (color scale)–scaled on glutamine availability and consumption respectively–as a func-

tion of QGR and O2GR. Red points highlight the minimum level of O2GR for which full gluta-

mine consumption is observed. The increased glutamine uptake needs to be balanced by a

comparable ammonia efflux that get closer to 2 when glutamine is plentiful and oxygen is low

(coloring of the mesh). D) Aconitase flux (z-axis and color scale) as a function of QGR and

O2GR. S2 Fig show 2D slices of the 3D-mesh. Red dots highlight the flux when O2GR is criti-

cal. At Critical O2GR, pyruvate dehydrogenase is not working, TCA cycle cannot work in a

cyclic mode and production of citrate by the citrate synthase is therefore not possible. The cit-

rate required to feed biosynthesis of fatty acids (required for biomass production) must derive

from reverse carboxylation of glutamine derived AKG, as indicated by a negative flux of aconi-

tase. E-H) The optimal flux value of serine synthesis (panel F), PDH (G), aconitase (H) and

LDH (I) as a function of QGR for the standard non-essential amino acid (NEAA) composition

of biomass NEAAA STD (reaction protein_synthesis50A50B in S1 File) and for NEAA 80–20

in which proteins are assumed to be 80% by NEAA derived from glycolysis (serine, glycine,

cysteine and alanine) and for 20% by amino acids derived from glutamine (aspartate, aspara-

gine, glutamate, glutamine, arginine, proline), and for the opposite case of NEAA 20–80 (reac-

tions protein_synthesis80A20B and protein_synthesis20A80B, respectively, in S1 File). Note

that only the rate of amino acid synthesis (e.g. serine) is affected by the change of amino acid

composition in the biomass, while main carbon fluxes (pyruvate dehydrogenase, aconitase and

lactate dehydrogenase) are not affected.

(PDF)

S2 Fig. Similarity of results obtained when oxygen consumption is modulated by altering

either oxygen availability (as in Fig 4) or Complex I capacity (flux upper bound). Note that

because of the reaction stoichiometry, Complex I flux is proportionally higher than the corre-

sponding oxygen consumption rate. A-B) Growth rate scaled on glucose availability as a func-

tion of O2GR (panel A) and as a function of the Complex I capacity over glucose uptake ratio

(CGR in panel B) for three different levels of glutamine abundance (QGR). Purple dots high-

light the growth rate when O2GR or CGR is optimal (oxygen not limiting for biomass). C-D)

Lactate efflux scaled on glucose uptake as a function of O2GR (panel C) and CGR (panel D) for

three different levels of QGR. Red points highlight the level of O2GR or CGR for which maxi-

mum lactate secretion is observed (critical OGR/CGR). E-F) Aconitase flux as a function of

O2GR (Panel E) and CGR (Panel F). Red dots highlight the flux when O2GR or CGR is critical.

(PDF)

S3 Fig. Interplay among the sub-networks showing alternative flux patterns in Fig 5. The

first sub-network (shaded polygon, with the exception of pyruvate carboxylase) includes PEP

carboxykinase; pyruvate kinase, NADP and NAD dependent malic enzyme and malate dehy-

drogenase. Because the TCA cycle is working in a non-cyclic mode, this set of reactions allows
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to maintain the steady state by removing glutamine-derived TCA cycle intermediates: OAA

produced by reductive carboxylation of AKG and not used for fatty acids biosynthesis and

malate deriving from fumarase, which, by means of the reactions in this subnetwork, can be

converted into pyruvate and then secreted as lactate. The main options to remove OAA and

malate are reported in Fig 5B–5E. Note that malate dehydrogenase and PEP carboxykinase

fluxes are completely positively correlated (panel A): when PEP carboxykinase is off, malate

dehydrogenase must work in the backward mode (reduction of OAA to malate). On the con-

trary, when malic enzyme is off and malate dehydrogenase works to oxidize malate to OAA,

PEP carboxykinase must carry all the flux from TCA to pyruvate. The second sub-network

(shaded oval in Fig 5) is composed by NAD and NADP IDH, which both can convert AKG to

Isocitrate. As both reactions are reversible, different modes are possible to obtain the same net

amount of isocitrate. Note that NAD-IDH and NADP-IDH never work in the same direction in

optimal solution, as confirmed by the complete negative correlation between the two (panel B).

The third sub-network (shaded rectangle in Fig 5) is composed by NADH and NADPH depen-

dent synthesis of proline. Only two modes are possible in which the two reactions are mutually

exclusive (panel C). The last sub-network is composed by NAD and NADP dependent gluta-

mate dehydrogenase (shaded square in Fig 5). These two reactions are anti-correlated (panel

D). Six different total ways to combine this pair of fluxes are consistent with optimal growth,

including the two modes in which one of the two does not carry flux (as in panels B-D in Fig 5).

The four networks involve redox factors and may thus influence each other. For instance, when

the IDH sub-network (grey oval) works in the NADPH to NAD+ trans-hydrogenation mode,

the other networks must provide the NADPH needed, as shown by the strong anti-correlation

between NADP-dependent IDH and the sum of the fluxes of NADPH producing reactions: glu-

tamate dehydrogenase and malic enzyme (panel E). Along similar lines, when the flux of

NAD-IDH is in the NAD generation mode (negative flux from isocitrate to citrate), needed

NADH is partially produced by GDH and malic enzyme (as suggested by the partial negative

correlation between NAD-IDH and NADH production by GDH and malic enzyme in panel F).

(TIFF)

S4 Fig. On why glutamine is the preferred anaplerotic precursor (supplement to Fig 6). A)

Maximum and minimum value for lactate secretion across optimal growth solutions according

to FVA, as a function of the parameter pROS that emulates the level of production of reactive

oxygen species in the respiratory chain (see S1 Supplemental Methods). Glucose availability:

10; glutamine availability: 40; oxygen availability: critical level 38. B) Same experiment in panel

A but with a P/O ratio of 2.5 and 1.5 considered for NADH and FADH2 respectively. C) Opti-

mal biomass and FVA centroid of lactate secretion as a function of the ATP coefficient in the

biomass forming reaction.

(PDF)

S5 Fig. Determination of sample size. A) Standard deviation of the model fluxes (represented

with different colors) as a function of the sample size. B) Zoom in on fluxes of panel A with

low standard deviations. The fluxes with high standard deviations correspond to those with

high variability when running FVA. C) Relative standard error of the mean of each flux as a

function of the sample size.

(PDF)

S1 Table. ENGRO1 flux distribution that maximizes growth at critical O2GR (O2: 38 mM

h-1; G: 10 mM h-1; Q: 40 mM h-1). The optimal flux value obtained with FBA, the minimum

and maximum value as well as the range size, obtained with FVA, are reported for each reaction.

(XLSX)
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S2 Table. ENGRO1 flux distribution that maximizes ATP production at critical O2GR

(O2: 38 mM h-1; G: 10 mM h-1; Q: 40 mM h-1). The optimal flux value obtained with FBA,

the minimum and maximum value as well as the range size, obtained with FVA, are reported

for each reaction.

(XLSX)

S3 Table. Analytical computations supporting simulation results in Fig 6. For different

possible flux routes (table rows), the P/O ratio (column 8) of as well as the moles of acetyl-

CoA deriving form one mole of substrate (column 10) following the considered route is

computed. In some cases, the row indicates the difference between the computations of two

possible routes (indicated as "route A rather than route B" and with a 0 for the substrate

abundance value in column 1). Intermediate steps of the computation are also reported:

moles of NADH (column 3) and FADH2 (column 4) obtained, moles of O2 consumed (col-

umn 5), ATP produced form substrate (column 6) and ATP produced by oxidation of

NADH and FADH2 produced in the respiratory chain (column 7). Complex I generates

ROS that may be detoxified by glutathione in a mechanism that costs one NAD(P)H per 2

molecules of superoxide anion produced. If a fraction of the electrons flowing through com-

plex I ends up in superoxide anion, the effective P/O ratio of NADH oxidation becomes

3(1−pRos)/(1+pRos). In this computations, we assume that a mere 25% of the electrons in

Complex I flow to ROS; this implies a reduction of the effective P/O for NADH from 3 to 1.8

(against a 2 P/O for FADH2). This lowers the P/O of the Gln to lactate conversion, from 3.0

to 2.2. This effect is smaller than the effect on the P/O ratio of the glucose respiration-rather-

than-fermentation, i.e. from 3.0 to 2.0, explaining the preference for the flux from glutamine

to lactate when so much ROS is produced by Complex I (see above). The 10% difference in

P/O ratio may seem small, but as maintenance metabolism may well consume more than

half the ATP produced, the difference in ATP availability for anabolism might well exceed

20%. The table considers a value of infinity (computed as 100) for the P/O ratio of the fer-

mentation of glucose to lactate, reflecting that no oxygen is consumed in that process. When

oxygen is limiting, this process comes for free and therefore glucose has a preference for this.

When we compare glucose catabolism to glutamine oxidation, we correct for the phenome-

non that any glucose respired comes at the cost of one glucose fermented, hence our focus

on P/O ratios for glucose respiration rather than fermentation. Should lactate dehydrogenase

be incapacitated, then the next best strategy is glucose respiration to CO2 at a P/O. Should

glucose uptake be impossible but lactate dehydrogenase active, the table shows that the best

flux pattern for the fittest cells is glutamine to lactate again. In none of these cases pyruvate

production should be better than lactate production, but if lactate production is blocked,

pyruvate production from glutamine should occur in optimal fittest cells because it is more

profitable (P/O = 2.10) than complete respiration of glutamine (P/O = 2.07). These two num-

bers exceed the P/O of 1.82 for glucose to pyruvate rather than lactate, i.e. glucose carbon

would not leave as pyruvate. The table also shows that the P/O ratio for glucose being con-

verted to cytosolic acetyl-CoA, which serves as carbon substrate for the lipids in the biomass

synthesized rather than being converted to lactate (-0.80), is more negative than that for Gln

being converted to acetyl-CoA (-0.60). The clockwise pathway (at P/O = -1.8) and the com-

bined clockwise and counterclockwise pathway for synthesis of 2 acetyl-CoA (at -1.0) from

glutamine are even less favorable.

(PDF)

S1 Text. Supplemental methods. Details on ENGRO1 model reconstruction.

(PDF)
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S2 Text. Supplemental text. Biochemical interpretation of experimental results.

(PDF)

S1 File. ENGRO1 excel model. Excel file of the model compliant with the RAVEN Toolbox.

(XLS)

S2 File. ENGRO1 SBML model. Excel file of the model compliant with: RAVEN Toolbox and

FAME.

(XML)

S3 File. ENGRO1 SVG map. Scalable Vector Graphics image of the model, compliant with

the software FAME.

(SVG)

S4 File. Experimental raw data. Raw data (enzyme assays, growth curves, metabolomics)

used to build graphs in Fig 3.

(XLS)
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