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Introduction

Nowadays, the theory of fusion systems finds applications in different areas
of mathematics: e.g., in finite group theory, to study p-local theory of finite
groups (in particular, it is expected that an approach via fusion systems will
allow to semplify the proof of the classification of finite simple groups); in
representation theory, to study modular representations of finite groups; in
topology, to study p-completed classifying spaces of finite groups.

The theory of fusion systems is rather “young”, i.e., it was founded quite
recently and it has been developing very quickly; yet, its roots spread deep
in a further past. Indeed, the basic ideas standing behind fusion systems
stretch back to the works on fusion in finite groups by, e.g., W. Burnside and
F.G. Frobenius, and later by J.L. Alperin (see, e.g., [2]). In those works the
word “fusion” denotes the behavior of the p-subgroups (and their elements)
of a finite group G with respect to G-conjugation. Later, R. Solomon came
across with the first example of what is now called “exotic fusion system”
(cf. [29]): i.e., the fusion of p-elements is incompatible with being induced
by conjugation in a finite group lying above.

The first formalization of the theory of fusion systems dates back to the
work of L. Puig during the ’90s, which was published only some years later
(see, e.g., [27]). Actually, he used the name “Frobenius category” instead
of “fusion system”. In the meanwhile, before the publication, other math-
ematicians started working independently on the same ideas, so that now
there is not yet a commonly accepted notation. Of course, the definitions
and results worked out in such work are all equivalent, and now people are
working to provide a homogeneous and harmonic framework to the theory
of fusion systems: see, e.g., the book of M. Aschbacher, R. Kessar, and B.
Oliver (see [6]), and the book of D. Craven (see [12]).

The idea of fusion systems is to axiomatize and generalize the notions
and fundamental properties of conjugation in finite groups: given a prime p
and a finite p-group S, a fusion system J on S is a category whose objects
are all subgroups of .S, and whose morphisms are injective group homomor-
phisms satisfying certain conditions (see Definition 1.6). In particular, all
conjugations via elements of S are morphisms in F. The phylosophy behind
fusion systems is to “force” morphisms to behave like conjugations, in order
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to generalize the fusion of S and its subgroups in a finite group G containing
S. In this way, while dealing with fusion in finite groups one may “forget”
about the group G standing above, and focus only on p-groups. Still, with
this approach one recovers a big load of information on the p-local behavior
of G.

In fact, in order to study effectively fusion of groups via fusion systems,
the “plain” definition of fusion system is not enough, as it is somehow too
permissive: for example, the category whose objects are all subgroups of
a p-group S with morphisms any monomorphism between these subgroups
is a (very uninteresting) fusion system. Therefore, one needs to add some
further technical conditions, leading to the definition of saturated fusion
system (see Definition 1.17). In fact, such definition was taylored according
to the following example: the fusion system Fg(G) (where G is a finite group
with Sylow p-subgroup S), whose morphisms are precisely the conjugations
with elements of G. The fusion system Fg(G) describes how the subgroups
of S are related by G-conjugation; in fact, since all Sylow p-subgroups of G
are conjugate, Fg(G) determines how all p-subgroups of G are related by
G-conjugation: in finite group theory this is called p-fusion pattern of G.

Let S be a p-group. As we have seen above, every finite group G which
contains S comes endowed with the fusion system Fg(G). Conversely, 1.
Leary and R. Stancu proved that for every fusion system F on S there
exists a (possibly infinite) group G containing S such that F = Fs(G) (see
[19]). Yet, R. Solomon discovered the existence of fusion systems which are
not “induced” by a finite group G (see [29]). This discovery dates back to
the ’70s, before fusion systems were formalized. Later, such fusion systems
were called exotic fusion systems, as they appear rather rarely.

The exotic fusion systems discovered by Solomon are saturated fusion
systems on Spin-(q), with ¢ = 2¥ for some odd k. This result is very
interesting also because it is the only known example of exotic fusion systems
on 2-groups. On the other hand, many examples of exotic fusion systems on
p-groups, with p odd, are now known. E.g., while classifying all saturated
fusion systems on Sylow p-subgroups of SL3(p), A. Ruiz and A. Viruel found
three exotic fusion systems when p = 7 (see [28]). As for groups of order
a power of three, A. Diaz, A. Ruiz and A. Viruel proved that there are
several infinite families of exotic fusion systems over 3-groups of rank 2 (see
[14]). In [22], B. Oliver found many families of exotic fusion systems on
a non abelian 3-group with a unique abelian subgroup of index 3. In [§],
M. Clelland and C. Parker discovered two other infinite families of exotic
fusion systems on two class of groups consisting of certain amalgams, which
include also 3-groups.

It is worth stressing that if all fusion systems were induced by finite
groups, the theory of fusion systems would provide only a more effective
language to describe fusion in finite groups, and nothing more. But since
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there exist also exotic fusion systems, the study of fusion systems may lead
to the discovery of new algebraic structures.

The current research on fusion systems concernes mainly the classifi-
cation of saturated fusion systems on “small” p-groups. For example, the
classification is completed in the case of metacyclic p-groups, extraspecial p-
groups of exponent p and order p3, and 2-groups of rank 2 (see [30, 28, 13]).
The classification in the case of p-groups (p odd) with rank 3 or 4 is still a
work in progress by D. Benson and C. Parker.

The goal of this Thesis is to contribute to the classification of saturated
fusion systems on “small” p-groups, by classifying all reduced fusion systems
on a Sylow 3-subgroup S of the sporadic McLaughlin group Mc, where a
saturated fusion system is said to be reduced if it has no non trivial normal
subgroups (see Definitions 1.29 and 1.30 for more details). The McLaughlin
group Mc has order 27 -3%.5%.7.11 and was discovered by J. McLaughlin
in 1969 (see [21]); the group S may be considered “small”, as it has order
36 and rank 4.

In Chapter 1 we recall some definitions and basic facts on fusion systems,
which are required in the Thesis. In this Chapter we make reference to [12].

In Chapter 2 we study the structure of .S and its subgroups, listing some
properties which will be useful in the sequel. In particular, we show that S
splits as semidirect product: in fact, S = A x B, where A ~ C4 and B ~ C3
(see (2.1.1)), but also S = E x T, where F is the extraspecial group of order
3% and exponent 3, and T ~ C3 (see (2.2.1)).

In Chapter 3 we study a particular class of subgroups of S, i.e., the
F-essential subgroups, where F is a saturated fusion system on S (see Def-
inition 1.26 for the definition of F-essential subgroup). The F-essential
subgroups are very important in the study of saturated fusion systems, as
by the “fusion systems version” of the Alperin’s Fusion Theorem (see [12,
Theorem 1.23]) every isomorphism in a saturated fusion system F on a finite
p-group S is the composition of restrictions of automorphisms of F-essential
subgroups of S and of S itself: thus, F is “generated” by these automor-
phisms. In particular, when F is a reduced fusion system on S, we prove
that S has exactly two F-essential subgroups, A and E (see Proposition
3.12).

In Chapter 4 we study Outzr(A), Outz(F) and Outz(S), the groups
of the outer automorphisms in F of A, F and S. Since the inner au-
tomorphisms are always morphisms in a fusion system, we may conve-
niently study the groups of outer automorphisms in F instead of the whole
groups of automorphisms in F. In particular, we determine all the 3-tuples
(Out£(S), Outx(A), Out £(E)), where F is a reduced fusion system on S,
with the following procedure. First, we show that Outz(A) is a subgroup
of GL4(3), such that O3(Outz(A)) = 1, the Sylow 3-subgroups of Outr(A)
have order 32, and the centralizer in A of a Sylow 3-subgroup of Outz(A) has
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order 3 (cf. Lemma 4.8). We use this information to determine all possible
groups Outx(A), which are listed in Theorem 4.11. Pairwise, we show that
Outz(F) is a subgroup of the general symplectic linear group GSp,(3) not
contained in Sp,(3), such that O3(Outz(E)) = 1, and the Sylow 3-subgroups
of Outz(FE) have order 3 (cf. Lemma 4.15). Using this information we de-
termine all possible groups Outz(E) (cf. Lemmas 4.18-4.22). Moreover, we
prove that Outz(S) is a 2-group which is isomorphic to a Sylow 2-subgroup
of Autz(S) (cf. Lemma 4.3), and the Sylow 2-subgroups of the normalizer
in Outz(A), respectively in Outxz(FE), of its Sylow 3-subgroup are isomor-
phic to Outz(S) (cf. Lemmas 4.6-4.7). The information obtained so far
allows us to determine uniquely the aforementioned triplets (cf. Theorem
4.23). We study only reduced fusion systems on S as they “correspond” in
some sense to simple groups. Since such 3-tuples determine the structure of
F by the Alperin’s Fusion Theorem, this completes the classification of the
reduced fusion systems on S.

In Chapter 5, we prove that if F is “induced” by some finite group, then
F = Fs(G) for some finite almost simple group G, such that the generalized
Fitting subgroup F*(G) is a simple group and the Sylow 3-subgroups of G
are isomorphic to S and contained in F*(G) (cf. Proposition 5.3). Thus, we
search for all finite simple groups K which contain S as Sylow 3-subgroup,
and we show that K is isomorphic to one of the following (cf. Theorem
5.13):

e the McLaughlin group Mc;

¢ the Conway group Cosg;

e the classical group PSU,(3);

e the linear group PSLg(q), where 3| ¢— 1 and 91 ¢ — 1;

e the classical group PSUg(q), where 3 | g+ 1 and 91 ¢+ 1.

Then we determine the triplets (Outz(S),Outz(A),Outz(E)) in the case
when F = Fg(G) and G is a finite almost simple group with F*(G) one of
the simple groups listed in Theorem 5.13 and Sylow 3-subgroups contained
in F*(G). In fact, four of the 3-tuples listed in Theorem 4.23 are “induced”
by no such group G: we show that the associated fusion systems are exotic
(see Theorem 5.15).



Chapter 1

Fusion systems - Definitions
& basic facts

First of all, we outline the notation we will use while dealing with finite
groups, and we provide some definitions. We make group homomorphisms
act on the right: namely, if ¢: G — H is a homomorphism of groups, we
denote the image of an element x € G via ¢ by x¢. In particular, for any
x € G, the map ¢, : G — G denotes the right conjugation by z, i.e.,

gee = ¢° =z gz, for any g € G.

Thus, the commutator between two elements z,y € G is

Lpy,

[z, y] =y ey =2~
For any subgroup H of GG, we denote the image of H via ¢, by H*. Given two
homomorphisms ¢; : G — H and ¢9 : H — K, we denote their composition
by 102 : G — K, where ¢; acts first, i.e., z(¢1¢02) = (zp1)p2, for any
z e G.
We denote the generalized Fitting subgroup of a group G by F*(G), and
we denote the Frattini subgroup of a group G by ®(G). It is well known
that if G is a finite p-group, then

B =GP,
where
GP =P |z eG) and G = (z,y]lr,y € G)

(i.e., G’ is the derived subgroup of G).

If p is a prime number and G is a finite group, we denote with Op(G) the
largest normal p-subgroup of G, with O, (G) the largest normal subgroup
of G whose order is not divisible by p, and with O (G) the smallest normal
subgroup N of G such that G/N is a p’-group (i.e., p does not divide |G/N]).
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For a group G, the notation G = N.H means that there exists a (not
necessarily split) short exact sequence

1-— N—-G—H—1.

Definition 1.1. Let p be a prime. The p-rank of a finite group G is the
maximal dimension as F,-vector space of an elementary abelian p-subgroup

of G. We denote the p-rank of G by m,(G).

Definition 1.2. Let G be a finite group, and let p be a prime which divides
the order of G. Set

J(G) = (P < G| P is elementary abelian of p—rank m,(G)).
The group J(G) is called the Thompson subgroup of G for the prime p.

By [4, 32.1], J(G) is characteristic in G for every prime p dividing the
order of G.

Definition 1.3. Let p be a prime. A p-group P is said to be extraspecial if
Z(P)=P =®(P)~C,.

Definition 1.4. Let P and ) be groups. Suppose we identify a central
subgroup C of P (i.e., C < Z(P)) with a central subgroup D of () via the
isomorphism ¢ : C' — D. The (external) central product of P and @ (with
respect to ), denoted by P @, is the quotient of the direct product P x @
by the subgroup {(g, (99) ") g € C}. i i

In particular, P * @ has normal subgroups P and ) (isomorphic to P
and @ respectively), such that P+ @Q = PQ, P and Q centralize each other,
and PN Q ~ C ~ D. With an abuse of notation, we identify P with P, Q
with Q, and P N Q with C and D.

Definition 1.5. A group G is said to be almost simple if there exists a
simple non-abelian group P such that P < G < Aut(P).

1.1 Fusion Systems
From now on, p will denote a prime number, and S a finite p-group.

Definition 1.6. A fusion system F on S is a category, whose objects are all
subgroups of S, and whose morphism sets Homz(Q, R) are set of injective
group homomorphisms ¢ — R (with composition of morphisms given by
the usual composition of group homomorphisms), satisfying the following
properties:

e Homz(S,S) contains all conjugation automorphisms ¢, x € S;
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e for any ¢ € Homz(Q, R), the isomorphism @ — Q¢ belongs to
Homz(Q, Q9);

e F is closed with respect to inversion, i.e., if ¢ € Homz(Q, R) is an
isomorphism, then ¢~! € Homz(R, Q).

If ¢ : Q@ — R lies in F, we will say that ¢ is a F-morphism.

Ezample 1.7. The category whose objects are all subgroups of .S, and whose
morphisms are all injective group homomorphisms between subgroups of S,
is the largest fusion system on S.

Ezxample 1.8. Suppose S is a finite p-subgroup of a group G. Consider the
category F = Fg(G) whose objects are all subgroups of S, with morphism
sets

Homz(Q, R) = {(cx)|g | v € G, Q" < R}.

Then F is a fusion system on S. If we take G = S, we obtain the smallest
fusion system on S, usually denoted by Fg(5).

Here we list some basic properties of fusion systems. In this section, we
refer to [12, Chapter 4] (note that in the statements of [12] P denotes what
here is denoted by S, and viceversa).

Proposition 1.9. Let F be a fusion system on S, and let ¢ : Q@ — R be
a morphism in F. Let P be any subgroup of Q, and let T be any subgroup
of S containing P¢. Then there is a F-morphism ¢ : P — T such that ¢
and Y agree on P. Thus, given a F-morphism, one may restrict the domain
arbitrarily, and extend or constrict the codomain to any overgroup of the
image of the restriction.

Proof. Let P be a subgroup of @), and let T be a subgroup of S containing
P¢. Consider the inclusion maps 21 : P = @Q, and 29 : P¢ — T. The maps
11 and 19 are morphisms in Fg(S). Since Fg(5) is the smallest fusion system
on S, then 71 and 25 lie in F. Thus, the composition map #1¢1s also lies in
F, and we may take ¢ = 11¢12. This yields the claim. O

For any P < S, let Autz(P) be the set of all F-automorphisms of P.
Moreover, set

Autg(P) = {(cz)|p | © € Ns(P)}.
Definition 1.10. For a subgroup P of S, let
cp: Ng(P) — Autg(P)
be the group homomorphism sending x € Ng(P) to (cz)|p € Autgs(P).
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Thus, one has that
Autg(P) ~ Ns(P)/Cs(P).

In particular, Autg(P) is a p-subgroup of Autz(P). We write Outz(P) for
the group of outer automorphisms of P that lie in F. By the definition of
fusion system, it follows that

Outr(P) = Autz(P)/Inn(P).

Set
Outg(P) = Autg(P)/Inn(P).

If ¢ : Q@ — R is an F-isomorphism, then we say that () and R are JF-
isomorphic or F-conjugate.

Lemma 1.11. The relation of F-conjugacy is an equivalence relation on
the set of all subgroups of S.

Lemma 1.12. Let F be a fuston system on S. FEvery morphism in F
decomposes as the composition of a F-isomorphism with an inclusion map.

Thus, as a consequence of Lemma 1.12 we may reduce to study only
isomorphisms between subgroups of S while studying fusion systems on S.

Proposition 1.13. Let F be a fusion system on S. If Q and R are subgroups
of S, F-conjugate under an isomorphism ¢, then Autr(Q) and Autr(R)
are isomorphic under the map ¢ sending any v € Autz(P) to ¢~l9¢ €

Autr(Q).

By Proposition 1.9, one may extend arbitrarily the codomain of any F-
morphism. On the other hand, the opposite is not true, i.e., one can not
extend arbitrarily the domain of a F-morphism. For example, if P is a
Sylow 2-subgroup of Sy, conjugation by the element (2, 3,4) acts by cycling
the elements (1,2)(3,4), (1,3)(2,4), and (1,4)(2,3), and hence has order 3;
but it does not lift to an automorphism of P, because Aut(P) has order 8.

Suppose that the F-isomorphism ¢ : Q — R has an extension ¢ : Q — R,
with domain @ > Q. Thus, No(Q) > Q, and ¢ extends its domain to a
subgroup of Ng(@). Hence ¢ extends to a (proper) overgroup of @ in S
if, and only if, it extends to a (proper) overgroup of @ in Ng(Q). Since
extensions inside Ng(Q) are easier to handle, hereafter we will deal with
this kind of extensions.

Proposition 1.14. Let F be a fusion system on S, and let ¢ : Q — R be a
F-isomorphism. Suppose that ¢ extends to a F-morphism ¢ : P — S, with
P < Ng(Q). Then the image of ¢ is contained in Ng(R), and

Pcg < Autg(Q) N Au’cS(R)qr1
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Proof. Let x € P. For any g € ), one has that ¢g* € ). Thus,
(90)™ = (¢")b € R.

Hence z¢ € Ns(R).

Let ¢ : Autz(Q) — Autz(R) be the map sending ¢ € Autr(Q) to
¢~ ¢ € Autr(R). We claim that ¢cp = cQ(;AS on P, i.e., z(pcr) = a:(cQgE)
for every x € P. For every t € R, one has that

t(z(dcr)) = t((z)er) = tcyg)n = 7.

Since ¢ is an isomorphism, there exists z € @ such that z¢ = t. One has
that

t(x(cgd)) = t((ca)i0P) = t(d (ca) @)

and this yields the claim. B
Since x¢ € Ng(R), in particular (z¢)cr € Autg(R). Then

(Pcq)? = P(cqo) = (P)cr < Auts(R).
Moreover, Pcg < Autg(Q) and the proof is completed. O

Definition 1.15. Let Q,R, and ¢ be as in the statement of Proposition
1.14. We denote with Ny the preimage of Autg(Q) NAutg(R)? " under the
map cq. Equivalently,

Ny ={z € Ns(Q) | 3y € Ns(R) : (¢*)¢p = (90)¥,Vg € Q}.

By Proposition 1.14, one can not extend (inside Ng(Q)) the isomorphism
¢ to a subgroup of S containing properly N.

Definition 1.16. Let F be a fusion system on S. A subgroup @ of S is
said to be receptive if every F-isomorphism with image () is extensible to
Ny.

1.2 Saturated Fusion Systems

The idea of fusion systems is to provide a model for fusion in finite groups,
in particular for conjugation of p-subgroups of a Sylow p-subgroup of a finite
group. In order to develope a rich theory, the “plain” definition of fusion
system is not enough. One needs some further technical restrictions in the
definition of fusion systems, leading to the definition of a saturated fusion
system. The main example of saturated fusion system is the fusion system
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Fs(G), where S is a Sylow p-subgroup of a finite group G. Classical results
about fusion in a Sylow p-subgroup S of a finite group G can be interpreted
as results about the fusion system Fg(G): indeed, in this category every
morphism between subgroups of S comes from conjugations with elements
of the group G. Thus, the category Fs(G) describes how subgroups of S are
related by conjugations with elements of G; in particular, since all Sylow
p-subgroups of G are conjugate in G, Fs(G) determines how all p-subgroups
of G are related by conjugations with elements of G.

Definition 1.17. Let P be a subgroup of S, and let P7 be the F-conjucacy
class of P, i.e., the set of subgroups of S which are F-isomorphic to P.

e P is said to be fully centralized in F if |Cg(P)| > |Cs(Q)]| for every
Qe P7;

e P is said to be fully normalized in F if |[Ng(P)| > |Ns(Q)| for every
Q€ P’

e P is said to be fully automized in F if Autg(P) is a Sylow p-subgroup
of Autz(P);

e P is said to be strongly F-closed if, for any subgroup R of P and for
any JF-morphism ¢ : R — S, R¢ is contained in P.

Definition 1.18. A fusion system F on S is said to be saturated if every F-
conjugacy class of subgroups of S contains a subgroup that is both receptive
and fully automized.

Proposition 1.19. Let G be a finite group, and let S be a Sylow p-subgroup
of G. The fusion system Fg(G) is saturated.

Proof. Set F = Fs(G). Let R be a subgroup of S, let P be a Sylow p-
subgroup of G containing a Sylow p-subgroup of N¢g(R), and let g € G such
that P9 = S. Set @ = RY9: then Ng(Q) is a Sylow p-subgroup of Ng(Q),
as Np(R) is a Sylow p-subgroup of Ng(R). Hence @Q is receptive (see [12,
Proposition 4.10]).

Moreover,

Ns(Q)Ca(Q)/Ca(Q) = Ns(Q)/(Ca(Q) N Ns(Q)) = Ns(Q)/Cs(Q)

is a Sylow p-subgroup of Autg(Q). Thus, @ is fully automized and the claim
follows. O

The following comes from [12, Theorem 4.21]
Theorem 1.20. Let F be a saturated fusion system on S. Then:
1. a subgroup of S is fully centralized if and only if it is receptive;

2. a subgroup of S is fully normalized if and only if it is both receptive
and fully automized.
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1.3 Alperin’s Fusion Theorem

The aim of this section is to state the Alperin’s Fusion Theorem, which
sets that in a saturated fusion system JF on S any isomorphism may be
decomposed as product of restrictions of automorphisms of certain peculiar
subgroups of S.

Definition 1.21. Let F be a fusion system on S, and let P be a subgroup
of S. P is said to be F-centric if Cs(Q) = Z(Q), for every Q € P7.

Definition 1.22. Let G be a finite group and let p be a prime which divides
the order of G. A proper subgroup H of G is said to be strongly p-embedded
in G if H contains a Sylow p-subgroup of G, and p { |H N HY| for any
ge G\H.

Lemma 1.23. Let G be a finite group, let p a prime which divides the order
of G, let P € Syl,(G) and set X = (Ng(Q) | @ < P and Q # 1). Then G
has a strongly p-embedded subgroup if, and only if, X # G.

Proof. Suppose that G has a strongly p-embedded subgroup H. Without
loss of generality, we may assume that P < H. Hence Ng(Q) < H, for every
1 # @Q < P: indeed, if there exists 1 # @ < P such that Ng(Q) £ H, and
g € Ng(Q) ~ H, then Q < (H N HY), a contradiction, since H is strongly
p-embedded. It follows that X < H < G.

Now suppose that X < G. We claim that X is a strongly p-embedded
subgroup of G. Let g € G such that p||X N XY, and let Q be a Sylow
p-subgroup of X N XY and R be a Sylow p-subgroup of X9 containing Q. If
@ < R, then Np(Q) > @, a contradiction, since Nr(Q) is a p-subgroup of
XNX9. Thus, @ = R. There exist x € X, y € X9, such that P* = Q = P%.
Hence gyz~! € Ng(P) < X. Let k € X such that y = k9, and let h € X such
that gyz~! = h. Direct computations show that ¢ = k~'hx € X: therefore
X is a strongly p-embedded subgroup of G, and the proof is completed. [

Corollary 1.24. Let G be a finite group, and let p be a prime such that
p | |G| and p* { |G|. Let P be a Sylow p-subgroup of G. Then G has
a strongly p-embedded subgroup if, and only if, P is not normal in G. In
particular, if P is not normal in G, Ng(P) is a strongly p-embedded subgroup
of G.

Remark 1.25. Let G be a finite group, and let p be a prime which divides
the order of G. If G contains strongly p-embedded subgroups, Lemma 1.23
implies that O,(G) = 1.

Definition 1.26. A subgroup P of S is said to be F-essential if P is F-
centric and Outz(P) contains a strongly p-embedded subgroup.

Remark 1.27. One has the following:
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i. the property of being F-essential is invariant by isomorphism;

ii. yet, the property of being F-essential and fully normalized is invariant
only by conjugation.

Now we state a version of Alperin’s Fusion Theorem due to L. Puig (cf.
[12, Theorem 4.51])

Theorem 1.28 (Alperin’s Fusion Theorem). Let F be a saturated fusion
system on S, let S denote the set of all fully normalized, F-essential sub-
groups of S, and let QQ and R be two subgroups of S, with ¢: @ — R a
F-isomorphism. Then there exist

1. a sequence of F-isomorphic subgroups Q@ = Qo, Q1,...,Qnt1 = R;

2. a sequence S1,S59,...,Sy, of elements of S, with Q;_1,Q; < S;;

3. a sequence of F-automorphisms ¢; of S; such that Q;—1¢0; = Q;;

4. a F-automorphism ¢ of S (mapping Qp to Qni1);

such that
(P12~ Pni)) 1@ = & (1.3.1)

Proof. First, we claim that if € Autz(S5) and ¢ € Autz(E) for some fully
normalized, F-essential subgroup E of S, then there exists p € Autr(F),
with F an other fully normalized, F-essential subgroup of .S, such that

on EO~!. Indeed, one has that
u(fp) = u(0ph=16)
for any u € EO~!. Since § € Autx(S), it follows that
Ns(E)0~" = Ns(EO™),

and since E is fully normalized, also Ef~! is fully normalized. By Remark
1.27, EO~! is F-essential. Thus, the claim holds, with £ = Ef~! and
o =0ph1L.

This proves that if a and 8 are F-isomorphisms which decompose as in
(1.3.1), then also a3 (when defined), a~! and 8~! decompose as in (1.3.1).

We proceed by induction on |S : Q|. If S = @, then ¢ € Autx(S), n =0
and the statement holds. Thus, we may assume that Q < S.

Suppose that R is fully normalized; then by Theorem 1.20 R is fully
automized. There exists a € Autz(R) such that Auts(Q)?* < Autg(R).
Set ¢ = ¢a: then Ng = Ns(Q). Since ¢ 1¢ € Autr(R), there exists
X € Autr(R) such that ¢y = ¢. Thus, the F-isomorphism ¢x extends to
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ox : Ns(Q) — S. Since Q < Ng(Q), we may apply the inductive hypothesis
to ¢x: this means that ¢y, and hence also ¢y, decomposes as in (1.3.1).

It remains to show that x decomposes as in (1.3.1), since then also
¢ = (¢x)x ! decomposes as in (1.3.1). If R is not centric, then RCs(R) > R
and by the inductive hypothesis y (which extends x to RCg(R)) decomposes
as in (1.3.1); it follows that also x decomposes in such a way.

Otherwise, by [12, Proposition 4.48], there exist two sequences of sub-
groups

Autg(R) = Ay, Ag, ..., A, = Autg(R)X

and By, ..., B,—1 such that:
1. B; < A;, Ajyq, for every i < n;
2. Autgr(R) < B for every 1.

We may replace the groups A; with Sylow p-subgroups of Autz(R) contain-
ing each A;: then for every ¢ there exists an element x; € Autxz(R) such that
A = A; (where x; is the identity and x,,—1 = x). Setting 6; = Xi+1Xf1, it
follows that ;41 = 0;6;—1...601 for every 1 <i<n —1.

For every i, we claim that R < Np,, so that every 6; extends to a proper
overgroup of R and hence decomposes as in (1.3.1): since the composition
of the 6; is x, then this claim would imply that also xy decomposes as in
(1.3.1). Since

(Np,/Z(R))Xi+t = (Autg(R) N Autg(R)% )Xi+
=A1NA > B; > AutR(R),

one has that Ny, /Z(R) properly contains Autg(R) = Ng(R)/Z(R). Thus,
R < Np,, and the claim holds.

Finally, we remove the assumption that R is fully normalized. Let P be
a fully normalized subgroup of S, and let v : R — P be a F-isomorphism.
Then v and ¢v have a decomposition of the required form. It follows that
¢ decomposes has in (1.3.1), and this completes the proof. ]

As a consequence of Alperin’s Fusion Theorem, in order to study satu-
rated fusion systems on a group 5, one may reduce to study F-essential and
fully normalized subgroups of S, and their F-automorphism groups.

1.4 Reduced Fusion Systems

Among all saturated fusion systems, there are some with peculiar charac-
teristics, which will turn out to be useful in our study.
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Definition 1.29. Let F be a fusion system on S, and let H be a subgroup of
S. We say that H is normal in F (and we write H < F) if H < S, and every
morphism ¢ € Homz(R, P) extends to a morphism 8 € Homz(HR, HP),
such that 3y € Autz(H).

Definition 1.30. Let F be a saturated fusion system on S. The largest
subgroup of S that is normal in F is denoted by O,(F). We say that F is
reduced if Op(F) = 1.

The following comes from [12, Exercise 9.3].

Proposition 1.31. Let F be a saturated fusion system on S. Suppose S
has a unique F-essential subgroup H. Then H I F.

Proof. First of ally, H < S by Remark 1.27. In order to prove the state-
ment, we need to show that for every homomorphism ¢ € Homz(R, P)
there exists a homomorphism $ € Homz(H R, HP), such that Bir = ¢ and

/6|H € Autr(H).

We claim that every F-homomorphism «: H — @, for @ < .S, normal-
izes H. Indeed, Ha ~ H, so that Ha is F-essential by Remark 1.27; thus
a(H) = H by hypothesis.

By Alperin’s Fusion Theorem (cf. Theorem 1.28), there exist

e a sequence of F-isomorphic subgroups R = Qo,Q1,...,Qny1 = P
contained in H;

e a sequence of automorphisms ¢; € Autz(H) such that Q;—1¢; = Q;;
e a F-automorphism v of S mapping @, to R¢;

such that (¢1¢2- - ¢nht)|g = ¢, where : Rp — P. Set 8 = ¢1¢2- - dpnifr.
Then g € Homz(HR, HP) = Autz(H ), and Bjr = ¢. O

1.5 Surjectivity Property

Now we introduce the surjectivity property, which provides a criterion to
extend certain F-automorphisms between subgroups of S.

If R is a subgroup of S with @ < R < Ng(Q), we denote by Autr(Q < R)
the set of all F-automorphisms of R that restrict to automorphisms of Q.
Remark 1.32. Let @ be a subgroup of S, let R such that QCs(Q) < R <
Ns(Q), and let o € Aut#(Q < R). Obviously, g € Autz(Q) by definition.
Let r € R: the conjugation map ¢, restricted to @ lies in Autr(Q). Since
the group Inn(R) is normal in Autz(R), one has that a tc,a € Inn(R).
Hence (a™'c,) g € Autp(Q), and the restriction map

res : AutF(Q < R) — Naye,(@)(Autr(Q))
is well defined.
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Definition 1.33. Let F be a fusion system on S, and let ) be a subgroup of
S. We say that @ has the surjectivity property for F if, for every subgroup R
of S such that QCs(Q) < R < Ng(Q), the restriction map res is surjective.

Thus, if @ has the surjectivity property and QCs(Q) < R < Ng(Q),
any JF-automorphism ¢ of @) that normalizes Autr(Q) extends to some F-
automorphisms ¢ of R.

Remark 1.34. If () is receptive, then by definition () has the surjectivity
property.

Lemma 1.35. Let F be a saturated fusion system on S, and let Q be a fully
F-normalized subgroup of S. Then @ has the surjectivity property.

Proof. 1t follows by Remark 1.34 and Theorem 1.20. O
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Chapter 2

Sylow 3-subgroups of the
McLaughlin group Mc

Let S be a Sylow 3-subgroup of the McLaughlin sporadic group Mc. The
main goal of the Thesis is to study the reduced fusion systems on S. There-
fore, the first step will be the study of the group structure of S. In particular,
we produce two presentations of S (which we will use in different situations),
and we study the structure of some relevant subgroups of S.

Our references on the structure of the group Mc are [1, 9, 17].

2.1 The group S

The McLaughlin group Mc has order 27 - 3% .53 .7 .11. Thus, S has order
3%. Moreover, a maximal subgroup of Mc is isomorphic to the group

H:(03X03XC3X03)>4M10a

where Mg is the Mathieu group of degree 10. Since the order of Mg is
24.32.5, the group H contains a Sylow 3-subgroup of Me.

The Mathieu group My contains the alternating group Ag. Since the
order of Ag is 23 - 32 .5, the group

P:(C3X03X03X03>>4A6

contains a Sylow 3-subgroup of Mc. Thus, we may assume, without loss of
generality, that S is contained in P. The alternating group Ag has a unique
representation of dimension 4 over the field with 3 elements. Hence, such
representation determines the structure of P.

The alternating group Ag has the following presentation:

Ag = <01,02 | a% = 0% = (0102)5 = (0105)5 = 1>7
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where one may choose o1 = (2,3)(4,5), and o9 = (1,2,3,4)(5,6). Moreover,
a Sylow 3-subgroup of Ag is ((2,6,3),(1,5,4)) ~ C3 x Cs, where

(2,6,3) = 010201020103010201030103 =:71 and
3
(1,5,4) = (2,6,3)710201020103 _.

Then S is isomorphic to (C5 x C3 x C3 x C3) X (11, T2).
Let ¢ : Ag — GL4(3) be the aforementioned representation of Ag. Then

0O 1 0 0 -1 1 0 0

oo — 1 0 0 0 and  ove — 0 0 1 0

Y=o o o 1| =1 0 -1 0 o

0O 0 1 0 0o 1 1 -1
Moreover, explicit computations show that

1 1 -1 -1 1 -1 0 —1

- 1 0 0 O d - 0o 0 0 -1

el o -1 -1 1] MCTPT L0 0 00 0

-1 1 0 1 1 -1 1 0

Identify the group V = (5 x C3 x C'5 x C3 with the F3-vector space of dimen-
sion 4, and let {wi,ws, w3, ws} be the canonical basis, where we consider
the w; as row vectors. With a harmless abuse of notation, we identify
with 714, and 79 with 79¢. Thus, the action of the group (71, 72) over V is
given by multiplication row vector xmatrix. In particular, one has that

T
wa! = wy wy? = wy !
o, 1 1 T _ -1
w) = wi twawy wp = wiw, w3

(where we keep the multiplicative notation). Then S has the following pre-
sentation: S = (wy,wa, ws,wy, 71,72 | R), where R is the set of defining
relations

(v =wj=wi=wj=7'=7=1
[wy, wa] = [wy,ws] = [wi,ws] =1
[wa, w3] = [w2,ws] = [w3,ws] = [11, 7] =1,
R = ¢ [wi,n] = waws wit, fwe, ] = wiwy? : (2.1.1)
[ws, 1] = w51w3w4, [wg, 71] = wl_lwg,
[wi, 2] = wy twit, fw, ] = wy twy
{ [ws, o] = wl_lwg_l, [wy, To] = wlwglwgwll

From now on, let A = (wy, wa, w3, wy) and B = (71, 72); hence

S =AxB.
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2.2 A second presentation of S

We use the previous presentation (2.1.1) of S to show that S is the central
product of two copies of the extraspecial group P of order 27 and exponent
3 (whose centers we will identify), extended by an automorphism of order
3 normalizing the two copies of P and acting on them “in the same way”.
Thus, we shall produce a new presentation of S.

Notice that there is (up to isomorphism) a unique extraspecial group of
order 27 and exponent 3. It has the following presentation:

PZ<x,y,z|x3=y3:z3:1,[$,y] :'27['1:”2]: [y,z]=1>

Proposition 2.1. S is isomorphic to the group T = (z,y,z,a,b,t | P),
where P is the set of defining relations

¥=y’=z2"=a

[z,y] = [a,b] = 2
P=1[z,2]=y,z]=]a,z]=1[bz]=tz]=1p. (2.2.1)

[z,a] = [z,b] = [y,a] = [y,b] = 1

[z, t] = [a,t] =1, [y, t] = xz, [b,t] = az |

In particular, S is the central product of two copies of the extraspecial group
of order 27 and exponent 3, extended by an automorphism of order 3.

Proof. Clearly, T is isomorphic to the central product of two extraspecial
groups

P=(zyza® =y’ =2"=1[z,y]=2[z,2] = [y,2] = 1)
and
P, = <a,b,c|a3:b3:cg’:1,[a,b} =¢,|a,c] = [b,c] = 1),

(with respect to the isomorphism ¢ : Z(P)) — Z(P,) defined by [z,y]p =
[a,b]), extended with an automorphism ¢ of order 3 normalizing P; and P,
and acting on them “in the same way”.

Explicit computations show that (z, z, a, t) is elementary abelian of order
3%, and that it is normal in 7. Thus,

T = (x,z,a,t) ¥ (y,b).
In the notation of (2.1.1), let

1

v = wlwglwll, w = w; w;l, and u = ws.

One verifies that
S = <v,w,u,vnv_1> X (T1,T2).
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Direct computations show that v € Ca(m2), w € Ca(m1), vIo 1 = w™w™ ! €

Z(9), uu™t = (v and u2u~! = (w™!)™. Then the map a: T — S,
defined on the generators of T' by:

ra =,
Yo =711,
za = oo
aq = w,
ba = 1o,
to = u,

and extended by linearity to the whole T is an isomorphism, and S ~T. [

Hence we have produced an other presentation (2.2.1) of S.
From now on, set
E = (2,y,a,b).

Clearly, E is the extraspecial group of order 3° and exponent 3, and
S =FEx(t).

Here we state the formula for the commutator of two elements of S,
which will turn to be useful in the sequel.

Lemma 2.2. Let ¢ : Z — Z be the map defined by p(m) = [3n/2], where
n is the rest of the division of m by 3, and |« denotes the low integer part
of a, and let h,k € S. Then, in the notation of (2.2.1), one may write in a
unique way

h = g™y p 5 2",

and
k= g™iym2qmapmagms zme

for some n;,m; € {0,1,2}. Then

[h, k] = [z™y"2a"3b"4t"5 210 g™y a3 pMAE™E 6] =
— xn2m5—n5m2 . an4m5—n5m4 . Zl, (222)
where
I =msp(na) + msp(nz) — nsp(ma) — nse(me)+
+ N3myg — NgaM3 + N1Mo — NaMy.
Proof. Direct computations. O

In the following result we list some further properties of the group S.
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Lemma 2.3. Let S be as above. Then, in the notation of (2.2.1), the
following hold:

i A= (x,a,t,2), S"=ANE = (x,a,z), and Z(S) = (z);
ii. Z(S) = 53;
1. S has exponent 9;
. S" =15, A];
v. 8" =®(S) = Za(5);
vi. m3(S) = 4.
Proof. From Presentation (2.2.1), one see that
A= (z,a,t,z),

and
S"'=(z,a,z).

Let h = a™y™2a"3p™ "2 € S, with n; € {0,1,2}. Direct computa-
tions and Formula (2.2.2) implies that h € Z(S) if, and only if, n; = ng =
n3 =mng = nz = 0. Thus, Z(S) = (z), and statement 4 holds.

Now, let k = a™y™m2qm3p™m4¢™s 26 ¢ S with m; € {0,1,2}. By direct
computations and Formula (2.2.2),

h-k=qx™ —ml—nsmzyn2+m2 q 8T mM3—nsMapnatmans+ms Za,

where
a = ngnszmy + n5mi + nonsmso + n5m§ — Nomy1 — Nams + ng + Mg
= nsp(mz) — nsp(ma).
In particular,
B3 = »2ns(p(n2)+e(na)+e(2n2)+¢(2n4)) o Z(8),

and statements 7¢ and 777 hold.
One has that

S" =[S,S] = [BA, BA] = [B, BA]* - [A, BA] = [A, B];

moreover, [A,S] = [A,AB] = [A, B]. Hence, S’ = [A,S]. This shows
statement ¢v.

Since S% = Z(S8) by statement ii, it follows that ®(S) = S’. Direct
computations with Formula (2.2.2) imply that Z5(S) = S, and this yields
statement v.

Finally, since A < S and mg(Mc) = 4 (see [17, Table 5.6.1]), claim vi
follows and the proof is completed. O
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Lemma 2.4. For every x € S~ A, the order of Ca(x) is 3%. Moreover,
Ca(B) = Z(S).

Proof. Let w € A, and let 7 € B. Thus, w € C4(7) if, and only if, w™ = w.
Explicit computations show that the elements of B are:

112 2 1 20 2 000 2
|t o000 . 000 2 T 102 1
1o 22 1| 2 12000 ® 10200
2 1 0 1 1 210 02 21
00 2 0 0100 01 1 2
121 20 11202 o0 2 0
"Zl2 101" P71 210 7201 2|
02 0 0 2 0 1 2 2000
1021 2 1 2 0 100 0
120 2 01 1 2 010 0
T=l2 211" " looo1|l” " loo1o0
00 1 0 2 2 1 1 000 1
We may write w € A as w = (a1,a2,as,a4), where a; € Fs. Explicit

computations show that w € Cy(71) < a1 = a3 and ag = a4. Thus, one has
that

Ca(n) = {(a1,az,a1,a2) | a1,a2 € F3},
and |C4(71)| = 9. Similar computations show that |C4(7;)| = 9, for every
ie{l,...,8}.
Now, let x € S \ A, and write x = v7, with v € A and 7 € B. Since A
is abelian, for every w € A one has that

[z, w] = [vT,w] = [v,w]| - [T, w] = [1,w].

Hence Ca(x) = Ca(7), and |Ca(z)| = 32 by the previous part of the proof.
Let w € Cy(B), and let = € S. Again, we write z = v7, with v € A and
7 € B. One has that

WT = WUT = YWT = VTW = TW.

Then C4(B) < Z(S). Since |Z(S)| = 3 by Lemma 2.3, one obtains C4(B) =
Z(9). O

Lemma 2.5. A is the unique abelian subgroup of S of order at least 3*; in
particular, A is the Thompson subgroup of S (for the prime 3), and A is
characteristic in S. Moreover, A = Cg(A).

Proof. Let P be an abelian subgroup of S such that |P| > 3%, and suppose
that P # A. Let k € P~ A. Since P is abelian,

PNA=Cpk)nA=Ca(k).
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Hence |PN A| = 3% by Lemma 2.4, and PA = S. Then PN A < Z(S), as A
and P are abelian, a contradiction, since |Z(S)| = 3 and |[PN A| = 32. Then
A is the unique abelian subgroup of S of order at least 3*. Furthermore,
since S has 3-rank equal to 4 and A ~ C3 x C3 x C3 x C3, A= J(S) and A
is characteristic in S.

Since A is abelian, one has that Cg(A) > A. Suppose that Cg(A4) > A.
Thus, there exists z € Cs(A) \ A. Then (A, z) is an abelian subgroup of S
with order greater then 3%, and this is a contradiction. O

Lemma 2.6. Let P be an abelian subgroup of S of order 33, not contained
in A. The following hold:

i. if [P N Al = 3% then PN A = Cy(h) for some h ¢ A, and P =
(Ca(h), h) ;

ii. if [PNA|=3, then PNA=Z(S);
iti. P is self-centralizing, i.e., Cs(P) = P.

Proof. Set Py = PN A. The order of Py is either 3% or 3. We proceed
according to | Pp.

1. Suppose |Py| = 32.
S

3

A

P/P XA
N

32

1

Take h € P\ A. In particular, h ¢ Py. Thus, P = (Py, h). Moreover,
Py < Cy(h), as Py < A is abelian. Then by Lemma 2.4, Py = C4(h),
and claim ¢ follows. Moreover, C's(P) > P, since P is abelian. Suppose
that Cs(P) > P. Since Cs(P) N A = Cy(h) = Py, one has that
|Cs(P)| = 3% and S = Cg(P)A. Hence Py = Ca(h) < Z(S), a
contradiction, since |Py| = 32 and |Z(S)| = 3.
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32

—

Therefore Cg(P) = P and statement i holds.

2. Suppose |Py| = 3.

S
e

3

1

Since PA = S and A and P are abelian, Py < Z(S). Since |Z(S)| =
| Po| = 3, one obtains that Py = Z(S), and claim 4i follows. Moreover,
since A is abelian, one has that Cs(P)NA < Z(S). Hence Cs(P)NA =
Z(9) and |Cs(P)| < 3%. As P < Cg(P), claim iii follows, and the
proof is completed. O

Lemma 2.7. Let P be an abelian subgroup of S of order 32, not contained
in A. Then P is not normal in S.

Proof. Set Py = PN A. We proceed with a case-by-case analysis.

1. Assume |Py| = 3. Then P = (P, h, k), for some
h,k ¢ A, and Py = Z(S) (see Lemma 2.6). Hence

g€ Ny(P) <= [g,h)e ANP=2Z(S) and [g,k]€ ANP=Z(S).
Moreover, one has that
l9.h] € Z(5) < [9Z(5), hZ(S)] =1 gZ(S) € Cayz(5)(hZ(S5)).
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By a similar argument,

9, k] € Z(5) & gZ(5) € Cayz(s)(KZ(5)).

Since S = PA, one has that S/Z(S) = (A/Z(S),hZ(S),kZ(S)). Then

g€ NA(P) & gZ(S) € Cayz(s)(hZ(S)) N Cayzs)(kZ(9)) <
< Z(S/Z(8)) = Z2(5)/Z(S).

Thus, since Z2(S) < Na(P), it follows that N4(P) = Z5(S) < A, and
the statement holds.

. Assume |Py| = 32. Then P = (Py,h), for some h ¢ A, and Py =
Ca(h) (see Lemma 2.6). Hence PA = (A, h), and |PA| = 35. Since
Py = C4(h), one has that Py < Z(PA). Let k € Z(PA): in particular,
k € Csg(P)NCg(A). By Lemma 2.6, Cg(P) = P. Then Lemma 2.4
implies that k € PN A = Ca(h). Hence Cy(h) = Z(PA). Moreover,
P/PO = <hP0> and PA/PO = <A/P0,hP0>. Then

g€ Na(P) & [g,hle ANP=F
<[9Py, hPo] =1
Zy(PA)

Py
Thus, Ng(P) < Z3(PA). Since Z3(S) < Na(P), one has that Z5(S) <
Z3(PA). Hence, 3% < |Zo(PA)| < 3°.

Let w € A; in the notation of (2.2.1), we may write

& gPy € Cayp, (W) < Z(PA/Ry) =

w= ™ yoan3 bOtns SM6 — M1 M34N5 an7

and

h = a™iym2qmIpTAEms Zms
for some n;,m; € {0,1,2}. Since h ¢ A, (ma,m4) # (0,0). Then
Formula (2.2.2) implies that

—n5mso —n5my | Z—N5[3m4/2}—n5 [3m2/2]+n3m4+n1m2
)

[w,h] =z a

and
2 2

fw, b, b} = 2=,

It follows that [w, h] € C4(h) if, and only if, —ns(m3 + m3) = 3n, for
some n € Z. If (m2, mq,ns5) = (0,1,1), then —ns(m? + m3) # 3n, for
all n € Z, and [w, h] ¢ Ca(h).

Suppose |Z3(PA)| = 3° or |Z3(PA)| = 3%. Thus, PA/P, is abelian,
and therefore [PA, PA] < Py = Cy(h), in contradiction with the
previous part of the proof. Then |Zy(PA)| = 33, Za(PA) = Z(9),
N4(P) = Z5(S) < A, and the statement holds. O
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Lemma 2.8. F'U A covers the set of all elements of S of order 3.

Proof. Let h € S; we may write (in a unique way) h = a"1y"2a"3b""4¢"5 216
for some n; € {0,1,2}. One has that h® = 22"8 where

B = p(n2) + p(na) + o(2n2) + ¢(2n4)

(see the proof of Lemma 2.3). Thus, h® = 1 if, and only if, 3 | 2n5 or 3 | 3.
In the first case, 3 | ns, then ny = 0 and h = 2™ y"2a™3b™ "6 € E; in the
second case, (ng,n4) = (0,0), then h = 2™ a"3t"2"6 € A, and the proof is
completed. O

Lemma 2.9. Let P be an elementary abelian subgroup of S of order 33.
Then P < FE or P < A.

Proof. One may write (in a unique way) every element h; of E and hy of A
as

mi

hy = a™y"2a™3p" ™M and ho = x"ta"?t"3 2", (2.2.3)

for some m;,n; € {0,1,2}.

Suppose that P ¢ E and P £ A. By Lemma 2.6, Z(S) < P. We
claim that |P N E| = 3% indeed, |P N E| > 3, as otherwise the order of the
product EP would be too big; on the other hand |P N E| < 33, as P £ E.
In particular, one may pick an element s € E such that PN E = (s, 2).

Now pick an element r such that P = (r, s, z). Thus, one has that r ¢ E.
By Lemma 2.8, one knows that F U A covers the set of all elements of S
of order 3. Hence, necessarily r € A. On the other hand, this implies that
s ¢ A. Therefore, by (2.2.3) one may write

r=ax"a" "8 "M and s =My, (2.2.4)

for some n;, m; € {0,1,2}. By Formula (2.2.2), from (2.2.4) one obtains

[7“, s] — pmam2 | nama Z—nacp(m4)—m2tp(n3)+n2m4+n1m2_
Hence,
3 ’ nams
[r,s] =1 < 3| ngmy
3
where | = —nzp(my) — map(ng) + nomy + nyms.

Since r € AN E, n3 # 0. Similarly, (mg,m4) # (0,0), as s € E \ A.
If 3| ngma, then either (n3,ms) = (1,0) or (ng, m2) = (2,0): in both cases,
we get that [r, s] # 1, since 3 |ngmy if, and only if, my4 = 0, in contradiction
with the condition (mg, m4) # (0,0). This is a contradiction, since P is
abelian. This yields the claim. O
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Lemma 2.10. The derived subgroup S’ is the unique elementary abelian
normal subgroup of S of order 33.

Proof. Let P be an elementary abelian normal subgroup of S of order 33.
In particular, Lemma 2.7 implies that P < A. If P< E, then P=FENA =
(z,a,z) = S’. Suppose P £ E. Therefore there exists h € P, such that we
may write (in a unique way)

h = x"ta"? " 2",

for some n; € {0, 1,2}, with ng # 0. Since P IS, [h, k] € P for every k € S,
and direct computations show that z,a,z must be contained in P. Then
S" = (x,a,z) < P, and |P| > 33, in contradiction with the hypothesis. It
follows that P = S’, and the proof is completed. O

2.3 Maximal subgroups of S

In order to provide a complete description of the subgroups of S, we study
the maximal subgroups of S. Every maximal subgroup H of S contains
®(5), as S/H ~ Cj5 is elementary abelian. Hence the set of the subgroups
of S of index 3 is in bijection with the set of the subgroups of S/®(S) of
index 3.

First we determine the subgroups of S/®(S) of index 3. Notice that
S/®(S) is a 3-dimensional vector space over the field with 3 elements. Recall
that, following the notation of (2.2.1), ®(S) = (x,a, z). Hence

S/®(S) = (y®(9),bP(S),tP(9)).
Set S/®(S) = S, y®(S) = 7, b®(S) = b, and t®(S) = t. Then
S = {:U1§ + 29b+ ng} , where x; € Fs. (2.3.1)

Let H be a subgroup of S of index 3. Then H is a 2-dimensional subspace
of S, and H is the kernel of a linear application ¢ : S — F3 (of rank 1). In
particular, ¢ can be represented by a matrix («, 3,7) € Mat; 3(F3). Hence,
in the notation of (2.3.1),

H =ker(p) = {17 + x2b + a3t € S|z + Brs + yas =0} .

The number of 2-dimensional subspaces H of S is the number of the
equations ax; + fx2 + yrs = 0 (modulo F%), in which («, 3,7) # (0,0,0)
(3-3-3)—-1
B
subspaces of S of dimension 2. These subspaces H; are the following:

(indeed in this case ¢ has rank 0). Hence there are

1. if oy :0:>ﬁ1 = {$26+$3ﬂ = <B,B;
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10.

11.

12.

13.

. if$1+2$3:0$1‘1::U3:>ﬁg={x1ﬂ+l‘gl_)+$1ﬂ:(gt, );
(

Cif 29 = 0= Hy = {z17y + x3t} = (y,1);
L ifay = 0= Hy = {217 + 220} = (7, b);
.if:r1+x2:0:>m2:—3:1:>ﬁ4:{x1gj—m1l_)+$3ﬂ:<yjb_2,ﬂ;
Cif x4 a3 =0= 23 = —xy = Hy = {217 + 22b — 211} = (5t2,D);
) ifx2+:c3:0:>x3:—x2:>ﬁ6:{xlgj+a:25—x2ﬂ:<g,5t§>;

ifritastrs =0= 23 = 21’1—|—2}'2 = g7 = {$1g+$26+2(l‘1—|—l’2)ﬂ =

{wlg + 332[; + 2zt + 2x2{} - <§t2, 5{2>;

Cif 21+ 229 =0 = 21 = 29 = Hg = {217 + 21b + 23t} = (gb, 1);

y, bt);

if 21 +2o+223 = 0= 13 =21+ 72 = Hyy = {z1G+2ob+ a1t + a0t} =
(gt, bt);

ifz:l_—l—2x2+x3 =0= 29 =21+2x3 = I‘I_lg = {x1§+x15+x35+x3ﬂ =
(yb, bt);

if 221 +x2+23 =0 = 21 = 29 t73 = Hyz = {xof+x3y+aobtast) =
(b, gt).

if1'2+21'3:0:>{L'2:273:>I’I_10:{$1§+1'26+$2ﬂ:

Now we can determine the 13 subgroups H; of S of order 3°, preimages
of the H; in the projection of S on S/®(S):

1.

2.

10.
11.

HlO = <y7 bta a, T, Z>;

Hll = <Z/t, bta a, T, Z)a
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12. Hio = (yb,bt,a,x, z);
13. Hyi3 = (yb,yt,a,x, z).

Notice that E = Hs = (y,b,a,x, z). Direct calculations show that F is
the unique maximal subgroup of S of exponent 3: thus, E is characteristic
in S.
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Chapter 3

F-essential subgroups of S

By Alperin’s fusion theorem, one knows that the first step to study a (sat-
urated) fusion system on a p-group is to sort out the F-essential subgroups
of such group. Therefore, we proceed with the study of the F-essential
subgroups of S, where F is a saturated fusion system on S.

First of all, we recall a result on p-groups which will be used in the
sequel.

Lemma 3.1. Let p be a prime number, P be a finite p-group and G be a
subgroup of Aut(P). Let

Ph<PL..L<P,=P

be a sequence of normal subgroups of P, all G-invariant, such that Py is
contained in ®(P). Let H be the subgroup of those g € G that act as the
identity on P;/P;_1, for any 1 <i <m. Then H is a normal p-subgroup of
G.

Proof. See [16, Theorems 5.1.4 and 5.3.2]. O

Lemma 3.2. The group A is a F-centric subgroup of S for every fusion
system F on S.

Proof. Tt follows by Lemma 2.5. O

Remark 3.3. If a subgroup P of S is properly contained in A, one has that
Cg(P) > A. Then P is not F-centric for any fusion system F on S.

From now on, for a subgroup P of S, we set Py = PN A.

Lemma 3.4. Let F be a fusion system on S, and let P be a subgroup of S,
F-essential and not abelian. Suppose that Z(P) < A. Then Z3(S) < Py.

Proof. Consider the normal series

1< Z(P) < P. (3.0.1)
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Since P is F-essential, Z(S) < Z(P). Thus, for every h € Z(S), one has
that
[h,S] < Z(S) < Z(P) < A.

We claim that h centralizes the series (3.0.1). Since Z2(S) < A by Lemma
2.3 and Z(P) < A by hypothesis, one has that h acts as the identity on
Z(P). Since [h, P] < [h,S] < Z(P), one has that h acts as the identity on
P/Z(P), and the claim follows.

By Lemma 3.1 and Remark 1.25, one has that the conjugation map
cn € Op(Autz(P)) = Inn(P). Hence Z5(S) < P, and since Z(S) < A the
statement holds. O

Now we proceed with the study of the F-essential subgroups of S ac-
cording to the order of such subgroups.

3.1 F-essential subgroups of S of order 3°

Proposition 3.5. Let P be a subgroup of S of order 32. Then P is not F-
essential for any fusion system F on S.

Proof. If P < A, by Remark 3.3 one has that P is not F-essential for any
fusion system F on S. Suppose that P £ A. Therefore, |Pp| is either 1 or 3.

1. Assume |Py| = 1, and suppose that P is F-essential for some fusion
system F on S. Hence Z(S) < Z(P). Since Z(S) < A, one has that
Z(S) < Py, a contradiction, as |Py| = 1 and |Z(S)| = 3. Then P is
not F- essential for any fusion system F on S.

2. Assume |Py| = 3, and suppose that P is F-essential for some fusion
system F on S. Thus Z(S) < Z(P), and then Z(S) < Py. Since
|Z(S)| = |Py| = 3, it follows that Z(S) = F.

S

3
A
\ )
/
Z(9)

3

-
N

P

Py

1
By Remark 1.25, O3(Autz(P)) = Inn(P).
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o If P ~ Cy, one has that |[P3| = 3. Moreover, P? < $3 and
|P3| = |S3| = 3. Hence P? = S = Z(S) (see Lemma 2.3), and
Z(S) is characteristic in P. Let g € Z5(S)\FPy. Then:

— ¢g4 is the identity on Py = Z(S5);

— ¢4 is the identity on P/Z(S), as [g, P] < [g,5] < Z(95).
By Lemma 3.1, ¢4 € Op(Autz(P)) = Inn(P),ie., g € PNA =P,
a contradiction. Therefore P is not F- essential for any fusion
system F on S.

o If P~ (3 x (5, then Aut(P) ~ GLa(3). Moreover, [Z2(S), P] <
Z(S) < P, and then Z3(S) acts by conjugation on P. Since
Z5(5)/Czy5)(P) S GLy(3) and |GLy(3)| = 3 - 2%, we get that
|Cz,()(P)| > 9, whence a contradiction, since P is F-centric
and then CZQ(S)(P) <PNA=Ph,. ]

3.2 F-essential subgroups of S of order 3°

Lemma 3.6. Let P be a non abelian subgroup of S of order 33. Then P is
not F-essential for any fusion system F on S.

Proof. Obviously P £ A, as P is not abelian. Suppose that P is F-essential
for some fusion system F on S. Hence Z(S) < Z(P). Then Z(S) < P,
as Z(S) < A. Since P is not abelian, one has that |Z(P)| = 3 = |Z(95)|,
and Z(P) = Z(S) < A. By Lemma 3.4, Z5(S) < Py, a contradiction, since
|Py| < 3% and |Z2(S)| = 33. Then the statement holds. O

The following Lemma is needed for the study of F-essential subgroups
of order 3% and 3%.

Lemma 3.7. Let H be a subgroup of GL3(3) x Ca, and suppose that H has
Sylow 3-subgroups of order 32. Then O3(H) # 1.

Proof. Clearly, it suffices to show that the statement holds when H lies in
GLs3(3).

It is well known that GL3(3) = SL3(3) x Cs (cf., e.g., [9, p. 13]). There-
fore the maximal subgroups of GL3(3) different to SL3(3) are the direct
product of a maximal subgroup of SL3(3) with Z(SL3(3)). The maximal
subgroups of SL3(3) are listed in [9, p. 13]. Then the maximal subgroups
of GL3(3) are (isomorphic to):

o SL3(3);

o (C2x28) x Oy
e (13 % Cg;

o Sy x (.
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Therefore H < SL3(3) or H < (C3 x 2S,) x Cs.

Suppose that H < (C% x 25;) x Oy, and set N = C3. If N < H, then
N < H and O3(H) # 1. If N £ H, let P be a Sylow 3-subgroup of H. Then
|P N N| =3 (as otherwise NP would be a subgroup of (C3 x 254) x Cs of
order 3%, and this is not possible). For any z € PN N and for any h € H,
one has that 2" € N N H. Moreover, NN H = N N P, as otherwise N < H.
Then (PN N) < H, and O3(H) # 1.

If H < SL3(3), the claim follows with a similar argument as above. [

Lemma 3.8. Let F be a saturated fusion system on S, and let P be a
F-essential subgroup of S, of order 33. Then the following hold:

i. P is elementary abelian;
it. |Ns(P)/P|=3;
iii. |Po| = 32.

Proof. Suppose that P? # 1. Since |S?| = 3 and S3 = Z(S), one has that
P3 =53 =Z(S), and Z(S) is characteristic in P. Let g € Z2(S)\FPy. Then
¢g is the identity on Z(S) and on P/Z(S). By Lemma 3.1, this implies
that ¢, € Op(Autz(P)), a contradiction, since Op(Autz(P)) = Inn(P) by
Remark 1.25. Therefore P is elementary abelian, and the proof of point 7 is
completed.

Thus, Autxz(P) < GL3(3). Since P is a proper subgroup of S, one has
that Ng(P) > P, and 3 < |Ng(P)/P| < 33.

Suppose that P is fully normalized. By Theorem 1.20, P is fully au-
tomized. Therefore Autg(P) ~ Ng(P)/P is a Sylow 3-subgroup of Aut z(P).

If [Ng(P)/P| = 33, then Ng(P) = S and P < S, a contradiction to
Lemma 2.7. If [Ns(P)/P| = 32, then Autx(P) is isomorphic to a subgroup
of GL3(3) with Sylow 3-subgroups of order 32. Then Os(Autz(P)) # 1
by Lemma 3.7. Since P is abelian, Autz(P) = Outz(P). Thus, Outz(P)
has not strongly 3-embedded subgroups by Remark 1.25, and P is not F-
essential, a contradiction to the hypothesis.

Thus, |[Ng(P)/P| = 3 for every fully normalized F-essential subgroup P
of S of order 33, and | Ns(P)| is as smallest as possible. Then |Ng(P)/P| =3
for every F-essential subgroup P of S of order 3* and this completes the
proof of statement ii.

Now suppose that |Py| = 3. Hence |P N Z3(S)| = 3, as Py = Z(S) (see
Lemma 2.6) and Z(S) < Z3(S). Since S = PA, by the proof of Lemma
2.7 one has that Ng(P) = PNs(P) = PZ(S). Then |Ng(P)| = 3° and
|Ns(P)/P| = 32, a contradiction to statement 5. Then |Py| = 3%, and this
completes the proof. ]

Proposition 3.9. Let P be a subgroup of S of order 3. Then P is not
F-essential for any saturated fusion system F on S.
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Proof. Suppose that P is F-essential for some saturated fusion system F on
S. By Lemma 3.6 and Lemma 3.8, P is elementary abelian. Hence, Lemma
2.9 implies that P < A or P < E. The former case leads to a contradiction,
as Cg(P) > P (see Remark 3.3). In the latter case, since Z(S) < P (as
P is F-essential) and E/Z(S) is abelian, it follows that P < E, and hence
|Ns(P)/P| > 3%, in contradiction with Lemma 3.8. O

3.3 F-essential subgroups of S of order 3*

Proposition 3.10. Let P be a non abelian subgroup of S, of order 3*. Then
P is not F-essential for any saturated fusion system F on S.

Proof. Suppose that P is F-essential for some saturated fusion system JF on