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by Mariya Pyatkova

My Phd thesis consists of two independent studies on topics of interest for finance and

banking. The first part is a joint work with V. Cerasi. It involves a theoretical model of

interlocking directorates in banking. While the second part is a joint work with F. Bellini

and I. Negri and it involves both theoretical and empirical studies about backtesting VaR

and expectiles with realized scores.

Essay 1

Interlocking Directorates and Macroeconomic shocks

Interlocking directorates occur whenever an executive in one board sits also in the board

of another organization. Usually interlocks are seen as a collusive device. Despite legal

restrictions on interlocks for antitrust reasons, they remain quite common in the financial

sector. In this paper the effect of interlocking directorates is investigated for the special

case of banks. We delineate a theoretical model that illustrates cost and benefit of

interlocking directorates and compare it to the case of independent boards. The setup

of the model is that of imperfect information, since the quality of the board is imperfectly

known to rivals. We study the conditions for a Perfect Bayesian equilibrium to exist with

interlocking directorates. Furthermore, we show that two symmetric equilibria arise:

one with interlocking directorates and one with independent boards. The equilibrium

with interlocking may be preferable from a welfare point of view when coordination is

prohibited by the antitrust law. This could be particularly relevant for banks located in

independent markets but exposed to common macroeconomic shocks.
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Essay 2

Backtesting with realized scores

Several statistical functionals such as quantiles and expectiles arise naturally as the min-

imizers of the expected value of a scoring function, a property that is called elicitability

(see Gneiting, 2011 and the references therein). The existence of such scoring functions

gives a natural way to compare the accuracy of different forecasting models, and to test

comparative hypotheses by means of the Diebold-Mariano test (see Ziegel and Nolde,

2016 and the references therein). In this paper we suggest a procedure to test the accu-

racy of a quantile or expectile forecasting model in an absolute sense, as in the original

Basel I backtesting procedure of Value-at-Risk. To this aim, we study the asymptotic

and finite-sample distributions of empirical scores for Normal and uniform i.i.d. samples.

We compare on simulated data the empirical power of our procedure with alternative

procedures based on empirical identification functions (i.e. in the case of VaR the num-

ber of violations) and we find an higher power in detecting at least misspecification in

the mean. We conclude with a real data example where both backtesting procedures are

applied to AR(1)-Garch(1,1) models fitted to SP500 logreturns for VaR and expectiles’

forecast.

Keywords: Backtesting, scoring function, VaR, expectiles.
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(v)
1000 after perform-

ing the PIT in the normal and t model (upper part). Theoretical mean
and standard deviation of the corresponding asymptotic distributions and
p-values in the normal and t model (lower part). . . . . . . . . . . . . . . 39

ix



Abbreviations

ID Interlocking Directorates

VaR Value at Risk

ES Expected Shortfalls

x



To my dad, my sister and my mom

xi



Chapter 1

Interlocking Directorates and

Macroeconomic shocks

1.1 Introduction

Often we hear of an executive sitting in two or more boards at the same time, that

is, of an interlocking directorate. Interlocking directorates (ID) concern either firms

operating in different sectors or firms within the same sector. ID are unevenly spread

across industries: 30% of all ID are in finance, 26% in energy, 22% in utilities, 14% in

construction and 8% in consumer goods and retail (see Heemskerk, 2013 ).

We start observing that ID are more frequent in the financial industry relatively to other

industries. Given that ID may act as a coordination device, they may be in contrast with

competition laws and thus prohibited. Why are ID tolerated in the financial sector? Are

there benefits in interlocking for the financial sector, that could compensate for their

negative impact on competition?

In this chapter we focus on banks for two reasons. First of all, in the financial industry

we see a greater percentage of ID. Second, in the banking industry more than in other

industries we might see a critical trade-off between financial stability and competition

(see Carletti, 2008). In fact banks are, more than other firms, vulnerable to macroeco-

nomic shocks; this vulnerability might give rise to a systemic crisis, such as the global

financial crisis we saw in the 2007, with all the disruptive effects for many economic

activities. Financial stability could thus be, in extreme macroeconomic conditions, a far

more desirable objective in terms of welfare, than preserving competition alone.

1
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In this chapter, we address the analysis of ID within a theoretical model with incomplete

information. The analysis provides the conditions for ID to arise as an equilibrium

outcome in a non-cooperative game where each bank chooses whether to interlock or to

stay independent.

Two banks, located in two separate regions, may be hit by two independent shocks.

This leads to a systemic crisis when the two banks are hit at the same time. When

a bank fails, the regulator intervenes by seizing and liquidating the assets in the bank

portfolio and repaying depositors. The sale of the loans in the bank portfolio involves

liquidation costs: these costs are more than proportional when two banks fail instead of

one, due to fire sales (selling several assets at the same time). This assumption captures

the disruption of a systemic crisis.

Ex-ante each banker might exert an effort to reduce the losses on the portfolio of loans,

thus the probability of having to face ex-post liquidation costs; this effort has a cost

which is private information for each banker. It is therefore important for the bankers

to coordinate on the risk-reducing efforts. Not knowing the effort costs of the rival, this

coordination is not possible unless bankers choose to interlock. A banker who sits in

the rival bank’s board, perfectly observes the cost of effort of the other banker. In this

context ID allow to share information.

In this setting we compare the case of independent banks (two bankers sitting each in

a separate board) with that of symmetric interlocking directorates (two bankers sitting

in both boards). In both cases there is strategic interaction in the choice of efforts:

however with ID there is sharing of information.

We search for conditions in which banks choose voluntarily to interlock rather than to

stay independent. We show that ID is one of the possible equilibria outcome when

the two bankers have symmetric private costs. We suggest that ID could be beneficial

as a tool to reduce the costs of systemic risk, since it is the equilibrium in which the

welfare losses are minimized. In addition we prove that there are conditions in which

the equilibrium with ID arises also when bankers have asymmetric costs.

First of all this chapter contributes to the existing literature by suppling a novel frame-

work to analyze ID. The model has two advantages, first of all it connects the degree

of financial stability to ID. Second it distinguishes between ID and collusion: while col-

lusion is the coordination of actions, ID involves just sharing of information without

coordination of actions.

The remainder of the chapter is organized as follows. In Section 2 we provide the relation

with the existing literature. Section 3 describes the basic model. Section 4 analyzes the
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equilibrium under the different settings (independent vs. interlocking banks). Section 5

studies the case of collusion and comparison analysis. Section 6 investigates the welfare

analysis. Section 7 analyzes the conditions in which interlocking arises as an equilibrium

within a non-cooperative game where banks decide whether to interlock or not. Section

8 concludes the chapter. All proofs are in Appendix A.

1.2 Relation to the literature.

Interlocking directorates influence corporate practices in several aspects. Mizruchi (1996)

was one of the first to analyze this phenomenon. Academics study interlocking direc-

torates from different perspectives. For instance, Kim et.al. (2011) suggest that ID

may be a solution for complex economic and political questions. ID may affect not

only politics through social networking, but also could affect the amount and type of

funds the firms borrow (see Stearns & Mizruchi, 1993). Geletkanycz & Hambrick, (1997)

and Useem(1982) study the effect of ID for the corporate strategy and general business

environment.

Indeed, a large part of the literature is devoted to interlocking directorates as a way

to collude. Haunschild (1993) provide evidence that firm managers are exposed to the

acquisition activities of other firms when they sit on those firms’ boards. While Croce

and Grassi (2010) highlight the negative effect of ID on firm value. This suggests that

controlling shareholders in Italy create a network to protect their private benefits of

control. Along the same line, Drago et.al. (2011) find a negative relation between ID

and company performance for Italian companies. Polo et al. (2009) focus on ID in

Italian financial companies. Main and Creatini (2017) study the recent evolution of ID

in the banking sector in Italy and the impact of regulatory limits on ID.

The most related papers are the following. Ambrus et.al. (2014) develop a model of

informal risk sharing in social networks, where relationship between individuals can

be used as social collateral to enforce insurance payments. Schoorman et.al. (1981)

survey the existing literature and suggeste the idea that ID could be considered as a

tool to reduce environmental uncertainty, although it never became popular among the

practitioners. Moreover, Houston et.al., (2014) study the relation between different

measures of centrality in network and its contribution to systemic risk in the banking

system.

Here we review the contributions in the literature according to their emphasis to costs

or benefits of ID.
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Costs. From a competition policy perspective, firms have to take decisions indepen-

dently to avoid anticompetitive behavior: ID instead may dwindle or eliminate compe-

tition and facilitate collusion Conzalez Diaz (2012) . ID are seen as an instrument to

cartelize a market because sharing directors allows cartel to monitor directly activities

by having an observer in place: this could reduce the cost of reaching and enforcement

of cartel agreements. ID can be also a tool for systematic collusion among companies

operating in different business sectors finalized at the expropriation of minority share-

holders. A system based on direct interlocking directorates may thus potentially produce

economic inefficiencies Carbonai & Bartolomeo (2006).

In addition, the indirect evidence on the relation between ID and industry concentration

is mix. For instance Pennings (1980) found a positive association between industry con-

centration and horizontal ties, while Burt (1983) found an inverted U-shaped function:

suggesting that with very high market concentration, few producers have little need to

interlock to coordinate on prices.

Benefits. ID allow to share information and risks among the firms in the network, at

the benefit of reducing uncertainty. The ability to control or at least reduce environmen-

tal uncertainty could be a positive side effect of ID. Directors have access to information

related to trends, regulation rules, market conditions, new strategies, inter-bank trans-

actions, and other crucial market data, which can flow across corporate boardroom

network. Haunschild & Becman (1998) found that interlocking directorates could be a

tool for channeling relevant information that may improve each single bank strategy. A

well-connected board is one of the tool that is central to the network’s aggregate flow

of information and resources. Interlocking directorates may provide a better access to

this additional information and comparative advantage in making strategic decisions

(Mizruchi, 1996, Mol, 2001). The ID provide contacts that are sources of economics

benefits and resource exchange (Mol, 2001, Nicholson et.al., 2004). Pfeffer and Salan-

cik (1978) view ID as dyadic inter-organizational strategy, for example, by reducing

”competitive uncertainty”.

The most relevant paper for our objective is Houston et.al., (2014). They focus on

the relation between financial stability and connected banks. They provide empirical

evidence that central banks within a network contribute significantly to the systemic risk

of the global banking system. The central banks in a network are defined as banks with

the greatest number of connections. Bank connections are established through similar

education paths, or past or present membership in a corporate board, government or

medical institutions. They show that these connections are associated to a greater

impact on systemic risk. We instead provide an argument as to why ID may arise as a

reply to systemic risk in the financial sector.
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Our contribution is a theoretical one. We are not aware of any model that analyses ID

within a separate setting from collusion. Furthermore we focus on the banking industry

to study the relation between financial stability and ID.

1.3 The basic model

Consider two banks k = {1, 2} located in two independent regions. Each bank collects

one unit of deposit to invest into a single illiquid loan. Each loan yields either R > 1

in case of success or 0 in case of failure at date t = 2. Project returns are i.i.d. across

regions.

We model the activity of the bank as follows: each banker exerts an effort θk ∈ [0; 1],

with associated effort cost proportional to ck. The effort cost is quadratic. The banker’s

effort θk is not observable by third parties and, given that ck is a private cost, there is

a moral hazard problem.

There are two possible states of the world at date t = 1: state good, G, or state bad B.

The return of the loans are affected by the state of the world:

• in state G the loan returns always R;

• in state B the loan returns R with exogenous probability p ∈ (0, 1), 0 otherwise.

Although with uncertainty, the banker’s effort may improves the probability of success of

the loan, by increasing the chances that state G occurs. In other words, the probability

that state G occurs is q(θk) = θk. Hence the banker by exerting the effort may reduce

the probability of ending up in the bad state of the world B where the probability of

losses is positive, i.e. probability 1− p. The setup we have in mind is that B describes

the case in which the region is hit by a negative macroeconomic shock. To avoid losses

in the portfolio the banker needs to exert monitoring effort on the loans. In this way

the probability of having losses is reduced.

Given that depositors are infinitely risk averse, there is a deposit insurance that acts in

the interest of depositors: the deposit insurance refunds depositors when the bank fails

to repay them. Deposit insurance, alike all third parties, perfectly observes the state

of the world, but not the banker’s effort level. Notice that although the state of the

world {G,B} is observable, the banker’s effort can never be inferred from the state of

the world. Conditional on the state of the world, the deposit insurance may decide to

liquidate the loan in the bank’s portfolio to avoid larger future losses.
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Banks collect
deposits
and lend

t = 0

Banker chooses
effort θk

t = 1
2

State {G,B} realizes
+
Deposit insurance decides
to Liquidate/ Not Liqui-
date

t = 1

Returns realize

t = 2

Figure 1.1: Timing of the model.

The timing of the model is summarized in Figure 1.1.

The game is solved by backward induction.

1.3.1 The role of deposit insurance

Let’s focus at time t = 1 when the state of the world is observed by all third parties.

When observing the state of the world, the deposit insurance may decide to liquidate the

loan in the bank’s portfolio in order to repay depositors and avoid larger future losses.

Deposit insurance can decide to liquidate both banks (L1, L2), just one bank (L1, NL2)

or (NL1, L2) or none of the banks (NL1, NL2).

Early liquidation of the loan portfolio can be expressed as a percentage recovery value

of the return R, that is ws ∈ (0, 1). Assume that this percentage is:

ws =

L if only one asset is liquidated;

` if two assets are liquidated.

This assumption means that the percentage of the recovery value depends upon the

number of liquidated assets. We assume that ` < L < 1, that is, there is a greater

loss in recovery value when selling multiple assets at the same time (”fire sales”). This

assumption captures our idea of systemic risk: when two banks are liquidated simulta-

neously there are larger losses in the economy compared to the case when just one bank

is liquidated.

Assume that RL < 1 which means deadweight loss of liquidation. This assumption

implies the idea of liquidation choice: when the deposit insurance decide to liquidate

the bank it fully insures depositors and cashes the amount RL from the sold asset. In

case the deposit insurance does not liquidate the assets in the portfolio of the bank

instead, once depositors are repaid, the rest of the revenue remains to the banker.

Let’s consider the total disbursement costs for the deposit insurance in each of the four

possible states of the world according to the possible decisions about liquidating or not

the two banks.
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Table 1.1: Expected disbursement for the deposit insurance in each possible state of the
world

State & Decision (L1, L2) (L1, NL2) (NL1, L2) (NL1, NL2)

(B,B) 2(1− `R) (1−RL) + (1− p) (1− p) + (1−RL) 2(1− p) ` < p
R

(B,G) 2(1− `R) (1−RL) (1− p) + (1−RL) (1− p) L > p
R

(G,B) 2(1− `R) (1−RL) + (1− p) (1−RL) (1− p) L > p
R

(G,G) 2(1− `R) (1−RL) (1−RL) 0 always

At time t = 1 the deposit insurance anticipates that there is a probability (1 − p) of

zero return on each loan portfolio. Therefore it can consider to liquidate the banks to

avoid those losses and recover at least the certain amount LR by liquidating bank’s

assets. However in case deposit insurance liquidates the two banks the recovery rate is

proportionally smaller, i.e. ` < L, due to fire sales.

In Table 1.1 we report in each cell the total disbursement from the deposit insurance’

s point of view according the liquidation choice and the realized couple of states of the

world in the two regions.

The deposit insurance chooses the action (liquidation versus non liquidation) that min-

imizes its expected disbursement value in each of the possible states. We start by state

(B,B). When (B,B) state occurs the decision (NL1, NL2) insures the minimum losses

whenever ` < p
R . In state (B,G) the minimum is reached with (L1, NL2) when ` < L < 1.

In state (G,G), (NL1, NL2) is the minimum under our assumptions.

Notice that there is no strategic interaction if ` = L. Looking at table 1.1, if bank 1

is in the good state, than deposit insurance decide not to liquidate regardless bank 2

being in good or bad state and otherwise. This implies that information about rival’s

cost does not affect bank’s choices.

At time t = 1
2 banks maximize their profits. Table 1.2 presents the gross payoff (ignoring

the costs of effort) for each banker in each different state of the world, anticipating the

liquidation choice of the deposit insurance.

Indeed, banks need to put more effort to avoid losses in their portfolio.

1.4 Equilibrium profits with and without ID

Recall state t = 1
2 , at which banks maximize their profits, anticipating the liquidation

choice of deposit insurance in each state of the world. Assume, that the cost of effort
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Table 1.2: Bankers’ payoffs under different states of the workd, taking into account liqui-
dation choices

State & Bank’s payoff Prob. for bank 1 Prob. for bank 2 Bank 1’s return Bank 2’s return

(B,B) (1− θ1) (1− θ2) p(R− 1) p(R− 1)

(B,G) (1− θ1) θ2 0 (R− 1)

(G,B) θ1 (1− θ2) (R− 1) 0

(G,G) θ1 θ2 (R− 1) (R− 1)

can assume only two values cH or cL. A banker with cost cH is inefficient, while with

cost cL < cH is efficient. Remember that the cost is private information of the banker.

We consider two different cases.

1. Independent bankers (IB,IB): each banker sits in one single board. Since the

cost of effort is private information of the banker, this setup is one of symmetric

and incomplete information.

We define ID the case when one banker sits in the rival bank’s board: in this case

the interlocking director observes the private cost of the other banker.

2. Symmetric interlocking directorates (IL,IL): two banks have both an exec-

utive in the other bank’s board. The set up is one of symmetric and complete

information.

Let’s solve each case separately and compare the results.

1.4.1 Independent banks

Two banks act independently of each other and behave symmetrically. Each bank may

exert an effort to maximize the expected profit anticipating the liquidation choice of

the deposit insurance. Each banker’s type is private information. Hence bankers don’t

know the type of the other banker; this requires solving a Static Bayesian Game with

imperfect information.

We assume that each banker attaches a prior probability (belief) µ ∈ (0, 1) to the fact

that the rival’s cost of effort is high H and probability (1− µ) to the cost being low L.

Notice that the probability µ is exogenous and belong to the open interval µ ∈ (0, 1).

Let’s focus on banker 2’s problem, whose expected profit is:

Π2(cH , µ) = (1− θ2)[µ(1− θ1(µ, cH)) + (1− µ)(1− θ1(µ, cL))]p(R− 1) + θ2(R− 1)− cH
θ2

2
.(1.1)
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By maximizing Π2 with respect to θ2 we derive the reaction function for banker 2:

θ∗2(cH , µ) =
(R− 1)

cH
{1− p[µ(1− θ∗1(µ, cH)) + (1− µ)(1− θ∗1(µ, cL))]}. (1.2)

Proposition 1.1. In the Bayesian Nash Equilibrium (BNE) the bankers’ efforts are:



θIB,IB2 (µ, cH) = (R−1)(1−p)
cH−p[R−1][µ+(1−µ)

cH
cL

]
;

θIB,IB2 (µ, cL) = cL
cH
.θIB1 (cH , µ);

θIB,IB1 (cH , µ) = θIB1 (cH , µ);

θIB,IB1 (cL, µ) = cL
cH
.θIB2 (µ, cH).

where p ∈ [0, 1], R > 1 is the return of the project; cH , cL > 0 are the two possible

values for the effort cost and ` < p
R , LR < 1, L > p

R . In addition, all the equilibrium

efforts, θIB,IB, belong to the interval (0, 1).

Proof. See Appendix A.

The (IB,IB) equilibrium profit can be derived by substituting the equilibrium efforts in

the expression of the expected profit in (1.1). For instance, bank 2’s equilibrium profit

is:

ΠIB,IB
2 (µ, cH) = (1− θIB,IB2 (cH , µ))[µ(1− θIB,IB1 (µ, cH)) + (1− µ)(1− θIB,IB1 (µ, cL))]p(R− 1)

+ θIB,IB2 (R− 1)− cH
(θIB,IB2 (cH , µ))2

2
(1.3)

Similarly, we can compute the equilibrium profit for bank 1.

We can therefore compute the equilibrium profits ΠIB,IB
2 (µ, c2), ΠIB,IB

1 (c1, µ) for each

possible combination of costs L and H for the two banks.

1.4.2 Interlocking Directorates

In the case of symmetric interlocking directorates (henceforth (IL,IL)), the two banks

have each an executive in the rival bank’s board. Therefore, each banker observes the

type of the other banker. Each banker chooses her own effort to maximize the profit of

the native bank. In this case information is symmetric and complete.

Bank 2’s profit is:

max
θ2

Π2 = (1− θ2)(1− θ1)p(R− 1) + θ2(R− 1)− c1
θ2

2

2
, (1.4)
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where we write profit for a generic cost c2 that stands either for cH or cL. By maximizing

Π2 with respect to θ2 we derive the reaction function for banker 2:

θIL,IL2 =
(R− 1)

c1
[1− p(1− θIL1 )]. (1.5)

Proposition 1.2. The equilibrium efforts in the Nash equilibrium are:

 θIL,IL2 (c1, c2) = (1−p)(R−1)(c1+p(R−1))
c1c2−p2(R−1)2

.

θIL,IL1 (c1, c2) = (1−p)(R−1)(c2+p(R−1))
c1c2−p2(R−1)2

;

where p ∈ [0, 1], R > 1 is the return of the project; cH , cL > 0 are the two possible

values for the effort cost and ` < p
R , LR > 1, L > p

R . In addition, all the equilibrium

efforts θIL,IL belong to the interval (0, 1).

We can substitute the efforts into the profit function and derive the L profits at equilib-

rium for each combination of types. Thus the equilibrium profits are ΠIL,IL
2 (c1, c2),ΠIL,IL

1 (c1, c2).

Proof. See Appendix A.

The (IL,IL) equilibrium profits for bank 2 can be derived by substituting the equilibrium

efforts in the expression of the expected profits in the equation (1.4):

ΠIL,IL
2 (c1, c2) = (1− θIL,IL1 (c1, c2))[1− θIL,IL2 (c1, c2)]p(R− 1) + θIL,IL2 (c1, c2)(R− 1)

− c2
(θIL,IL2 (c1, c2))2

2
(1.6)

Similarly, we can derive the equilibrium profit for bank 1.

Notice that, we can provide close formula for the bank’s profit if c1 = c2 = c (see

Appendix A).

1.5 Collusion.

In this section we compute the solution under collusion and we compare it with the

equilibrium with interlocking directorates. In the antitrust literature we often find the

two cases a bit overlapped. Collusive agreements are forbidden because of their anti-

competitive effects. In this chapter we distinguish between coordination of actions (co-

operative choice of efforts) with the sharing of information that comes from ID which
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does not necessarily imply coordinated choice of efforts. When banks collude (or merge)

they maximize joint profits (or a weighted sum of profits) and set efforts in a coordinated

manner. In this case there is symmetric information and coordination on effort choices.

max
θ1,θ2

(Π1 + Π2) = (1− θ1)(1− θ2)p(R− 1) + θ1(R− 1)− c1
θ2

1

2

+ (1− θ2)(1− θ1)p(R− 1) + θ2(R− 1)− c2
θ2

2

2
(1.7)

where we derive profit for a generic cost c1, which stands either for cH or cL. By

maximizing Π1 + Π2 with respect to θ2 we derive the reaction function:

θC2 =
(R− 1)

c1
[1− 2p(1− θC1 )]. (1.8)

Proposition 1.3. At the optimum the efforts of the two banks are:

θC1 = (R−1)(1−2p)[c2+2(R−1)p]
c1c2−4p2(R−1)2

;

θC2 = (R−1)(1−2p)[c1+2(R−1)p]
c1c2−4p2(R−1)2

.

with p ∈ [0.1];R > 1; ck > 0; θCk ∈ (0, 1) and ` < p
R ; RL < 1; L > p

R .

Proof. See Appendix A.

The equilibrium profits in collusion can be derived by substituting the equilibrium efforts

in the expression of the expected profits. Notice that, we can provide close formula for

the banker’s profit if c1 = c2 = c (see Appendix A1.)

Comparison analysis Inefficient banks c1 = c2 = cH .

In the order to investigate the difference from the profits in symmetric interlocking case,

collusion and independent case, we provide a numerical example for inefficient banks

c1 = c2 = cH with fixed parameters p = 0.7;R = 1.3; cL = 0.3; c = 0.7 (see Figure 2).

The profits have been computed by inserting fixed parameters in the equilibrium profits

in symmetric interlocking case (1.4), collusion (1.7) and independent case (1.1).

Figure 2 shows profits as a function of prior belief that rival’s bank is inefficient. In

collusion (yellow line) and symmetric interlocking cases (red line) profits do not depend
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Figure 1.2: Bank’s profit ΠC , ΠIL,IL and ΠIB,IB for p = 0.7; R = 1.3; cL = 0.3;
cH = 0.7 and µ ∈ (0, 1).

on prior belief, since banks perfectly know the rival’s type. While in independent case

banks’ profit (blue line) depends on it.

First of all, the difference of the profit for ID and independent case comes through the

prior believe that rival’s bank is inefficient. We consider the case when two banks are

inefficient. In the independent case bank 1 may have a wrong belief that bank 2 is

efficient which implies the lower profit for the banks (situation in the neighbourhood of

0) with respect to ID profit, since in ID case banks perfectly observe the rival’s type.

On the contrary, if bank 1 have correct belief that bank 2 is inefficient then the profits

in independent and ID cases are equal to each other.

Indeed, one may see ID as an intermediate case between the case of independent banks

and collusion. By choosing to interlock, the independent banks can establish a channel in

which private information flows, as the interlocked director can effectively communicate

reliable information in a timely manner between the two banks. The connection between

banks and the access to private information can reduce uncertainty.

Collusion constitutes a way in which companies can increase their profits, while ID may

enable flow of information. Banks use interlocks as strategic tools to access and exchange

information and resources in order to reduce uncertainty. In today’s complex business

environment, information about rivals banks can be very valuable to banks. Mergers

and acquisitions of shares reduce competitive uncertainty in more permanent ways than

interlocks, but interlocks are more flexible and easier to implement.

Similarly one can provide the numerical example for efficient banks.
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1.6 Welfare analysis

In this section we investigate the solution of the game from the deposit insurance per-

spective. The welfare objective function W in our model implies minimizing the expected

disbursement costs for of deposit insurance, that is

W = −2(1− θ)2(1− p)− 2θ(1− θ)(1−RL),

is increasing function with respect to banker’s effort.

∂W

∂θ
= 2[(1− 2p+RL)− 2θ(RL− p)] ≥ 0

θ ≤ (1− p) + (RL− p)
2(RL− p)

,

where RHS is greater than 1 given the deadweight loss of liquidation assumption (RL <

1). Let’s compare the equilibrium efforts (IB, IB) and (IL, IL) cases.

(R− 1)(1− p)
cH − p[R− 1][µ+ (1− µ) cHcL ]

>
(1− p)(R− 1)(c1 + p(R− 1))

cHc1 − p2(R− 1)2
(1.9)

Lemma 1. The condition for the (IL,IL) equilibrium to dominate in welfare terms is

cL >
1−µ
µ p(R− 1). In this case θIL,IL > θIB,IB for all µ ∈ (0, 1).

Proof. See Appendix A.

The main intuition behind of this lemma lies in the same line with results of the game

from bankers perspective. From the welfare point of view, we would consider only ID and

independent case, because collusion is illegal. Lemma 1 shows condition under which

(IL,IL) equilibrium dominates (IB,IB) from the deposit insurance perspective.

The differences between this two equilibrium comes through the prior belief that rival’s

bank is inefficient. If both banks believe that they are inefficient (µ close to 1) than

the equilibrium efforts are greater in the equilibrium with ID. This means that the

full information, which generates through interlocking directorates, about rival’s bank

cost is better whenever banks expect their rival to be very inefficient. Revealing this

information allows to avoid setting a low effort in response to what it is believed an

inefficient rival. Disclosing the true cost is better in this case.

In other words, deposit insurance will prefer to have interlocking directorates rather

than independent. Growing evidence suggests that ID are an important consideration
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Table 1.3: Banks’ profits and the choice to interlock.

bank 1 & bank 2 IB IL

IB ΠIB,IB
1 (c1, µ); ΠIB,IB

2 (µ, c2) ΠIB,IL
1 (c1, µ); ΠIB,IL

2 (c1, c2)

IL ΠIL,IB
1 (c1, c2); ΠIL,IB

2 (µ, c2) ΠIL,IL
1 (c1, c2); ΠIL,IL

2 (c1, c2)

in understanding corporate behaviour. ID have access to wide range of information,

without inserting prior belief of rivals bank cost, which gives a higher equilibrium with

respect to independent case.

1.7 Existence of the equilibrium with interlocking

Here we ask whether interlocking can arise as an equilibrium outcome in a non-cooperative

game. At date t = −1 each bank decides whether to interlock without coordinating with

the rival bank. Each bank can fully anticipate profits when interlocking or remaining

independent banks.

Table 1.3 summarizes the payoff of the 2 players.

In order to be able to prove that an equilibrium with ID exists, we have to check

for any possible deviations from the two equilibria. In other words, we have to solve

the asymmetric case in which one bank interlocks, while the other remain independent,

namely the asymmetric ID (henceforth (IB,IL)). One of the two banks is an independent

bank, while the other bank has an executive in the board of the rival bank.

Notice that in one hand, our interpretation of ID here is that of a ”unilateral” flow

of information: the executive in the board delivers information from the ”rival” board

to the ”native” board, not viceversa. On the other hand, ID does not mean that the

banks coordinates actions. The difference between ID and collusion is that interlocking

allows the sharing of private information but not coordination of actions. The exchange

of such information may reduce environmental uncertainty. Cross-ownership of shares

reduces uncertainty in a more permanent way compared to interlocks, although they are

forbidden if anti-competitive. In contract to mergers, ID are not subject to the same

antitrust scrutiny. The reason is that ID are not necessarily coordination of strategies.
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1.7.1 Asymmetric interlocking directorates

The bank with ID has an advantage compared to the bank without. The set up is one

of asymmetric and incomplete information. Asymmetric incomplite information implies

that bank 2 observes both effort costs, while bank 1 knows only its own cost.

We solve this game by backward induction in two steps. First, we find the optimal effort

for bank 2, who is perfectly informed about the rival’s cost. The profit of the bank 2 is:

max
θ2

Π2 = [1− θ1(c1, µ)](1− θ2)p(R− 1) + θ2(R− 1)− c2
θ2

2

2
. (1.10)

The reaction function for bank 2 is:

θ∗2(c1, c2) =
(R− 1)

c1
[1− p(1− θ∗1(c1, µ))] (1.11)

Second, we find the optimal effort for bank 1. Bank 1 faces uncertainty about rival’s

cost of effort. We assume that bank 1 has a prior belief µ that rival’s cost is high H and

with probability (1− µ) rival’s cost is low L:

E(θ∗2) = µθ∗2(c1, cH) + (1− µ)θ∗2(c1, cL). (1.12)

Bank 1’s profit is:

max
θ1

Π1 = (1− θ1)[(1− E(θ∗2))p+ θ1](R− 1)− c1
θ2

1

2
. (1.13)

The reaction function for bank 1 is:

θ∗1(c1, µ) =
(R− 1)

c1
[1− p(1− E(θ∗2))]. (1.14)

Proposition 1.4. The efforts in the Nash equilibrium are:


θIB,IL1 (c1, µ) = (R−1)(1−p)[1+p(R−1)c̄]

c1−p2(R−1)2c̄

θIB,IL2 (c1, cH) = (R−1)(1−p)[c1−2p2(R−1)2c̄+p(R−1)]
cH [c1−p2(R−1)2c̄]

;

θIB,IL2 (c1, cL) = (R−1)(1−p)[c1−2p2(R−1)2c̄+p(R−1)]
cL[c1−p2(R−1)2c̄]

,

where c̄ = cH+µ(cL−cH)
cLcH

.

Proof. See Appendix A.
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The (IB, IL) equilibrium profits can be derived by substituting the equilibrium efforts in

the two expressions of expected profits (1.10) and (1.13). Bank 2’s profit in equilibrium

is:

ΠIB,IL
2 (c1, c2) = [1− θIB,IL1 (c1, µ)](1− θIB,IL2 )p(R− 1) + θIB,IL2 (R− 1)− c2

(θIB,IL2 )2

2
.(1.15)

Notice that, we can provide close formula for the banker’s profit if c1 = c2 = c (see

Appendix E.1.2).

1.7.2 Conditions for the existence of Subgame Perfect Equilibria

We are now able to compare the different equilibrium profits in Table 1.3 in order to

find the Subgame Perfect equilibrium/a.

Given the complex analytical expression for equilibrium banks’ profits, we solve the

game only for the symmetric cost case, i.e. when c1 = c2 = c and provide a numerical

example to convince the reader. The cost can be either high cH , meaning inefficient

banks, or low cL in this case banks are efficient. All the computations are reported in

Appendix A.

Inefficient banks (c = cH). We study the conditions for which there are no profitable

deviations from (IL, IL). In this case we could prove that ID is a Subgame Perfect

Equilibrium in the game where banks decide non-cooperatively to interlock.

The (IL, IL) is a Nash Equilibrium when none of the banks find it profitable to deviate,

i.e.: ΠIL,IL
1 (c1, c2) > ΠIB,IL

1 (c1, µ) and ΠIL,IL
2 (c1, c2) > ΠIL,IB

2 (µ, c2).

Given the symmetry of the two conditions, we check just one the two, namely:

ΠIL,IL
2 (c1, c2)−ΠIL,IB

2 (µ, c2) > 0 (1.16)

Condition (1.16) implies that bank 2 should find profitable to learn bank 1 cost, rather

than not knowing it.

Recalling the definition of ΠIL,IL
2 (c1, c2) and ΠIL,IB

2 (µ, c2) from eq(1.13) and eq(1.4), we

investigate the impact of this channel of information on banker’s effort, i.e.:

ΠIL,IL
2 (c1, c2)−ΠIL,IB

2 (µ, c2) = (1− p)(R− 1)(θIL,IL2 − θIL,IB2 )− p(R− 1)(θIL,IL1 − E(θIL,IB1 ))

+p(R− 1)(θIL,IL2 θIL,IB1 − θIL,IB2 E(θIL,IB1 ))− c2

2
(θIL,IL2 − θIL,IB2 )(θIL,IL2 + θIL,IB2 ) > 0(1.17)
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The intuition comes through two terms (θIL,IL2 − θIL,IB2 ) and (θIL,IL1 − E(θIL,IB1 )).

If cH > p(R− 1), then

• (θIL,IL2 − θIL,IB2 ) > 0, if bank 2 perfectly observes the cost of bank 1, than she will

put greater effort compared to the case in which she does not observe the cost of

bank 1;

• (θIL,IL1 − E(θIL,IB1 )) > 0, bank 1 will rather prefer bank 2 having ID than being

independent.

If cH < p(R− 1), then

• (θIL,IL2 − θIL,IB2 ) < 0, if bank 2 perfectly observes the cost of bank 1, than she will

put less effort than if she would not observes the cost of bank 1;

• (θIL,IL1 − E(θIL,IB1 )) > 0, bank 1 will rather prefer bank 2 having ID than being

independent.

There are two situation for ID being Subgame Perfect Equilibrium in inefficient case.

It comes from the difference of the banker’s effort in this two cases. We compared the

banker’s effort having symmetrical and asymmetrical interlocking directorates. Notice

that bank 1 in both situation having interlocking directorates, while bank 2 may also be

independent.

If banks are super inefficient, than the banks’ 1 effort is always greater in the case of

symmetrical ID then asymmetrical ID. Meaning that the full information, about rival?s

bank cost is better of then incomplete information, generated by asymmetric ID.

If bank 2 perfectly observes the cost of bank 1, than she will put greater effort compared

to the case in which she does not observe the cost of bank 1. In asymmetric ID case

bank 2 may have a wrong belief that bank 1 is efficient which implies the lower effort

for the banks with respect to ID.

If banks are less inefficient, than the bank 1 is still have greater effort in the case of

symmetrical ID then asymmetrical ID. While bank 2 will put less effort than if she

would not observes the cost of bank 1. One may think that if banks are less inefficient

than bank 1 do not manage to motivate bank 2 to have interlocking directorates. In

other words, bank 2 prefer to stay ignorant to have interlocking directorates, than paying

cost to have interlocking directorates.
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Table 1.4: Numerical example.

bank 1 & bank 2 IB IL

IB 0.1832; 0.1832 0.1664; 0.1836

IL 0.1836; 0.1664 0.2025; 0.2025

Efficient banks (c = cL). Given the similarity with the c = cH case, we report only

the intuition. The intuition for (IL, IL) comes through two terms (θIL,IL2 − θIL,IB2 ) and

(θIL,IL1 − E(θIL,IB1 )).

If cL > p(R− 1), then

• (θIL,IL2 − θIL,IB2 ) > 0, bank 2 perfectly observes the cost of bank 1, than she will

put higher effort than is she would not observes it;

• (θIL,IL1 − E(θIL,IB1 )) > 0, bank 1 will rather prefer bank 2 having ID than being

independent.

Indeed, in the case of efficient banks the banks’ 1 effort is always greater in the case of

symmetrical ID then asymmetrical ID. Meaning that the full information, about rival?s

bank cost is better of then incomplete information, generated by asymmetric ID.

If bank 2 perfectly observes the cost of bank 1, than she will put greater effort compared

to the case in which she does not observe the cost of bank 1. In asymmetric ID case

bank 2 may have a wrong belief that bank 1 is efficient which implies the lower effort

for the banks with respect to ID.

This result is also consistent with result of cooperative game, which is the full information

is better off that incomplete. Disclosing the true cost is better in this case. Generally,

this condition is considered to be an indication of bank 2 is motivated to have interlocking

directorates.

Given the complex analytical expression for conditions of (IL, IL) is Subgame Perfect

Equilibrium are not that trivial we provide a numerical example for inefficient banks

c1 = c2 = cH with fixed parameters p = 0.7;R = 1.3; cL = 0.3; c = 0.7 (see Table 1.4 ).

We choose the same parameter as in section 5. There are conditions under which the

(IL,IL) is Subgame Perfect Equilibrium.
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1.8 Conclusion

This paper analyzes the effect of interlocking directorates in the financial sector especially

for banks. Interlocking directorates involves a trade off in terms of positive and negative

effects on the decision making set. In one hand,interlocks are seen as a collusion device.

In fact, from the antitrust perspective there is legal restriction on interlocks to avoid

it. One the other hand, the potential benefit of interlocking directorates steams from a

flow of information. Particular, the ability to control or at least reduce environmental

uncertainty could be an advantage for interlocking directorates.

We investigate the effect of interlocking directorates through a theoretical model. The

cost and benefits of interlocking directorates compared to the case of independent banks.

We model interlocking directorates in a set up of incomplete information, where the

quality of the board is imperfectly known to rivals. We found conditionals where the

Perfect Bayseian equilibrium outcome is improved by interlocking directorates when

coordination is prohibited by the antitrust law. This could be particularly relevant for

banks located in independent markets but exposed to common macroeconomics shocks.

Moreover, we show that in the case of symmetric effort cost there are two symmetric

equilibria: one with interlocking directorates and one with independent banks. The

equilibrium with interlocking may be preferable from a welfare point of view when banks

are inefficient. This could be particular relevant for banks with common macroeconomic

shocks such as financial crises.
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Chapter 2

Backtesting with realized scores

2.1 Introduction

The notion of backtesting a risk measure has been the subject of a lot of research either

in the academia and in the financial industry. Roughly, backtesting means developing a

statistical test of a forecasting model, based on the sequence of realized portfolio losses

and of risk measure forecasts. The aim of backtesting is to reject the forecasting model

if the chosen test statistics, that should be related with the risk measure under scrutiny,

is too far from its theoretical distribution.

Perhaps the first and most well-known example is the Basel I procedure for backtesting

Value-at-Risk (VaR) by means of the sequence of violations. VaR at level α is simply the

α-quantile of the forecasting distribution and a violation is said to occurr if the realized

loss is bigger than VaR. Under the null hypothesis that the forecasting model is correct

the sequence of violations is Bernoulli i.i.d. with probability α; classical backtesting

procedures were based on counting the number of violations or measuring their tendence

to cluster (see Kupiec, 1995, Christoffersen, 1998, Christoffersen and Pelletier, 2004, or

Campbell, 2005 for a review).

One common critique to traditional backtesting procedures of VaR (see e.g. Campbell,

2005 or Wong, 2010) was that taking into account only the number of violations and

not their magnitude lacks statistical power and may be misleading. For example, a

risk manager could easily get a Bernoulli i.i.d. sequence of violations and thus pass a

backtesting based on the number of violations by issuing extremely conservative VaR

forecasts with probability 1−α and extremely permissive VaR forecast with probability

α in a random fashion. This argument has been further explored in Holzmann and

Eulert (2014), that have shown that traditional backtesting of VaR is insensitive with

respect to increasing information.

23
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The idea of backtesting VaR by means of scoring functions already emerged in Lopez

(1999a) and Lopez (1999b), but never became popular among the practitioners. More-

over, Lopez (1999a) and Lopez (1999b) used a non-consistent scoring function, as it was

noted e.g. by Bellini and Figa’-Talamanca (2007). More recently, a similar approach has

been pursued in Wong (2010), that used the mean of the magnitude of the violations as

a test statistic for VaR.

After the seminal paper of Artzner et al. (1999), academic research recognized some

shortcomings of VaR and suggested to move to Expected Shortfall (ES) as a proper risk

measure for computing capital requirements; this lead to the problem of backtesting

ES, that has been considered for example by MacNeil and Frey (2000), Kerkhof and

Melenberg (2004) and Acerbi and Szekely (2014).

A paper that had a big influence on the financial community and initiated an active

stream of new literature on backtesting was Gneiting (2011), that introduced in the

financial community the ideas of consistent scoring function and elicitable functional. A

scoring function is consistent for a given statistical functional if the functional can be

defined as the minimizer of the expected value of the score; a functional is elicitable if

it admits a consistent scoring function. Consistent scoring functions give a natural way

to compare different forecasts of the same risk measure.

The most common elicitable risk measures are VaR, the expectiles, and the couple (VaR,

ES). Indeed, being a quantile of the distribution of the future losses, VaR is the minimizer

of the expected value of a suitable piecwise linear score; expectiles are by definition the

minimizers of a suitable piecewise-quadratic score; and it has been recently established

by Acerbi and Szekely (2014) and Fissler and Ziegel (2016) that the couple (VaR, ES)

jointly minimizes the expectation of a suitable two-variable scoring function.

Consistent scoring functions have been used mainly for comparative backtesting (Fissler

et al., 2016, Nolde and Ziegel, 2016), with a procedure that is based on the Diebold-

Mariano test. Comparative backtesting refers to a situation in which the statistical

hypothesis under examination regards the relative merit of two different models.

The aim of the present paper is to investigate the use of scoring function for traditional

backtesting of VaR and expectiles, by refining the ideas introduced in Lopez (1999) and

Wong (2010). To this aim, we derive the asymptotic distribution of the empirical scores

in the case of a normal i.i.d. sample and in the case of a uniform i.i.d. sample; both

are asymptotically normal, altough the finite sample distribution shows a considerable

departure from normality. The same idea may be applied for the couple (VaR, ES), but

we are not pursuing it in the present work.
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In order to apply the results for the asymptotic distribution of the empirical scores

to backtesting usual econometric models, we suggest to follow a procedure based on

the Probability Integral Transform (also known as ‘realized p-values’), as it has been

suggested in the present context by Berkowitz (2001) for VaR and by Kerkhof and

Melenberg (2004) for ES.

The chapter is structured as follows. In Section 2.2 we introduce the basic notations.

In Section 2.3 we derive asymptotic distributions of realized scores and identification

functions and study their small sample distribution by means of simulations. In Section

2.4 we provide a simple example on simulated data that shows that backtesting with a

realized score may have more power than backtesting with a realized identification func-

tion. In Section 2.5 we provide an example of backtesting standard AR(1)-Garch(1,1)

models, while Section 2.6 concludes.

2.2 Notations and preliminaries

We denote with Y the random future loss associated with a financial position. The

α-Value at Risk of Y is simply the α-quantile

vα(Y ) = inf {t : FY (t) ≥ α} ,

where FY (t) = P (Y ≤ t) and typically α = 0.95 or α = 0.99. As it is well known from

quantile regression (see e.g. Koenker, 2005),

vα(Y ) = arg min
x∈R

E[S(v)(x, Y )],

for the piecewise linear scoring function

S(v)(x, y) = α(y − x)+ + (1− α)(y − x)−. (2.1)

Newey and Powell (1987) introduced the expectiles eα as the minimizers of the expected

value of an asymmetric quadratic scoring function: for Y ∈ L2,

eα(Y ) = arg min
x∈R

E[S(e)(x, Y )],

with

S(e)(x, y) = α(y − x)2
+ + (1− α)(y − x)2

−. (2.2)

Expectiles are thus an asymmetric genereralization of the mean, that arise when α = 1/2.

Expectiles are becoming increasingly popular in the financial literature since they are the
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only elicitable coherent risk measures; for this characterization and further properties

of expectiles we refer to Weber (2006), Bellini (2012), Bellini et al. (2014), Bellini and

Bignozzi (2015), Bellini and Di Bernardino (2015), Delbaen et al. (2016). It has to be

stressed that the scoring functions S(v) and S(e) are by no means the only ones whose

expected values are minimized respectively in the quantiles and in the expectiles. Under

mild technical conditions, Thomson (1979) and Saerens (2000) proved that the more

general scoring function consistent with quantiles is of the form

S(x, y) = (1x≤y − α) (g(x)− g(y)) (2.3)

for some nondecreasing g : R→ R.

Gneiting (2011) proved that the more general scoring function consistent with expectiles

is of the form

S(x, y) = |1x≤y − α|
(
φ(y)− φ(x)− φ′(x)(y − x)

)
, (2.4)

where φ : R→ R is a convex function with right derivative φ′. Newey and Powell (1987)

showed that for Y ∈ L1 expectiles are the unique solutions of the equation

E[I(e)(x, Y )] = 0,

where the identification function I(e) is given by

I(e)(x, y) = α(y − x)+ − (1− α)(y − x)−. (2.5)

By analogy with (2.5), we denote the identification function of quantiles with

I(v)(x, y) = α1{y>x} − (1− α)1{y<x}. (2.6)

Let now Yk, k = 1, . . . , n be an i.i.d. sample. The empirical versions of the expected

scores and expected scores are called respectively realized scores and realized identifica-

tion functions and defined as follows:

Ŝ(v)
n (x) =

1

n

n∑
k=1

S(v)(x, Yk), (2.7)

Ŝ(e)
n (x) =

1

n

n∑
k=1

S(e)(x, Yk),

Î(v)
n (x) =

1

n

n∑
k=1

I(v)(x, Yk),

Î(e)
n (x) =

1

n

n∑
k=1

I(e)(x, Yk).
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Table 2.1: Mean and variance of the realized score S(v)(vα,Y ) in the normal (upper)
and in the uniform (lower) case for different values of α.

α 0.5 0.05 0.01 0.001

vα 0 −1.6449 −2.3263 −3.0902

E[S(v)] 3.9894× 10−1 1.0314× 10−1 2.6652× 10−2 3.3671× 10−3

V ar[S(v)] 9.0845× 10−2 1.2698× 10−2 2.0053× 10−3 1.4337× 10−4

vα 0.5 0.05 0.01 0.001

E[S(v)] 1.2500× 10−1 2.3750× 10−2 4.9500× 10−3 4.9950× 10−4

V ar[S(v)] 5.2083× 10−3 1.8802× 10−4 8.1675× 10−6 8.3167× 10−8

In the present paper we focus for simplicity only on S(v) and S(e), but similar compu-

tations may be done for other consistent scoring functions of the families 2.3 and 2.4.

Alternative choices or the simultaneous use of multiple scoring functions in analogy with

the idea of the so called Murphy diagrams in Ehm et al. (2016) will be investigated in

future work.

2.3 Asymptotic distributions of realized scores and iden-

tification functions

In this section we study the asymptotic distribution of the realized scores and identifica-

tion functions (2.7) for normal and uniform i.i.d. samples. All the computations related

to the present Section are reported in Appendix. Let Y ∼ N(0, 1), and let φ, Φ and zα

be respectively its density, distribution function and α-quantile. Recalling the definition

of S(v) and S(e) from (2.1) and (2.2), we have

E[S(v)(vα, Y )] = φ(vα)

V ar[S(v)(vα, Y )] = α(1− α)(1 + v2
α) + (1− 2α)vαφ(vα)− φ2(vα)

If Y ∼ U [0, 1], we get

E[S(v)(vα, Y )] =
α(1− α)

2

V ar[S(v)(vα, Y )] =
α2(1− α)2

12

We report some values of E[S(v)(vα, Y )] and V ar[S(v)(vα, Y )] in Table 2.1.

We now consider the expectile scoring function (2.2). In the normal case we get
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Table 2.2: Mean and variance of the realized score S(e) in the normal (upper) and in
the uniform (lower) case for different values of α.

α 0.5 0.05 0.01 0.001

eα 0 −1.1402 −1.7173 −2.4265

E[S(e)] 0.5 1.6440× 10−1 5.2091× 10−2 8.4147× 10−3

V ar[S(e)] 0.5 8.6607× 10−2 1.6176× 10−2 1.4115× 10−3

eα 0.5 1.8661× 10−1 9.1325× 10−2 3.0668× 10−2

ES(e)] 4.1667× 10−2 1.1027× 10−2 2.7523× 10−3 3.1320× 10−4

V ar[S(e)] 1.3889× 10−3 9.7273× 10−5 6.0601× 10−6 7.8476× 10−8

E[S(e)(eα, Y )] = (1− 2α)eαφ(eα) + (1 + e2
α)[αΦ(eα) + (1− α)Φ(eα)]

V ar[S(e)(eα, Y )] =
[
3 + 6e2

α + e4
α

] {
α2 − 2αΦ(eα) + Φ(eα)

}
+

+ (1− 2α)
(
5eαφ(eα) + e3

αφ(eα)
)
− E2[S(e)(eα, Y )].

In the uniform case the expectile is given by

eα =


α−
√
α−α2

2α−1 if α 6= 1/2

1/2 if α = 1/2.
(2.8)

For α 6= 1/2 we get

E[S(e)(eα, Y )] =
α(1− α)(1− 2

√
α(1− α))

3 (2α− 1)2

V ar[S(e)(eα, Y )] =
4α2 (1− α)2

(
1− 2

√
α(1− α)

)2

45 (2α− 1)4 .

If α = 1/2 the expectile coincides with the mean, and it is easy to compute directly

E
[
S(e)(e1/2, Y )

]
= 1

24 and V ar
[
S(e)(e1/2, Y )

]
= 1

720 .

Notice that for each α ∈ (0, 1)

Std[S(e)(eα, Y )] =
2√
5
E[S(e)(eα, Y )],

that shows that for a U(0, 1) i.i.d. sample the coefficient of variation of the score does

not depend on α. We report some values of E[S(e)(eα, Y )] and V ar[S(e)(eα, Y )] in Table

2.2. Under our assumptions, realized scores are time averages of i.i.d. variables, so from

the law of large numbers and the central limit theorem they have an asymptotically

normal distribution:

Ŝ(v)
n (x)→ E[S(v)(x, Y )] a.s.,

√
n
(
Ŝvn(x)− E[Sv(x, Y )]

)
d→ N(0, V ar[Sv(x, Y )]),
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Figure 2.1: Distributions of 100000 realizations of the realized score Ŝ
(v)
n for a

normal i.i.d. sample with n = 100 (upper part) and n = 1000 (lower part), for
α = 0.05, 0.01, 0.001.

and similarly for S(e). Of course, asymptotic normality holds under much more general

hypotheses, related to the ergodicity of the process Yn. The whole point for constructing

a backtesting procedure by means of realized scores is to be able to compute explicitly

asymptotic variances, as we did in Tables 2.1 and 2.2.

In order to investigate the departure from normality of the distribution of Ŝ
(v)
n and

Ŝ
(e)
n , we resimulated N = 100000 trajectories of lenghts n = 100 and n = 1000, for

α = 0.05, 0.01, 0.001 (see Figures 2.1, 2.2 for the normal case and Figures 2.3, 2.4 for the

uniform case). The normal expectiles have been computed by means of the R function

enorm, while uniform expectiles by formula (2.8).

In the final part of the section we derive the asymptotic distributions of the realized

identification functions Î
(v)
n and Î

(e)
n (x) under the same hypotheses of normal and uniform

i.i.d samples. From the very definition of I(v) and I(e) in (2.5) and (2.6), it holds that

E[I(v)(Y, vα)] = 0

E[I(e)(Y, vα)] = 0

so E[Î
(v)
n ] = 0 and E[Î

(e)
n ] = 0. Moreover, notice that

Î(v)
n (vα) =

1

n

n∑
k=1

I(v)(vα, Yk) =
1

n

n∑
k=1

α1{Yk>vα} − (1− α)1{Yk<vα} =

=
[α(n−NV )− (1− α)NV ]

n
= α− NV

n
,
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Figure 2.2: Distributions of 100000 realizations of the realized score Ŝ
(e)
n for a

normal i.i.d. sample with n = 100 (upper part) and n = 1000 (lower part), for
α = 0.05, 0.01, 0.001.
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Figure 2.3: Distributions of 100000 realizations of the realized score Ŝ
(v)
n for a

uniform i.i.d. sample with n = 100 (upper part) and n = 1000 (lower part), for
α = 0.05, 0.01, 0.001.
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Figure 2.4: Distributions of 100000 realizations of the realized score Ŝ
(e)
n for a

uniform i.i.d. sample with n = 100 (upper part) and n = 1000 (lower part), for
α = 0.05, 0.01, 0.001.

where

NV =

n∑
k=1

1{Yk<vα}

is the number of violations. So in the case of VaR the realized identification function is

simply equal to the number of violations, up to a linear transformations. Hence the exact

finite sample distribution of the realized identification function is binomial; in the VaR

case backtesting with the realized identification function is the traditional backtesting

with the number of violations.

In the case of expectiles, if Y ∼ N(0, 1)

V ar[I(e)(Y, eα)] = (1 + e2
α)
[
α2 + Φ(eα)(1− 2α)

]
+ eαφ(eα) [1− 2α] ,

while if Y ∼ U(0, 1)

V ar[I(e)(Y, eα)] =
α2 (1− eα)3

3
+

(1− α)2e3
α

3
.

Some numerical values are reported in Table 2.3. As before, we investigate the fi-

nite sample distribution of Î
(e)
n by means of risimulation for n = 100, 1000 and α =

0.05, 0.01, 0.001 in the normal (Fig. 2.5) and in the uniform case (Fig. 2.6).
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Table 2.3: Variance of the realized score I(e) in the normal (upper) and in the uniform
(lower) case for different values of α.

α 0.5 0.05 0.01 0.001

eα 0 −1.1402 −1.7173 −2.4265

V ar
[
I(e)
]

2.5000× 10−1 5.5147× 10−2 1.2995× 10−2 1.5337× 10−3

eα 0.5 1.8661× 10−1 9.1325× 10−2 3.0668× 10−2

V ar
[
I(e)
]

- 2.4032× 10−3 2.7385× 10−4 9.8993× 10−6
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Figure 2.5: Distributions of 100000 realizations of the realized identification function
Î
(e)
n for a normal i.i.d. sample with n = 100 (upper part) and n = 1000 (lower part),

for α = 0.05, 0.01, 0.001.
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Figure 2.6: Distributions of 100000 realizations of the realized identification function
Î
(e)
n for a uniform i.i.d. sample with n = 100 (upper part) and n = 1000 (lower part),

for α = 0.05, 0.01, 0.001.
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2.4 Backtesting with realized scores and identification func-

tions

The aim of this section is to provide a first example of backtesting with scoring functions

on simulated data. The idea is very simple; the model used for forecasting VaR or

expectiles does not pass the backtest if the realized score is too big. In order to find the

rejection level of the test we will use the asymptotic distributions of the realized scores

derived in the previous sections, and in particular the parameters in Table 2.2 and Table

2.3.

The simulation setting is the following: we assume that the true data generating process

is known and given by Yi = N(µi, 1), with Yi independent, for a fixed vector of means µi,

i = 1, ..., 100. The time-varying means µi have been randomly chosen at the beginning of

the experiment by simulating from a zero mean normal distribution with three possible

values of the standard deviation: 0.1, 0.5 and 1. This originated three vector of means,

which we call respectively µA, µB and µC , that are kept fixed through the experiment

and plotted in Fig. 2.7. We will refer to these as model A, B and C respectively.
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Figure 2.7: Vector of 100 time-varying means µA, µB and µC .
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We consider a risk manager who wrongly believes that the data generating process is

Yi = N(0, 1), with Yi i.i.d.; his forecasting model is not able to capture the real dynamic

of the conditional mean. We would check two different backtesting procedures: the first

one is based on counting the number of violations, the second one is based on considering

the realized score and comparing it with its asymptotic distribution under the null

hypothesis of a normal i.i.d. sample. Of course this example is highly stylized, but it

can be made much more realistic by just interpreting the sequence Yi as the residuals of

a more complicate econometric model. Since in the example the forecasting distribution

is stationary, the VaR forecasts are constant and equal to z0.05 = −1.6449. Under the

null hypothesis that the forecasting model is correct, the number of violations NV has

a binomial distribution with p = 0.05 and n = 100. Since the number of violations is an

integer variable, we cannot fix a threshold such that the level of the test is exactly 5%,

as it would be costumary. So, we reject if NV ≤ 1 or NV ≥ 10, that corresponds to a

level of the binomial test

P (NV ≤ 1) + P (NV ≥ 10) = 0.03708 + 0.02819 = 6, 527%.

Notice that we use a bilateral test, rejecting either if the number of violations is too

low, or if the number of violation is too big. We penalize a model if it is too permissive

(many violations), but also if it is too restrictive (too few violations). We believe that

the aim of accurate risk management should not to avoid all violations (an objective

that could require excessivingly high margins, perhaps restricting too severely banking

activity) but to keep the number of violations under control from a statistical point of

view. The threshold S of the test based on the realized score Ŝ
(v)
100 is chosen in order to

satisfy

P (Ŝ
(v)
100 > S) = 6, 527%.

Using the asymptotic distribution derived in Section 2.3, we get

S = 0.1202.

However, since as we saw the distribution of Ŝ
(v)
100,0.05 shows considerable departure from

normality, we prefer to use a risimulated finite-sample distribution, that gives

S = 0.1216.

In order to compare the empirical power of the test based on the number of violations

with the test based on the realized score, we risimulate N = 100000 times models A,

B and C, and as a check also the model with µi = 0 ∀i. We report in Table 2.4 the

number of rejections of the forecasting model based on the number of violations (R1)
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Table 2.4: Fraction of rejections of the correct model µ = 0 and of the wrong models
µ = µA, µ = µB , µ = µC when backtesting with the number of violations (R1) and

when backtesting with scoring functions (R2)

.

µ = 0 µ = µA µ = µB µ = µC

R1 6, 56% 6, 44% 17, 71% 80, 56%
R2 6, 66% 6, 98% 41, 76% 97, 60%

and the number of rejections based on the empirical score (R2). The results shows that

backtesting with realized score has more power than backtesting with the number of

violations in detecting the misspecification in the conditional mean. This seems quite

intuitive, since the realized score contains also information on the magnitude of the

violation, not only on the fact that a violation occurred. We repeat the same experiment

in the case of a risk manager interested in forecasting the 5%-expectile. The true data

generating processes are as in the preceding example, while the forecasted risk measure

is now e0.05(Y ) = −1.1402. Our aim is now to compare backtesting with the empirical

identification function Î
(v)
n with backtesting with the empirical score Ŝ

(e)
n . Since now

both statistics have a continuous distribution, we fix a 5% level of the test. For the

identification function we consider a bilateral test with tresholds IL and IU determined

by

P (Î
(e)
100 < IL) = 2, 5% and P (Î

(e)
100 > IU ) = 2, 5%.

For the realized score we find S such that

P (Ŝ
(e)
100 > S) = 5%.

As before, since the distribution of Î
(v)
n and Ŝ

(e)
n shows a serious departure from normal-

ity, we determine the values of IL, IU and S by risimulation, obtaining

IL = −0.0505, IU = 0.0411, S = 0.2184.

The empirical powers of the two different tests are reported in Table 2.5. As in the case

of VaR, backtesting with scoring functions seem to have more power against misspeci-

fication in the mean then backtesting with identification functions. We stress that this

is just a preliminary example that may be enlarged in several directions, but it seems

to indicate a general principle that backtesting with scoring function is more sensitive

than backtesting with identification functions, at least with regard to wrong conditional

means.
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Table 2.5: Fraction of rejections of the correct model µ = 0 and of the wrong models
µ = µA, µ = µB , µ = µC when backtesting with realized identification function (R1)

and when backtesting with realized score (R2)

µ = 0 µ = µA µ = µB µ = µC

R1 5, 00% 4, 98% 23, 11% 98, 71%
R2 5, 01% 5, 59% 37, 00% 99, 87%

2.5 A real data example

In the previous section we showed that it is possible to backtest a simple forecasting

model by means of realized scores; moreover, the test based on realized score seemed to

have more empirical power in detecting a misspecified mean. In this section we consider

backtesting of a more realistic econometric model of Garch type, with normal or Student

t innovations. We suggest two different approaches; in the first one, we determine the

empirical distribution of the realized score under the null hypothesis that the forecasting

model is correct by means of risimulations, as in Bellini and Di Bernardino (2017).

In the second approach we first perform a Probability Integral Transform on the realized

logreturns

Ui = FYi(Yi),

and then test that the resulting sequence Ui is is i.i.d. with a U(0, 1) distribution by

computing the realized score and by comparing it with its asymptotic distribution for

uniform i.i.d. variables that has been derived in Section 2.3. A similar idea have been

suggested by Kerkhof and Melenberg (2004) for backtesting Expected Shortfall.

We consider the closing values of the SP500 Index from 03/01/2007 to 14/12/2012, and

we compute the corresponding series of 1500 daily logreturns. On this series we estimate

two models: an AR(1)-Garch(1,1) with normal innovations and an AR(1)-Garch(1,1)

with t innovations. Estimations are performed on rolling windows of 500 logreturns, so

we shave 1000 distributional forecast, related to days 501 − 1500. We used the Econo-

metrics Toolbox in Matlab; we noticed some numerical instabilities in the estimation

of the degrees of freedom of the t innovations that have been overcome by occasionally

switching the default settings to the interior-point algorithm when convergence problems

arised. We forecasted VaR at the 5% level and expectiles at the 1% level.

The forecasted mean and standard deviations of the two models are reported in Fig. 2.8

and 2.9, the forecasted VaR and expectiles in Fig. 2.10 and 2.11, the time series and

the distribution of the PIT in Fig. 2.12 and 2.13.
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In order to derive the distribution of the realized scores Ŝ
(v)
1000 and Ŝ

(e)
1000 under the

null hypothesis that the AR(1)-Garch(1,1) model with normal innovation is correct, we

risimulated N = 100000 trajectories of length n = 1000. A similar approach has been

followed for the model with t innovations. The results are reported in Table 2.6. We see

that in the normal case the realized scores Ŝ
(v)
1000 and Ŝ

(e)
1000 are quite high with respect

to their theoretical distribution, leading to very low p-values (respectively 0.00072 and

0.02164). On the contrary the model with t innovations is not rejected, since the p-

values in the left part of Table 2.6 are respectively equal to 0.52471 and 0.6136. For

the sake of clarity, we stres that this is not a comparative backtesting as in Nolde and

Ziegel (2016), based on a Diebold-Mariano test on difference of realized scores, but we

a separate backtest of the two models.

In Table 2.7 we show the results of the second backtesting approach, based on first

applying the PIT. In the first two lines we report the realized values of the four statistics

NV , Ŝ
(v)
1000, Î

(e)
1000, and Ŝ

(v)
1000 in the two models. In the last two lines we report the mean

and the standard deviation of their asymptotic distribution.

As before, for VaR forecast (left part) and for expectile forecast (right part), the model

with t innovations performs better, as expected. Indeed, it has in both cases lower

realized scores (2.3801 × 10−2 vs 2.4497 × 10−2 and 2.6088 × 10−3 vs 2.7603 × 10−3)

and realized identification functions closer to their theoretical mean (the number of

violations is 52 vs 60 and the expectiles identification function is −2.1496 × 10−4 vs

−8.7402× 10−4).

We see from Table 2.7 that backtesting with only the number of violations would not

reject the normal model at 5% level. On the contrary, backtesting with the realized score

(second column) would reject the normal model, since the realized score 2.4497×10−2 is

too high with respect to its theoretical mean. In the case of expectiles (third and forth

column) the opposite situation arise: the normal model would be rejected by backtesting

with the realized identification function but would pass the test based on the realized

score. Indeed, the t-model performs much better in terms of realized score, but the

performance of the normal model is not as bad as to produce a rejection.

2.6 Conclusions and directions for further research

The provided simulated and real data examples show that in principle it may be sensible

to implement a backtesting procedure based on the realized value of the scoring function,

with the idea of rejecting the model if the realized score is too big. Apparently, this

approach captures the idea of backtesting by keeping into account also the magnitude
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Figure 2.8: Forecasts of the mean (upper part) and standard deviations (lower part)
of the AR(1)-Garch(1,1) model with normal innovations
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Figure 2.9: Forecasts of the mean (upper part) and standard deviations (lower part)
of the AR(1)-Garch(1,1) model with t innovations

Table 2.6: Realized values of Ŝ
(v)
1000 and Ŝ

(e)
1000 in the normal (left) and t (right) models.

Mean and standard deviation of Ŝ
(v)
1000 and Ŝ

(e)
1000 computed by risimulations in the

normal (left) and t (right) models. In the last line we report the corresponding p-
values.

Ŝ
(v)
1000 Ŝ

(e)
1000 Ŝ

(v)
1000 Ŝ

(e)
1000

realized score 1.5044× 10−3 1.3790× 10−5 1.4883× 10−3 1.2826× 10−5

risimulated mean 1.3081× 10−3 1.0047× 10−5 1.5157× 10−3 1.5802× 10−5

risimulated std 4.9517× 10−5 1.0969× 10−6 8.0590× 10−5 1.0063× 10−5

p-value 0.00072 0.02164 0.52471 0.6136
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Figure 2.10: Forecasts of the VaR (upper part) and expectiles (lower part) of the
AR(1)-Garch(1,1) model with normal innovations
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Figure 2.11: Forecasts of the VaR (upper part) and expectiles (lower part) of the
AR(1)-Garch(1,1) model with t innovations

Table 2.7: Realized values of the four statistics NV , Ŝ
(v)
1000, Î

(e)
1000, Ŝ

(v)
1000 after perform-

ing the PIT in the normal and t model (upper part). Theoretical mean and standard
deviation of the corresponding asymptotic distributions and p-values in the normal and

t model (lower part).

NV Ŝ
(v)
1000 Î

(e)
1000 Ŝ

(e)
1000

normal 60 2.4497× 10−2 −8.7402× 10−4 2.7603× 10−3

t 52 2.3801× 10−2 −2.1496× 10−4 2.6088× 10−3

theoretical mean 50 2.3750× 10−2 0 2.7523× 10−3

theoretical std 6.8920 4.3361× 10−4 5.2331× 10−4 7.7847× 10−5

p-value normal 0.0734 0.0425 0.04744 0.45907
p-value t 0.3858 0.4532 0.34062 0.96736
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Figure 2.12: Time series (upper part) and distribution (lower part) of the Probability
Integral Transform in the AR(1)-Garch(1,1) model with normal innovations
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Figure 2.13: Time series (upper part) and distribution (lower part) of the Probability
Integral Transform in the AR(1)-Garch(1,1) model with t innovations

of violations and not only their number; it may have more power than the traditional

one, at least in simple examples.

Our use of the scoring function is different from Fissler et al. (2016) and Nolde and

Ziegel (2016), since we are not testing hypotheses realtive to the comparative merit of

two models, but we are backtesting a single model in isolation, as in the traditional Basel

I framework. From a statistical point of view our approach requires the determination

of the distribution of the realized scoring function under the null hypothesis that the

forecasting model is correct; we compute the asymptotic distribution for i.i.d. normal

and uniform samples, and we use risimulations for more complicated econometric models.
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As directions for further research, we believe it would be important to find a more

accurate approximation for finite-sample distributions of realized scores. Finally, the

same ideas may be applied to the traditional backtesting of the couple (VaR, ES) by

means of the consistent scoring functions studied in Acerbi and Szekely (2014) and

Fissler and Ziegel (2016).
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Appendix A

Mathematical calculation for

Interlocking Directorates

We report in this Appendix the solution for all cases of profit mazimization problem and

choice of interlock for symmetric and asymmetric cases.

Profit maximization problem for independent banks. Let’s focus on bank 2

profit maximization problem for independent banks.

Π2 = (1− θ2)[µ(1− θ1(cH , µ)) + (1− µ)(1− θ1(cL, µ))]p(R− 1) + θ2(R− 1)− cH
θ2

2

2
.

A reaction function of bank 1 is:

θ∗2(µ, cH) =
(R− 1)

cH
{1− p[µ(1− θ∗1(cH , µ)) + (1− µ)(1− θ∗1(cL, µ))]}

Given that the bankers’ problems are symmetric, the system of reaction functions, that

offends the optimal level of banker’s effort.


θ∗2(µ, cH) = (R−1)

cH
{1− p[µ(1− θ∗1(cH , µ)) + (1− µ)(1− θ∗1(cL, µ))]};

θ∗2(µ, cL) = (R−1)
cL
{1− p[µ(1− θ∗1(cH , µ)) + (1− µ)(1− θ∗1(cL, µ))]};

θ∗1(cH , µ) = (R−1)
cH
{1− p[µ(1− θ∗2(µ, cH)) + (1− µ)(1− θ∗2(µ, cL))]};

θ∗1(cL, µ) = (R−1)
cL
{1− p[µ(1− θ∗2(µ, cH)) + (1− µ)(1− θ∗2(µ, cL))]}.

From the system and the problem symmetry, i.e.

{
θ∗2(µ, cH) = θ∗1(cH , µ);

θ∗2(µ, cL) = θ∗1(cL, µ).

45
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θ∗2(µ, cH)

θ∗2(µ, cL)
=

cL
cH

;

θ∗2(µ, cH) = θ∗2(µ, cL)
cL
cH

;

θ∗2(µ, cH) =
[R− 1](1− p)

cH − p[R− 1][µ+ (1− µ) cHcL ]
.

So the Static Bayesian equilibrium is



θIB,IB2 (µ, cH) = [R−1](1−p)
cH−p[R−1][µ+(1−µ)

cH
cL

]
;

θIB,IB2 (µ, cL) = cL[R−1](1−p)
cH(cH−p[R−1][µ+(1−µ)

cH
cL

])
;

θIB,IB1 (cH , µ) = [R−1](1−p)
cH−p[R−1][µ+(1−µ)

cH
cL

]
;

θIB,IB1 (cL, µ) = cL[R−1](1−p)
cH(cH−p[R−1][µ+(1−µ)

cH
cL

])
.

with p ∈ [0.1];R > 1; ck > 0 and θIB,IBk ∈ [0, 1], ∀k = {1, 2} and ` < p
R ;RL > 1;L > p

R .

Solution is (θIB,IB1 , θIB,IB2 ) for each couple of types.

Profit maximization problem for Symmetric ID.

General case Let’s focus on bank 1 profit maximization problem for Symmetric ID.

max
θ2

Π2 = (1− θ1)(1− θ2)p(R− 1) + θ2(R− 1)− c1
θ2

2

2
.

Given that the bankers’ problems are symmetric, the system of reaction functions, that

offends the optimal level of banker’s effort.

{
θIL,IL2 = (R−1)

c1
[1− p(1− θIL,IL1 )];

θIL,IL1 = (R−1)
c2

[1− p(1− θIL,IL2 )].

θIL,IL2 =
(R− 1)

c1
(1− p) +

(R− 1)2

c1c2
p[1− p(1− θIL,IL2 )];

θIL,IL2 =
(R− 1)

c1
(1− p) +

(R− 1)2

c1c2
p(1− p) +

(R− 1)2

c1c2
p2θIL,IL2 ;

θIL,IL2 =
(R− 1)(1− p)(c2 + (R− 1)(1− p))

c1c2 − (R− 1)2p2
.
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The Nash equilibrium conditional on the observed effort cost, is

 θIL,IL2 (c1, c2) = (1−p)(R−1)(c1+p(R−1))
c1c2−p2(R−1)2

;

θIL,IL1 (c1, c2) = (1−p)(R−1)(c2+p(R−1))
c1c2−p2(R−1)2

.

where p ∈ [0, 1] is probability of being on the ”good” state of the world, R > 1 is positive

return of the unit; c1, c2 > 0 is the cost of the effort and ` < p
R ; RL > 1; L > p

R . In

addition, notice that all the efforts θIL,IL are between 0 and 1.

Symmetric cost case Assume c1 = c2 = c, when c can be either c = cH or c = cL.

The equilibrium efforts are symmetric θIL,IL2 = θIL,IL1 = θIL,IL and given by:

θIL,IL =
(1− p)(R− 1)

c− p(R− 1)
;

1− θIL,IL =
c− (R− 1)

c− p(R− 1)
.

The equilibrium profit in this case is:

ΠIL,IL(c, c) =
(c− (R− 1))2

(c− p(R− 1))2
p(R− 1) +

(R− 1)2(1− p)
c− p(R− 1)

− c

2

(c− (R− 1))2

(c− p(R− 1))2

=
1

(c− p(R− 1))2
[c3p(R− 1)− 0.5c3 + p2(R− 1)3 + c(R− 1)2(0.5− 3p)]

Collusion When the banks are collude (or merge) the banker maximizes joint profits

and chooses both efforts. Symmetric information and coordination on efforts.

max
θ1,θ2

(Π1 + Π2) = (1− θ1)(1− θ2)p(R− 1) + θ1(R− 1)− c1
θ2

1

2

+ (1− θ2)(1− θ1)p(R− 1) + θ2(R− 1)− c2
θ2

2

2
(A.1)

where we derive profit for a generic cost c1. It stands either cH or cL. by maximazing

Π1 + Π2 with respect to θ2 we derive the reaction function:

θC2 =
(R− 1)

c1
[1− 2p(1− θC1 )]. (A.2)

At the optimum the efforts of both banks are
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θC2 = (R−1)(1−2p)[c2+2(R−1)p]
c1c2−4p2(R−1)2

;

θC1 = (R−1)(1−2p)[c1+2(R−1)p]
c1c2−4p2(R−1)2

.

with p ∈ [0.1];R > 1; ck > 0 and θCk ∈ [0, 1], ∀k = {1, 2} and ` < p
R ;L > p

R ; RL > 1.

Symmetric cost case. Assume c1 = c2 = c the equilibrium effort for the bank 1 is

given by:

θC =
(R− 1)(1− 2p)

c− 2p(R− 1)
(A.3)

1− θC =
c− (R− 1)

c− 2p(R− 1)
(A.4)

The profit in this case is:

ΠC
2 =

(R− 1)[2pc2 − 6pc(R− 1)− 2p(R− 1)2 + c(R− 1) + 8p2(R− 1)2 − 4p2c(R− 1)]

2(c− 2p(R− 1))2

The welfare implications In this section we provide proof for Lemma 3.

Proof. Recall

θIB1 (cH , µ) =
(R− 1)(1− p)

cH − p[R− 1][µ+ (1− µ) cHcL ]

θIL1 (c1, c2) =
(1− p)(R− 1)(c2 + p(R− 1))

c1c2 − p2(R− 1)2

Note that c1 = cH by construction.

(R− 1)(1− p)
cH − p[R− 1][µ+ (1− µ) cHcL ]

>
(1− p)(R− 1)(c2 + p(R− 1))

cHc2 − p2(R− 1)2

1

cH − p[R− 1][µ+ (1− µ) cHcL ]
>

(c2 + p(R− 1))

cHc2 − p2(R− 1)2

−p2(R− 1)2 > cHp(R− 1)− c2p(R− 1)[µ+ (1− µ)
cH
cL

]− p2(R− 1)2[µ+ (1− µ)
cH
cL

]

p(R− 1)[−cL(1− µ) + (1− µ)cH ] > [cHcL − µcLc2 − (1− µ)cHc2]
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Since in (IL, IL) case, each banker observes the type of the banker. We will proceed

with two cases. Case 1: c2 = cH

p(R− 1)(1− µ)(cH − cL) > [cHcL − µcLcH − (1− µ)c2
H ]

p(R− 1) > −cH

It’s always true, c2 = cH implies θIB,IB > θIL,IL ∀ cH , cL ∈ [0.1], p ∈ [0.1], R > 1. Case

1: c2 = cL

p(R− 1)(1− µ)(cH − cL) > [cHcL − µc2
L − (1− µ)cHcL]

p(R− 1)(1− µ) > µcL

So, If c2 = cL then θIB,IB > θIL,IL ∀cL < 1−µ
µ p(R − 1) p ∈ [0.1], R > 1, µ ∈ (0.1). The

same analysis can be done for θIB,IB2 and θIL,IL2 and it will give the same result, because

banks are symmetric.

The equilibrium with interlocking

Asymmetric interlocking directorates

General case Assume that bank 1 is an independent bank (IB), while bank 2 inter-

locks (IL), i.e. the executive in bank 2 sits in the board of bank 1, but the reverse is not

true.

Bank 2, who has full information, chooses its effort:

max
θ2

Π2 = [1− θ1(c1, µ)](1− θ2)p(R− 1) + θ2(R− 1)− c2
θ2

2

2

θ∗2(c1, c2) =
(R− 1)

c2
[1− p(1− θ∗1(c1, µ))]

Bank 1, not having info on bank 2 cost, assumes E(θ∗2) = µθ∗2(c1, cH) + (1−µ)θ∗2(c1, cL).

max
θ1

Π1 = (1− θ1)[(1− E(θ∗2))p+ θ1](R− 1)− c1
θ2

1

2

θ∗1(c1, µ) =
(R− 1)

c1
[1− p(1− E(θ∗2))]
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At the Bayes Nash asymmetric equilibrium the efforts of both bankers are given by the

solution to the following system of equations:

θ∗2(c1, cH) =
(R− 1)

cH
[1− p(1− θ∗1(c1, µ))];

θ∗2(c1, cL) =
(R− 1)

cL
[1− p(1− θ∗1(c1, µ))];

θ∗1(c1, µ) =
(R− 1)

c1
[1− p(1− E(θ∗2))].

where E(θ∗2) = µθ∗2(c1, cH) + (1− µ)θ∗2(c1, cL).

E(θ∗2) = (R− 1)(
cH + µ(cL − cH)

cLcH
)[1− p(1− θ∗1(c1, µ))]

Then

θIB,IL1 (c1, µ) =
(R− 1)(1− p)[1 + p(R− 1)c̄]

c1 − p2(R− 1)2c̄

θIB,IL2 (c1, cH) =
(R− 1)(1− p)[c1 − 2p2(R− 1)2c̄+ p(R− 1)]

cH [c1 − p2(R− 1)2c̄]
;

θIB,IL2 (c1, cL) =
(R− 1)(1− p)[c1 − 2p2(R− 1)2c̄+ p(R− 1)]

cL[c1 − p2(R− 1)2c̄]
,

where c̄ = cH+µ(cL−cH)
cLcH

, p ∈ [0, 1] is probability of being on the ”good” state of the

world, R > 1 is positive return of the unit; c1, c2 > 0 is the cost of the effort and ` < p
R ,

L > p
R . In addition, notice that all the efforts θIB,IL are between 0 and 1.

Symmetric cost case Assume c1 = c2 = c, when c can be either c = cH or c = cL.

The equilibrium effort for bank 1 is given by:

θIB,IL1 (c, µ) =
(1− p)(R− 1)[1 + p(R− 1) c̄

cHcL
]

c− p2(R− 1)2 c̄
cHcL

1− θIB,IL1 (c, µ) =
c− p2(R− 1)2 c̄

cHcL
− (1− p)(R− 1)[1 + p(R− 1) c̄

cHcL
]

c− p2(R− 1)2 c̄
cHcL

where c̄ = µcL + (1− µ)cH .

The equilibrium effort of bank1 must be substituted into the two possible efforts of bank
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2 given by

θIB,IL2 (c, cH) =
(R− 1)

cH
[1− p(1− θIB,IL1 (c, µ))]

θIB,IL2 (c, cL) =
(R− 1)

cL
[1− p(1− θIB,IL1 (c, µ))]

where E(θIB,IL2 )=µθIB,IL2 (c, cH) + (1− µ)θIB,IL2 (c, cL).

E(θIB,IL2 ) =
(R− 1)(1− p) c̄

cLcH
(c+ (R− 1)p)

c− p2(R− 1)2 c̄
cLcH

1− E(θIB,IL2 ) =
c− p2(R− 1)2 c̄

cLcH
− (R− 1)(1− p) c̄

cLcH
(c+ (R− 1)p)

c− p2(R− 1)2 c̄
cLcH

Then we can substitute these equilibrium efforts into the equilibrium profit of bank 1

given by:

ΠIB,IL
1 (c, µ) = (1− θIB,IL1 )(1− E(θIB,IL2 ))p(R− 1) + θIB,IL1 (R− 1)− c1

(θIB,IL1 )2

2

ΠIB,IL
1 (c, µ) =

c− p2(R− 1)2 c̄
cHcL

− (1− p)(R− 1)[1 + p(R− 1) c̄
cHcL

]

(c− p2(R− 1)2 c̄
cHcL

)2

× [c− p2(R− 1)2 c̄

cLcH
− (R− 1)(1− p) c̄

cLcH
(c+ (R− 1)p)]p(R− 1)

+
c(R− 1)− p2(R− 1)3 c̄

cHcL
− (1− p)(R− 1)2[1 + p(R− 1) c̄

cHcL
]

(c− p2(R− 1)2 c̄
cHcL

)

− c

2

(c− p2(R− 1)2 c̄
cHcL

− (1− p)(R− 1)[1 + p(R− 1) c̄
cHcL

])2

(c− p2(R− 1)2 c̄
cHcL

)2

Condition for the existence of Subgame Perfect Equilibria (IL, IL) is a Nash

equilibrium iff:

ΠIL,IL
1 (c1, c2) > ΠIB,IL

1 (c1, µ) and ΠIL,IL
2 (c1, c2) > ΠIL,IB

2 (µ, c2). Let’s find condition

under which the inequality ΠIL,IL
2 (c1, c2) > ΠIL,IB

2 µ, c2) holds, given the symmetry of

the other condition

This equivalent to

ΠIL,IL
2 (c1, c2)−ΠIL,IB

2 (µ, c2) = (1− p)(R− 1)(θIL,IL2 − θIL,IB2 )− p(R− 1)(θIL,IL1 − E(θIL,IB1 ))

+p(R− 1)(θIL,IL2 θIL,IB1 − θIL,IB2 E(θIL,IB1 ))− c2

2
(θIL,IL2 − θIL,IB2 )(θIL,IL2 + θIL,IB2 ) > 0
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We calculate separately

• θIL,IL2 − θIL,IB2 =
(1−p)(R−1)2p(1−c2(µ 1

cH
+(1−µ) 1

cL
))(p(R−1)+c1)

(c1c2−p2(R−1)2)(c1−p2(R−1)2(µ 1
cH

+(1−µ) 1
cL

))

• θIL,IL1 − E(θIL,IB1 ) =
c1(1−p)(R−1)(c1+p(R−1))(1−c2(µ 1

cH
+(1−µ) 1

cL
))

(c1c2−p2(R−1)2)(c1−(R−1)2p2(µ 1
cH

+(1−µ) 1
cL

))

• θIL,IL2 θIl,IL1 −θIL,IB2 E(θIL,IB1 ) =
(1−p)2(R−1)2(c1+p(R−1))(1−c2(µ 1

cH
+(1−µ) 1

cL
))

(c1c2−p2(R−1)2)2(c1−p2(R−1)2(µ 1
cH

+(1−µ) 1
cL

))2
×(c2

1c2−

p4(R − 1)4(µ 1
cH

+ (1− µ) 1
cL

) + c2
1p(R − 1)(1 + c2(µ 1

cH
+ (1− µ) 1

cL
))− 2c1p

3(R −
1)3(µ 1

cH
+ (1− µ) 1

cL
))

• (θIL,IL2 )2 − (θIL,IB2 )2 =
(1−p)3(R−1)3(1−c2(µ 1

cH
+(1−µ) 1

cL
)))

(c1c2−p2(R−1)2)2(c1−p2(R−1)2(µ 1
cH

+(1−µ) 1
cL

))2
× [2c1c2(c1 +

p(R− 1)) + p(R− 1)(1 + c2(µ 1
cH

+ (1−µ) 1
cL

))(c2
1− p2(R− 1)2)− 2p3(R− 1)3(c1−

p(R− 1)(µ 1
cH

+ (1− µ) 1
cL

)]
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Mathematical calculation for

Backtesting with realized scores

B.1 Appendix

We report in this Appendix the explicit computation of the expected values and vari-

ances of piecewise linear and quadratic scores and identification function in the normal

and uniform cases. That is, we compute the quantities E[S(v)(x, Y )], E[S(e)(x, Y )],

E[I(v)(x, Y )], E[I(e)(x, Y )] and the corresponding variances when Y ∼ N(0, 1) and

Y ∼ U(0, 1). We denote with φ(x), Φ(x) and Φ(x) the density, the cumulative and

the retro-cumulative function of a standard Normal r.v.

The following identities will be repeatedly used:∫ x

−∞
yφ(y)dy = −φ(x),

∫ +∞

x
yφ(y)dy = φ(x)∫ x

−∞
y2φ(y)dy = Φ(x)− xφ(x),

∫ +∞

x
y2φ(y)dy = Φ(x) + xφ(x)∫ x

−∞
y3φ(y)dy = −x2φ(x)− 2φ(x),

∫ +∞

x
y3φ(y)dy = x2φ(x) + 2φ(x)∫ x

−∞
y4φ(y)dy = −x3φ(x) + 3 [Φ(x)− xφ(x)]∫ +∞

x
y4φ(y)dy = x3φ(x) + 3

[
Φ(x) + xφ(x)

]

53



Appendix B. Backtesting with realized scores 54

Piecewise linear score, normal case

E[S(v)(x, Y )] = α

∫ +∞

x
(y − x)φ(y)dy + (1− α)

∫ x

−∞
(x− y)φ(y)dy

= α[φ(x)− xΦ(x)] + (1− α)[xΦ(x) + φ(x)]

= φ(x) + x[Φ(x)− α].

When x = zα, we get

E[S(v)(zα, Y )] = φ(zα).

E[S(v)(x, Y )2] =

∫ +∞

−∞
[α(y − x)+ + (1− α)(y − x)−]2 φ(y)dy

= α2

∫ +∞

x
(y − x)2φ(y)dy + (1− α)2

∫ x

−∞
(y − x)2φ(y)dy

= α2
{

Φ(x)− xφ(x) + x2Φ(x)
}

+

+(1− α)2
{

Φ(x) + xφ(x) + x2Φ(x)
}

=
[
1 + x2

] {
α2 + (1− 2α)Φ(x)

}
+ (1− 2α)xφ(x).

When x = zα, we get

E[S(v)(x, Y )2] =
[
1 + z2

α

] {
α− α2

}
+ (1− 2α)zαφ(zα)

V ar[(S(v)(zα, Y )] = E[S(v)(x, Y )2]− φ2(zα)

= α(1− α)(1 + z2
α) + (1− 2α)zαφ(zα)− φ2(zα).

Piecewise quadratic score, normal case

E[S(e)(x, Y )] = α

∫ +∞

x
(y − x)2φ(y)dy + (1− α)

∫ x

−∞
(x− y)2φ(y)dy

= α[Φ(x) + xφ(x) + x2Φ(x)− 2xφ(x)]+

+ (1− α)[Φ(x)− xφ(x) + x2Φ(x) + 2xφ(x)]

= (1− 2α)xφ(x) + (1 + x2)[αΦ(x) + (1− α)Φ(x)].

E[S(e)(x, Y )2] =

∫ +∞

−∞

[
α(y − x)2

+ + (1− α)(y − x)2
−
]2
φ(y)dy

=

∫ +∞

x
α2(y − x)4φ(y)dy +

∫ x

−∞
(1− α)2(y − x)4φ(y)dy.
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Now we have for the first term:∫ +∞

x
(y − x)4φ(y)dy = x3φ(x) + 3

[
Φ(x) + xφ(x)

]
− 4x

[
x2φ(x) + 2φ(x)

]
+

+6x2
[
Φ(x) + xφ(x)

]
− 4x3φ(x) + x4Φ(x)

= Φ(x)
[
3 + 6x2 + x4

]
− 5xφ(x)− x3φ(x).

Similarly for the second term:∫ x

−∞
(y − x)4φ(y)dy. = −x3φ(x) + 3 [Φ(x)− xφ(x)]− 4x

[
−x2φ(x)− 2φ(x)

]
+

+6x2 [Φ(x)− xφ(x)]− 4x3 [−φ(x)] + x4Φ(x)

= Φ(x)
[
3 + 6x2 + x4

]
+ x3φ(x) + 5xφ(x).

Summing up, we get

E[S(e)(x, Y )2] = (3 + 6x2 + x4)
(
α2 − 2αΦ(x) + Φ(x)

)
+ (1− 2α)

(
5xφ(x) + x3φ(x)

)
When x = eα, we get

V ar[S(e)(eα, Y )] = (3 + 6e2
α + e4

α)
(
α2 − 2αΦ(eα) + Φ(eα)

)
+

+(1− 2α)
(
5eαφ(eα) + e3

αφ(eα)
)

+

−
(
(1− 2α)eαφ(eα) + (1 + e2

α)
(
αΦ(eα) + (1− α)Φ(eα)

))2
.

Identification function, Normal case. Recall that

I(e)(Y, e) = α(Y − e)+ − (1− α)(Y − e)−.

Since E[I(e)(Y, eα)] = 0, we get

V ar[I(e)(Y, eα)] = α2

∫ +∞

ε
(y − eα)2φ(y)dy + (1− α)2

∫ eα

−∞
(eα − y)2φ(y)dy

= α2
[
Φ(eα) + eαφ(eα)− 2eαφ(eα) + e2

α(1− Φ(eα))
]

+

+ (1− α)2
[
Φ(eα)− eαφ(eα) + 2eαφ(eα) + e2

αΦ(eα)
]

= (1 + e2
α)
[
α2 + Φ(eα)(1− 2α)

]
+ eαφ(eα) [1− 2α] .

Let now Y ∼ U(0, 1), φ(y) = 1[0,1], Φ(y) = y1[0,1] and zα = α.
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Piecewise linear score, uniform case.

E[S(v)(zα, Y )] = α

∫ 1

α
(y − α)φ(y)dy + (1− α)

∫ 1

0
(α− y)φ(y)dy

=
α(1− α)

2
.

E[S(v)(zα, Y )2] = α2

∫ 1

α
(y − α)2dy + (1− α)2

∫ α

0
(α− y)2dy

V ar[S(v)(zα, Y )] = E[S(v)(zα, Y ]2)− [E[S(v)(zα, Y )]]2

=
1

12
α2 (α− 1)2

Piecewise quadratic score, uniform case. Recall that if Y ∼ U(0, 1)

eα =
α−
√
α− α2

2α− 1
. (B.1)

E[S(e)(eα, Y )] =

∫ 1

0

[
α(y − eα)2

+ + (1− α)(y − eα)2
−
]
dy

= α

∫ 1

eα

(y − eα)2dy + (1− α)

∫ eα

0
(eα − y)2dy =

=
1

3
e3
α (1− α) + α

(
e2
α − eα −

1

3
e3
α +

1

3

)
Substituting (B.1) we get

E[S(e)(eα, Y )] =
1

3
α(1− α)

1− 2
√
α(1− α)

(2α− 1)2 .

E[S(e)(eα, Y )2] =

∫ 1

0

[
α(y − eα)2

+ + (1− α)(y − eα)2
−
]2
dy

= α2

∫ 1

eα

(y − eα)4dy + (1− α)2

∫ eα

0
(eα − y)4dy

=
1

5
e5
α (1− α)2 + α2

(
2e2
α − eα − 2e3

α + e4
α −

1

5
e5
α +

1

5

)
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E[S(e)(eα, Y )2] = −
11α4 − 2α3 − α2 − 12α5 + 4α6 −

(
α− α2

) 5
2

5 (2α− 1)4 +

−5α2
√
α− α2 − 10α3

√
α− α2 + 5α4

√
α− α2

5 (2α− 1)4

= −1

5
α2
(
−4α+ 4α2 − 1

) (α− 1)2

(2α− 1)4 −
4

5

(
α− α2

) 5
2

(2α− 1)4

=
α2 (α− 1)2

5 (2α− 1)4

(
4α− 4α2 + 1− 4

√
α− α2

)
=

α2 (1− α)2

5 (2α− 1)4

(
1− 2

√
α(1− α)

)2
.

V ar[Se(eα, Y )] =
α2 (1− α)2

5 (2α− 1)4

(
1− 2

√
α(1− α)

)2
+

−

(
1

3
α(1− α)

1− 2
√
α(1− α)

(2α− 1)2

)2

=
4

45

α2 (1− α)2

(2α− 1)4

(
1− 2

√
α(1− α)

)2

Note the relationship

Std[Se(eα, Y )] =
2

3
√

5

α (1− α)

(2α− 1)2

(
1− 2

√
α(1− α)

)
=

2√
5
E[Se(eα, Y )].

Identification function, Uniform case.

V ar[Ie(Y, eα)] = α2

∫ 1

eα

(y − eα)2dy + (1− α)2

∫ eα

0
(y − eα)2dy

=
α2

3

(
3e2
α − 3eα − e3

α + 1
)

+ (1− α)2 1

3
e3
α

=
α2

3
(1− eα)3 +

1

3
(1− α)2e3

α.
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