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Introduction

When knowledge pertaining a rare trait of the population is of in-

terest the collection of survey data presents various challenging as-

pects. In fact, in order to obtain a reasonably accurate estimate,

for instance the estimation of the population prevalence, very large

sample sizes are needed, thus inflating survey costs. Moreover, when

cases are not only rare but also unevenly distributed throughout

space, i.e. they present specific spatial patterns such as, for exam-

ple, clustering, traditional sampling designs may perform poorly

[22]. Moreover, in many applications additional needs should be ad-

dressed by the sampling design. For instance epidemiological and

environmental data collection on field usually is prone to specific

logistics and costs constraints. In addition a high detection rate of

the rare trait is often desirable.

This thesis is inspired by the challenges the World Health Or-

ganisation (WHO) faces when carrying out tubercoulosis (TB) preva-

lence surveys. TB prevalence surveys are performed in those coun-

tries considered to bear a high burden of TB [6]. In these coun-

tries, typically located in developing areas of Sub-Saharan Africa

and South-Eastern Asia, the prevalence of TB is measured by means

of nationwide, population-based surveys that are carried out by WHO
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with the support of local agencies. In this setting, an accurate esti-

mation of the true TB prevalence is of paramount importance to be

able to inform public health policies aimed at reducing the burden;

moreover, due to the actual presence of medical doctors on field dur-

ing these surveys, every TB case that can be found can and will be

cured. Although considered high TB-burden countries, the number

of TB positives ranges around 150-700 per 100000 individuals. As

TB is an infectious disease, the cases are expected to be clustered,

configuring a sampling situation where the population of interest is

rare and clustered.

The sampling strategy currently suggested in the WHO guide-

lines for TB prevalence studies [30] is a traditonal multi-stage sam-

pling design which is essentially meant to be sufficiently feasible and

easy to implement as requested for general guidelines. The study re-

gion is divided into smaller geographical areas of about the same size

(400-1000 individuals) and once a region is selected, all resident in-

dividuals are invited to undertake the medical examination. A cru-

cial point in the WHO guidelies is the choice of the sample size. In

fact, the rarity of TB positives and their uneven distribution over the

inspected areas lead to the need for a very large sample size to obtain

an accurate estimate of the true prevalence. Possible information on

between geographical areas variability is accounted for in the sample

size determination. Specifically the required sample size increases

as the between areas prevalence variability gets higher. It is well un-

derstood that in this sampling setting traditional designs, although

providing unbiased estimates, require a large sample size and tend

to miss cases when they are clustered. Moreover, as the countries
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involved are developing countries, the sampling procedure may be

particularly costly and some areas may be of reduced access due to,

for instance, natural barriers, unusable transportation networks, war

areas, etc.

WHO’s practice for TB prevalence surveys may then draw benefit

by more refined sampling strategies that are able, for instance, to

lead to the oversampling of cases, the sample size being equal, and

explicitely allow for controlling variable survey costs and possible

logistic constraints.

Surveys of rare and clustered populations have motivated further

advances beyond the traditional sampling designs. Among these,

we consider adaptive sampling that was introduced and suggested

with the aim of dealing with these sampling situations [22]. No-

tice that adaptive sampling is here intended as given by Thompson

[19]. However literature on responsive and adaptive designs for sur-

veys include various methods for managing data collection, tailoring

data collection strategies to different subgroups, prioritizing effort

according to estimated response propensities, etc (see [27] for a re-

cent review). Out of the adaptive designs, the most suitable for our

epidemiological example is the so-called adaptive cluster sampling

(ACS). Introduced by Thompson in the early 90’s [19], once a dis-

tance measure between units is available, the procedure for select-

ing units to sample is adapted to the observed values of the variable

of interest. The idea is thus that the probability of sampling a unit

is influenced by the value observed on nearby units. Many develop-

ments and uses of adaptive sampling strategies have been proposed

in recent years (see [28] and [17] for a review), however these meth-
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ods do not allow to account for logistic constraints nor to explicitily

allow the planning of the survey costs.

A simple way to deal with logistic constraints and improve the

planning of the survey may be to choose, beforehand, a specific route

along which to visit units sequentially. The constrained route may

be chosen in order to reduce costs and satisfy possible logistic con-

straints. Within the TB example, choosing a path across a country

amounts to defining an ordered list of geographical areas that are

then to be inspected one by one in the prescribed order and sequen-

tially assigned to belong or not to the sample. Notice that this might

be particularly relevant when planning a survey in developing coun-

tries: in fact it might lead to individuate a path along which trans-

portation costs are minimized, for instance, and logistic constraints,

such as reduced accessibility of some areas, can be taken into ac-

count beforehand. A renewable interest has arisen in sequential de-

signs ([2] and [7]), and a flexible procedure for sequentially select a

sample is available. However, the list-sequential setting does not al-

low, in its current formulation, to oversample cases nor to adaptively

incorporate sample evidence.

The aim of this thesis is to develop a new sampling strategy for

sampling a rare and clustered population under both cost and logis-

tic constraints. As adaptive designs and sequential designs seem to

individually meet the desirable features, we propose the integration

of adaptivity in a sequential framework. The proposed integrated

approach would then have to address (i) logistic and cost issues, (ii)

oversampling of cases, and (iii) estimation of the quantity of inter-

est via a suitable weighting-system. In fact the selection bias due to
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over-detection of positive cases needs to be adjusted for at the esti-

mation stage. With reference to the inspirational example of WHO’s

TB surveys, once a route that minimizes transportation costs and

satisfies logistic constraints has been decided, (i) in the previous list

would be tackled. This would require a deep knowledge of the coun-

try where the survey is to take place, and possibly a suitable algo-

rithm to choose the best route. In order to meet (ii), we need to intro-

duce adaptivity in a list-sequential framework. The idea, similarly

to adaptive strategies is to employ the oberved number of TB cases to

update the inclusion probabilities at each step. This will be achieved

by suitably changing the updating procedure proposed for sequen-

tial sampling designs. Finally, point (iii) addresses estimation of the

true TB prevalence given sample evidence. As a first proposal in this

thesis we derive an unbiased HT-type estimator for the population

prevalence by adjusting for both the over-selection bias and for the

conditional structure induced by the sequential selection. The per-

formance of the proposed strategy is then evaluated by means of an

extensive simulation study aiming at comparing it with the tradi-

tional sampling design currently suggested in the WHO guidelines.

This thesis is organised as follows. In the first chapter, after

giving the notation that will be used all throughout the thesis, we

present and give details of the sampling strategy currently imple-

mented by WHO. In this sampling setting, we give the details of

adaptive cluster sampling and list-sequential designs. At the end of

the chapter, in the light of our inspirational example of TB preva-

lence surveys, we show some preliminary simulation results focus-

ing on the adavantages tha ACS and a a sequential design may bring
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to traditional designs. In the second chapter our first proposal for a

strategy that integrates adaptivity in a list-sequential context is pre-

sented. The design together with an unbiased estimator for the pop-

ulation prevalence is presented. The design and estimator are also

extented to the case in which the target population is structured into

primary units (for instance geographical areas) and secondary units

(for instance individuals) that better fits our inspirational example

of TB prevalence surveys. As the proposed methodology is charac-

terised by a random sample size, Chapter 3 is dedicated to tackle this

randomness, which may be a problem in many sampling situations.

A way of controlling the final sample size in adaptive sampling is

discussed, stressing the reasons why they have a limited application

in our sampling situation. Thus we give a way to control the final

sample size in our proposed strategy and we provide an unbiased

estimator for the prevalence. Chapter 4 is dedicated to studying the

behaviour of the proposed strategies by means of an extensive sim-

ulation study. The proposed strategies are compared to traditional

sampling designs under the profile of (i) logistic and cost issues, (ii)

oversampling of cases, and (iii) estimators properties. Last final re-

marks are discussed together with some research perspectives.

6



Chapter 1

Some useful sampling designs

This chapter is divided into five sections. In the first section, the

basic notation that will be used throughout the thesis is presented.

In the second section, with reference to the motivational example

of TB prevalence surveys promoted by WHO, we give the details of

the survey design currently suggested in the WHO guidelines. In the

third and fourth section, details about adaptive cluster sampling and

list sequential sampling designs are given underlining the reasons

for their utility in this context. Last we present some preliminary

simulation results in order to empirically show the advantages and

disadvantages of the three discussed designs.

1.1 Basic notation

Let U be a finite population U = {1,2, ..., i, ...,N } composed by N

units. We are interested in selecting a random sample from U in

order to estimate a parameter of a study variable y over the popula-

tion. This is often the total Y =
∑N
i=1 yi or the mean Ȳ = 1/N

∑N
i=1 yi
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CHAPTER 1. SOME USEFUL SAMPLING DESIGNS

of such variable. In this thesis we focus on the case of a dicotomous

variable indicating presence/absence of a certain trait, thus the pop-

ulation mean defines the prevalence of such a trait over the pop-

ulation. The random sample s is selected according to a sampling

design which is a discrete probability distribution on the support Q

of possible samples s. The probability of getting the sample s is de-

noted by p(s) > 0 ∀s ∈Q and
∑

s∈Q p(s) = 1.

The inclusion of unit i in the sample is formalised with the inclu-

sion membership indicator Si :

Si =


1 if unit i is included in the sample

0 otherwise

Si is a Bernoulli random variable with P (Si = 1) = E(Si) = πi

which defines the first order inclusion probability for unit i.

The random sample is described by the vector of inclusion mem-

bership indicators S = (S1,S2, ...,SN ) and a sample s = (s1, s2, ..., sN ),

is one of the possible outcomes of S. The sample size n is given by

n =
∑N
i=1Si and it may be random.

Together with the first order incusion probabilities, we may consider

the second order inclusion probability πii′ that is the probability that

both unit i and unit i′ (with i , i′) are included in the sample:

P (Si = 1,Si′ = 1) = πii′

In many sampling situations, it may be convenient to group indi-

viduals into larger sampling units called primary units and proceed

8



1.1. BASIC NOTATION

with the selection of the primary units. If a primary unit is selected,

all individuals that belong to the selected primary unit are included

in the final sample. This is the case, for instance, of our inspirational

example where the sampling units are geographical areas and, once

a geographical area is selected in the sample, all the individuals who

live in the selected area are included in the final sample.

More formally, suppose the N individuals (secondary units) of

the population U are grouped into 1, ..., j, ...,M primary units. Each

primary unit contains Nj secondary units so that
∑M
j=1Nj = N . Let

yij be the survey value of the i-th secondary unit included into the

j-th primary unit, so that the survey value associated to primary unit

j is given by yj =
∑Nj
i=1 yij or ȳj = 1/Nj

∑Nj
i=1 yij . In the case of a binary

outcome, which is the case of interest with reference to our inspira-

tional example, yij = 1 if i is a positive case in primary unit j and

yij = 0 otherwise. The number of positive cases in unit j is thus

yj =
∑Nj
i=1 yij . The population value to be estimated is the popula-

tion total given by Y =
∑M
j=1

∑Nj
i=1 yij =

∑N
j=1 yj and/or the population

mean/prevalence given by Ȳ = 1/N
∑M
j=1 yj . In the case of our in-

spirational example, primary units are geographical areas with Nj

inhabitants and ȳj = 1/Nj
∑Nj
i=1 yij is the area specific prevalence.

The sampling units are the primary units. Once a primary unit

j is included in the sample of size m primary units, all secondary

units i = 1, ...,Nj that belong to the selected unit j are included in

the sample, so that the final sample size is given by n =
∑
j∈sNj .

A set of inclusion probabilities πj is given for the sequence of all

primary units j = 1, ...,M. The inclusion probabilities may be, for

instance, proportional to their (possibly unequal) size Nj , so that the

9



CHAPTER 1. SOME USEFUL SAMPLING DESIGNS

selection method applied is a probability proportional to size (π-ps)

method. The focus is thus on the probability of selecting a primary

unit j and it’s inclusion/not inclusion in the sample is denoted by

the usual sample membership indicator Sj . P (Sj = 1) = E(Sj) = πj is

the first order inclusion probability for the j-th unit (but also for any

secondary unit i ∈ j), while the probability that both primary units

j and j ′ (j , j ′) are included in the sample is given by P (Sj = 1,Sj ′ =

1) = πjj ′ .

For certain applications it could be useful or even required to

consider ordered populations Uord = {(1), ..., (i), ..., (N )}, which means

that the sampling units are ordered in some predefined way and are

sampled according to the given order. In the case of our inspirational

example of TB prevalence surveys, it may be convenient to order

units along a predefined route along which to sample. This may

be the case for instance of countries with logistics constraints due

to seasonal bad weather, war zones, street conditions unfitting the

transportation needs of the surveying team, etc.

Units are visited sequentially and the decision on whether to in-

clude them or not include them in the sample is made. This means

that the i-th visit (or j-th in the case of primary units) is the only

occasion for unit i (j in the case of primary units) to be included in

the sample. For simplicity of notation, from now on, after specifying

that we are considering an ordered population, we will simply use

the symbol U .

10



1.2. CURRENT PRACTICE IN TB PREVALENCE SURVEYS

1.2 Current practice in TB prevalence surveys

In TB prevalence surveys, as suggested in the WHO guidelines [30],

the population is divided into a certain number of geographical ar-

eas, i.e. primary units j = 1, ...,M, of as homogenous population size

as possible Nj ≈Nj ′ for j , j ′ (the guidelines indicate 400-1000 indi-

viduals per area, although in real situations it may also exceed 1500

individuals per area [30]). This working hypothesis allows to control

the final sample size thus helping the planning of the survey. Once

a geographical area j is included in the sample, all eligible individ-

uals i = 1, ...,Nj (i.e. people aged ≥ 15) are invited to undertake a

screening interview (asking for typical TB symptoms) and a chest X-

ray. If the individual is negative according to both screening tools,

he/she is considered as a non-TB case. If the individual is positive

in either of the two screening tools, further examination is carried

out via sputum specimen. The specimens are then examined at a

central location laboratory. Thanks to a new diagnostic test (called

GeneXpert), diagnosis on the field is under consideration and might

soon become the norm. We consider here this simplification, hence

we consider that the eligible individuals are invited to undertake a

medical examination at a moving lab, where any TB positive is de-

tected and possibly treated.

The number of areas m to be sampled is chosen according to a

prefixed sample size n. The sample size n is computed as a function

of (i) a prior guess of the true prevalence, (ii) the desired estima-

tion precision (usually a maximum error within 20-25% around the

true national prevalence is considered), and (iii) an estimate of the

11



CHAPTER 1. SOME USEFUL SAMPLING DESIGNS

variability existing between the areas’ prevalences [30]. This com-

putation yields sample sizes that usually range between 30000 and

100000 individuals. More specifically the sample size is calculated

using the following equation:

n = 1.962 1− pg
d2pg

1 + (N̄ − 1)
k̂2pg

1− pg

 (1.1)

where pg is a guess of the true population prevalence, d is the de-

sired precision, N̄ is the average size of geographical areas (given by

N̄ = 1/M
∑M
j=1Nj) and k̂ is an estimate of the coefficient of between

areas prevalence variation k =
√
M−1∑M

j=1(Ȳj − Ȳ )2/Ȳ . It is clear that

the bigger the estimated value of the variation between the areas

prevalences k̂, the bigger is the design effect, hence the final sample

size. The sample size is thus larger if the prevalence of TB varies

considerably among areas.

The coefficient of between areas variation k is estimated from the

results of previous surveys or by making assumptions on the distri-

bution of the areas specific prevalence. However guidelines suggest

that it should be set lower than 1 to have a better control over the

final sample size. We refer the reader to [30] for further details on

the estimation of k.

Additional units may also be considered in the final sample size

to account for the participation rate that, although being very high

(85-90%), is usually not 100%.

Once the sample size n is defined, the number of geographical

areas to be selected m is calculated by dividing it by the expected

size of the geographical areas, m = n/N̄ assuming that N̄ = Nj ∀j =

1, ...,M.

12



1.3. ADAPTIVE CLUSTER SAMPLING

In practice, geographical areas may be selected within strata, such

as urban/rural region or by administrative region/district. The WHO

guidelines suggest that in the case of stratified sampling, the sample

size and the number of areas to be sampled in each stratum should

be proportional to the share of the national population in each stra-

tum.

A classic Horvitz-Thompson (HT) approach (stratified if needed)

is then employed to estimate the population prevalence.

We call this current practice suggested by WHO Unequal Proba-

bility Cluster Sampling (UPCS). Notice that, although stated that the

inclusion probabilities should be proportional to size, the geograph-

ical areas are of as homogenous size as possible thus reducing to an

(almost) equal probability sampling design. Moreover notice that

here the word “cluster” is used as in traditional sampling for indi-

cating a group of population units, that, in the context of TB preva-

lence surveys coincide with the geographical areas in which individ-

uals are grouped. In other occasions, such as in adaptive clusters

sampling, the term will be used to identify a group of units close in

distance, that have the trait of interest, i.e. a group of geographically

closed areas with many cases.

1.3 Adaptive Cluster Sampling

Different approaches are possible under the general idea of adap-

tive sampling: among these, the most suitable for our epidemiologi-

cal example is the so-called adaptive cluster sampling (ACS). Intro-

duced by Thompson in the early 90’s [19], once a distance measure

13



CHAPTER 1. SOME USEFUL SAMPLING DESIGNS

between units is available, the procedure for selecting units to sam-

ple is adapted to the observed values of the variable of interest. The

basic idea is that the probability of selecting a unit is influenced by

the value observed on nearby units.

Referring to the notation given in Section 1.1, in adaptive cluster

sampling, it is assumed that for every primary unit j in the popula-

tion of M primary units, a neighborhood is defined. The neighbor-

hood of each unit is usually defined as a set of geographically nearest

neighbors, although any distance measure can be used (e.g. social or

insitutional relationships, genetics, etc ...) as long as the neighbor-

hood relationship is symmetric (e.g. if unit j is neighbour of unit j ′

then unit j ′ is neighbour of unit j). Moreover a threshold ymin ∈ N

is chosen so that a condition of the type yj > ymin is defined. An

initial sample s0 of size m0 > 1 is selected according to some proba-

bility sampling procedure and the values of the study variable y on

units j ∈ s0 are observed. If a unit j ∈ s0 satisfies the given condi-

tion, all units within its neighborhood are added to the sample. The

sampling continues untill no more units satisfy the given criterion.

Figure 1.1, is an example of the described procedure. The objective is

to estimate the number of point-object in a particular region ([19]).

A 20 × 20 grid is overimposed over the study region and given the

adaptive condition yj > 0, an initial sample of m0 = 10 geographical

units (i.e. quadrats given by the overimposed grid) is selected. For

all units that contain at least one point-object, all the neighbouring

units are included in the sample untill no more neighbouring units

contain at least one point-object.

The traditional HT -estimator is biased in this sampling setting

14



1.3. ADAPTIVE CLUSTER SAMPLING

Figure 1.1: Example of adaptive cluster sampling to estimate the

number of point-object in a study region. An initial sample of 10

units is taken (left panel) and, for all selected units with at least one

point, neighbouring areas are added to the final sample (right panel)

[22]. In fact at the selection stage the inclusion of those units satisfy-

ing the adaptive condition yj > ymin has been forced, hence some bias

has been introduced and it must be accounted for at the estimation

stage.

The simplest unbiased estimator for the mean provided by Thomp-

son is that based on the initial sample of size m0. This estimator

ignores all observations in the sample other than those selected ini-

tially and the traditional HT-estimatior is implemented ŷ0 =
∑
j∈s0

yj /πj ,

where πj is the probability of being selected in the initial sample.

In order to produce a more sophisticated estimator, Thompson

introduces the concept of network which is a subset of a neighbour-

hood including only units for which the given condition yj > ymin is

satisfied. All units for which the adaptive condition is not satisfied,

are called edge units. Networks thus create a non overlapping par-

15



CHAPTER 1. SOME USEFUL SAMPLING DESIGNS

tition of the population, whilst neighbourhoods do not. In fact an

edge unit may be edge unit of more than one neighbourhoods, re-

sulting in overlaps between them. A unit j that satisfies the adaptive

condition yj > ymin belongs to a network Aj and it may be sampled

if it is sampled itself as part of the initial sample s0 or if any unit of

its network Aj is sampled. An edge unit is selected if it is included

in the initial sample s0 or if any of the neighbourhoods for which it

is an edge unit is selected. It follows that the exact inclusion prob-

ability of any edge unit can be calculated only if it is selected in the

initial sample. On the other hand, the inclusion probability for non-

edge units can be calculated only if the structure/size of its network

is known, i.e. if the network is selected. Thus observations that do

not satisfy the adaptive condition are considered in the estmation

only if they are selected in the initial sample.

Let the indicator variable Kj be 0 when unit j does not satisfy

the given condition and was not selected in the initial sample, and

1 otherwise, an unbiased estimator for the population total is then

given by the following:

ŶHT ∗ =
∑
j∈s0

yjKj
π∗j

(1.2)

where π∗j is the probability that a unit is included in the compu-

tation of the estimator [19]. An estimator for the mean/prevalence

is readly given by ˆ̄YHT ∗ =N−1∑
j∈s0

yjKj
π∗j

.

The variance var(ŶHT ∗) and an unbiased estimator for it are given

in [19]. We refer the reader to [22] for further details on the estima-

tion.

As such modified HT estimtor is not a function of the minimal

16



1.4. LIST-SEQUENTIAL SAMPLING

sufficient statistic, it can be improved by applying the Rao-Blackwell

method. In ACS the minimal sufficient statistics is the set of un-

ordered distinct units in the final sample s that is D =
{
(j,yj) : j ∈ s

}
.

Many developments and uses of adaptive sampling strategies have

been proposed in recent years. These include two-stage adaptive

cluster sampling ([16]), adaptive cluster double sampling ([11]), un-

equal probability adaptive cluster sampling ([12]; [14]; [18]). More-

over bootstrap confidence intervals for adaptive cluster sampling are

discussed in Christman and Pontius (2000). We refer the reader to

[22], [17] and [28] for an exhaustive review of all developments of

adaptive sampling strategies.

ACS has proven to be more efficient than traditional non-adaptive

sampling strategies when the population is rare and clustered and

when the within areas prevalence variability is lower than the be-

tween areas variability ([22]). As compared to traditional designs,

ACS would provide unbiased estimation of the population preva-

lence while most likely returning a larger amount of cases. However,

it does not allow to account for logistic constraints nor to explicitily

allow the planning of the survey costs. In the following section, a

sampling design that is able to account for these two aspects is thus

considered.

1.4 List-sequential sampling

A simple way to deal with logistic constraints and thus improve

the planning of the survey may be to choose, beforehand, a specific

route along which to visit units sequentially, as opposed to tradi-

17



CHAPTER 1. SOME USEFUL SAMPLING DESIGNS

tional non-sequential sampling designs where the route is set by the

specific selected sample. The constrained route would be chosen in

order to reduce costs and to satisfy possible logistic constraints. In

our motivational example of TB prevalence surveys, choosing a path

across a country means to define an ordered list of geographical ar-

eas that are to be inspected one by one in the prescribed order and

sequentially assigned to be included or not in the sample. As the

countries in which TB prevalence surveys are carried out are devel-

oping countries, it may be not uncommon for some areas to have

limited access, due to, for instance, natural barriers, unusable trans-

portation networks, war areas, etc, motivating the use of a prede-

fined route. The choice of the route should take into account that

certain characteristics may be associated with the outcome of in-

terest. E.g. geographical areas that are hard to access due to few

roads and the presence of natural barriers should not be left out but

a route that goes across them should be planned as these geograph-

ical areas could in fact be hot-spots of TB (due to barriers of access

to diagnosis). Moreover, although we will consider here just a route

that minimises survey costs and deals with logistic constraints, no-

tice that defining a route based on known TB epidemiology hot spots

in countries could have important benefits, if there is good knowl-

edge and understanding of the disease.

Let us consider the ordered population Uord of M geographical

areas. For simplicity, let us denote such ordered population with U ,

so that the (ordered) units can be denoted by j = 1, . . . ,M. The sam-

pler visits all units sequentially so that t = 1, ...,M visits are under-
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taken and decides about the inclusion of each unit. In other words,

unit j occupies the j-th position in the ordered population and can

only be selected at visit/step t = j. The sampling continues untill the

decision on unit j =M is made.

For populations whose units can be ordered according to some

criterion, Bondesson and Thorburn ([2]) developed a general sequen-

tial method for obtaining a π-ps sample. Once a set of initial inclu-

sion probabilities π(0)
j = πj , j = 1, ...,M is defined, the inclusion

probability of units j ≥ t are revised at each step t, i.e. the inclu-

sion probabilities of units not yet selected are updated after each

unit has been visited. The inclusion probability of the generic unit

j ≥ t = 1, ...,M is updated according to the following updating pro-

cedure:

π
(t)
j = π(t−1)

j − (St −π
(t−1)
t )w(t)

j−t (1.3)

where w(t)
j−t constitute a weighting system able to produce any

sampling design without replacement. Weights are chosen arbitrarely

in the following constraints:

−min
(1−π(t−1)

j

1−π(t−1)
t

;
π

(t−1)
j

π
(t−1)
t

)
≤ w(t)

j−t ≤min
( π

(t−1)
j

1−π(t−1)
t

;
1−π(t−1)

j

π
(t−1)
t

)

that guarantee that 0 ≤ π(t)
j ≤ 1.

Once the initial inclusion probabilities are given, the decision

about the inclusion/not inclusion of the first unit in the sample is

made by means of a Bernoulli trial. For instance, at step t = 1, S1 = s1

and all units with j > 1 are updated as follows:
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π
(1)
j = π(0)

j − (s1 −π
(0)
1 )w(1)

j−1

At step/visit 2 (t = 2), the decision about the selection/not selec-

tion of unit 2 is made, S2 = s2, thus for j > 2 the inclusion probabili-

ties are updated as follows:

π
(2)
j = π(1)

j − (s2 −π
(1)
2 )w(2)

j−2

etc.

In general this procedure can be represented with an updating

matrix:

visit / unit π
(0)
1 π

(0)
2 π

(0)
3 π

(0)
4 ... π

(0)
M

t=1 S1 = s1 π
(1)
2 π

(1)
3 π

(1)
4 ... π

(1)
M

t=2 s1 S2 = s2 π
(2)
3 π

(2)
4 ... π

(2)
M

t=3 s1 s2 S3 = s3 π
(3)
4 ... π

(3)
M

... ...

t=M s1 s2 s3 s4 ... SM = sM

Notice that the Bernoulli experiment is defined on the diagonal

of the updating matrix. This means that when t = j the choice about

the inclusion of unit j is made upon the performance of a Bernoulli

trial with probability π(t−1)
t , that is at the t-th visit, the j − th unit

is/is not included. The last row of the table defines the final sample

s.

The choice about the weighting system to be used defines the

correlation between the sample memberhip indicators Sj . In fact,

Bondesson and Thorburn show that the weights can be represented

as:
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w
(t)
j−t = −

Cov(St,Sj |S1, ...,St−1)

V ar(St |S1, ...,St−1)

Therefore it is possible to choose weights for inducing positive/negative

correlation between the sample membership indicators and repre-

sent any without replacement sampling design. In general, positive

weights induce negative correlations and negative weights induce

positive correlations.

The simplest way to sequentially select a sample is by Poisson

sampling (see [26] for further details). Visits start from the first unit

in the sequence. The sampler makes the decision on whether to in-

clude unit 1 with probabilityπ1. Unit j = 2 is thus visited and it is in-

cluded in the sample with probability π2. This easy sampling design

can be represented with the updating procedure given in Equation

1.3. In fact if w(t)
j−t = 0 ∀j > t, t ≥ 1, we get thet π(t)

j = π(0)
j ∀j = t, ...,M.

This means that Cov(St,Sj |S1, ...,St−1) = 0, that is there is indepen-

dence within selections. This is the main feature of Poisson sampling

and it is also the reason of its simplicity. However it is characterised

by a random sample size that may limit its use.

A list-sequential approach allows for setting additional condi-

tions on the weights for creating a sequential sampling design with

other desirable features. For instance, in order to have a sampling

design with fixed sample size, at each given t the sum of weights

must be equals to 1:

M∑
j=t+1

w
(t)
j−t = 1
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If some measure of distance between the population units is avail-

able (not necessarily beforehand), it is possible to incorporate it in

the weights determination and induce the procedure to produce sam-

ples with desired spatial behaviours. This method has been called

Spatially Correlated Poisson Sampling (SCPS, [9]). For example, if

the researcher wishes to obtain a sample that is well-spread over the

geographical area of interest, the so-called maximal weights strat-

egy ([2], [7]) can produce such result; likewise, it is possible to ob-

tain samples that are more or less spatially clumped by choosing an

appropriate set of weights. It is worth noting that, although the pro-

posal originated in the field of real-time sampling with application

to forestry, it is in principle applicable to a much wider range of sit-

uations. As noted for ACS, the defition of distance does not need to

be geographical, but it can be thought of a more general measure of

similarity (social, genetical, etc.).

With an appropriate choice of weights, any sampling design with-

out replacement can be described under the list-sequential approach.

An HT approach to estimation can then be considered, thanks to the

fact that the unconditional updated inclusion probabilities are equal

to the initial inclusion probailities themselves (see [2] for further de-

tails).
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1.5 Comparing key characteristics via a sim-

ulation study

In the following paragraph we present a preliminary simulation study

in which the three designs presented above are empirically com-

pared to highlight their limitations and advantages and to delineate

the advatnages of an integrated strategy in the context of our inspi-

rational example of TB prevalence survey. Simulations focus on the

comparison between UPCS, ACS and a sequential approach (SCPS).

The three designs are compared with respect to (i) survey costs, (ii)

cases detection and (iii) estimators properties.

The simulation has been carried out completely in the R environ-

ment ([15]), and the packages spatstat ([1]) and BalancedSampling

([10]) have been used to implement spatial patterns generation and

SPCS, respectively. ACS was implemented thanks to the functions

kindly provided by Mary Christman and Kristen Sauby.

Different artificial populations assumed as possible TB preva-

lence surveys scenarios have been simulated. For the sake of illustra-

tion and to stress limitations and advantages of each of the consid-

ered strategies, we here show two of the simulated scenarios (Figure

1.2). Both simulated populations are composed by N = 200000 indi-

viduals evenly spread over a two-dmensional space. The study vari-

able y has value 1 for population units that are TB cases (represented

as dots in the Figure) and value 0 otherwise. The actual population

TB prevalence Ȳ ≈ 0.01. This is in line with the estimated number of

cases in most of the countries where TB prevalence surveys are car-

ried out (prevalence usually ranges between 0.1 % and 1.5% [31]).
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Population 1

Population 2

Figure 1.2: Two of the simulated scenarios. Cases are represented

as dots, N = 200000. Upper panel: true prevalence Ȳ ≈ 0.01, total

number of cases Y = 1980. Lower panel: true prevalence Ȳ ≈ 0.01,

total number of cases Y = 1956.

In population 1 cases are mostly clustered in 3 groups homogeneous

in terms of prevalence, while in the second scenario, cases are clus-
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tered in 30 small homogenous groups, thus population 2 appear to

be less clustered. In both populations the overimposed 15× 15 grid

generates a set of M = 152 = 225 areas from which to sample.

According to WHO guidelines we assumed to have a perfect guess

of the true prevalence (pg = 0.01). Under the suggested UPCS design,

the required sample size is thus, in both situations, of n = 19729 in-

dividuals; this means that a sample of m = 23 areas is selected with

100% participation rate within selected areas (which is a good ap-

proximation of the actual participation rate for TB prevalence sur-

veys, usually in the range 85- 90% [30]).

The four methods compared are the design currenly implemented

by WHO (with the sample sizem = 23 calculated as discussed above),

ACS with an initial sample of size m0 ≈ 1
2m = 12 (denoted by ACS1),

ACS with an initial sample of size m0 ≈ 2
3m = 18 (denoted by ACS2)

and SCPS with maximal weights strategy (see [9] for further details).

The adaptive condition was set to yj > pg · Nj , meaning the sam-

pling efforts are concentrated close to areas that exceed the number

of cases according to the prevalence guess.

For all the compared designs, the total survey cost has been com-

puted based on the following linear cost function:

C = c0 + c1m+ c2n (1.4)

where c0 is a fixed cost, for instance for equipment and staff

(c0 = 100000$); c1 is the unitary cost for each selected area in the

sample for instance for transportation and installation of the mov-

ing lab in the selected location (c1 = 1000$); and c2 is a unitary cost

for each individual data collected in every selected area (c2 = 10$).
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We considered the advantage of a careful route planning, easily ac-

comodated by the sequential approach, by reducing by 20% the area

sampling cost for SCPS. With regards to ACS, we considered the cost

function given by Thompson [22], thus considered the “complete”

area cost of c1 = 1000$ only for areas selected in the initial sample

and applied a 20% discount to the cost c2 for each area added adap-

tively.

Figure 1.3 summarizes the results of 10000 Monte Carlo runs on

the two simulated populations (upper panel for population 1 and

lower panel for population 2). The parameter to estimate is the pop-

ulation prevalence that, as expected from the theory, is unbiasedly

estimated by all methods here compared. As expected ACS outper-

forms the other sampling designs in terms of detection power, al-

though the final sample size is extremely variable as showed in Table

1.1. Due to the distribution of y in the population, the sample size is

more variable and larger in population 2 with a final sampling frac-

tion reaching 70%. Thanks to a moderate choice of the initial sample

size, ACS1 seems to be able to oversample cases while moderately

increasing the final sample size. This suggests that with an accu-

rate choice of the initial sample size, possible for instance thanks to

a priori information, and in a situation with no logistic constraints,

ACS may be recommended. A large and variable sample size leads

to very large and variable final costs as they are a linear function of

the number of areas and individuals selected. On the other hand,

the sequential approach presents a very stable behaviour in terms of

costs, also highlighting the gain in planning a cost-minimizing route
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Figure 1.3: MC distributions of the estimators under the four sam-

pling designs (the dashed line indicates the true prevalence), the

number of detected cases, and the total costs (plotted on the log scale

for better readability). Upper panel: population 1; lower panel: pop-

ulation 2

beforehand, but is unable, as expected, to oversample cases as com-

pared to the traditional UPCS. The costs reduction in planning the

route, is given by the discount applied to each added area. In this

situation the overall reduction is 5% given that each added area is
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applied only a 20% discount.

The use of adaptive cluster sampling has been suggested as a nat-

ural alternative to the current methodology used by WHO in TB

surveys when the primary aim, along with unbiased estimation of

the population TB prevalence, is to overdetect TB cases. Simula-

tion results show that ACS manages to oversample cases in both the

depicted scenarios, although the number of areas selected, thus the

final sample size, strongly depend on the spatial pattern and may

result in uncontrollable final costs. On the other hand, in both the

scenarios depicted, the use of a sequential procedure lower costs

while logistic constraints are accounted for. Therefore the use of an

adaptive design and the sequential approach seem to individually

meet different desirable features in sampling a rare and clustered

trait suggesting that an integrated strategy may be able to both ad-

dress logistic and cost issues as well as the oversampling of cases.

Starting from the designs discussed in the above paragraphs, in the

next few chapters we propose a new sampling strategy comprising

both a sequential component and an adaptive component.
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Chapter 2

The proposed strategy: Poisson

Sequential Adaptive (PoSA)

In this chapter we outline our proposal of an integrated strategy, able

to combine adaptivity in a sequential framework to obtain a sam-

pling design that is able to over-detect cases while considering costs

and logistic constraints. In the first section, after the main features of

the proposed design are given, an unbiased estimator for the popu-

lation mean/prevalence is provided together with its exact variance

and an estimator for it. In order to apply the proposed methodol-

ogy to our inspirational example of TB prevalence surveys, in the

second section of this chapter the proposed strategy is extended to a

sampling structure where primary units are geographical areas. The

chapter ends by presenting some preliminary simulation results to

highlight the main advantages and limitations of the proposed strat-

egy.
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2.1 PoSA sampling design

The preliminary simulation results illustrated at the end of Chap-

ter 1, show that an adaptive design and a sequential design may

separately achieve enhancement of cases detection and may allow

for considering costs and logistic constraints. The integration of

adaptivity in a sequential framework thus seems a reasonable way

to achieve both the desired features.

As a first proposal and for the sake of its simplicity we consider a

Poisson-type design [26] which we named Poisson Sequential Adap-

tive Sampling Design, PoSA for short. The proposed design is com-

posed of a sequential component for dealing with logistic and cost

constraints and of an adaptive component for enhancing cases detec-

tion. The sequential component consists in choosing, beforehand, a

specific route, which best allows for reducing (possibly minimizing)

on-field survey costs and of acknowledging possible logistic con-

straints. Along the chosen route units are sampled (visited) sequen-

tially, as illustrated in Section 1.4. The infectivity of a disease, such

as TB, may result in groups of TB positives that are geographically

close. Thus, once a TB positive is found, it is desirable to force the in-

clusion of units that are (geographically) close to such individual and

possibly positive cases to treat. The adaptive component is therefore

based on the idea that the probability of including a unit in the sam-

ple may depend on the values observed on nearby units. Notice that

our proposal is a Poisson based design and a known feature of the

Poisson design is the random sample size which may be a drawback

with respect to survey cost planning. A proposal for controlling the
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final sample size in a PoSA design will be illustrated in Chapter 3.

Let us make one additional consideration regarding our inspi-

rational example, before giving the details of the proposed design.

As mentioned in Section 1.2, non-TB cases are detected on the field,

while for individuals that were found positive in at least one of two

screening tools, additional specimens are taken and sent to a central

lab. However, in a couple of years the detection and treatment of TB

cases will be on the field thanks to a the GeneXpert test. We hence

refer to the case of on field detection for simplicity. Notice that, even

if we do not consider the new test, the proposed method still applies

if by ‘TB-positives’ we consider individuals that were found positive

to one of the two screening tools.

Given the population U = {1, . . . , i, . . . ,N } ordered according to

the above considerations, units are thus visited following the cho-

sen route. At each step of the sequential selection, unit i is/is not

selected in the sample with probability given according to a chosen

rule which integrates the adaptive feature of the design. More for-

mally let yi be the survey value of the i-th unit and let ymin be a

threshold chosen such that the following adaptive condition quali-

fies i as a unit with a significant value of y:

yi > ymin (2.1)

We consider here the case in which y is a dichotomous variable,

thus the adaptive condition can be written as yi > 0, i.e. yi = 1 versus

the case in which the condition is not satisfied that is when yi = 0. In

the case of our inspirational example the study variable y indicates

presence/absence of TB.
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Given a set of initial inclusion probabilities π(0)
i = πi for the se-

quence of units i = 1, . . . ,N , at the t-th step of the sequential selec-

tion, unit i = t is certainly selected (i.e. is selected with probability

1) if the previous unit i − 1 was selected and adaptive condition in

Equation 2.1 holds for it, otherwise it is selected with probability πi .

The inclusion membership indicator Si deserves special atten-

tion. In fact it interprets the Bernoulli trial upon which the decision

to select/not select unit i = t is made, at t-th visit, but in our PoSA

proposal, such decision also includes the adaptive condition. Unit i

is certainly included into the sample (i.e. with unitary probability)

if the previous i − 1 selection has resulted into a selected case; oth-

erwise it is selected with (unaltered) probability πi . In other word,

Si is a mixture of a bernoulli random variable and of a degenerate

(unitary) random variable depending on whether or not the adap-

tive condition holds at the previous step of the selection sequence.

Thus the probabililty function of the random variable Si is given by:

P (Si = si) = yi−1P (Si−1 = 1) · 1 + [1− yi−1P (Si−1 = 1)]πsii (1−πi)1−si

(2.2)

where si = {0,1}. Notice that Equation 2.2 coincides with the

probability distribution of a Bernoulli random variable with param-

eter πi if the adaptive condition is not satisfied for the previous unit

i − 1. For simplicity we can thus write, for i = 1, Si ∼ Bernoulli(π1)

and for i = 2, ...,N :

Si ∼ Bernoulli(πi)(1− yi−1P (Si−1 = 1)) + yi−1P (Si−1 = 1) (2.3)
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It follows straightforward that, for i = 2, ...,M the expectation of

Si is:

E(Si) = E(Bernoulli(πi)(1− yi−1P (Si−1 = 1)) + 1 · yi−1P (Si−1 = 1)

(2.4)

= πi −πiyi−1E(Si−1) + 1 · yi−1E(Si−1)

= πi + yi−1E(Si−1)(1−πi)

and for i = 1, E(S1) = π1. For simplicity Equation 2.4 can be

written as:

E(Si) =


1 if si−1yi−1 = 1

πi otherwise
(2.5)

Hence the variability of the sample membership indicator Si is

trivially given by:

V (Si) = E(Si)(1−E(Si)) (2.6)

where E(Si) is given in Equation 2.5.

It is important to notice that, for the PoSA design, the addition

of the adaptive component to the sequential selection implies a par-

tial loss of the independent selection caracterizing a simple (non-

adaptive) Poisson sampling. In particular for a PoSA design and lim-

ited to a pair of subsequent units, selection are not independent. If

unit i′ = i−1, there exists dependence induced by the value of yi−1. In

fact if unit i − 1 is selected and yi−1 > ymin, that in our simplification
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coincides with yi−1 = 1, P (Si = 1|Si−1 = 1) = 1, while they are inde-

pendent otherwise. By using symmetry we consider i′ < i = 2, . . . ,N ,

we can thus write the mixed moment under PoSA design:

E(Si ,Si−1) = P (Si = 1,Si−1 = 1) (2.7)

= P (Si = 1|Si−1 = 1)P (Si−1 = 1)

= [1yi−1 +πi−1(1− yi−1)]E(Si−1)

Therefore, two cases hold depending on whether or not Si and Si′

refer to subsequent units i−1 and i. Otherwise, for any pairs of non-

subsequent units selection independence holds. The mixed moment

can thus be rewritten as follows:

E(Si ,Si′ ) =


E(Si)E(Si′ ) if i′ , i − 1

[yi−1 + (1− yi−1)πi]E(Si−1) if i′ = i − 1
(2.8)

It follows straightforward that for every pair (i, i′) such that i =

2, . . . ,N and i′ < i we have:

cov(Si ,Si′ ) =


0 if i′ , i − 1

E(Si−1) [yi−1 +πi(1− yi−1)−E(Si)] if i′ = i − 1
(2.9)

With little algebra, by substituing Equation 2.4 in Equation 2.9,

we find that the covariance is given by:

cov(Si ,Si′ ) =


0 if i′ , i − 1

E(Si−1) [1−E(Si−1)]yi−1(1−πi) if i′ = i − 1
(2.10)
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which is readily implementable.

The proposed PoSA sampling procedure is synthetized in Algo-

rithm 1.

Input: Ordered sequence of N units & a set of inclusion

probs π1, ...,πN .

Return: vector of sample membership indicators of size N

Procedure: Visit unit i = 1 and select with probability π1.

If s1 = 1, collect y1

for i in 2 :N do
point unit i

if yi−1si−1 = 1 then
select with probabilty 1

else
select with probability πi

end

if si = 1 then
collect yi

end

end
Algorithm 1: PoSA Algorithm

The set of sample membership indicator Si and of expectations

above, provides us with a complete formal description of the PoSA

sampling design and its implementation at the selection stage of the

survey. Prior to considering step ahead to the estimation stage, we

make some important remarks.

First notice that, as a first proposal PoSA sampling design is ex-
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pected to meet the objective of improving over traditional sampling

design in case of a rare and spatially clustered trait as well as in

presence of budget and logistic constraints, particularly by over-

sampling the cases yi = 1. However, being Poisson design based,

the procedure leads to a random sample size. Unlike to a simple

(non-adaptive) Poisson design, an accurate analysis of the variability

of the PoSA sample size in complicated by its adaptive component,

namely n depend also on the distribution of the study variable y

on the (ordered) population. In a simple Poisson design, the random

sample size has a so called Poisson-Binomial probability distribution

[26]. In fact the final sample size n =
∑N
i=1Si is the sum of indepen-

dent Bernoulli random variables with possibly different parameters

πi . In a PoSA design the independence is partially lost since sub-

sequent Si−1 and Si are actually dependent. Moreover, as detailed

above, every Si , i = 2, . . . ,N is either a Bernoulli and or a degenere

(unitary) random variable depending upon the adaptive condition,

i.e. the distribution of y in the (ordered) population. Some trivial

extreme cases can be easily discussed.

i) No cases are present in U , i.e. y is constantly null for every

population unit; and ii) U is composed completely by cases, i.e. y is

constantly unitary for every population unit. For case i) our design

is a traditional Poisson design thus the results on the distribution of

n in the traditional Poisson design hold. For case ii), the probability

of sampling the whole population is given by P (n =N ) = P (S1 = 1) =

π1, while P (n = 0) is given by a Poisson Binomial distribution with

the set of parameters π1, ...,πN .

Future research will focus on studying the variability of PoSA
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random sample size in non-trivial cases.

Secondly notice that, as already observed, random sample size

may be a practical issue for the survey planning. In Chapter 3 a

way to control the final sample size is proposed without losses in the

ability to over detect cases.

Finally notice that the sequential feature of PoSA allows us to

also formalize it according to the general list-sequential formulation

as illustrated in Section 1.4. Particularly, by using a list seqeuntial

approach, the PoSA updating-matrix can be written as:

visit / unit π
(0)
1 π

(0)
2 π

(0)
3 π

(0)
4 ... π

(0)
M

t=1 S1 = s1 π
(1)
2 π

(1)
3 π

(1)
4 ... π

(1)
M

t=2 s1 S2 = s2 π
(2)
3 π

(2)
4 ... π

(2)
M

t=3 s1 s2 S3 = s3 π
(3)
4 ... π

(3)
M

... ...

t=M s1 s2 s3 s4 ... SM = sM

where sample membership indicator Si are defined by Equation

2.3. For any row t = 1, ...,N and unit i < t, the (updated) inclusion

probabilities are given by:

π
(t)
i =


1 si−1yi−1 = 1 and i = t + 1

π
(t−1)
i − (St −π

(t−1)
t )w(t)

i−t otherwise
(2.11)

with the trivial choice for the weights w(t)
i−t = 0 ∀t, i.

Different non-trivial choices for the weighting system would lead

to designs with a different sequential component, more complex that

the basic one contemplated in PoSA. In this work we chose Poisson
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sampling for its simplicity but the choice of a design with other char-

acteristics, yet accomodating a predefined route, is still possible. In

Chapter 3 we will better address this possibility.

Estimation under PoSA sampling design

We now illustrate how an Horvitz-Thompson type (HT) estimator

can be derived under the PoSA sampling design. Unlike for a sim-

ple (non-adaptive) Poisson sampling with independent (though se-

quential) selections, a main issue to be acknowledged here is that

the adaptive feature of the design. In fact it induces a conditional

structure over each pair of subsequent sample membership indica-

tors Si−1 and Si . Hence an unbiased HT estimator for the population

total prevalence (mean) under PoSA sampling design has the follow-

ing form:

ˆ̄YP oSA =
1
N

N∑
i=1

yiSi
E(Si)

(2.12)

which is unbiased by construction.

In practice Equation 2.4 represents the design weight and it may

be calculated for all units of the population (although it is not neces-

sary for estimation purposes) according to the sample selected. Ta-

ble 2.1 represents the values to be used as design weights according

to the selected sample.

The exact variance for the estimator ˆ̄YP oSA can easily be calcu-

lated as follows:
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Table 2.1: deign weights in PoSA estimator

si−1 yi−1 design weight for unit i

0 0 πi

0 1 πi

1 0 πi

1 1 1

V ( ˆ̄YP oSA) =
1
N 2

 N∑
i=1

y2
i
E(Si)(1−E(Si))

E(Si)2 + 2
∑
i′<i

N∑
i=2

yiyi′
cov(Si ,Si′ )
E(Si)E(Si′ )


(2.13)

By substituting Equation 2.9 into 2.13, and with little algebra, the

following expression for the exact variance of the ˆ̄P oSA estimator is

found:

V ( ˆ̄YP oSA) =
1
N 2

 N∑
i=1

y2
i

(1−E(Si))
E(Si)

+ 2
N∑
i=2

yiy
2
i′

(1−E(Si−1)(1−πi))
E(Si)


(2.14)

PoSA design can be represented with the updating matrix and the

updating prodecure as given in Equation 2.11. Notice that ∀ t ≤

i, i = 2, ...,N , E(Si) = π
(i−1)
i , while for i = 1, E(S1) = π1. It follows

that a formula for easily calculating the value for the PoSA estimator

is the following:

¯̂YP oSA =
1
N

∑
i∈s

yi
πi−1
i

In other words, for calculating the PoSA estimator we use the
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inclusion probabilities for the selected units updated at step i − 1.

Notice then that the updating matrix contains all the information for

calculating the point estimate for the estimator and for the variance

of the estimator.

In particular the variance estimation can be simplified and cal-

culated as follows:

v( ˆ̄YP oSA) =
1
N 2

 N∑
i∈s

y2
i

(1−E(Si))
E(Si)2 + 2

N∑
(i,i′)∈s

yiy
2
i′

(1−E(Si−1))(1−πi)
E(Si)E(Si ,Si−1)


(2.15)

where (i, i′) refers to all the pairs of units in the sample that are

subsequent units in the (ordered) population and E(Si ,Si−1) corre-

sponds to the joint inclsuion probability. Again, using information

of the updating matrix, Equation 2.15 can be written as follows:

v( ˆ̄YP oSA) =
1
N 2

 N∑
i∈s

y2
i

(1−π(i−1)
i−1 )

(π(i−1)
i )2

+ 2
N∑

(i,i′)∈s

yiy
2
i′

(1−π(i−2)
i−1 )(1−πi)

π
(i−1)
i π

(i−2)
i−1 (yi−1 + yi−1(πi −πi))

 (2.16)

2.2 PoSA in the example of TB prevalence

survey

In some applications, as it is the case of our motivational example of

TB prevalence survey, population units naturally appear as grouped

into larger primary sampling units such as geographical areas. The

sampling design, according to the current WHO guidelines ([30]), is
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thus composed of two selection stages: i) a random selection of pri-

mary sampling units; and ii) the complete selection of all population

units belonging to the selected primary sampling units. The sam-

pling design that is currently used in TB prevalence surveys consid-

ers the target population grouped into geographical areas to be sam-

pled. Once the geographical areas (primary units) are sampled, all

individuals are invited to undertake a medical examination aiming

at the diagnosis of TB. It is thus natural to extend the PoSA method

to this sampling situation, and we consider the extension of PoSA to

cluster sampling. By “cluster” we denote here the group of individu-

als that belong to the same primary unit, in accordance to traditional

cluster sampling and in accordance to UPCS design. However when

giving details about the sampling design we will refer to “primary

units” rather than “clusters” in order not to generate confusion with

“clusters” as a group of (geographically) close cases.

Recalling the notation given in Section 1.1, each primary unit

j = 1, ...,M contains Nj individuals i = 1, ...,Nj so that
∑M
j=1Nj = N .

The number of positive cases in unit j is yj =
∑
i∈j yij . Let ymin be a

threshold chosen such that the following adaptive condition quali-

fies j as a (primary) unit with a significant number of positive cases:

yj =
Nj∑
i=1

yij > ymin

Notice that if we look at the prevalence instead of the total num-

ber of cases, we can refer to the prevalence for unit j as ȳj =
∑
i∈j yij /Nj .

The threshold that qualifies unit j as a unit with a significant number

of cases is thus ȳmin ∈ (0,1) and the adaptive condition is as follows:
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ȳj =
1
Nj

Nj∑
i=1

yij > ȳmin (2.17)

The primary units to be sampled are here geographical areas and

are ordered, for instance, along a route minimizing fixed survey

costs and acknowledging logistics constraints, as discussed in Sec-

tion 1.4. The geographical unit j is thus the unit that occupies the

j-th position in the ordered population.

A set of inclusion probabilities πj is given for the sequence of

all units j = 1, . . . ,M, for instance proportional to their (possibly un-

equal) size Nj . At the j-th step of the sequential selection, unit j is

certainly selected (i.e. is selected with probability 1) if the previous

unit j − 1 is selected and the adaptive condition given in Equation

2.17 holds for the previous unit j − 1. Otherwise area j is selected

with probability πj .

The PoSA sampling procedure, adapted to the context of TB preva-

lence surveys, can be synthetized in a ready-to-implement set of in-

structions. The vector of sampled units is composed by the inclusion

memberhip indicators Sj of areas j = 1, ...,M, taking value 1 if unit

j is included in the sample and 0 otherwise. At each step of the se-

quential selection, πj is updated adaptively by means of a further

indicator Ij taking value 1 if the adaptive condition in Equation 2.17

holds in unit j, and 0 otherwise. Algorithm 1 is thus slightly modi-

fied as showed in Algorithm 2.
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Input: Ordered sequence of M units & a set of inclusion

probs π1, ...,πM .

Return: vector of sample membership indicators of size M

Procedure: Visit unit j = 1 and select with probability π1.

If S1 = 1, collect y1 and I1

for j in 2 :M do

point unit j if Ij−1sj−1 = 1 then
select with probabilty 1

else
select with πj

end

if Sj = 1 then
collect yj and Ij

end

end
Algorithm 2: Cluster PoSA Algorithm

All the results showed in paragraph 2.1 still hold, but formulas

are sligthly modified.

For every pair (j, j ′) such that j = 2, . . . ,M and j ′ < j we have:

E(Sj ,Sj−1) = P (Sj = 1,Sj−1 = 1)

= P (Sj = 1|Sj−1 = 1)P (Sj−1 = 1)

=
[
1Ij−1 +πj−1(1− Ij−1)

]
E(Sj−1)

which allows for deriving:
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cov(Sj ,Sj ′ ) =


0 if j ′ , j − 1

E(Sj−1)
[
Ij−1 +πj(1− Ij−1)−E(Sj)

]
if j ′ = j − 1

(2.18)

An unbased estimator for the population mean/prevalence is then

given by:

ˆ̄YP oSA =
1
N

M∑
j=1

Nj∑
i=1

yij
Sj
E(Sj)

=
1
N

M∑
j=1

yj
Sj
E(Sj)

(2.19)

and the results on its variance still hold, but are slightly modified

as in Equation 2.18.

2.3 Preliminary empirical results on the PoSA

design

In this section we show some preliminary simulation results on the

PoSA design in order to stress its advantages and limitations and

compare it with the designs presented in Chapter 1. More specifi-

cally simulations focus on comparing UPCS, ACS, a sequential ap-

proach (SCPS) and PoSA with respect to (i) total survey costs, (ii)

ability to detect positive cases, (iii) sample size (which is fixed for

UPCS and SCPS and it is a random variable for PoSA and ACS) and

(iv) estimators properties.

As in Section 1.5, we simulated two artificial populations as-

sumed as possible TB prevalence survey scenarios. For the sake

of stressing the main advantages and limitations of our new strat-

egy, we show the same scenarios as in Section 1.5 (please refer to
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Figure 1.2). Recalling the characteristics of the populations, both

are composed by N = 200000 individuals evenly spread over a two-

dmensional space; the overimposed 15 × 15 grid generates a set of

M = 152 = 225 areas assumed as primary sampling units. The study

variable y has value 1 for population units that are TB positive cases

(represented as dots in the figure) and value 0 otherwise. The actual

population TB prevalence Ȳ ≈ 0.01. We assumed to have a perfect

guess of the true prevalence (0.01) and, according to the guidelines

given by WHO. According to WHO we determined that the required

sample size is n = 19729 individuals, that is a sample of m = 23 ar-

eas. The adaptive condition applied to ACS and PoSA is given based

on the prevalence guess. In fact, if pg is a good guess for the popula-

tion prevalence, it is reasonable to assume that if we encounter a unit

with area specific prevalence higher than that expected throughout

the population (yj > Njpg), we can assume to have encountered a

cluster of positive cases.

For all the compared designs, the total survey cost has been com-

puted based on the linear cost function given in 1.4 including (i)

a fixed cost, for instance for equipment and staff (c0 = 100000$);

(ii) a unitary cost for each selected area, for instance for transporta-

tion and installation of the moving lab in the selected location (c1 =

1000$); and (iii) a unitary cost for each individual data collected

in every selected area (c2 = 10$). We considered the advantage of

a careful route planning, easily accomodated by the sequential ap-

proach, by reducing by 20% the area sampling cost for SCPS and

PoSA, as well to those areas added adaptively in ACS.

In Figure 2.1 the main results on designs and on estimators are
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synthetised. Top panel refers to population 1 while bottom panel

refers to population 2. Notice that, as opposite to the modified HT -

estimator used for ACS, the distribution of the proposed estimator
ˆ̄YP oSA seems symmetric regardless of the distribution of variable y

in the population, that may be desirable, for instance, for interval

estimation. On the other hand, there seems to be a loss of efficiency,

especially in the less clustered population, with respect to the tra-

ditional HT estimator used in UPCS and SCPS. The latter seems to

be the most stable as it is based on a spatially balanced sample. The

loss in efficiency in PoSA estimator is due to the fact that, very small

samples with only few cases are possible, as well as large samples

with possibly a large number of cases. In fact, as showed in table

2.3, the final sample size, especially in population 2, is very vari-

able. Moreover, notice that the variability in the final sample size in

ACS, is due to additional units added because they satisfy a given

adaptive condition, while in PoSA, large samples are not always as-

sociated with additional cases. A control over the final sample size

may thus be desirable for reducing the variability of the proposed

estimator and ensuring that additional areas are areas with a large

number of cases.

The main objectives pursued with our proposed PoSA strategy

were to enhance case-detection and to control over final costs while

dealing with logistic constraints. With regards to the first character-

istic, we notice that the PoSA design is able to detect a much larger

number of cases as compared to traditional sampling designs, how-

ever its detection rate is not as high as that of ACS. This is due to the

fact that once a route is chosen, the PoSA design, as thought in this
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first and simplest formulation, does not allow for deviations, hence

sampling only subsequent units. In fact the route is tailored to deal

with logistic and cost constraints and it is not tailored on the shape of

the clusters (here we chose an up-and-down route, while the clusters

are circular). On the other hand, ACS follows the shape of the clus-

ters regardless of logistic constraints. As a consequence cases might

be missed more likely under PoSA than than under ACS. The final

sample size, as showed in table 2.3 is on average smaller than that of

ACS, although, as discussed in Section 2.1, its variability depends on

the structure of the study variable y in the population and it is not on

average equal to the sum of the initial inclusion probabilities (here∑M
j=1πj = 23 which is the number of areas to be sampled according

to the WHO design). More specifically when cases are more evenly

distributed throughout space (population 2) the average sample size

grows larger as well as its whole distribution. With regards to the fi-

nal survey costs, PoSA design manages to lower costs as compared to

ACS and it is able, differently from both UPCS and ACS to deal with

logistic constraints. However the large variability in the final sample

size leads to unpredictable final survey costs. In many applications,

especially when the survey cost per sampled unit is large, it may be

desireable to control the final survey costs by fixing the sample size.

In our inspirational example for instance, the planning of the survey

costs is important for ensuring the right budget, although during the

survey the budget needed may be revised and adjusted.

This preliminary empirical evidence give some clear indications

about the advantages of our proposed PoSA strategy as well as high-

lighing some weaknesses. The PoSA design at both the selection and
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Figure 2.1: MC distribution of estimators, of number of cases found

and of total survey costs for UPCS, ACS, SCPS and PoSA. Upper

panel refers to populaion 1, while lower panel refers to population 2

the estimation stage is easy to implement and thanks to adaptivity

it gives a larger number of detected cases as compared to traditional

sampling designs. Moreover it requires a lower budget compared

to ACS and there seems to be no large losses in efficiency compared

to the traditional estimator. However the final sample size, that, as

discussed, can potentially be as low as 0 and as large as N , is very
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variable hence adding instability to the total survey costs. The num-

ber of cases found is also very unstable, again due to the very large

variation in the final sample size. A larger stability in the final sur-

vey costs may be achieved with a control over the final sample size

although it is essential to keep the cases detection enhanced.

Our proposed PoSA strategy achieves the desirable design char-

acterictis (enhancing detection rate and allows for logistic constraints)

by maintaining a comparable efficiency at the estimation stage with

respect to the traditional banchmark design. At the same time the

randomness of sample size, its tendency to large variability with

highly likely small and very small samples, appear as the main is-

sues in urgent need of further developments. Therefore it seems rea-

sonable to pursue the development of an integrated strategy, though

controlling the variability in final sample size. In the next chapter

we will thus address the variability in the sample size and we will

propose a strategy able to control the final sample size.
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Chapter 3

Controlling the final sample

size

In many sampling situations, such as in the case of TB prevalence

surveys, a fixed sample size may be a desireable feature as, for in-

stance, it helps the planning of survey costs. The proposed PoSA

design enhances cases detection and deals with logistic constraints,

as expected by the integration of adaptive and sequential designs,

but it is characterised by a random sample size, with possibly large

variability. In our inspirational example of TB prevalence surveys,

as the budget needs to be fixed in advance, some sort of control over

the final sample size is needed. In this chapter, we first present an

adaptive strategy that controls the final sample size, highlighting its

advantages and limitatations of application in the case of TB preva-

lence surveys, and, more in general of surveying a rare and clustered

trait. Hence in the second part a proposal for controlling the final

sample size in a PoSA design is illustrated.
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3.1 Adaptive Web Sampling

One way to control the final sample size in adaptive designs is by

using adaptive web sampling [23] (AWS), This strategy was proposed

for sampling populations in network as well as in spatial settings.

We are here interested in its spatial version.

As opposed to ACS, the encountered clusters (i.e. groups of units

with a significant number of cases) do not need to be completely

sampled, but may be sampled partially according to how deep into

the high-values regions the sampler is interested in investigating.

Differently from ACS, the AWS sampling procedure stops when the

pre-fixed sample size is reached. Adaptive web sampling thus al-

lows to concentrate the survey effort in the sub-areas considered of

interest according to the observed survey values, while also contin-

uing the selection in areas where no units of interest have yet been

selected and controlling the final sample size.

In order to briefly illustrate AWS at both selection and estima-

tion stage, we need to add some notation specifically for this sam-

pling design. In addition to the set of j = 1, ...,M geographical areas

and the associated values yj , there is another variable of interest wjj ′

associated with any pair of areas j and j ′ (j , j ′) that describes rela-

tionships between j and j ′. We consider here the case in which wjj ′

is an indicator variable being equal to 1 if there is a link from area

j to area j ′, e.g. if the two units are neighbours, and wjj ′ = 0 other-

wise. Moreover, let us define the active set αt, as the set of sampled

units for which the adaptive condition is satisfied together with their

links to units that are not already in the sample at the t-step of the
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selection procedure.

The sampling procedure is as follows: first an initial sample s0 of

size m0 areas is selected by means of a traditional sampling design.

If the variable of interest yj for j ∈ s0 satsifies a chosen adaptive con-

dition yj > ymin, unit j together with yj and all the positive links

from j going to other units that are not already in the sample, are

included in the initial active set α0. The sampler can decide whether

to continue by adding a set of units at the time or by adding one unit

at the time. Here we give the details of the second choice, thus in

order to conclude the sampling procedure there are t = 1, ...,m −m0

additional steps, i.e. units to be selected. Once the initial sample is

selected and the initial active set α0 is defined, the next unit is se-

lected from a mixture distribution, so that with a chosen probability

p the unit is selected as one of the links out of the current active set

α0, and with probability 1 − p it is selected conventionally from the

set of units that are not yet in the sample. The probability p is chosen

large enough so that the probability of sampling links out from the

active set is higher than the probability of sampling other popula-

tion units. After each selection t the active set αt is updated and the

sampling procedure stops when all m units are selected. As men-

tioned, the adaptive selection can be made unit by unit or in waves.

Selection can be said to occur in waves if the active set remains con-

stant for several unit selections in a row, so that a whole group of

selections is based on a given active set. Notice that the probability

p can be used to seek a balance between spreading the sample out

with placing it adaptively in the areas with high prevalence.

At step t, let the current sample at step be st = ∪t−1
j=0sj , let mt be
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the number of units in the current sample and mαt be the number

of units in the current active set αt. Moreover let wαt+ be the total

number of links out from the active set αt to units not in the current

sample st andwαtj the number of links out from the active set to unit

j. The probability that a unit j is selected in the t-step is defined as:

ztj = p
wαtj
wαt+

+ (1− p)
1

(N −mst )

where 0 < p < 1. This means that with probability p one of the

links out from the current active set is selected at random, thus the

area connected to it is included in the sample, and with probability

1 − p the new sample unit is selected from the units not already in

the sample.

Thus the AWS sampling design is defined as:

p(s) = p0

M∏
j=1

m−m0∏
t=1

ztj

where p0 is the selection proability for the initial sample.

For the sampling setting above illustrated, different estimators

have been suggested [23]. Among these, the first and simplest one

is the estimator based on initial sample mean. With initial sample

size m0, let ˆ̄y01 be an unbiased estimator for the population mean

based only on the initial sample: ˆ̄y01 = 1/M
∑
j∈s0

yj /πj , where πj is

the probability of including unit j in the initial sample according to

the chosen sampling design. This estimator may be improved via

the Rao Blackwell method, finding the conditional expectation of

the preliminary estimator given the minimal sufficient statistic. The
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improved estimator is thus given by:

ˆ̄y1 = E( ˆ̄y01|dr) =
∑

s:r(s)=s

ˆ̄y01(s)p(s|dr) (3.1)

where dr is the set of reduced data that is the set dr = {(j,yj ,wj+,wjj ′ ), j ∈

s, j ′ ∈ s}.

For the first estimator, with the initial sample being a random

sample without replacement of m0 units, the variance estimator of

the initial sample mean is:

v( ˆ̄y0) =
(N −m0)v0

(Nm0)
(3.2)

where v0 is the sample variance of the initial sample.

Other unbiased estimators were proposed by Thompson such as

an estimator obtained by dividing observed values by conditional

selection probabilities that depend on the step-by-step active sets,

and two ratio estimators based on the ratio between an estimator

for M and an estimator for ȳ based on the conditional probability.

However they loose the simplicity in calculations that is here seeked

as an alternative to the traditional design suggested, for instance,

into the WHO guidelines.

Developments of the described selection procedure and their es-

timators have been suggested [24]. For instance, as already men-

tioned, the selection may be made in waves, or the selection of links

to follow may be made with unequal probabilities (see [23] and [24]

for further details).

With regards to the spatial applications of AWS, a recent devel-

opment is Spatially Balanced Adaptive Web sampling [13] (SBAWS).
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The idea is to combine a spatially balanced sampling procedure that

spreads the sample over space together with an adaptive sampling,

so that the sample is first spread as much as possible throughout

space and secondly, if regions of interst are detected, they are fur-

ther investigated via AWS. The spatially balanced design suggested

for drawing the initial sample s0 is a sort of spatially stratified sam-

pling, where no stratification variables are available and the strata

are built arbitrarily in order to divide the study area into several

parts of similar size. From each strata h = 1, ...,H a simple random

sample of m0h units is the drawn; the remaining m − Hm0h units

are selected step by step following the procedure of AWS. A modi-

fication to the estimator in Equation 3.1 is then proposed to allow

for stratification. With regards to our inspirational example of TB

prevalence surveys, guidelines do mention the possibility of using a

stratified design, however for simplicity we do not consider stratified

sampling in this first proposal of integration between sequentiality

and adaptivity.

AWS manages to control the final sample size, thus to reduce

costs as compared to ACS. However it does not allow for explicitly

controlling logistic constraints, as desireable due to the sampling

setting of developing countries. Moreover the estimators proposed

for AWS, may be complicated to implement, limiting their actual use

unless the estimation is limited to the initial sample. The improved

estimators, obtained by using the Rao-Blackwell version of the esti-

mators, may be implemented although this would require the listing

of all possible samples. The listing of all possible samples may be

avoided by using Monte Carlo Markov Chain methods, thus compu-
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tationally resources consuming.

The pursue to use an integrated strategy, such as the PoSA design,

thus seems reasonable, being easy to implement and accounting for

logistic constraints. In the next paragraph we thus continue on with

a proposal for controlling the final sample size in a PoSA design that

meets the requirment of being easy to implement, dealing with lo-

gistic constraints and enhancing cases detection.

3.2 CPoSA sampling design

In real sampling situations, a fixed sample size is a desireable fea-

ture as, for instance, it helps the planning of survey costs. The PoSA

design proposed in chapter 2 is able to over detect cases, naturally

accomodates for a predefined route and it is easy to implement, but

it is characterised by a large variability in the final sample size. As

the proposed design meets most of the desirable features, in this sec-

tion we consider again a Poisson-type design [26] but apply some

sort of control over the final sample size. More specifically we found

that often the sampling proposed PoSA procedure samples only few

units. Thus in this section, as a first proposal to control the final

sample size, we fix a minimum sample size in order to avoid too

small sample sizes. Notice that in this context, not having an upper

bound may be acceptable as long as the added units are only addi-

tional cases.

We call the proposed strategy Conditional Poisson Sequential Adap-

tive Sampling, CPoSA for short. CPoSA is still composed of a sequen-

tial component for dealing with logistic and cost constraints and of
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an adaptive component for enhancing cases detection.

Let us consider again a dichotomous study variable y being equal

to 1 if the unit is a case and 0 otherwise. Given the population U

ordered according to some auxiliary variable, units are visited fol-

lowing the chosen route. At the t-th step of the sequential selection,

unit i = t is/is not selected in the sample upon a Bernoulli trial. The

inclusion probabilities of the remaining units are thus updated ac-

cording to a chosen adaptive rule and also according to the number

of units so far selected.

More formally, given the adaptive condition yi > 0, i.e. yi = 1, and

a set of initial inclusion probabilities π1, ...πi , ...,πN with
∑N
i=1πi = n,

at t-th step of the sequential selection, unit i = t is certainly selected

(i.e. is selected with probability 1) if the previous unit i − 1 was

selected and the adaptive condition on i − 1 holds, otherwise it is

selected with the latest updated probability π(i−1)
i . Set, π(0)

i = πi for

i = 1, ...,N , the updated value of the inclusion probability for unit

i = t + 1, ...,N at the generic step t = 1, ...,N can be written as:

π
(t)
i =


1 if i = t + 1 and si−1yi−1 = 1

π
(t−1)
i − (St−1 −E(St−1))w(t)

i−t otherwise
(3.3)

where in this first proposal w(t)
i−t is chosen so that

∑N−t
i=1 w

(t)
i−t = 1.

In Section 2.1 we stressed that different choices for the weights leads

sampling designs with different properties. In this setting, we chose

to control the final sample size thus we chose to use weights with

unitary sum. The difference with the updating procedure discussed

in Section 2.1 is thus given by a different choice for the weights. For
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the sake of its simplicity, we considered the case in which w
(t)
i−t =

1/(N − t). Notice that, with this specific choise, weights depend only

on the row, meaning that on each row the inclusion probabilities are

updated with the same w(t)
i−t for i = t + 1, ...,N . The chosen updating

procedure assures that the sample size given by
∑N
i=1πi = n can only

be exceeded if a cluster, i.e. a group of units geographically close

and satisfying the given adaptive condition, is encountered. This

means that, differently from PoSA, we expect the additional units to

be cases only.

Analogously to Section 2.1, the distribution of the inclusion mem-

bership indicator Si is S1 ∼ Bernoulli(π1) = Bernoulli(π(0)
1 ) for i = 1,

while for i = 2, . . . ,N

Si ∼ Bernoulli(π
(i−1)
i )(1− yi−1P (Si−1 = 1)) + yi−1P (Si−1 = 1) (3.4)

where π(i−1)
i is given by the updating procedure as given in Equa-

tion 3.3.

The proposed CPoSA sampling procedure is synthetized in Algo-

rithm 3.
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Input: Ordered sequence of N units & a vector of

inclusion probs π.

Return: vector of sample membership indicators of size N

Procedure: Visit unit i = 1 and select with probability π1.

If S1 = 1, collect y1. Update inclusion probabilities for

units 2-N.

for t in 2 :N do

point unit i = t and select with probability π(t−1)
i if

St = 1 then
collect yt

end

for i in (t + 1) :N do

if ytst = 1 and i = t + 1 then

π
(t)
i =1

else

π
(t)
i = π(t−1)

i − (St −E(St))w
(t)
i−t

end

end

end
Algorithm 3: CPoSA Algorithm

The expectation of the conditional sample membership indicator

is, for i = 1, E(S1) = π1 and for i = 2, ...,N :

E(Si) =


1 if si−1yi−1 = 1

π
(i−1)
i otherwise

(3.5)
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Notice that π(i−1)
i coincides with the value of the initial inclusion

probability updated for individual i at the step before being selected,

thus when t = i − 1.

The expectation of Si under the CPoSA design can also be written

as follows:

E(Si) = E(Bernoulli(π(t−1
i ))(1− Si−1yi−1) + Si−1yi−1)

= π(t−1)
i E(1− Si−1yi−1) +E(yi−1Si−1)

= π(t−1)
i −π(t−1)

i E(Si−1)yi−1 +E(Si−1)yi−1

Estimation under CPoSA design

Similarly to PoSA, a trivially unbiased esimator for the population

mean/prevalence Ȳ can be easily derived:

ˆ̄YCP oSA =
1
N

N∑
i=1

yiSi
E(Si)

(3.6)

In practice, the design weights to be used in Equation 3.6 can

easily be identified and may be calculated according to the sample

selected for all the population units (although it is not necessary).

Table 3.1 represent the values to be used as design weights according

to the selected sample.

Notice that π(i−1)
i is the value of the inclusion probability updated

at step previously to making a decision about the inclusion the i-

th individual. Thus the CPoSA design can be represented with the

updating matrix given in chapter 1.4 and the updating prodecure as

given in Equation 3.3. Notice that for i < t = 1, ...,N , E(Si) = π
(i−1)
i ,

while for i = 1, E(S1) = π1. It follows that, a ready-to implement
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Table 3.1: deign weights in CPoSA estimator

si−1 yi−1 design weight for unit i

0 0 π
(i−1)
i

0 1 π
(i−1)
i

1 0 π
(i−1)
i

1 1 1

formula for calculating an estimate for the population prevalence is

given by:

¯̂YCP oSA =
1
N

∑
i∈s

yi

π
(i−1)
i

The variance for the CPoSA estimator has the same form of that

given in Equation 2.13, however the computation of the second order

inclusion probabilities needs further investigation.

3.3 CPoSA in the example of TB prevalence

surveys

In the case of our inspirational example of TB prealence surveys, the

sampling units are geographical areas and, once a geographical area

is included in the sample, all the individuals that belong to that area

are included in the final sample. In this section we present the exten-

tion of our proposed CPoSA design to the case of cluster sampling,

where the sampling units are geographical areas. As noticed in chap-

ter 2, the word “cluster” is here used as in traditional sampling, for
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indicating a group of individuals that are naturally grouped into the

same primary unit. In order not to generate confusion, from now on

we refer to areas or primary units, meaning the unit j, j = 1, ...,M

that partition the population of N individulas i = 1, ...,N . The geo-

graphical areas j are thus the primary sampling units.

Using the notation as given in Section 1.1, we consider the usual

simplification, also inspired by the our inspirational example of TB

prevalence surveys, in which yij = 1 if individual i in area j is a TB

case and 0 otherwise. Thus the number of cases in unit j is yj =∑
i∈j yij . Let ymin ∈ N be a threshold chosen such that the following

(adaptive) condition qualifies j as a unit with a significant number

of cases:

yj =
Nj∑
i=1

yij > ymin

Notice that if we look at the prevalence instead of the total num-

ber of cases, we can refer to the prevalence for unit j as ȳj =
∑
i∈j yij /Nj .

The threshold that qualifies unit j as a unit with a significant num-

ber of cases is thus ȳmin ∈ (0,1) and the adaptive condition is the

following:

ȳj =
1
Nj

Nj∑
i=1

yij > ȳmin (3.7)

In the case of geographical areas, we need to define an indicator

Ij taking value 1 if the adaptive condition (3.7) holds in unit j, and 0

otherwise.

Moreover a set of initial inclusion probabilities π(0)
j = πj is given

for the ordered sequence of all units j = 1, . . . ,M, that may be pro-
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portional to the area size Nj .

At the t-th step of the sequential selection, unit j = t is certainly

selected (i.e. is selected with probability 1) if the adaptive condition

(3.7) holds for the previous unit j − 1, otherwise it is selected with

probability π(j−1)
j . The probability π(j−1)

j is the probability of select-

ing unit j at step t = j and it is the initial inclusion probability op-

portunily updated at step j−1. More specifically, similarly to he pre-

vious section, the initial inclusion probabilities for unit j = t+1, ...,M

are updated at each step t as follows:

π
(t)
j =


1 if j = t + 1 and stIt−1 = 1

π
(t−1)
j − (St −E(St))w

(t)
j−t otherwise

(3.8)

Algorithm 3 is thus slightly modified as showed in algorithm 4.
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Input: Ordered sequence of M units & a vector of

inclusion probs π.

Return: vector of sample membership indicators of size M

Procedure: Visit unit j = 1 and select with probability π1.

If S1 = 1, collect y1 and I1. Update inclusion probabilities

for units 2-M.

for t in 2 :M do

point unit j = t and select with probabilty πj−1
j if

Sj = 1 then
collect yj and Ij

end

for j in (t + 1) :M do

if Itst = 1 and j = t + 1 then

π
(t)
j =1

else

π
(t)
j = π(t−1)

j − (St −E(St))w
(t)
j−t

end

end

end
Algorithm 4: Cluster PoSA Algorithm

An unbiased estimator for the population mean/prevalence is

then given by:

ˆ̄YCP oSA =
1
N

M∑
j=1

Nj∑
i=1

yij
Sj
E(Sj)

=
1
N

M∑
j=1

yj
Sj
E(Sj)

(3.9)

where the design weights are given by:
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E(Sj) =


1 if sj−1yj−1 = 1

π
(j−1)
j otherwise

(3.10)

where π(j−1)
j is the updated inclusion probability at step t = j − 1

as given in Equation 3.3.

3.4 Preliminary empirical results on the CPoSA

design

Following the structure of the previous chapters, we again show here

some empirical evidence in order to compare the proposed strategy

with the existing designs and stress its advantages and limitations.

In particular we focus here on comparing UPCS, AWS, PoSA and

CPoSA with respect to (i) total survey costs, (ii) ability to detect pos-

itive cases, (iii) sample size and (iv) estimators properties.

For the sake of illustration we show a small simulation study with

the two populations presented in chapter 1 (Figure 1.2). Recall that

the two populations considered share the same size N = 200000 in-

dividuals that are evenly distributed over a two dimensional space.

A 15× 15 grid was overimposed and produced a population of M =

152 = 225 areas to be sampled as primary sampling uinits, in a two

stage design with inclusion into the final sample of all population

(secondary) units inlcuded into every selected area. The study vari-

able y is the usual binary variable indicating presence/absence of

TB. The actual population TB prevalence Ȳ ≈ 0.01 and we assumed

to have a perfect guess of the true prevalence. The sample size is
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n = 19729 individuals (see Section 1.2 for details on the calcula-

tions), leading to a sample of m = 23 areas. The adaptive condition

for all adaptive designs was set to yj > Njpg .
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Figure 3.1: MC distribution of estimators (red line indicates the true

population prevalence), of number of cases found and of total sur-

vey costs for UPCS, AWS, PoSA and CPoSA. Upper panel refers to

populaion 1, while lower panel refers to population 2

Figure 3.1 synthetises the MC distribution of the estimators, num-

ber of cases and of the total survey costs (as calculated following cost
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function given in Equation 1.4). Top panel refers to population1

while bottom panel refers to population 2. Notice that, the proposed

PoSA estimator seems not to loose efficiency as compared to the tra-

ditional estimator in population 1, although when the population is

less clustered, as expected the proposed estimators seems to perform

worst than the traditional ones. This is expected as the PoSA strate-

gies are designed to work well for rare and clustered populations. It

is remarkable to notice that the CPoSA estimator is characterised by

a large number of outliers in the right end of its MC distribution.

This is due to the fact that large samples in CPoSA are associated

only with situations of large oversampling of cases. In fact, while

the variability in the final sample size given by the PoSA procedure

is due to both the fact that is based on Poisson sampling and that

it allows for a flexible sample size, in CPoSA, if no cases are sam-

pled, then the sample size is fixed. Moreover, notice that the pro-

posed CPoSA procedure avoids the risk of sampling only few units

as showed in both Table 3.2 and in Figure 3.1 by looking at the left

end of the MC distribution of the estimators.

In terms of cases detection, although the sample size in CPoSA

has been controlled (Table 3.2) the proposed procedure does not

loose its ability of overdetecting cases as compared to PoSA. The

CPoSA design is still a sampling design with random sample size

but by introducing a minimum sample size, it manages to lower the

variability in the final survey costs and in the final sample size as

compared to PoSA. As compared to AWS, CPoSA is simpler to im-

plement, is able to spot more cases and to account for logistic con-

straints, but AWS performs better in terms of costs control, being a
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design with fixed sample size.
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Chapter 4

Empirical evidence

In the previous chapters we discussed the main reasons for the de-

velopment of a strategy that combines sequentiality and adaptivity,

and showed its performance in some preliminary simulation stud-

ies. We compared them with ACS, AWS, SCPS and the traditional

UPCS design, highlighting advantages and limitations of all strate-

gies. This chapter aims at comparing the two proposed strategies,

namely PoSA and CPoSA, with the traditional UPCS design currently

in use by WHO by means of an extensive simulation study. The main

features of the designs as well as the behaviour of the estimators are

compared under different scenarios aiming at reproducing realistic

TB prevalence survey situations. As noticed in the preliminary sim-

ulative results shown at the end of chapters 1, 2 and 3, the design

properties as well as estimators’ heavily depend on the distribution

of the study variable y. Thus the different simulated scenarios are

first described in details and secondly relevant simulation results

are showed.
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4.1 Objective of the simulation study

The main objective of the simulation study presented in this chapter

is to provide empirical evidence of the advantages of the integra-

tion of adaptive and sequential procedures. Using the design im-

plemented by WHO as a benchmark, we thus compare the proposed

sampling strategies with UPCS with respect to:

(i) ability to detect cases: enhanced detection rate is a desirable

feature in the inspirational example of TB prevalence surveys,

since every found case, will be treated. Notice that enhanced

case detection may also allow to better study the risk factors of

TB, hence having a better understanding of its epiedmiology,

and it may allow for subnational estimates.

(ii) survey costs: reducing survey costs means being able to find as

many cases as possible with the same budget

(iii) estimators properties: all proposed estimators are unbiased, hence

the focus is on evaluating their efficiency as compared to the

traditional ones

In the following sections we investigate different scenarios in or-

der to show how the population and the design characteristics com-

bine and influence the three features under discussion.

4.2 Preliminary simulation results

In adaptive sampling, results on the estimators’ properties as well as

on the ability to over detect the trait of interest, heavily depend on
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the distribution of the study variable y, more specifically on its ho-

mogeneity throughout the geographical areas. In order to describe

the homogeneity/dishomogeneity of the distribution of the study

variable, we can use the coefficient of between areas variation k as

defined in Section 1.2. When the study variable is unevenly dis-

tributed over space (k is high), adaptive designs tend to perform well

with any kind of adaptive condition. For instance, in the extreme sit-

uation in which cases are located only within clusters and there are

no positive cases outside (that is the case in which yj > 0 in the clus-

ters and yj = 0 anywhere else), sampling procedures based on any

adaptive condition yj > ymin with ymin > 0 are able to discriminate

whether the sampler is visiting a cluster or not. The sample size

would thus increase as compared to non adaptive designs, but in

all added areas the prevalence is likely to be high and, unless clus-

ters are very large, the sample size only moderately increases. On

the other hand, in a situation in which the area specific prevalences

are very similar, yielding very small values of k, only a deep know-

eldge of the distribution of the study variable and thus an accurate

choice of the the threshold ymin would make the procedure able to

discriminate between clusters and non-clusters. If the threshold for

the adaptive condition is chosen accurately, only few areas may be

added, otherwise adaptive designs without a fixed sample size may

include too many additional units.

It is thus reasonable to combine parameters that influence the

population characteristics (population parameters) and those that

influence the way the sampling design itself is carried out, such as

the threshold ymin for adaptivity (design parameters). These are:

75



CHAPTER 4. EMPIRICAL EVIDENCE

1. the population size (N )

2. the population prevalence (Ȳ )

3. the number of clusters (B), that is the number of groups of ar-

eas with a higher prevalence of cases compared to the rest of

the population

4. the size of the grographical areas (Nj) that is defined by the

refinement of the grid

5. the clusters’ prevalence, that is defined by the % of cases within

clusters, i.e. q =
∑B
b=1

∑
j∈b

∑Nj
i=1 yij /

∑M
j=1

∑Nj
i=1 yij (notice that

the higher q, the higher ȳj , j ∈ b)

6. the threshold ymin

The population size was found to be uninfluential, thus it was ar-

bitrarily set to N = 250000. Parameters (2)-(5) combine together

and may be summarised in the coefficient of between areas vari-

ation k. Specifically, their combinations influence the homogene-

ity/dishomogeneity of the study variable y over the population, thus

they contribute to generating populations with different k as shown

in Figure 4.1. We fixed 3 prevalence levels (Ȳ = 0.01, Ȳ = 0.005,

Ȳ = 0.001), 4 levels of clusters (B = 3, B = 6, B = 10 or B = 20 clus-

ters), 3 levels of refinement of the grid (10 × 10, 15 × 15, 25 × 25

grid) and 5 levels of clusters’ prevalence (q = 0%, q = 20%, q = 40%,

q = 60%, q = 80%). Fixing the prevalence at 0.005 for instance, the

coefficient of between areas variation increases as the overimposed

grid gets thinner, i.e. as the geographical areas are smaller. Fixing

the percentage of cases within clusters, the prevalence between the
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geographical areas is less variable as the number of clusters gener-

ated gets higher. In general, clusters’ prevalence, positively influ-

ences k, while the other parameters negatively influence k.

We found that the coefficient of between areas variation k is in the

range 0.1876 − 3.4, reaching as low as 0.1876 when the geograph-

ical areas are large (Nj ≈ 2500 individuals j = 1, ...,M, M = 100)

and when the population prevalence is high (third panel of Figure

4.1). The maximum is reached with a very thin overimposed grid,

i.e. geographical areas of size about Nj ≈ 400 individuals j = 1, ...,M

(M = 625), with low prevalence and with few clusters (B = 3) with

q = 80% .

Parameter (6) is a design parameter, meaning that it only influ-

ences the way the design is carried out and thus does not contribute

to generating different populations. In adaptive designs, the choice

of a good threshold for the adaptive condition is essential for being

able to discriminate when a cluster is encountered and when it is not,

especially when k is low. If the chosen threshold is too low, the num-

ber of additional units added by adaptive designs is very large, in-

flating survey costs and possibly detecting only few additional cases.

On the other hand the risk of choosing a too high threshold ymin is

that clusters may be skipped thus not being able to oversample cases.

We may expect that (6) affects the ability to detect cases as well as

the final survey costs and the efficiency of the estimators.

The following two different thresholds ymin for the adaptive con-

dition are chosen:

(a) ymin = Ȳ

(b) ymin =max{Ȳ /2,minj{ȳj}}
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Figure 4.1: The coefficient of between areas variation with different

levels of population prevalence Ȳ , number of clusters, percentage of

cases within clusters and refinement of the grid

As mentioned above, we expect that when the between areas vari-

ation is low, there is a large difference between the sample size given

by (a) and that given by (b), while when the between areas variation

is high, the choice of any of the above thresholds is equivalent.

The combinations of the described parameters yield 180× 2 sce-

narios. We carried out some preliminary simulations in order to se-

lect the parameters that are actually influential and those that are

not. A major simulation parameter is the coefficient of between ar-

eas variation k, as well as the threshold ymin for the adaptive condi-
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tion. In the next paragraph we give details about the choice of the

scenarios and of the population parameters combination.

4.3 Simulation scenarios

Out of all the possible scenarios we fixed N = 250000 individu-

als, Ȳ = 0.005 and B = 3, that means that cases are concentrated

in three main clusters. The value for the prevalence and for the

number of clusters were chosen because they seem the combina-

tion that better allows for variations in k as shown in Figure 4.1.

We focused on 6 levels of coefficient of variation, specifically k =

{0.5,1.0,1.5,2.0,2.5,3.0}. The six populations are represented in Fig-

ure 4.2 and details about them are summarised in Table 4.1. All pop-

ulations have B = 3 clusters except for population 1 where there are

no clusters. Populations 2-6 have an increasing percentage of cases

within clusters up to population 6 where 80% of cases are located in

the three clusters.

The populations were entirely built in the R environment using

the library spatstat. Once the desired prevalence Ȳ was set, the

number of positive cases Ȳ N to be allocated in the two dimensional

space was defined and positioned in space as follows: first, the cen-

ters of the B clusters were assigned coordinates, i.e. were randomly

positioned in the two-dimensional space; secondly, the chosen per-

centage of positive cases was equally assigned within B circles with

center assigned in the previous step and with a predefined radius;

the remaining Ȳ N (1 − q) cases were then randomly assigned other

coordinates. Last, a regular grid was overimposed over the popula-
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Population N̄ q k

Population 1 1111 0% 0.5

Population 2 400 20% 1.0

Population 3 400 40% 1.5

Population 4 1111 60% 2.0

Population 5 2500 80% 2.5

Population 6 400 80% 3.0

Table 4.1: The six populations considered in the simulation study,

listed together with their main features: average area size N̄ , per-

centage of cases located inside the clusters q and coefficient of be-

tween areas’ prevalence variation k

tion yielding M geographical areas of average size equal to N̄ indi-

viduals.

Since all estimators are analitically unbiased, we controlled the

Monte Carlo error with their empirical bias. We fixed the number of

simulations runs to 5000 iterations, which guaranteed the MC bias

to be < 0.5% for all the 3 estimators at any level of k.

Referring to the three main objectives given in Section 4.1, the

performance of the proposed strategies was evaluated using the fol-

lowing MC measures of empirical performance:

(i) ability to detect cases: it is evaluated with the ratio of the num-

ber of cases found with the PoSA/CPoSA sampling strategy

over the cases found with UPCS,
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Population 1 Population 2 Population 3

Population 4 Population 5 Population 6

Figure 4.2: The six populations considered in the simulation study;

Ȳ = 0.005, dots represent cases

∑
j∈sP oSA,r yj∑
j∈sUPCS,r yj

;

∑
j∈sCP oSA,r yj∑
j∈sUPCS,r yj

r = 1, ...,5000

Moreover, in order to account for the sample size, thus mak-

ing sure that our method is able to add units only if they have

a significant number of cases, we considered the net ability to

detect cases:

∑
j∈sP oSA,r yj /nP oSA,r∑
j∈sUPCS,r yj /nUPCS,r

;

∑
j∈sCP oSA,r yj /nCP oSA,r∑
j∈sUPCS,r yj /nUPCS,r

r = 1, ...,5000

(ii) survey costs: as survey costs linearly depend on the sample size,

we take into account both final costs and final sample size.

Thus, we give three MC measures that are:
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(a) final survey costs

CP oSA,r
CUPCS,r

;
CCP oSA,r
CUPCS,r

r = 1, ...,5000

where C is the final survey costs and is calculated as fol-

lows:

C = c0 + c1m+
∑
j∈s

Njc2 (4.1)

where c0 is the fixed survey cost (c0 = 100000 dollars),

c1 is the survey cost for each sampled geographical area

(c1 = 1000), m is the number of geographical areas sam-

pled, and c2 is the survey cost for each individual within

a sampled geographical area (c2 = 10 dollars). Moreover,

a 20% discount was applied to sequential designs (PoSA

and CPoSA) for the planning of the route.

(b) final sample size

∑5000
r=1 nP oSA,r∑5000
r=1 nUPCS,r

;
∑5000
r=1 nCP oSA,r∑5000
r=1 nUPCS,r

r = 1, ...,5000

(c) cost per detected case, that is the cost for spotting one single

case

CP oSA,r /
∑
j∈sP oSA,r yj

CUPCS,r /
∑
j∈sUPCS,r yj

;
CCP oSA,r /

∑
j∈sCP oSA,r yj

CUPCS,r /
∑
j∈sUPCS,r yj

r = 1, ...,5000

(iii) stability: it is evaluated through an efficiency comparison, that

is the ratio of the root mean squared error (RMSE) of the PoSA/CPoSA
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sampling strategy over the root mean squared error (RMSE)

given by UPCS

√∑5000
r=1 [ ˆ̄YP oSA,r − Ȳ ]2√∑5000
r=1 [ ˆ̄YHT ,r − Ȳ ]2

;

√∑5000
r=1 [ ˆ̄YCP oSA,r − Ȳ ]2√∑5000
r=1 [ ˆ̄YHT ,r − Ȳ ]2

4.4 Results

According to WHO we assumed a 0.5 coefficient of between areas’

prevalences variation thus determined the required sample sizes in

all populations (see Chapter 1.2 for further details), hence the num-

ber of areas to be sampled is calculated and the chosen sample size

according to the two scenarios.

Figures 4.3-4.5 refer to the design features and show the MC first

quartile, median and third quartile of the above described quanti-

ties.

The ability to detect cases (Figure 4.3) in PoSA and CPoSA is

nearly equal, meaning that the constraint on the sample size does

not reduce detectability. In both proposed sampling strategies the

detection power is increased as compared to the traditional WHO

design. In fact they are able to detect, for all levels of between ar-

eas variation and for all considered scenarios, at least an additional

20% of cases. In all scenarios it seems that as the variability be-

tween the areas specific prevalence increases, the ability to detect

cases as compared to UPCS is more variable. In fact, in populations 5

and 6, where the three clusters contain 80% of the population cases,

the proposed designs either detect no additional cases compared to
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UPCS (first quartile) or nearly all cases (third quartile). The peak

in the number of cases detected by PoSA and CPoSA procedure in

population 1 with threshold (b) (top right panel), is due to the fact

that many areas satisfy the adaptive condition and thus many addi-

tonal areas are included in the final sample. However, when k < 1

the adaptive process with a too low threshold ȳ fails at spotting areas

with a significant number of cases, as the percentage of cases found

in the sample is very similar to that given by UPCS. Notice that, as

previously mentioned, the ability to over detect cases is essential not

only for treating as many cases as possible, but also for allowing sub-

regional estimates.

CPoSA was introduced to reduce the variability in the final sam-

ple size that seemed the largest limitation of PoSA. More specifi-

cally with PoSA design, we highlighted the risk of sampling only

few units, thus we concentrated on setting a lower bound for the

final sample size. In Figure 4.4, a comparison between the MC dis-

tribution of the sample size of CPoSA and PoSA is shown as well

as their comparison with UPCS. Although the medians of the final

sample size in PoSA and CPoSA seem to overlap, the distribution of

the sample size in CPoSA appears to be less variable, with the third

and first quartile being closer to the central part of the distribution

compared to PoSA. By using the CPoSA design we manage not only

to avoid the problem of an extremely low sample size, but its use also

seems to reduce the chance of samping too many areas. Moreover,

by construction, every time the minimum sample size is exceeded,

the sampling procedure adds geographical areas with a large num-
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Figure 4.3: Measures of cases detection. Left panels refer to scenario

(a) and right panels refer to scenario (b). Top two panels show the

MC distribution of the number of cases ratio and the bottom two

panels refer to the the MC distribution of the net detected cases ratio.

ber of cases. In fact, whereas the sample size in PoSA is variable even

when clusters are not encountered, CPoSA allows for increasing the

sample size only if a cluster is encountered.

In all proposed scenarios, the final sample size is always greater

than that used by WHO. The choice of a good adaptive condition and
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Figure 4.4: Measures of cost. Left panels refer to scenario (a) and

right panels refer to scenario (b). Top two panels show the MC dis-

tribution of sample size ratio, the central two panels refer to the the

MC distribution of total survey costs ratio, the bottom two panels

refer to the MC distribution of the cost per spotted case ratio.
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the planning of a route that minimises survey costs is thus essential

in order to improve the probability that the additional sampled units

are cases. The peak in the sample size produced by the proposed de-

signs in population 1 given a lower threshold ymin (top left panel), is

due to the fact that many areas satisfy the given adaptive condition.

However, as noticed for the ability to detect cases, the adaptive pro-

cedure fails at spotting areas with a significant number of cases.

Final survey costs linearly depend on the final sample size as

shown in equation 4.1. The variability in the final survey costs given

by the CPoSA design is smaller than the variability given with the

PoSA design, due to a smaller variability in the final sample size.

As compared to UPCS, if k is very low, there is no costs reduction,

while as the between area variation increases there is a larger reduc-

tion in final survey costs. The increase in survey costs is however

compensated by a gain in spotted cases, as shown in Figure 4.3. The

cost reduction should thus be commented together with a measure

that takes into account the number of spotted cases. In the bottom

panel of Figure 4.4, we notice that the cost required to find one case

is always lower than or equal to that of UPCS. From the top panel of

Figure 4.4 we noticed that the final sample size found with the pro-

posed designs is always higher than that found with the traditional

WHO design, although only when k ≥ 1 the added areas have a large

number of cases (Figure 4.3). The cost to spot one case is, however,

equal or lower than that required when the sampling design used is

the traditional UPCS. Notice that, again, the cost to spot a case with

our proposed strategies is more variable as the variability between
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areas increases. Last, notice that although variability increases as k

gets higher, the peak coincides with the situation where high k is

combined with a large size of the geographical areas (k = 2.5 coin-

cides with N̄ = 2500). This suggests that the choice of the areas’ size

should be taken into account in the survey planning. More specif-

ically, the choice of smaller areas’ size may help reducing the vari-

ability in the final costs as well as helping to spot more cases with

the same budget. Further research may thus address the choice of

the areas’ size.
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Figure 4.5: MC root mean squared error of PoSA and CPoSA esti-

mates over MC root mean squared error of UPCS. Left panel refers

to scenario (a) and right panel refers to scenario (b)

Last, Figure 4.5 contains the comparison of the MC root mean

squared error of the proposed estimators is compared with the tra-

ditional HT estimator. Results are presented as the ratio of the MC

root mean squared error of PoSA/CPoSA design over that of UPCS.

For k ≤ 1 there seems to be a loss in stability in all scenarios. How-
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ever as the variability in the between areas prevalences increases the

final estimator seems to become more stable as compared to the tra-

ditional HT estimator and there are no losses of efficiency in any

of the considered scenarios. This suggests that in populations for

which k ≥ 1.5, PoSA and CPoSA meet the features described as desir-

able (enhanced case detection, lower costs and ability to account for

logistic constraints), the produced estimators do not lose in stability

and they are also easy to implement.

Choosing a different population prevalence or a different num-

ber of clusters does not change the overall results on cases, costs

and efficiency, but it may affect the variability of the results. Fig-

ure 4.6 represents the discussed MC measures for the threshold (a),

Ȳ = 0.005 and B = 6, while Figure 4.7 shows the MC measures for the

threshold (a), Ȳ = 0.01 and B = 3. With a larger number of clusters

and equal prevalence, the behaviour of the performance measures is

the same as discussed above, but the variability in all the MC mea-

sures of performance seems lower. If there are more clusters in fact,

the distribution of the MC measures are more likely to be close to

the central part of the distribution, lowering the variability. For in-

stance, the number of cases found is less variable when cases are

concentrated within 6 clusters other than when they are only in 3

clusters. On the other hand, with a higher prevalence and the same

number of clusters there seems to be no difference in terms of per-

formance of the proposed strategies.

So far we presented results on 6 populations combined with 2 dif-
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Figure 4.6: MC performance measures for 4 populations with N =

250000, Ȳ = 0.005, B = 6, k = {0.5,1.0,1.5,2.0} and scenario (a). From

top left to bottom right, MC distribution of: ratio of the number

of detected cases, ratio of net detected cases, ratio of sample size,

ratio of the total survey costs, ratio of the cost per spotted case,

root mean squared error of PoSA and CPoSA estimates over MC root

mean squared error of UPCS

ferent design parameters (a) and (b) (Figures 4.3-4.5), 4 populations

combined with only one design parameter (a) (Figure 4.6) and then
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Figure 4.7: MC performance measures for 6 populations with N =

250000, Ȳ = 0.01, B = 3, k = {0.5,1.0,1.5,2.0,2.5,3.0} and scenario

(a). From top left to bottom right, MC distribution of: ratio of the

number of detected cases, ratio of net detected cases, ratio of sample

size, ratio of the total survey costs, ratio of the cost per spotted case,

root mean squared error of PoSA and CPoSA estimates over MC root

mean squared error of UPCS.
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on 6 populations combined with (a) (Figure 4.7). Moreover simu-

lations on the initial 6 populations combined with four additional

design parameters (relative to the prevalence guess) were ran but

are not presnted as results are very much similar to those in Figures

4.3-4.5. The MC performance measures are calculated on the 46 dif-

ferent scenarios and summary statistics are presented in Tables 4.2

and 4.3.

The final number of cases found with PoSA design is often larger

than that found with the traditonal UPCS design, although it is fairly

variable. The quartiles for the final number of cases found with the

PoSA design over UPCS are very similar to those of the ratio of the

number of cases found with CPoSA over the traditonal design. This

means that although controlling the final sample size, the CPoSA

design does not lose the ability to over-detect cases. In fact the min-

imum sample size is only exceeded when areas with a large number

of cases are encountered.

In the preliminary simulation results given in Chapter 2, we high-

lighted the risk of sampling only few units when using the PoSA

strategy. The aim of CPoSA of ensuring a minimum number of ar-

eas to be sampled is perfectly attained as shown in the first panel

of Figure 4.4. Moreover we notice here that in general the CPoSA

variability in the final sample size, as measured with a coefficient of

variability, is reduced as compared to PoSA. In terms of efficiency,

averaging the results on all populations shows that the average loss

of stability is of about 35%. Thus together with the large loss of sta-

bility registered at k = 0.5 there seems to be a gain in stability when

k ≥ 2 while for the intermediate levels the PoSA estimator performs
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4.4. RESULTS

Statistics
Detected

cases

Survey

costs
Sample size Efficiency

1st quart. 1.27 1.08 1.14 1

median 1.78 1.21 1.34 1.09

3rd quart. 2.56 1.39 1.59 1.37

average 2.16 1.30 1.45 1.27

cv 0.85 0.31 0.37 0.34

Table 4.2: PoSA: Detected cases ratio, total costs ratio, sample size

ratio and effiiciency ratio. Elementary statistics over 46 simulated

populations

similarly to UPCS.
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Statistics
Detected

cases

Survey

costs
Sample size Efficiency

1st quart. 1.31 1.11 1.18 1.02

median 1.77 1.21 1.33 1.08

3rd quart. 2.53 1.34 1.52 1.43

average 2.16 1.29 1.44 1.35

cv 0.69 0.27 0.32 0.45

Table 4.3: CPoSA: Detected cases ratio, total costs ratio, sample size

ratio and effiiciency ratio. Elementary statistics over 46 simulated

populations
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Chapter 5

Conclusions and research

perspectives

In this thesis a new sampling strategy is proposed for sampling a rare

and clustered population under both cost and logistic constraints.

It is motivated by the example of national TB prevalence surveys,

promoted by WHO in countries with a high TB-burden. The char-

acteristics of the trait to sample (rare and clustered) in combination

with the pecularities of the countries (mainly located in developing

areas, hence not all areas are equally accessible) motivate the need

for a non-traditional sampling design. In particular it may be desir-

able to use a sampling strategy that is able to over detect TB cases,

as every found case is a treated one, while taking into account cost

and logistic constraints.

We proposed a Poisson-type sampling design named Poisson Se-

quential Adaptive (PoSA) with the two main purposes of i) increas-

ing the detection rate of positive cases; and ii) reducing survey costs

by accounting for logistic constraints at the design level of the sur-
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vey. PoSA is a simple strategy composed by both an adaptive com-

ponent, able to over detect cases and a sequential component for

dealing with costs and logistic constraints. An unbiased HT-type es-

timator for the population prevalence (mean) is derived based on de-

sign weights that adjust for both the over-selection bias and for the

conditional structure induced by the sequential selection. We also

proposed an exactly unbiased estimator for its variance in a closed

form and ready to implement for actual computation. We showed

some preliminary simulation results which highlighted the poten-

tials of PoSA for enhancing cases while considering logistic issues.

Our preliminary simulations also highlighted the need for some sort

of control over the final sample size. In fact the PoSA design as

thought of in this first proposal, allows for a random sample size,

being, sometimes extremely low.

Motivated by the achievements obtained with PoSA, we consid-

ered again a Poisson-type design but we fixed a minimum sample

size, by updating, at every step of the sequential selection, the in-

clusion probabilities of all the units left to sample by using the pro-

cedure discussed in Chapter 2. In fact this flexible updating system

allows to modify step by step the inclusion probabilities of units not

yet in the sample and to obtain a sequential sampling design with

predefined characteristics, such as fixed sample size. We called this

method Conditional Poisson Sequential Adaptive design (CPoSA)

and an HT-type estimator was developed under this design. The

mothod allows for relaxing the assumption of a fixed sample size

only if clusters are encountered.

By means of an extensive simulation study, we showed the be-
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haviour of the proposed strategies under different scenarios aim-

ing at representing possible TB prevalence sampling settings. More

specifically, following WHO guidelines, we considered the survey

area divided into goegraphical areas of population units. We sim-

ulated populations with different levels of cases clusterisation by

modifying the between areas prevalence variability. The two pro-

posed strategies were then compared with the traditional strategy

reccommended in the WHO guidelines with regards to ability to

detect cases and cost control. Both PoSA and CPoSA procedures,

thanks to their adaptive component, are able to spot more cases than

the traditional procedure suggested by WHO, for any level of be-

tween areas variability. In particular, as expected by adaptive de-

signs, as the variability between areas prevalence increases, the abil-

ity to over detect cases increases. It is remarkable that, although the

sample size in the proposed CPoSA design increases as compared

to the traditonal design, the added units are always cases, meaning

that the additional cost is used only to spot additional cases. In other

words the difference in the sample size given by the CPoSA design

is due to the addition of positive cases, meaning that the cost to spot

one case is lower in the proposed design as compared to traditional

designs.

The proposed estimators are very easy to implement as compared

to other estimators proposed for adaptive strategies. Moreover when

the variation between the areas prevalences is high, the proposed

estimators do not loose in efficiency. However when cases are not

clustered or only slightly clustered, our proposed estimators loose

in efficiency as compared to the traditional HT estimator. The loss
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in efficiency is due to the fact that, when cases are only sligthly clus-

tered, the sample size yielded by our proposed designs is more vari-

able than when cases are highly clustered. Notice however that the

proposed design is intended to be used in situations of high clusteri-

sation. When a control over the final sample size is imposed with the

CPoSA design, a minimum sample size is fixed, but as clusterization

increases there are many occasions in which cases are over-sampled

increasing the sample size. The MC distribution of the CPoSA esti-

mator in fact presents many outliers on the upper tail as compared

to traditional designs and to PoSA estimator. This suggests that (i)

the loss in efficiency corresponds to the returning of a large number

of cases and (ii) the proposed strategy may be finalised by adding a

control over the maximum sample size as well.

5.1 Openings for future research

Interesting perspectives for future research are still opened. Notice

that as a first proposal, we considered here a basic sampling design

in combination with a simple estimator such as the HT-type esti-

mator. Improvements may thus be made at both design level and

estimation level. Moreover, for on field implementation, additional

modifications may be needed when actually using the proposed sam-

pling design.

Room for improving the selection design is offered by fully ex-

ploiting the potential of a probability updating system in a list-sequential

design. In fact, the update of the inclusion probabilities could be

finely tuned for example based on how well the adaptive condition
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is satisfied. For instance the probability of selecting a specific unit

may increase more if the threshold is widely exceeded by nearby

units, and be only slightly increased if the threshold is slightly ex-

ceeded. In other words, the updating probabilities may be propor-

tional to the values of the study variable y observed on the selected

sample. Moreover, instead of only refering to subsequent units, a

different updating system may allow for the observed values of y to

affect units differently according to spatial distance. Distance may

not only be geographical, as considered in this first proposal, but

may be based on socio-economic features hence be a similarity mea-

sure. In the case of TB, for example, a similarity measure may be

based on characteristics that classify urban slums, so that if a high

percentage of TB cases is found in an urban slam, the probability of

including other urban slums is increased. Survey costs may be also

integrated in the updating of inclusion probabilities. In fact, instead

of setting a maximum/minimum number of units to be included in

the sample, a maximum/minimum budget may be used for sequen-

tially updating the inclusion probabilities of units yet to sample. For

instance, the inclusion probabilities may be tuned on a combination

of budget left and the value of the study variable y in nearby units, so

that when the budget left is low, the survey efforts are concentrated

mainly in promising areas.

The control over the final sample size needs to be further inves-

tigated. In fact, the choice of a lower bound seems reasonable for

avoiding small sample sizes and for ensuring that added areas are

cases, however the variability in the final sample size, as well as in

the proposed estimator may still be large, possibly limiting its use.
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In order to reduce the variability in the final sample size, further

research may also address the choice of the areas’ size. In fact, as

discussed in Section 4.4, the variability in the final sample size, as

well as in other measures such as detection rate, increases as the be-

tween areas variability increases, but can be lowered by choosing

smaller areas’ sizes.

With regards to the estimation, a more sophisticated estimator

may improve the PoSA and CPoSA estimation. The implementation

of an Hajék-type estimator, for instance, may be reasonable. More-

over the availability of auxiliary variables may be considered for im-

proving the PoSA and CPoSA estimation via regression.

We found that the population ordering defining the sequential

selection affects the probability of a unit to be included in the sam-

ple. In fact, units that in the ordered sequence are at the end of

a cluster tend to be sampled more often than those that are at the

beginning. A way to deal with this effect in our inspirational exam-

ple, may be that of using information on TB prevalence that may be

available beforehand. The population ordering may thus take into

account not only costs and logistic constraints, but, based on possi-

bly available information, units may also be ordered so that promis-

ing areas have a higher probability of being included in the final

sample.

In a perspective of applying the proposed design in TB preva-

lence surveys, some additional changes in the design may also be

discussed. In this thesis we have assumed that the route is chosen af-

ter negotiation with local authorities according to the standard prac-

tice. In fact, the feasibility of the design should be discussed with
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local authorities and the design should be tailored to each situation.

Moreover, the assumption that added areas are areas with a large

number of cases is reasonable and fully supported by simulation re-

sults, but in real applications knowledge about neighbourhoods may

not be perfect, motivating the use of additional information for en-

suring that added areas are mostly cases.

Finally, the choice of the adaptive condition is crucial in all adap-

tive designs. Possible available information may also be used on

making the choice for the threshold defining a good adaptive con-

dition. If the coefficient of between areas variation is expected to be

high, because the study variable is highly clustered in the popula-

tion, as might be the case for a infectious disease such as TB, any

threshold may be good for adaptivity, while if the coefficient of be-

tween areas variation is low, a more refined threshold shuold be cho-

sen.
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