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Introduction

After the discovery of the Higgs boson at the CERN Large Hadron Collider (LHC) [1, 2], the
first results from the 13 TeV Run of the LHC show that accurate predictions for processes
that involve the production of this particle are fundamental, in order to measure its properties
and to further investigate the phenomenon of electroweak symmetry breaking. A high degree
of precision allows to look for signals of new physics, particularly in the high-energy tails
of some kinematic distributions, where discrepancies from the Standard Model predictions
could show up.

At the energies reached by the LHC, the dominant perturbative corrections are given by
the QCD sector of the Standard Model, where the first perturbative order (NLO) gives con-
tributions of the order of 20-30% to the typical cross sections, that can exceptionally reach
100% for processes like Higgs boson production through gluon fusion. The contribution com-
ing from NLO electroweak (EW) corrections, instead, is rather mild on the integrated cross
sections, basically because of the smallness of the electromagnetic coupling constant with
respect to the strong one. Nevertheless, the impact of this sector can become relevant when
inspecting some kinematic quantities, like the high-energy tails of some transverse-momentum
distributions. Moreover, electroweak corrections play an important role in the study of the
nature of dark matter and in its indirect detection. Indeed, dark-matter candidates can de-
cay into Standard Model particles, or they can be revealed at colliders as missing transverse
momentum. In the context of supersymmetry searches, instead, processes like vector bosons
plus jets production are irreducible and important backgrounds for many supersymmetric
processes. A precise knowledge of the high-energy tails of Standard Model events, including
electroweak corrections, is then essential in order to test the validity of these models.

The electroweak sector has several differences with respect to QCD, in the structure of
both the real and the virtual contributions to cross sections. Since in QED and QCD the
virtual and real corrections involve the exchange of massless particles, they are separately
divergent, and only their sum is finite. In these theories, then, the inclusion of real corrections
is mandatory. When considering weak corrections, instead, because of the exchange of mas-
sive bosons, all the contributions to the NLO cross section are finite. Moreover, the radiated
massive particles would decay, giving final states that can be experimentally distinguished
from the leading-order ones. There are no technical reasons, then, to include the real emis-
sion of W and Z bosons in a computation where the weak virtual corrections are considered.
On the other hand, the inclusion of photon emission is unavoidable in order to cancel the
singularities of the corresponding virtual diagrams. The consequence of considering virtual
electroweak corrections is the appearance of logarithms that involve ratios of different scales,
and that can be large in particular kinematic regions [3–7]. These corrections become relevant
starting from energies of order 1 TeV, where they are known to give sizable negative contri-
butions to the high-energy tails of some transverse-momentum distributions. Indeed, they
can reach 40-50% with a partonic center-of-mass energy of a few TeV, thus becoming larger
in magnitude than the NLO QCD corrections. It has been proven in refs. [8–10] that, in the
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limit in which all the kinematic invariants involved are of the same order and much greater
than the electroweak scale, the structure of the electroweak virtual corrections is universal:
it can then be computed once and for all and applied to the desired processes. The one-loop
electroweak corrections in this high-energy limit are called electroweak Sudakov corrections:
they are much faster to compute with respect to the complete ones, since they consist in
universal functions that multiply leading-order matrix elements, and can be used to obtain
a next-to-leading logarithmic (NLL) approximation of the complete virtual corrections at a
reduced computational cost.

In this thesis we present the combined QCD+EW corrections to HV and HVj production,
where V = W,Z. The associated production of a Higgs boson with a vector boson is very
important, since it allows to study the H → bb̄ decay channel, that has the highest branching
ratio in the Higgs boson mass region, and the HV V coupling. The second relevant process
analyzed is the associated production with a vector boson and a jet, HVj, that has the same
properties of HV and contributes to the background for Beyond Standard Model events.

In order to fully simulate hadronic events and to compare theoretical predictions with
the experimental data, the parton-level processes must be interfaced to a parton-shower
generator, that describes further collinear radiation down to the hadronic scale. The precision
needed for the LHC studies requires the hard event to be described at least at NLO accuracy,
before matching it to the parton shower. At present, both the HV and HVj processes are
described at NLO+PS QCD accuracy in MC@NLO [11] and in the POWHEG [12] framework. The
NLO+PS accuracy in the electroweak sector is instead missing.

The aim of this thesis is the description of the HV and HVj associated production
processes at NLO+PS QCD+EW accuracy. The structure of this thesis is the following: in
Chap. 1 we review the main production and decay modes of the Higgs boson, we summarize
the results of the analyses, performed at the LHC, that led to the discovery of this particle,
and we describe the state of the art in theoretical predictions. Chapter 2 is dedicated to the
description of some extensions of the POWHEG BOX [13, 14] that are useful for the processes
under study. This program, one of the most commonly used tools to obtain theoretical
predictions for comparisons with the experimental data, is a Monte Carlo event generator with
NLO accuracy, that can be interfaced to parton-shower generators according to the POWHEG

method [15]. Recently, an important improvement has been introduced: the implementation
of a resonance-aware subtraction scheme [16]. The resulting code is the POWHEG BOX RES,
that allows a better description of processes in which the radiation could come from the decay
of a resonance, like photons emitted from the leptons coming from the vector-boson decay,
or gluons emitted from bottom quarks in top decay. In addition to QCD radiation, photon
radiation was introduced in the POWHEG BOX for the first time in ref. [17], in which NLO
QCD+EW corrections to W boson production were computed. The leptons coming from the
decay of the vector boson were considered as massive, and the treatment of photon radiation
from massive charged particles was implemented correspondingly. In this thesis, instead, the
charged leptons are considered as massless: we then describe the modifications introduced in
the POWHEG BOX RES to generate photon radiation from final-state massless charged particles.
In Chap. 3 we describe the high-energy limit of the electroweak one-loop corrections, and
we report the general formulae that allow to obtain the Sudakov NLL corrections to a given
process. These formulae are applied to the HV and HVj production processes in Chap. 4,
distinguishing between the production of transverse and longitudinal vector bosons, since they
behave in a different way in the high-energy limit. Finally, in Chap. 5, we present numerical
predictions and kinematic distributions for the associated production of a Higgs boson with
a leptonically-decaying vector boson and eventually a jet, in proton-proton collisions at a
center-of-mass energy of 13 TeV, obtained with the POWHEG BOX RES. We mainly focus on
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observables that are sensitive to electroweak corrections. For each process (HW , HZ, HWj
and HZj), we first compare fixed-order NLO results: we analyze the differences between the
NLO EW corrections and their NLL approximation, and the impact of the electroweak sector
on the QCD results. Then, we compare NLO+PS events at QCD and QCD+EW accuracy.
We conclude by comparing the NLO+PS QCD+EW predictions for HV production with
those forHVj production. The latter are obtained by including the MiNLO [18, 19] prescription
of choosing scales and attaching Sudakov form factors to underlying-Born configurations.
This allows us to have a HVj generator that has NLO accuracy both for HV inclusive
quantities and for HVj ones. We can then compare directly HV and HVj distributions
and see how scale variations affect them. In App. A we list some useful group-theoretical
quantities that have been used in the calculation of the Sudakov corrections, and in App. B
we compute these correction factors for the HW and HZ associated production processes.
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Chapter 1

The associated production of a Higgs
boson with a vector boson

In 2012 the ATLAS and CMS Collaborations at the CERN Large Hadron Collider (LHC)
reported the observation of a new particle with a mass of approximately 125 GeV [1, 2] that,
within the present accuracy, presented all the characteristics of the Standard Model (SM)
Higgs boson. The mass was confirmed by later measurements [20–22]: thanks to this discovery
the main missing ingredient for the validation of the Standard Model is now in place.

The discovery of the Higgs boson is fundamental in order to understand the electroweak
symmetry breaking (EWSB). Within the Standard Model, EWSB is achieved through the
Brout-Englert-Higgs mechanism [23–25], which predicts the existence of a neutral scalar
particle, commonly known as the Higgs boson. While the Standard Model does not predict
the value of its mass, the production cross sections and decay branching ratios of the Higgs
boson can be precisely calculated, once the mass is known. Therefore, precision measurements
of the properties of this newly discovered particle are fundamental to verify whether it is fully
responsible for EWSB and whether there are potential deviations from the SM predictions.

In this chapter we review the main production and decay modes of the Higgs boson, and
we summarize the results of the analyses, performed at the LHC, that led to the discovery of
this particle. The H → bb̄ decay channel, that has the highest branching ratio for a 125 GeV
Higgs boson, turns out to be very promising at the LHC when the Higgs boson is produced
via associated production with a vector boson. For this reason we then focus on this process,
studying its importance in the experimental analysis and in Beyond Standard Model (BSM)
searches, and describing the state of the art in theoretical predictions.

1.1 Production modes and decay channels

The Higgs boson is a fundamental ingredient of the Standard Model. It is predicted by
spontaneous electroweak symmetry breaking, the solution proposed in 1964 by Higgs, Brout
and Englert to explain how the Standard Model particles acquire their physical mass. This
model allows to introduce mass terms for gauge bosons and fermions in the SM Lagrangian
without violating the unitarity and the renormalizability of the theory. As a result of this
phenomenon, particles acquire mass by interacting with the Higgs boson. The Higgs boson
couples to vector bosons with a coupling proportional to the square of their mass, and it
couples to fermions through Yukawa-type interactions, with a coupling proportional to the
mass of the fermion itself. The coupling to photons or gluons occurs only through a loop
of massive particles. Since the masses of the Standard Model particles are well known from
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Figure 1.1: Main contributions to the production of a Higgs boson at a hadron collider.

experiments, these couplings can be accurately tested.
The production modes and decay channels of the Higgs boson, then, preferably involve

couplings to heavy particles. The four main processes through which a Higgs boson can be
produced at a hadron collider are the gluon fusion, the vector boson fusion, the associated
production with a vector boson and the associated production with a tt̄ pair. A sample of
the Feynman diagrams for these processes is depicted in fig. 1.1, while fig. 1.2, taken from
ref. [26], shows the corresponding total cross sections for a 125 GeV Higgs boson at different
center-of-mass energies.

The dominant production process in the LHC energy range is by gluon fusion, shown in
fig. 1.1 (a): the same process could be realized with a loop of bottom quarks, but it is sup-
pressed because of the lower mass of the fermion involved. This process is sensitive to a fourth
generation of quarks: since the Higgs boson coupling to fermions is proportional to their mass,
including a new generation of heavy quarks would change drastically the cross section.

The second relevant contribution, reported in fig. 1.1 (b), comes from the vector-boson fu-
sion channel (VBF). The process involving two W bosons is enhanced with respect to the one
with two Z bosons because the latter has a smaller coupling to fermions. Looking at fig. 1.2
we see that, in the whole energy range considered, the cross section for this process is about
one order of magnitude smaller than the gluon fusion one. Nevertheless, this channel is very
interesting because the presence of two spectator jets with high invariant mass in the forward
region provides a powerful tool to tag the signal events and discriminate the background.

Another important process is the associated production with a vector boson, HV , in
fig. 1.1 (c): the cross section is smaller than in the VBF channel, but the vector boson can be
identified quite easily if it decays leptonically. At the Tevatron, this was the main searching
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channel in the low-mass region. At the LHC, instead, this channel has been considered
less promising, because of larger backgrounds. However, some studies [27] have indicated
that at large transverse momenta, employing modern jet reconstruction and decomposition
techniques, the associated production channel is a promising searching mode.

Finally, the last relevant process is the associated production with heavy quarks, shown
in fig. 1.1 (d). Even if the cross section is more than two orders of magnitude smaller than
the dominant one, this channel can give important information on the Yukawa coupling of
the Higgs boson to heavy quarks. The cross section for bb̄H production is comparable to
that of tt̄H and, for center-of-mass energies smaller than 13 TeV, even larger, thanks to the
available phase space.

Moving to the decay channels, fig. 1.3, also taken from ref. [26], shows the branching
ratios of the Higgs boson in the mass window around its physical mass. In this region the
fermionic decay channels play an important role: in particular, the channel H → bb̄ has the
highest branching ratio (58% for MH = 125 GeV) since the b quark is the heaviest particle
that can be produced on shell. However, the most promising decay channels for the Higgs
boson do not depend only on the corresponding branching ratios, but also on the capability of
detecting the signal while rejecting the background. For this reason, H → bb̄ is not accessible
if the Higgs boson is produced through gluon fusion, since it would give a fully hadronic
final state that cannot be easily resolved in the background. For the same reason, even
the VBF production channel is only marginally accessible. The associated production HV ,
instead, thanks to the leptonic decay of the vector boson, allows the H → bb̄ decay mode
to be studied, although the production process has a smaller cross section. Being able to
study this channel is very important, because it gives the possibility to measure the Yukawa
coupling of the Higgs boson to down-type fermions.
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Among the bosonic decay channels, the one that has the highest branching ratio is
the H → WW ∗ channel. Even if the W boson is much heavier than the b quark, with
MH ∼ 125 GeV at least one of the vector bosons has to be produced off shell, thus decreas-
ing the branching ratio. This channel is very important when coupled to the VBF or HV
production modes, since it allows to deeply investigate the coupling of the Higgs boson to
vector bosons. The same considerations can be applied for the decay into a pair of Z bosons.

Another relevant decay channel is H → γγ, that occurs through a closed loop. Although
the branching ratio is roughly three orders of magnitude smaller than the dominant one, it
gives a very clear experimental signature: a bump over the extrapolated background into the
signal region, in correspondence with the invariant mass of the two photons. For this reason,
it played the main role in the Higgs boson search.

1.2 Experimental results

The analysis of the experimental data from the LHC Run 1 was based on the datasets of
proton-proton collisions, with integrated luminosities of up to 4.7 fb−1 at

√
s = 7 TeV and

20.3 fb−1 at
√
s = 8 TeV recorded by the ATLAS detector, 5.1 fb−1 at

√
s = 7 TeV and

up to 19.7 fb−1 at
√
s = 8 TeV recorded by the CMS detector, in 2011 and 2012. The

first data collected during the LHC Run 2, at
√
s = 13 TeV, allow initial measurements with

comparable precision. This analysis was focused mainly on five channels: three bosonic decay
modes, H → γγ, H → WW ∗ → 2l2ν, H → ZZ∗ → 4l, and two fermionic ones, H → bb̄ and
H → τ−τ+. Together they account for approximately 88% of all decays of a SM Higgs boson
at MH ∼ 125 GeV. The hadronic decays of the vector bosons have been excluded, because of
the high background.

The discovery of the Higgs boson was based primarily on the mass peaks observed in
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the H → γγ and H → ZZ∗ → 4l channels. These decay modes play a special role due to
their high sensitivity and the excellent mass resolution of the reconstructed diphoton and
four-lepton final state. In particular, H → γγ, shown on the left-hand side of fig. 1.4, is
characterized by a narrow resonant signal peak above a large falling continuum background,
containing many events. H → ZZ∗ → 4l, instead, on the right-hand side of fig. 1.4, gives
only a few tens of signal events per experiment, but it has very little background.

The Higgs boson was discovered by combining the measurements performed in these
bosonic decay modes. The results on the mass determination are taken from ref. [28], that
summarizes the analyses performed by the ATLAS and CMS Collaborations. These results
are reported in fig. 1.5, while their combination gives

MH = 125.09± 0.21 (stat)± 0.11 (syst) GeV. (1.1)

The uncertainties are dominated by the statistical error, even when the Run 1 data sets of
ATLAS and CMS are combined: nevertheless, the experimental accuracy will rapidly increase
during the next years, when the full data sample of the Run 2 will be available.

The H → WW ∗ → 2l2ν channel has not been included in the mass measurement, since
the presence of neutrinos in the final state gives a relatively poor mass resolution. The same
resolution problems hold for the two fermionic decay modes H → bb̄ and H → τ−τ+, that
moreover suffer from large background contributions and then have lower sensitivity.

Nevertheless, obtaining information on the fermionic decay channels is very important in
order to test the Higgs boson coupling to all of the Standard Model particles: combining the
results coming from H → bb̄ and H → τ−τ+, both the collaborations have published evidence
for the decay of the Higgs boson into fermions [29–31]. The best way to distinguish the signal
over the background is to look for these decay channels when the Higgs boson is produced
via associated production with a vector boson. Even if the cross section for the HW and HZ
processes is smaller than the gluon fusion and VBF ones, they are still interesting channels.
The only other relevant process that allows to analyze the decay of the Higgs boson into a
pair of bottom quarks is the associated production with a tt̄ pair, but it has an even smaller
cross section and presents a fully hadronic final state. For the associated production HV ,
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l+4γγ CMS+ATLAS  0.11) GeV± 0.21 ± 0.24 ( ±125.09 

l 4CMS+ATLAS  0.15) GeV± 0.37 ± 0.40 ( ±125.15 

γγ CMS+ATLAS  0.14) GeV± 0.25 ± 0.29 ( ±125.07 

l4→ZZ→H CMS  0.17) GeV± 0.42 ± 0.45 ( ±125.59 

l4→ZZ→H ATLAS  0.04) GeV± 0.52 ± 0.52 ( ±124.51 

γγ→H CMS  0.15) GeV± 0.31 ± 0.34 ( ±124.70 

γγ→H ATLAS  0.27) GeV± 0.43 ± 0.51 ( ±126.02 

Figure 1.5: Measurements of the Higgs boson mass from the individual analyses of ATLAS and CMS, and
from the combined analysis. The systematic, statistical and total uncertainties are indicated. The red vertical
line represents the central value of the combined measurement, while its total uncertainty is reported in the
gray shaded column.

instead, a method to reduce the background has been proposed in ref. [27]: the proposal
was to investigate HV production in a boosted regime, in which both the Higgs boson and
the vector boson have large transverse momentum (pT & 200 GeV). In this phase space
region the cross section is a small fraction of the total one (about 5%), but the intermediate
virtual vector boson that produces the HV pair must have a very high virtuality. It will
then be produced in the central region, and the transversely boosted kinematics of the Higgs
boson and of the vector boson ensures that their decay products will have sufficiently large
transverse momentum to be tagged. As a consequence, the signal-over-background ratio
can be significantly improved, and also the HZ → Hνν̄ channel becomes visible because
of the large missing transverse momentum. Moreover, in the context of BSM searches, HV
production with high invariant mass provides the leading source of irreducible background
for the detection of exotic new particles decaying into an HV pair.

When the cuts for the boosted products are applied, this becomes one of the most promis-
ing channels to constrain the Yukawa coupling of the Higgs boson to the bottom quark. It
is very useful also for studying the H → τ−τ+ decay channels, particularly if the τ leptons
decay hadronically, because the leptonic decay products of the vector boson satisfy the trigger
requirements with high efficiency.

An important part of the analysis has focused on the determination of the signal strength
µi,f , that is one of the most common parameters for comparing theory expectations with
experimental results. The signal strength is defined as the ratio of the measured Higgs boson
rate i→ H → f with respect to its Standard Model prediction,

µi,f =
σi × BRf

(σi × BRf )SM

, (1.2)

where σ denotes the cross section for the production mode i, and BR is the branching ratio
for its decay into f . This parameter represents a measure of potential deviations from the
Standard Model predictions, under the assumption that the Higgs boson production and
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decay kinematics do not change appreciably from the theoretical expectations.
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Figure 1.6: Signal strength for each specific channel i → H → f . The error bars indicate the 1σ intervals,
while the green bands represent the theoretical uncertainties. Not all the decay channels are reported for
each production process, either because they are not measured with meaningful precision or they are not
measured at all, as for the H → bb̄ channel in gluon fusion or in VBF.

Figure 1.6, taken from ref. [32], shows the combined ATLAS and CMS results for the
signal strengths of the various production and decay processes. The combination of the
ATLAS and CMS analyses gives the following results,

µHW, bb̄ = 1.0± 0.5, (1.3)

µHZ, bb̄ = 0.4± 0.4, (1.4)

µtt̄H, bb̄ = 1.1± 1.0. (1.5)

As expected, the last result has bigger uncertainties, because of the background that makes
this process harder to detect. Nevertheless, these experimental results show a good agreement
with the Standard Model predictions. Combining all i→ H → f measurements it is possible
to obtain a global signal strength for Higgs boson production and decay,

µ = 1.09+0.11
−0.10 = 1.09+0.07

−0.07 (stat)+0.09
−0.08 (syst). (1.6)

The systematic uncertainty is slightly bigger than the statistical one, mainly because of the
large uncertainty in the gluon fusion cross section. The overall result is however consistent
with the theoretical predictions within less than 1σ.

The associated production and VBF processes turn out to be very useful even in the
search for anomalous couplings of the Higgs boson. These processes, indeed, provide direct
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access to the coupling HV V : due to the highly off-shell nature of the propagator in HV pro-
duction, small anomalous couplings can lead to significant modifications of cross sections and
kinematic distributions. In particular, the HV invariant mass is highly sensitive to anoma-
lous HV V couplings. Probing this coupling in the region where the virtuality of the virtual
gauge boson is far off shell can show sensitivity to the presence of higher-dimensional effective
operators, beyond the limit that can be tested from the determination of the branching ra-
tios H → V V . Moreover, if the Higgs boson decays into fermions, the associated production
process HV allows to test also anomalous Yukawa couplings. Since the masses of down-type
fermions can be obtained through different mechanisms in BSM theories [33], it is of great
importance to study the coupling of the Higgs boson to bottom quarks in order to establish
its nature.

Assuming the validity of the SU(2) custodial symmetry and a universal scaling of the
fermion couplings relative to the Standard Model predictions, the observations have been
compared with the expectations for the Higgs boson by fitting two parameters κV and κF .
These are common scaling factors for the couplings to massive vector bosons and to fermions,
respectively. Other analyses have been performed, distinguishing between κW and κZ, and
among the various possible fermions, but the results are consistent with the hypothesis of
a common factor for bosons and another one for fermions. In this analysis, no BSM effects
have been accounted for, in the theoretical predictions. Figure 1.7, taken from ref. [32], shows

Vκ
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CMS

68% CL 95% CL Best fit SM expected

Run 1 LHC
CMS and ATLAS

Figure 1.7: Results of 2D likelihood scans for the κV and κF parameters performed by the ATLAS and CMS
Collaborations, and their combination. The crosses indicate the best-fit values, the contours show the 68%
and 95% CL regions, and the star represents the Standard Model values (κV , κF ) = (1, 1).

the 2D likelihood scan over the (κV , κF ) parameter space, with the 68% and 95% CL regions.
Both for the single experimental analyses and for the combined results the Standard Model
expectation, (κV , κF ) = (1, 1), lies within the 68% CL region defined by the data. Because of
the way these compatibility tests are constructed, any significant deviation from (1, 1) would
not have a straightforward interpretation within the Standard Model and would imply BSM
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physics. The best fits, with the corresponding uncertainties, are reported in tab. 1.1.

ATLAS CMS

κV 1.09± 0.07 1.01± 0.07

κF 1.11± 0.16 0.87+0.14
−0.13

Table 1.1: Best-fit values and uncertainties for the scaling factors κV and κF .

Summarizing, the analysis of the 2011 and 2012 datasets has investigated the Higgs boson
production and decay properties: the results obtained are consistent with the Standard Model
expectations, with no significant deviations in the measurement of both the signal strength
and the coupling of the Higgs boson to the other particles. The results from the LHC Run 2,
with a center-of-mass energy of 13 and 14 TeV, will significantly decrease the statistical
uncertainties, leading to much more precise results.

1.3 Theoretical accuracy

In order to perform accurate comparisons between the experimental data and the theoretical
predictions, it is fundamental to reduce as much as possible the theoretical uncertainties. For
all of the reasons explained in this chapter, the associated production of a Higgs boson with
a vector boson that decays leptonically is a very interesting process. To fully exploit this
channel it is then important to have accurate theoretical predictions for the production cross
section and for the associated distributions.

The next-to-next-to-leading order (NNLO) QCD corrections to the HV inclusive cross
section have been known for many years [34]. In recent years, a fully differential NNLO
calculation of HV production has been presented in refs. [35, 36], while in refs. [37, 38] also the
next-to-leading order (NLO) corrections to the decay of the Higgs boson into a b-quark pair
have been considered, and combined with the NNLO corrections to the production process.
Moreover, the role played by gluon-induced contributions to the associated production HZ
has been studied in ref. [39], in which they have been calculated at NLO. The results obtained
show that, while NNLO corrections to the inclusive cross section are quite small, of the order
of 1-2%, their impact can increase substantially when cuts are imposed on the decay products
and on differential distributions.

In refs. [40, 41], NLO electroweak (EW) corrections have been studied: even if quite small
at the level of the total cross section, they can give sizable contributions in the high-energy
tails of some differential distributions. These outcomes will be explained in detail in Chap. 3.
These corrections have then been implemented in the public code HAWK [42], that gives the
possibility to combine NLO QCD and EW corrections. VH@NNLO [43], instead, allows to
compute the inclusive cross section for HV production at NNLO QCD+NLO EW accuracy.

All of these results come from fixed-order computations. In order to fully simulate a
hadronic event and to compare theoretical predictions with experimental data, the parton-
level processes have to be interfaced to a parton-shower generator, that describes further
collinear radiation down to the hadronic scale. The precision needed for the LHC studies
requires the hard event to be described at least at NLO accuracy, before matching it to the
parton shower: this level of accuracy is usually called NLO+PS. The associated production
of a Higgs boson with a vector boson, matched with a parton shower generator, has been
implemented in MC@NLO [11] and in the POWHEG BOX [12] framework. The latter also includes
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NLO+PS predictions for HV + 1 jet (HVj): the HVj simulations have been implemented
using the Multiscale improved NLO (MiNLO) approach [18], that will be described in Sec. 2.5.

In ref. [19] it was shown that, for processes where a colourless system X is produced in
hadronic collisions, it is possible to simulate both X and X+1 jet production simultaneously
at NLO+PS accuracy, without introducing any external merging scale. It was then shown in
refs. [19, 44] that, with a merged generator of X and X + 1 jet, and the NNLO differential
cross section for X production, it is possible to build a NNLO+PS accurate generator for
X production. This approach was used to build, in ref. [45], a NNLO+PS generator for
HW production.

Summing up, the accuracy reached in the QCD sector is high enough to comply with
the experimental results that are coming from the LHC Run 2. In the electroweak sector,
instead, the NLO+PS accuracy is still missing.

Since one of the goals of the ongoing LHC Run is to show, if present, signals of new
physics, a precise knowledge of the production cross sections is mandatory. One of the main
BSM searches concerns the Supersymmetric extensions of the Standard Model (SUSY). This
symmetry predicts the existence of a superpartner for every Standard Model particle: to every
boson is associated a fermion with the same mass and internal quantum numbers (apart from
spin), and vice-versa. Since supersymmetric particles have not been observed yet, if SUSY
exists it must be necessarily a spontaneously broken symmetry. These particles would then
have a higher mass with respect to their Standard Model partners and this would explain
the fact that, up to now, the LHC has not discovered them. Many supersymmetric particles
could be produced and detected at the LHC: the main production channels are squark-
antisquark, gluino-squark and gluino-gluino pairs, if they are light enough to be produced.
Typical squark and gluino decays contain isolated leptons and jets, and they produce a stable
Lightest Supersymmetric Particle (LSP), if an R-parity conserving SUSY model is assumed.
Since the LSP cannot be detected, missing transverse momentum will be observed in the
detector. Therefore, the typical experimental signature of a supersymmetric event consists
of multiple jets, isolated leptons and missing transverse momentum.

This signature can be obtained with Standard Model processes in several ways: for ex-
ample W+ jets events with leptonic decay of the W boson, or the production of tt̄ pairs
in which both quarks decay into Wb pairs, and then one vector boson decays leptonically
while the other one decays hadronically. Even if the cross section is much lower, HWj pro-
duction too can contribute to the background, if the Higgs boson decays into a bb̄ pair and
the W boson decays leptonically. It is therefore important to study also this process with
high accuracy. These production processes are important by themselves, since they allow to
study the coupling of the Higgs boson to vector bosons and to b quarks. At present, the HVj
process is described at NLO+PS accuracy in QCD, while both electroweak NLO+PS and
QCD NNLO+PS are missing.

For all of these reasons, this thesis is dedicated to the implementation of the associated
production of a Higgs boson with a vector boson and eventually a jet, at NLO+PS accuracy,
in the POWHEG BOX, considering both QCD and EW corrections. The leptonic decay of the
vector boson has been fully taken into account: for the Z production processes we have
considered only the decay of the vector boson into charged leptons. Although in the rest
of the work we will refer to these processes with the shorthand notations HV and HVj, we
have computed the amplitudes for these processes with full spin and decay correlations of
the final-state leptons.
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Chapter 2

The POWHEG BOX RES framework

The POWHEG BOX [13, 14] is a Monte Carlo event generator with NLO accuracy that can be
interfaced to parton shower generators according to the POWHEG method [15]. It is one of
the most commonly used tools to obtain theoretical predictions for comparisons with the
experimental data. Within this framework, the hard event can be described at NLO+PS
accuracy, while the subsequent part of the shower is left to a Monte Carlo parton shower
program that supports the Les Houches Interface for User Generated Processes, such as
Pythia [46] or Herwig [47], up to the formation of hadrons.

Since its release, the POWHEG BOX has undergone many extensions and modifications that
improved the precision and the efficiency of this generator. All the information and the
instructions for downloading this program can be found at http://powhegbox.mib.infn.it.

This chapter is dedicated to the description of the modifications that are relevant for the
implementation of HV and HVj at NLO+PS QCD+EW accuracy in the POWHEG BOX.

2.1 The treatment of resonances

When QED or QCD corrections are included in a fixed-order computation, the appearance of
soft and collinear divergences cannot be avoided, because of the exchange of massless parti-
cles. Nevertheless, considering infrared-safe observables these divergences cancel between the
virtual and real corrections as a consequence of generalizations of the KLN theorem [48, 49],
and the result is finite.

One of the methods to expose the cancellation of the singularities is the subtraction
method. Calling ΦB and ΦR the Born and real phase spaces, a generic NLO cross section can
be written as

dσNLO =
[
B(ΦB) + V (ΦB)

]
dΦB +R(ΦR) dΦR, (2.1)

where B, V and R represent the Born, virtual and real cross sections. The mean value of an
infrared-safe observable can then be obtained from

〈O〉 =

∫
O dσNLO =

∫ [
B(ΦB) + V (ΦB)

]
O(ΦB) dΦB +

∫
R(ΦR)O(ΦR) dΦR. (2.2)

Assuming that soft and collinear divergences are treated in dimensional regularization, dΦB

and dΦR are evaluated in D = 4− 2ε dimensions. In this way, the singularities associated to
the emission of soft and/or collinear particles appear as poles in ε.

In order to implement the subtraction method, a parametrization of the real phase space
is introduced,

ΦR = ΦR (ΦB,Φrad) , dΦR = dΦB dΦrad, (2.3)
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where Φrad represents three variables that describe the emission of the extra particle involved
in the real corrections. The real phase space must be parametrized in such a way that
it matches the Born one in the limit of soft/collinear emission. Then, one introduces an
approximation of the real cross section, Rs, with the same behaviour of R in the soft and
collinear limits. Equation (2.2) can then be rewritten as

〈O〉 =

∫ [
B(ΦB) + V (ΦB) +

∫
dΦradRs(ΦB,Φrad)

]
O(ΦB) dΦB

+

∫ [
R(ΦB,Φrad)O(ΦB,Φrad)−Rs(ΦB,Φrad)O(ΦB)

]
dΦB dΦrad. (2.4)

This formula is identical to the previous one, having just added and subtracted a contribution.
Nevertheless, in the square bracket of the first term, the soft and collinear divergences arising
from the integration of Rs over the radiation phase space cancel with the ones coming from
the virtual cross section. Furthermore, thanks to the infrared-safety property of O, the
divergences in the second square bracket cancel at integrand level, being Rs the singular
approximation ofR. This term can then be integrated inD = 4 dimensions through numerical
methods. The cancellation of the singularities in the first term, instead, can be obtained
analytically once and for all. In fact, defining the soft-virtual contribution as

Vsv(ΦB) = lim
ε→0

[
V (ΦB) +

∫
Rs(ΦB,Φrad) dΦrad

]
, (2.5)

that is finite by construction, eq. (2.4) becomes

〈O〉 =

∫ [
B(ΦB) + Vsv(ΦB)

]
O(ΦB) dΦB

+

∫ [
R(ΦB,Φrad)O(ΦB,Φrad)−Rs(ΦB,Φrad)O(ΦB)

]
dΦB dΦrad, (2.6)

and also the first integral can be evaluated numerically in four dimensions.
Many formulations of this method have been proposed, that differ in the parametrization

of Rs. For example, in its original implementation, the POWHEG BOX used both the Catani-
Seymour [50] and the Frixione-Kunszt-Signer [51] subtraction schemes.

The general formulas for the full NLO cross section derived according to the POWHEG

method can be found in eqs. (4.13), (4.16) and (4.17) of ref. [13]. We report them here for
completeness,

dσ =
∑
fb

B̄fb(ΦB) dΦB

{
∆fb(ΦB, p

2
T ,min)

+
∑

αr∈{αr|fb}

[
R(ΦR) ∆fb(ΦB, k

2
T ) θ(kT − pmin

T ) dΦrad

]Φ̄αrB =ΦB

αr

Bfb(ΦB)

 . (2.7)

The function B̄fb(ΦB) is the NLO inclusive cross section at fixed underlying-Born flavour
configuration fb and kinematics ΦB,

B̄fb(ΦB) = [B(ΦB) + Vsv(ΦB)]fb +
∑

αr∈{αr|fb}

∫ {
[R(ΦR)−Rs(ΦR)] dΦrad

}Φ̄αrB =ΦB

αr

+
∑

α⊕∈{α⊕|fb}

∫
dz

z
G
α⊕
⊕ (ΦB,⊕) +

∫
dz

z
G
α	
	 (ΦB,	). (2.8)
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The real contributions are separated into terms labelled by the index αr: each of them denotes
a flavour structure and a singular region. With the notation αr ∈ {αr|fb} we group together
all the real singular contributions that have fb as underlying Born flavour. The square
brackets with subscript αr and superscript Φ̄αr

B = ΦB mean that everything inside refers to
the particular real contribution labelled by αr, and has underlying-Born kinematics equal to
ΦB. The factors G

α⊕
⊕ and G

α	
	 , instead, are needed to obtain the complete cancellation of

the initial-state collinear singularities.
Finally, ∆fb(ΦB, p

2
T ) is the Sudakov form factor,

∆fb(ΦB, p
2
T ) = exp

− ∑
αr∈{αr|fb}

∫ [
R(ΦR) θ(kT (ΦR)− pT ) dΦrad

]Φ̄αrB =ΦB

αr

Bfb(ΦB)

 . (2.9)

It corresponds to the probability that no emission occurs with transverse momentum kT
bigger than pT , that is a function of the kinematics variables of the particular singular region
considered. This factor is used to generate the hardest radiation according to the POWHEG

method [15]. Looking at eq. (2.7), then, the first term represents the probability that no
resolvable emissions occur down to the scale pmin

T , that is the scale at which QCD becomes
non perturbative, while the second one corresponds to the probability of evolving down to
the scale kT without emissions and then emitting a parton with transverse momentum kT
(which is required, through the θ function, to be larger than pmin

T ).
In the generation of the events, it is possible to separate the real cross section into a finite

and a singular part, using the flg withdamp option as explained in Sec. 5 of ref. [14], and
exponentiating only the singular part. In the context of this thesis, this feature has not been
used.

The subtraction schemes employed in the POWHEG BOX, however, have not been thought
having in mind the production of radiation from resonances. As described in detail in ref. [16],
with processes that involve decaying resonances, a possible source of problems arises when the
mapping (2.3) is performed. This mapping is constructed in such a way that, in the collinear
limit, the so-called underlying-Born configuration is obtained by appropriately merging the
two collinear particles. In order to preserve the masses of the external particles, some mo-
mentum reshuffling is needed, and this operation does not necessarily preserve the virtuality
of the intermediate resonances. The typical difference in the resonance virtuality between
the original real kinematics and the reconstructed Born-like one is of order m2/E, where m
and E are the invariant mass and the energy of the merged-partons system, respectively.

In this way, the cancellation between the real contribution R and the subtraction term
Rs will be effective only if the condition m2/E � Γ is satisfied, being Γ the width of the
resonance. As Γ decreases, the convergence becomes more problematic, getting completely
spoiled in the zero-width limit. In order to overcome this problem, it would be desirable to
have a subtraction method that preserves the mass of the resonance in the subtraction terms.

Further problems arise in the generation of radiation, performed according to a Sudakov
form factor of the form

∆(p2
T ) = exp

[
−
∫
R(ΦB,Φrad)

B(ΦB)
θ
(
kT (Φrad)− pT

)
dΦrad

]
. (2.10)

The upper limit of the integration is dictated by the maximum transverse momentum allowed
for the radiation in the process under study. The mapping that connects the real phase space
to ΦB and Φrad is the same used in the NLO subtraction: for this reason, also in this case the
virtuality of the resonance will not be preserved. In the R/B ratio, then, the two terms will
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not be on the resonance peak at the same time unless the condition m2/E � Γ is satisfied,
and this can yield large ratios that violate the collinear approximation. Moreover, when the
NLO calculation is interfaced to a Monte Carlo shower program, radiation should have a
well-defined resonance assignment, according to which the Monte Carlo generator should be
instructed to preserve the mass of the resonance.

In order to solve these problems, in ref. [16] it is explained that the different subprocesses
contributing to the cross section have to be separated into terms with a definite resonance
history. Each term has a resonance peak only in a single resonance cascade chain, and the
mapping of the real phase space into an underlying-Born configuration is defined in such a
way that the virtuality of the resonance is preserved. When the algorithm looks for particles
that can give rise to a collinear singularity, then, it must consider only pairs originating
from the same resonance, or from the production process. This procedure constitutes the
main extension of the POWHEG BOX. The resulting code is the POWHEG BOX RES [16], that
is the resonance-aware version of the original program. The main modifications deal with
the subtraction method: instead of simply separating the real cross section into a sum of
terms that are singular in a specific kinematic region, each of these terms must also become
associated to a particular resonance history. To this end, when the partonic structure of
the different (Born and real) subprocesses is set up by the user, a subroutine automatically
generates all the relevant resonance histories for every subprocess. In this way, the full
Born flavour structure is no more represented by the only array flst born(j,iborn): its
resonance information is stored in the flst bornres(j,iborn) array too. The index iborn

labels a particular Born flavour structure, while j runs over the external legs and the internal
resonances. The entries in the flst born array represent the flavour code of the particle (that
coincides with the PDG code [33], except for gluons that are labeled by 0). In flst bornres,
instead, the value of j represents pointers that allow to reconstruct the resonance structure.
These pointers contain 0 for particles generated at the production stage, while for particles
coming from the decay of a resonance the corresponding entry is the position of the mother
resonance in the list.

A big difference with respect to the original POWHEG BOX implementation arises here: since
a given process admits several resonance structures, the flavour lists can have different lengths.
The index j does not run anymore from 1 to nlegborn: for every subprocess its upper limit is
given by the corresponding value stored in the array flst bornlength(iborn), that contains
the length of each flavour list. At the end, an array flst bornresgroup(iborn) is used to
group together all the Born flavour configurations that share the same resonance structure, so
that they can be integrated together with the same importance sampling. The values of this
array label the resonance structure group of the Born flavour structure iborn. The number
of different Born resonance structures is then saved in the variable flst nbornresgroup.
Similar arrays are defined and filled for the real subprocesses.

These operations are performed automatically in the init processes subroutine by the
subroutines build resonance histories and buildresgroups. The user only has to pro-
vide the list of contributing flavour structures of the Born and real subprocesses, and the
power of the electroweak and strong couplings of the Born amplitude, stored in the variables
res powew and res powst.

Once the resonance structure is filled, the separation of the real cross section into singular
regions can be performed. To each term, a weight is associated that makes it dominant only
in a specific resonance region. Then, the subtraction procedure has been adapted so that, for
each of these terms, the mapping of the real to the underlying-Born configuration does not
change the virtuality of the resonance. To obtain this result, in case of radiation coming from
the decay of a resonance, the subtraction procedure is applied in the resonance center-of-mass
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frame. In this way, neither the momentum of the resonance nor that of all the particles that
do not come from its decay are altered. For particles radiated from the production process,
instead, the subtraction method remains unchanged.

The two main problems of the standard subtraction methods are thus solved: both in
the calculation of the NLO cross section and in the generation of radiation the mass of the
resonance is preserved, and the radiation has a well-defined resonance assignment, so that
also the Monte Carlo shower algorithm can preserve its virtuality.

2.1.1 Resonance histories for the HV and HVj processes

To further clarify the mechanism of resonance assignments, we apply it to the processes
relevant for this thesis. The Born level resonance structures for the HV and HVj processes
are very simple. We focus on the processes involving a W− boson: the W+ and Z boson
cases can be described in the same way. The Feynman diagram for HW− production, with

q1

q̄2

W−

W−

H

l

ν̄l

Figure 2.1: Feynman diagram for the associated production of a Higgs boson and a W− boson that decays
leptonically.

leptonic decay of the vector boson, is depicted in fig. 2.1. The resonance histories can thus
be described by the arrays

flst_born(:,iborn) = [i, j, -24, -24, 25, 11, -12],

flst_bornres(:,iborn) = [0, 0, 0, 3, 3, 4, 4],

for all the relevant choices of initial parton flavours i, j. The resonance assignment in
flst bornres means that:

• the third particle in the flst born array, that is a W− boson, is produced by the
initial-state partons;

• the fourth and the fifth particle come from the decay of the third one, that is the
aforementioned W− boson;

• the two leptons come from the fourth particle in the list, the W− boson just before its
decay.
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For HW−j production the Born structure is very similar. There is one more parton in the
final state, with respect to HW production: since it comes from the production stage, its
resonance assignment is set to 0,

flst_born(:,iborn) = [i, j, -24, -24, 25, 11, -12, k],

flst_bornres(:,iborn) = [0, 0, 0, 3, 3, 4, 4, 0],

for the relevant choices of i, j and k. The length of the Born processes is then always the
same (i.e. 7 in HW− and 8 in HW−j), and only one resonance group is present, so that
flst nbornresgroup = 1.

When setting up the real subprocesses, the resonance-aware machinery becomes very
important. As for the Born structures, we describe the HW− case, all the other processes
work in the same way. Although this thesis is focused on the implementation of the associated
production processes at NLO+PS QCD+EW accuracy, it is also possible to obtain predictions
that consider QCD and EW corrections separately. The flag that controls this possibility is
qed qcd, that has to be set in the POWHEG BOX RES input file. If one wants to include only
QCD corrections, qed qcd must be set to 0: in this case the radiated parton can come
only from the initial state. We then have one resonance history: the arrays flst real and
flst realres have the same form of the Born arrays for HW−j production. If one considers
only electroweak corrections, instead, by setting qed qcd to 1, the radiated particle is a
photon, that can be emitted by every charged particle. For the subprocess

flst_real(:,ireal) = [i, j, -24, -24, 25, 11, -12, 22],

we can then have two resonance assignments:

flst_realres(:,ireal) = [0, 0, 0, 3, 3, 4, 4, 0],

flst_realres(:,ireal) = [0, 0, 0, 3, 3, 4, 4, 4].

The first one corresponds to photon emission from the initial-state partons, while in the
second one the photon comes from the decay of the W− resonance. In this case, then,
we have flst nrealresgroup = 2. Both these resonance structures are considered by the
POWHEG BOX RES during the subtraction procedure, and they are treated in different ways, in
order to preserve the resonance virtuality when the photon comes from the W boson decay.

Finally, by setting the flag qed qcd to 2, both QCD and QED corrections are included,
and all the subprocesses are implemented.

To obtain a complete NLO electroweak result, also the processes with an incoming photon
should be included in the computation, together with the real emission of W and Z bosons.
For the photon-initiated processes, although many PDF sets include the electromagnetic
evolution, the photon density is very small, of order α, and it multiplies a process of order α
with respect to the leading-order one. For this reason, we decided to leave out the photon-
initiated processes. The real emission of W and Z bosons, instead, has not been considered
for reasons that will be explained in Chap. 3.

2.2 The inclusion of photon radiation

If we are including electroweak corrections, as we have just seen, we have to consider the
emission of a photon. Photon radiation was introduced in the POWHEG BOX for the first time
in ref. [17], in which NLO QCD+EW corrections to W boson production were computed.
Then, this procedure was extended in the context of Z boson production in ref. [52]. In
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these articles, the leptons coming from the decay of the vector boson were considered as mas-
sive, and the treatment of photon radiation from massive charged particles was implemented
correspondingly. In this thesis, instead, both quarks and charged leptons are considered as
massless: for this reason we have modified the code so that it can generate also photon
radiation from massless charged particles.

The first relevant change is in the structure of the soft and virtual counterterms, needed to
compute the soft-virtual contribution to the NLO cross section of eq. (2.5). Photon emission,
however, is similar to gluon emission from quarks: the counterterms can then be easily
obtained from the QCD case with minor efforts.
Adapting the factors γq and γ′q in eqs. (2.95) and (2.96) of the original POWHEG paper [13],

γq =
3

2
C2
F , γ′q =

(
13

2
− 2

3
π2

)
C2
F , (2.11)

for the exchange of a photon we obtain

γEM

f =
3

2
Q2
f , γ

′EM

f =

(
13

2
− 2

3
π2

)
Q2
f , (2.12)

where f denotes the flavour of the emitting particle. We can immediately see that, while the
original terms have a physical significance only for coloured particles, due to the presence
of CF , the factors in eq. (2.12) are valid for every charged particle, since they involve the
electric charge of the emitter. At this point, the counterterm for final-state QED radiation
from massless particles can be obtained straightforwardly from the results for QCD radiation
from massless quarks, that is already implemented. For every final-state charged massless
particle one soft-virtual term is added, with the same structure of the QCD case but with γq
and γ′q substituted by γEM

f and γ
′EM
f , respectively.

The second important modification to the code involves the upper-bounding function used
in the generation of radiation according to the POWHEG Sudakov form factor. This function
is used to generate photon radiation using the highest-bid method. As explained in the
original paper, several upper-bounding functions have been implemented in the POWHEG BOX,
for initial- and final-state QCD radiation. These functions correspond to the upper bound of
the R/B ratio of eq. (2.10): they catch the divergent behaviour of the real cross section in
the singular region, and they include one power of the strong coupling constant, evaluated
at the transverse momentum of the emitting parton, αs(k

2
T ). Since QED and QCD radiation

share many similarities, in order to obtain the functions for photon emission we can repeat
the procedure for the QCD case, described in Apps. C and D of ref. [14], starting from the
same upper-bounding functions but using a fixed-valued electromagnetic coupling constant
α instead of a running αs(k

2
T ). We proceed in this way since the running of α is negligible in

the energy range considered, and in the limit of zero momentum transfer we have α→ 1/137.
We start from describing final-state radiation. The form of the upper-bounding function

we have used is
U(ξ, y) = N

α

ξ(1− y)
, (2.13)

in which N is a normalization factor, ξ is the fraction of the emitter energy carried by the
emitted particle, and y = cos θ is related to the angle between the emitter and the radiated
particle. As in QCD, the soft and collinear final-state singularities correspond to ξ → 0 and
y → 1, respectively. This function is used to generate pT uniformly in

∆(p2
T ) = exp

[
−
∫
U(ξ, y) θ(kT − pT ) dξ dy dφ

]
, (2.14)
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in which dξ dy dφ is a parametrization of the radiation phase space dΦrad of eq. (2.10). The
variable kT entering the theta function can be related to the integration variables through

k2
T =

s

2
ξ2(1− y), (2.15)

being s the partonic center-of-mass energy squared. The integration ranges of ξ, y and φ are
given by

0 ≤ ξ ≤ ξmax = 1− M2
rec

s
, −1 ≤ y ≤ 1, 0 ≤ φ < 2π, (2.16)

where Mrec is the mass of the system recoiling against the emitter and emitted particles.
Trading y for k2

T through eq. (2.15) we get

y = 1− 2k2
T

ξ2s
−→ dy = − 2

ξ2s
dk2

T , 0 ≤ k2
T ≤ sξ2. (2.17)

Taking the logarithm of eq. (2.14), we then obtain

− log ∆(p2
T ) =

∫ ξmax

0

dξ

∫ 1

−1

dy

∫ 2π

0

dφ N
α

ξ(1− y)
θ(kT − pT )

= 2παN

∫ ξmax

0

dξ

∫ 0

ξ2s

(
−dk2

T

) 1

ξk2
T

θ(kT − pT ). (2.18)

Since k2
T depends on ξ, the theta function restricts the integration ranges for both k2

T and ξ,
giving

− log ∆(p2
T ) = 2παN

∫ ξmax

√
p2T /s

dξ

ξ

∫ sξ2

p2T

dk2
T

k2
T

=
παN

2
log2 ξ

2
maxs

p2
T

. (2.19)

At this point, the procedure for the generation of radiation proceeds in the standard way,
generating a random number r and solving the equation r = ∆(p2

T ). In the implementation,
this equation is translated into log r = log ∆(p2

T ), and solved numerically for pT . Once pT is
generated, ξ is generated uniformly in log ξ within the limits√

p2
T

s
≤ ξ ≤ ξmax, (2.20)

y is obtained through

y = 1− 2p2
T

sξ2
, (2.21)

and φ is generated uniformly in [0, 2π). The simplification with respect to the QCD case
comes from the fact that, considering a fixed coupling constant, the dependence of the inte-
grand function on k2

T is much simpler.
When generating initial-state radiation, if we consider combined QCD+EW corrections,

photon emission always occurs in competition with gluon emission: for this reason, the
upper-bounding function for QCD radiation has to be used. Including only QED radiation,
instead, the QCD function would make the generation of radiation extremely inefficient. For
this reason, we have implemented a procedure for generating initial-state photon radiation in
a more efficient way. We remind that this option is used only if the flag qed qcd is set to 1,
otherwise the presence of QCD radiation forces the use of the corresponding upper-bounding
function.
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The upper-bounding function for QED initial-state radiation can be obtained from the
QCD one exactly as we have done in the previous case, i.e. by using α instead of αs(k

2
T ),

U(x, y) = N
α

(1− x)(1− y2)
, (2.22)

having defined x = 1 − ξ, so that the singular limit is reached when x → 1 and y → ±1.
The kT variable can be related to x and y through

k2
T =

sb
4x

(1− x)2(1− y2), (2.23)

being sb the center-of-mass energy of the underlying Born. As for the final-state case, we will
trade y for kT in performing the integral. Since the range of U(x, y) must cover the range
of the radiation variables for the given underlying-Born configuration, a practical restriction
for the integration variables is

ρ ≤ x ≤ 1, ρ =
sb
S
, (2.24)

k2
T ≤ k2

T ,max, k2
T ,max = sb

(1− x̄2
⊕)(1− x̄2

	)

(x̄⊕ + x̄	)2
. (2.25)

In these formulae, S is the energy of the incoming hadrons, and x̄© are the momentum
fractions of the incoming partons after radiation. We want to generate pT uniformly according
to eq. (2.14): to this end, writing y in terms of k2

T we obtain

|y| =
√

1− 4x

(1− x)2

k2
T

sb
, (2.26)

so that

dy = ∓ 2x

sb(1− x)

dk2
T√

(1− x)2 − 4xk2
T/sb

. (2.27)

Defining a = k2
T/sb, the zeros of the square root are located at

x± =
(√

1 + a±√a
)2

, (2.28)

with x+ > 1 and x− < 1. The presence of the square root further restricts the integration
interval for x: since its argument must be positive, x can take values only in the interval
(−∞, x−] ∪ [x+,+∞). The integration range of x is then reduced from ρ to x−. The upper-
bounding function, rewritten in terms of k2

T , becomes

U(x, k2
T ) = Nα

sb(1− x)

4xk2
T

, (2.29)

and we obtain

− log ∆(p2
T ) = 2παN

∫ k2T,max

p2T

dk2
T

k2
T

∫ x−

ρ

dx√
(x+ − x)(x− − x)

= 2παN

∫ k2T,max

p2T

dk2
T

k2
T

log

√
x+ − ρ+

√
x− − ρ√

x+ − ρ−
√
x− − ρ

. (2.30)
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Since x+ and x− depend on k2
T , and since we are looking for an upper bound, we can simplify

the integrand by noting that

log

√
x+ − ρ+

√
x− − ρ√

x+ − ρ−
√
x− − ρ

≤ log

√
x+ +

√
x−√

x+ −√x−
=

1

2
log

(
1 +

sb
k2
T

)
. (2.31)

At this point the integration can be easily performed analytically, leading to

− log ∆(p2
T , ) ≤ − log ∆̃(p2

T ) = παN

∫ k2T,max

p2T

dk2
T

k2
T

log

(
1 +

sb
k2
T

)

= παN

[
Li2

(
− sb
k2
T ,max

)
− Li2

(
− sb
p2
T

)]
. (2.32)

The procedure of generation of radiation now works in the same way as the QCD case,
generating pT according to ∆̃(p2

T ) by solving log r = log ∆̃(p2
T ), and then using the veto

method to obtain pT distributed according to ∆(p2
T ). At the end, all the other variables are

obtained through the relations introduced in this derivation.
Thanks to these improvements, QED radiation can now be generated consistently and

efficiently, both in the massive- and in the massless-emitter case. NLO electroweak corrections
can then be included in the POWHEG BOX RES, provided that the matrix elements for the
virtual and real corrections are supplied.

2.3 The automated generation of matrix elements with

OpenLoops

In the last years, many progresses have been made in the field of automated matrix element
generation. One of these generators is OpenLoops [53], based on fast numerical recursion
relations for the generation of tree and one-loop scattering amplitudes [54]. Combined with
the OPP reduction method [55] implemented in CutTools [56] and the scalar one-loop li-
brary OneLOop [57], or with the tensor integral reduction methods [58–60] implemented in
COLLIER [61], the employed recursion allows to achieve very high CPU performance and a
high degree of numerical stability. Indeed, the small fraction of numerically-unstable one-loop
matrix elements is automatically detected and rescued through re-evaluation with CutTools

in quadruple precision.
In order to take advantage of these features in the POWHEG BOX RES, a general process-

independent interface between the POWHEG BOX RES and OpenLoops has been developed [62].
This interface allows for a straightforward implementation of many NLO processes, gener-
ating QCD or electroweak corrections. It is obtained through a Fortran90 module called
openloops powheg. Internally, the POWHEG BOX RES+OpenLoops framework automatically
compiles, loads and manages all the required OpenLoops amplitude libraries.

The interface provides three subroutines, with the same structure as the POWHEG BOX sub-
routines setborn, setreal and setvirtual. These are openloops born, openloops real

and openloops virtual. The subroutines openloops borncolour, openloops realcolour

and openloops init are provided, too. The former two supply the required colour informa-
tion, returning a colour flow for the Born and real matrix elements, in the large colour limit,
on a probabilistic basis. The latter includes the synchronization of all the parameters between
the POWHEG BOX RES and OpenLoops, and has to be called at the end of the init processes

subroutine.
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Several OpenLoops internal options can be changed directly from the input file of the
POWHEG BOX RES. In particular, it is possible to switch between the tensor-integral reduction
methods implemented in COLLIER and the OPP reduction methods implemented in CutTools.
The default behaviour uses COLLIER, while inserting the line

olpreset 1

in the input file, the program uses the reduction via CutTools. In a similar way, the insertion
of the line

olverbose OpenLoops_verbosity_level

allows to select the verbosity level of OpenLoops. While all the relevant input parameters
are automatically passed to OpenLoops during the POWHEG BOX RES initialization procedure,
further parameters can be set directly through the routine

set_parameter (parameter,value)

character(*), intent(in) :: parameter

TYPE, intent(in) :: value

Here, TYPE can be an integer, double or character type, according to the parameter that has
to be set. For example, if the user wants to change the value of the Higgs boson mass to
200 GeV, the following call has to be performed:

call set_parameter ("h_mass", 200d0)

The OpenLoops amplitude libraries for a given process, in the POWHEG BOX RES+OpenLoops

framework, can be obtained by running the script generate process.py, available in the
POWHEG-BOX-RES/OpenLoopsStuff directory, with the following arguments:

./generate_process.py library_name -order_ew=m -order_qcd=n -name=dir_name

Here, library name corresponds to the OpenLoops amplitude library of the desired process,
a list of which can be found on the official website [53], while m and n denote the order of the
Born cross section in terms of powers of the electromagnetic and strong coupling constants,
O(αmαns ). This execution builds a rudimentary POWHEG BOX process structure in the directory
POWHEG-BOX-RES/dir name. For example, the call

./generate_process.py pphlnj -order_ew=3 -order_qcd=1 -name=HWj

yields the structure for a NLO+PS generator including all required tree level and one-loop
amplitudes for pp → HW (→ lν) + 1 jet production with QCD corrections. At this point,
the user only has to provide the list of contributing flavour structures and the powers of the
electroweak and strong couplings of the Born amplitude, as explained in Sec. 2.1.

Currently NLO QCD corrections to any Standard Model process are supported by this
interface, while electroweak corrections will be available soon. In the context of this thesis, we
have used a dedicated interface, provided by the authors of OpenLoops, to obtain the matrix
elements for the electroweak virtual and real corrections to the HV and HVj processes. The
Born, Born-correlated and real QCD amplitudes in HVj processes have instead been obtained
through the automatic interface [63] to MadGraph [64, 65]. All the other contributions have
been computed analytically.
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2.4 The optimization of the virtual corrections

The computation of virtual electroweak corrections is the most CPU-demanding part of the
calculation. For this reason, the best way to improve the efficiency of the generator is to
minimize the number of calls to the virtual part of the cross section, taking care not to
spoil the statistical accuracy of the complete result. Two different strategies can be adopted,
depending on what part of the simulation a user is interested in.

If one needs to compute fixed NLO results, this minimization can be achieved by eval-
uating the virtual and real contributions with independent statistical accuracies. In the
POWHEG BOX RES there is the possibility to separate the virtual cross section from the rest,
in such a way that it can be computed with an accuracy that matches the one of the real
contribution, thus saving computer time. More specifically, the code can be run twice. In
the first run, the flag novirtual is set to 1 in the POWHEG BOX RES input file: in this way,
no call to the calculation of the virtual corrections and of the soft-virtual terms is done,
and the corresponding distributions do not contain these contributions. The code is then
rerun by using the same importance-sampling grids computed in the first run, with the flag
virtonly set to 1, novirtual set to 0 and with lower statistics with respect to the previous
run. The virtual contributions are thus called fewer times with respect to the Born and real
ones. Finally, the kinematic distributions obtained in the two steps can be combined.

All the NLO results presented in this thesis have been obtained by applying this procedure.
If instead one is interested in generating Les Houches events, it is more convenient to

avoid the computation of the virtual corrections for the large number of events that are
vetoed during the generation. This can be done, provided that one renounces to generating
events with constant weight. The events are generated with settings such that the virtual
cross section is not included: then, through a reweighting procedure, one can recompute the
complete weight associated to a given event. In this way, the virtual contribution is computed
only once for each event, instead of several tens of times, thus reducing dramatically the
running time of the code.

In order to do so, one first generates events with the flag novirtual set to 1. Then, the
following lines are added to the input file:

rwl_add 1

rwl_file ’-’

<initrwgt>

<weight id=’xx’> some reweight info </weight>

<weight id=’yy’> some reweight info </weight>

...

</initrwgt>

For each <weight line, a new weight is generated and added to the event. These weights are
all computed with the inclusion of the virtual corrections, and with the information stored
in this line. This option can also be used to perform scale variations: in this case, the first
run is performed with the central-scale values, and in the subsequent runs the scaling factors
are varied.

In this thesis we have used a slightly different variant of this reweighting procedure: the
interested reader can find all the details in Chap. 5.
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2.5 The MiNLO procedure

One of the most problematic issues of QED and QCD calculations is the fact that, being
forced to adopt a perturbative expansion, the appearance of unphysical renormalization and
factorization scales µR and µF is unavoidable. The dependence of the results on these scales
would vanish only when considering all the terms of the expansion, a task that cannot be ful-
filled at all. These scales are then used to estimate the theoretical uncertainty associated to a
fixed-order computation, usually by varying them by a factor of two around a “central” value.

The main problem related to the appearance of renormalization and factorization scales
is that their “central” value is not fixed by the theory, and could be determined by requiring
either the perturbative corrections to be small or the scale sensitivity to be minimized. Indeed,
a “wrong” choice would give rise to large logarithms involving the ratio between these scales
and the characteristic scales of the process, thus leading to sizable unphysical corrections.

If we consider for example a Drell-Yan process, a reasonable scale choice is the intermedi-
ate vector-boson mass. With more complex and exclusive processes, like V +jets production,
more scale choices are possible: the higher the final-state multiplicity, the bigger the number
of possible choices becomes. It would thus be desirable to have a method for suggesting the
central scales starting from the kinematics of the process under consideration, rather than
on a posteriori studies.

In the context of leading order matrix element - parton shower (MEPS) merging algo-
rithms, a method for assigning the renormalization and factorization scales has been proposed
in refs. [66–68]. In the so-called CKKW formalism, the kinematic configuration of the process
is associated with the most probable branching history by means of a jet clustering algorithm.
The relative transverse momentum at each branching defines the renormalization scale for
the corresponding factor of αs at the vertex, while the factorization scale is associated with
the MEPS matching scale. Also the Sudakov form factors are included, in order to account
for the large double logarithms that arise when the clustered event contains well separated
scales. This procedure incorporates all the large logarithms associated with rendering the
event exclusive with respect to the radiation above the MEPS merging scale, that is the scale
beneath which the parton shower algorithms are used to populate the remaining phase space.

The partons are recursively recombined according to a kT -clustering algorithm, in order
to reconstruct the most likely branching history. At each vertex i a nodal scale qi is assigned,
equal to the relative transverse momentum at which the clustering has taken place. In
addition, a resolution scale Q0 is assigned, meaning that the cross section is interpreted
as being inclusive for all radiation below this value. The procedure ends when no more
clusterings are possible: the remaining particles form the primary system, to which is assigned
a scale equal to its invariant mass Q.

At this point, the CKKW cross section is obtained by taking the tree-level matrix element,
with the strong couplings associated at each node evaluated at the corresponding scale qi. The
remaining powers of the coupling constant, associated to the primary system, are evaluated
at the scale Q. At next-to-leading logarithmic (NLL) accuracy the Sudakov form factor can
be written as

∆f (Q
2
1, Q

2
2) = exp

{
−
∫ Q2

2

Q2
1

dq2

q2

[
Af
(
αs
(
q2
))

log
Q2

2

q2
+Bf

(
αs
(
q2
))]}

, (2.33)

where f = q, g, and the functions Af and Bf have a perturbative expansion in terms of
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constant coefficients,

Af (αs) =
∞∑
i=1

Af,i α
i
s, Bf (αs) =

∞∑
i=1

Bf,i α
i
s. (2.34)

To each intermediate line involving a parton f that connects the nodes i and j is assigned a
Sudakov form factor

∆f (Q
2
0, q

2
i )

∆f (Q2
0, q

2
j )

= ∆f (q
2
j , q

2
i ). (2.35)

This factor represents the probability that no branching occurs between the scales qi and qj.
External lines have a Sudakov form factor equal to ∆f (Q

2
0, q

2
k), where k is the node connected

to the external line. At the end, the factorization scale is set to Q0.
Thanks to eq. (2.34), the Sudakov form factor can be expanded in powers of the strong

coupling constant, according to

∆f (Q
2
1, Q

2
2) = 1 + ∆

(1)
f (Q2

1, Q
2
2) +O

(
α2
s

)
. (2.36)

In this formula, ∆
(1)
f (Q2

1, Q
2
2) represents the effective NLO correction that is included in the

Born term when the CKKW prescription is used. Each event, reweighted to include these
Sudakov form factors and scale assignments, is then passed to a Monte Carlo parton shower
generator, with the requirement that no radiation is generated above Q0, so that this region
is governed by the exact tree-level matrix element, and the remaining phase space is filled by
the shower.

Since the POWHEG BOX is an event generator with NLO accuracy, it is necessary to adapt
the calculation of NLO cross sections so that the Born term is evaluated with the scales and
Sudakov form factors prescribed by the CKKW formalism, while the full result maintains
formal NLO accuracy. Moreover, the accuracy near the Sudakov regions must be comparable
to that of the corresponding tree-level calculation in the adopted CKKW scheme.

This result has been obtained in refs. [18, 19]. The procedure, called MiNLO for Multi-scale
improved NLO, includes the choice of the scales appearing in the coupling constants associ-
ated with the Born level and with the NLO (virtual and real) corrections. Since the NLO
virtual correction already includes the O(αs) expansion of the Sudakov form factor, a term

∆
(1)
f (Q2

1, Q
2
2) has to be subtracted for each Sudakov form factor included. To this end, after

performing the clustering and evaluating the coupling constants at the corresponding nodal
scales, the Born term in the inclusive cross section for the computation of the underlying-Born
kinematics (the so-called B̄ function in the POWHEG BOX method) is modified according to

B → B ×
[

1− 2
∑
j

∆
(1)
fj

(Q2, q2
nj

)

]
, (2.37)

where the index j runs over the Born-level final-state partons.

2.5.1 MiNLO in the HVj generators

When the MiNLO procedure has been proposed, it has been applied to the production of a
Higgs, W or Z boson plus one or two jets. Indeed, in ref. [19] it was shown that, by applying
this procedure to the NLO production of a colourless object in association with one jet, it
is possible to reach NLO accuracy for quantities that are inclusive in the production of the
colour-neutral system, i.e. when the associated jet is not resolved. We refer to this as the
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improved MiNLO. Since the HVj process can be interpreted as the production of a jet and a
virtual colourless vector boson, that decays into an HV pair, the improved MiNLO approach
can be applied also to this case. For this process, the two relevant energy scales entering
the process are the invariant mass of the virtual vector boson, MHV = (pH + pV )2, and its
transverse momentum, kT . The inclusion of the Sudakov form factors and the assignment of
scales for the couplings modifies the B̄ function of eq. (2.8), giving

B̄ (ΦB) = αs(k
2
T ) ∆2

q(M
2
HV , k

2
T )

×
{
B(ΦB)

[
1− 2∆(1)

q (M2
HV , k

2
T )
]
+ V (ΦB) +

∫
dΦradR(ΦB,Φrad)

}
. (2.38)

In this equation, one power of αs has been stripped off from the Born, virtual and real
contributions, and it has been explicitly written in front, with its scale dependence. The
improved MiNLO procedure requires for the factorization scale, and for the scale at which the
remaining power of αs in V , R and ∆

(1)
q is evaluated, to be again kT . In the definition of

∆q(M
2
HV , k

2
T ), the coefficients Aq,1, Aq,2, Bq,1 and Bq,2 have to be included in order to preserve

NLO accuracy. Their value for the present case is given by (see refs. [69–71])

Aq,1 =
1

2π
CF , Aq,2 =

1

4π2
CF

[(
67

18
− π2

6

)
CA −

5

9
nf

]
, Bq,1 = − 3

4π
CF ,

Bq,2 =
1

2π2

[(
π2

4
− 3

16
− 3ζ3

)
C2
F +

(
11

36
π2 − 193

48
+

3

2
ζ3

)
CFCA

+

(
17

24
− π2

18

)
CFnf

]
+ 4A2

q,1ζ3. (2.39)

The O(αs) expansion of the Sudakov form factor is instead given by

∆(1)
q (M2

HV , k
2
T ) = αs

(
k2
T

) [
− 1

2
Aq,1 log2 k2

T

M2
HV

+Bq,1 log
k2
T

M2
HV

]
. (2.40)

With these inclusions, events generated according to eq. (2.38) have NLO accuracy for distri-
butions inclusive in the HV production, and also for distributions inclusive in the HV +1 jet
production. This generator can then replace the HV one, since it has the same NLO accuracy,
and in addition it is NLO accurate in the production of the hardest jet.

31



Chapter 3

The high-energy limit of the NLO
electroweak corrections

An efficient comparison between theoretical expectations and experimental results requires
high precision, both in the detector performance and in the computation of collider ob-
servables. At hadron colliders like the LHC the dominant higher-order corrections to a
tree-level process come from QCD corrections. Nowadays NLO QCD corrections are com-
pletely automatized. Several frameworks are available: MC@NLO [72] and its extensions, the
POWHEG BOX [13–15] and its resonance-aware extension [16], SHERPA [73] and many more.
They are often interfaced to automated matrix-element generators, that provide the one-loop
amplitudes. The POWHEG BOX can be interfaced to GoSam [74] and OpenLoops [54]. Other gen-
erators that are commonly used are BlackHat [75], RECOLA [76] and MadGraph5 aMC@NLO [77].
All of these frameworks allow the computation of NLO cross sections matched with a parton
shower algorithm.

To increase the theoretical precision in the computation of observables, the next step is
to consider NNLO QCD corrections, of order α2

s with respect to the leading-order process.
For typical LHC processes, this kind of corrections gives contributions that can reach 10%,
thus improving the precision in a non-negligible way. However, the drawback is that these
corrections are in general very complicated to calculate: indeed, the NNLO contributions to
the cross section for a given process involve multi-loop diagrams, and final states with high
multiplicity.

Since the search for new physics needs to proceed with precision at the highest possible
level, also the electroweak sector plays an important role. In fact, as in principle it is not
known how new physics could manifest itself, one has to look for even small deviations from
the Standard Model predictions. The electromagnetic coupling constant is very small if
compared to the strong one, since αs(MZ) ' 0.119, while α(MZ) ' 1/128 = 0.008. For
this reason, looking only at the value of the coupling constants, the electroweak contribution
is expected to be more than ten times smaller than the QCD one. While this reasoning
has some physical soundness for inclusive quantities, for exclusive distributions things can be
different. In fact, for several processes, the NLO EW corrections turn out to give contributions
comparable to the NNLO QCD ones. Moreover, they are known to alter the shape of some
important distributions, like the W boson transverse mass in the TeV region or the Z boson
mass [78], thus affecting their determination. Finally, even if the effect of the electroweak
corrections is rather mild on the integrated cross sections, they usually give sizable negative
contributions in the high-energy tails of some transverse-momentum distributions. Indeed,
in these kinematic regions, they can reach 40-50% [79, 80] with a partonic center-of-mass
energy of a few TeV, thus becoming larger in magnitude than the NLO QCD corrections.
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The importance of considering also NLO EW corrections comes from the fact that these
energy ranges can be reached by the LHC.

For all of these reasons, both the theoretical and the experimental communities agree on
the importance of the inclusion of electroweak corrections, as can be seen by examining the
Les Houches wishlist, in tabs. 1 - 3 of ref. [80], where the state of the art of several Standard
Model processes and the desired accuracy in the theoretical computations are shown. It
appears clear that, together with NNLO QCD corrections, also NLO EW corrections play an
important role in all the relevant final-state topologies (namely Higgs boson, jets, heavy-quark
and EW gauge boson production).

3.1 The Sudakov logarithms

The high-energy tails of some transverse-momentum distributions receive sizable corrections
from the electroweak sector because at high energies electroweak corrections are dominated
by double and single logarithms of the typical energy scale of the process over the mass of
the electroweak bosons MV , with V = W,Z. These are called Sudakov logarithms [3–7]. The
leading contributions, double-logarithmic corrections, are proportional to α log2(s/M2

V ), in
which

√
s is the partonic center-of-mass energy, while the subleading ones are proportional

to α log(s/M2
V ). These logarithms are the result of the emission of virtual or real massive

gauge bosons from the external particles, and they stand for the soft and collinear singu-
larities that would appear if the exchanged bosons were massless. For this reason they are
called mass singularities. MV plays the role of infrared (IR) regulator for the singularities
of loop diagrams, like the infinitesimal photon mass λ usually introduced to regularize the
IR singularities appearing in massless gauge theories. The high-energy regime

√
s � MV

corresponds to the IR regime of the electroweak theory, where the gauge-boson masses can
be neglected if compared to the other energy scales.

The electroweak sector has many differences with respect to QCD, in the structure of
both the real and the virtual contributions to the cross section. Soft and collinear emissions
of real massless particles give rise to divergences, that cancel the ones coming from one-loop
corrections providing a finite result. In the electroweak case the situation is different for
two reasons. First, even if the masses of the W and Z bosons act as IR cutoffs in one-loop
corrections, they are physical parameters. There is no technical reason, then, for including
the contribution coming from the radiation of an extra massive gauge boson. This represents
a big difference with respect to the other theories, in which the singularities coming from the
virtual corrections are regularized by introducing arbitrary regulators, that are canceled only
when the IR-divergent real contributions are included in the calculation. This is precisely
the case of photon emission, for which one introduces an infinitesimal mass λ. All the
logarithms involving this parameter, that would diverge when taking the limit λ→ 0, cancel
when summing the virtual and real contributions in the unresolved region, so that the result
remains finite.

Another motivation to exclude real emissions of W and Z bosons, even if they contribute
at the same perturbative order, comes from the fact that, being unstable particles, they subse-
quently decay. This leads to different final states in the detectors, that can be experimentally
distinguished, not being degenerate with the leading-order ones.

If, however, real weak corrections were included, one could naively expect a complete
cancellation of the Sudakov logarithms, just like in the case of photon emission. In the
electroweak case, instead, the non-abelian structure of the gauge group leads to a mismatch
between virtual and real contributions, as long as one does not sum over the non-abelian
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charges of the external particles. The mismatch is a violation of the Bloch-Nordsieck theo-
rem [81–84], that states that observables which are inclusive over soft final states are IR safe.
This violation is due to the non-abelian nature of the electroweak charges in the initial state.
The same phenomenon occurs in QCD, however in this case it has no physical consequences
because of the colour averaging of the initial partonic states, needed in QCD since the colour
charges do not exist as free asymptotic states. In the electroweak case the weak isospin charge
of the initial state is fixed, and no averaging is performed: this leads to the non-cancellation
of the Sudakov logarithms.

The origin of this non-cancellation can be understood by considering, for example, fully
inclusive e+e− annihilations. Virtual corrections are related to the cross section σe+e− . The
same holds for the real corrections that involve the emission of a photon or a Z boson.
However, the emission of a W boson changes the isospin of the incoming electron, turning
it into a neutrino. The corresponding corrections are thus related to the cross section σe+νe ,
and they do not cancel the virtual contributions. An average over the different possible
isospin states (σe+e− , σe+νe , σν̄ee− , σν̄eνe) would lead to a full cancellation of the logarithms [85].
Nevertheless, at hadron colliders this averaging is not possible because different weak isospin
states receive different weights from the parton distribution functions.

In ref. [86] the role of weak boson emission and the compensation between virtual and real
corrections were studied for several LHC processes. The result was that, as expected, the real
cross section becomes important at high energies and compensates the negative contribution
coming from the virtual corrections. However, this compensation is never exact, and in some
cases, the real cross section is even bigger than the virtual one.

In refs. [87–91], the real emission of weak bosons was treated in analogy with QED or
QCD: all the tree level diagrams with the emission of an extra W or Z boson were considered,
with the gauge boson produced on shell and integrated over the full phase space. The result
was a significant cancellation between real and virtual corrections, though still incomplete
due to Bloch-Nordsieck violations. In refs. [79, 92], instead, the decay of the extra boson
was investigated when the final states were degenerate with the leading-order ones, for both
Standard Model and BSM processes. Also in these cases the cancellation between virtual
and real contributions turned out to be only partial, and dependent on the process and on
the event selections.

Electroweak virtual corrections are much more involved than the QCD ones, because
they receive contributions from a wider set of particles (γ, W , Z, H), many of which are
massive and interact with the colorless sector too (leptons, for example). However, in the
high-energy regime, in the limit in which all the kinematic invariants are of the same order
and much bigger than the electroweak scale, and for processes that are not mass-suppressed
at high energies (the so-called Sudakov limit), the leading part of the one-loop corrections is
universal [8]. It depends only on the flavour and on the kinematics of the external particles:
it can thus be computed in a process-independent way and written as a sum of universal
functions that multiply tree-level matrix elements. This approximation can be very helpful,
since the calculation of the full electroweak corrections is computationally demanding. In
the Sudakov limit, the universality of the leading part of the electroweak corrections allows
to develop general algorithms [9, 10, 93] for the fast calculation of these contributions, that
catch the main part of the corrections. The bulk of the corrections can then be obtained
with a reduced computational cost, while the non-logarithmic part is process-dependent, and
requires to be computed for every desired process. Since this approximation includes the
dominant and the subdominant logarithmic terms, the level of accuracy reached considering
these corrections is next-to-leading-logarithmic (NLL).

The leading-logarithmic part of the corrections comes from the exchange of soft-collinear
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gauge bosons between pairs of external particles, and gives a negative contribution. The
subleading part, instead, arises when soft or collinear gauge bosons are exchanged. It is often
positive, and tends to compensate the leading term. It is for this reason that the tails of
typical pT distributions receive negative contributions from the electroweak corrections.

Since these logarithms correspond to the singular behaviour of the loop integrals, the
logarithmic structure of the corrections shares the same features as the one emerging from
the IR limit of QED and QCD in mass regularization. The factorization properties of the
Sudakov corrections over the tree-level matrix element are instead similar to the ones of
the QCD corrections, because of the non-abelian structure of the underlying gauge groups,
SU(3) for QCD and SU(2) × U(1) for the electroweak theory. Nevertheless, there are some
differences between the two IR limits, related to the nature of the weak charges and to the
spontaneous symmetry breaking of the electroweak sector.

In fact, spontaneous symmetry breaking implies that the masses of the W and the Z
bosons are physical parameters. For this reason, even if at high energies MW and MZ act
as IR regulators for the loop diagrams, their values cannot be set to zero: one-loop weak
corrections are thus always IR-finite, even if they can be very large because of the leading
logarithms. Another consequence of electroweak symmetry breaking is that also the scalar
sector enters the computation of the corrections, both because the collinear factorization
is based on the Becchi-Rouet-Stora invariance [94] of the Standard Model and because of
the Goldstone-boson equivalence theorem [95–97] that relates longitudinally polarized gauge
bosons to the corresponding Goldstone bosons at high energies.

In this thesis real corrections due to the radiation of massive W and Z bosons are not
included: we focus on one-loop virtual contributions, and on their high-energy limit. We
consider the limit in which the partonic center-of-mass energy, as well as all the kinematic
invariants, are much bigger than the electroweak scale. Furthermore, we must consider only
matrix elements that are not mass-suppressed, i.e. matrix elements with mass dimension d
that, in the high-energy limit, scale as Ed, and neglect all the contributions of order Mn

VE
d−n.

In this limit, the phenomenon of electroweak symmetry breaking has some consequences.
First of all, introducing a weak scale of order MW , spontaneous symmetry breaking creates
a gap between this scale and the fictitious photon mass. Because of this gap, electroweak
corrections are not symmetric at low energies, where they are usually split into an electro-
magnetic part, due to photon loops, and the remaining weak part. At high energies, instead,
it is more convenient to separate the corrections in a different way, to reflect the SU(2)×U(1)
symmetry. For this reason, the resulting logarithms coming from γ and Z boson loops are
split into various parts. The contributions corresponding to a fictitious heavy photon and a
Z boson with mass MW are added to W boson loops, determining a symmetric electroweak
contribution. The logarithms originating from the gap between the photon mass and the
weak scale are instead collected in a pure electromagnetic contribution. Finally, the log-
arithms originating from the gap between MZ and MW are of minor importance and are
collected together.

The second consequence is the presence of longitudinal gauge bosons as physical states.
These bosons are not present in a symmetric gauge theory, since they represent a charac-
teristic feature of spontaneous symmetry breaking, arising in the Higgs mechanism together
with the Higgs boson. In the high-energy limit, above the EWSB scale, longitudinal gauge
bosons are related to the unphysical components of the scalar doublet, the Goldstone bosons,
by means of the Goldstone-boson equivalence theorem, that will be treated in Sec. 3.3.

In the following sections we summarize the formalism and the results obtained in refs. [8, 9]
for the description of the high-energy limit of electroweak one-loop corrections. We first fix
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the notation and introduce some concepts useful to derive the universal formulae that describe
the Sudakov limit. Then, we report these process-independent correction factors.

3.2 Structure of the Sudakov logarithms

We begin by fixing some conventions and notations. The particles involved in a process
can be fermions, scalar particles and gauge bosons. Chiral fermions and antifermions are
denoted by f jκ,σ and f̄ jκ,σ, where κ = L,R stands for the chirality, σ = ± denotes the
weak isospin, j = 1, 2, 3 corresponds to the fermion generation and f = Q,L distinguishes
between quarks and leptons. Gauge bosons are denoted by V a = A,Z,W±, and they can
be transversely (V a

T ) or longitudinally (V a
L ) polarized. Finally, scalar particles are denoted

by Φi = H,χ, φ±. H is the Higgs boson, while χ and φ± are the Goldstone bosons, that
can be used to treat processes with longitudinally polarized gauge bosons (ZL,W

±
L ) by the

Goldstone-boson equivalence theorem. All of these fields are labeled by ϕi.
We now consider an arbitrary process involving m incoming and n−m outgoing particles

with momenta p̃i,
ϕ1(p̃1) . . . ϕm(p̃m)→ ϕm+1(p̃m+1) . . . ϕn(p̃n). (3.1)

As a convention we deal with all particles incoming, so that the process can be written as

ϕ1(p̃1) . . . ϕm(p̃m) ϕ̄m+1(−p̃m+1) . . . ϕ̄n(−p̃n)→ 0, (3.2)

i.e. substituting outgoing particles with the corresponding incoming antiparticles, and revers-
ing their momenta.

Defining now pi ≡ p̃i if the i-th particle in eq. (3.1) is incoming, pi ≡ −p̃i if it is outgoing,
the process (3.2) can be written as

ϕ1(p1) . . . ϕm(pm) ϕ̄m+1(pm+1) . . . ϕ̄n(pn)→ 0, (3.3)

and for the matrix element we have

Mϕ1...ϕn(p1 . . . pn) = Gϕ
1
...ϕ

n(p1 . . . pn)
n∏
j=1

vϕj(pj). (3.4)

The function G is the Green function associated to the process, and the fact that its elements
are underlined means that the external legs are truncated. This function is then contracted
with the wave functions vϕj(pj) of the external particles: these are the Dirac spinors if the
external particle is a fermion, the polarization vectors for gauge bosons, and 1 if the external
particles are scalars.

In order to reach the Sudakov limit, we focus on the following kinematic region: we
consider the external legs on shell, and all the other kinematic invariants much larger than
the electroweak scale, (

N∑
i=1

pi

)2

∼ s�M2
W , 1 < N < n− 1. (3.5)

This request corresponds to a high center-of-mass energy and considerable scattering angles:
in this region the matrix elements can be expanded in the small parameters Mi/

√
s � 1,

where the various Mi represent the mass scales that enter the process. In order to consider
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only matrix elements that are not mass-suppressed, we restrict ourselves to the ones that at
leading order scale as

Mϕ1...ϕn
0 (p1 . . . pn) ∼ Ed, (3.6)

being d the mass dimension of the matrix element. For the one-loop corrections, defining

|rkl| = |(pk + pl)
2| ∼ |2pk · pl| �M2

W , (3.7)

we consider only double- and single-logarithmic corrections of order

δDLMϕ1...ϕn(p1 . . . pn) ∼ EdL,

δSLMϕ1...ϕn(p1 . . . pn) ∼ Edl, (3.8)

where L and l are the double and single logarithms

L = L(|rkl|,M2
i ) ≡ α

4π
log2 |rkl|

M2
i

, l = l(|rkl|,M2
i ) ≡ α

4π
log
|rkl|
M2

i

. (3.9)

In this way, we neglect contributions of order Mn
W E

d−nL, Mn
W E

d−n l and αEd, the latter
because they are constant with respect to the leading-order matrix element.

In order to make the results as symmetric as possible we relate the energy-dependent part
of the logarithms to the scales s and MW . We then write all the logarithms in terms of

L(s) ≡ L(s,M2
W ) =

α

4π
log2 s

M2
W

, l(s) ≡ l(s,M2
W ) =

α

4π
log

s

M2
W

, (3.10)

and logarithms of mass ratios and ratios of invariants. Finally, we collect together all the
double-logarithmic contributions proportional to L(s) and l(s) log(|rkl|/s), and the single-
logarithmic contributions proportional to l(s), that make up the main part of the correc-
tions. They can be thought of as the part of the corrections that originates from above the
electroweak scale.

We do not include α log(M2
Z/M

2
W ) terms, since MW ∼MZ, apart from the contributions

proportional to l(s) log(M2
Z/M

2
W ) which grow with the energy. We also neglect pure angular

contributions of type α log2(|rkl|/s) and α log(|rkl|/s), since, in the Sudakov limit, all the
kinematic invariants are of the order of s.

In this limit, it has been shown in refs. [8–10] that the virtual one-loop corrections assume
the general form

δMϕ1...ϕn({λi}, p1 . . . pn) =
∑
λi

δλi
∂Mϕ1...ϕn

0

∂λi
({λi}, p1 . . . pn)

+
∑

ϕ1′ ...ϕn′

Mϕ1′ ...ϕn′
0 ({λi}, p1 . . . pn) δϕ1...ϕn

ϕ1′ ...ϕn′
({λi}, p1 . . . pn). (3.11)

The first term is the contribution related to the renormalization δλi of the dimensionless
parameters λi that appear in the matrix element. The second term contains contributions
that factorize in momentum space into leading-order matrix elements multiplied by univer-
sal correction factors, δϕ1...ϕn

ϕ1′ ...ϕn′
. These are tensors with SU(2) × U(1) indices that can be

associated to single external particles or to pairs of them. The dimensionless correction fac-
tors, together with the running of the coupling constants, can be evaluated in a completely
process-independent way keeping the dominant L(s) and l(s) terms. The SU(2) transformed
matrix elements Mϕ1′ ...ϕn′

0 , instead, are process-dependent.
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It can be proven [8] that mass singularities arise in one-loop diagrams from a restricted set
of Feynman diagrams, in specific regions of the loop momentum, namely from diagrams with
virtual gauge bosons coupled to the external legs in the momentum regions in which these
bosons are soft and/or collinear to the external legs. The factorization of these contributions
is a consequence of gauge symmetry, in particular of the charge-conservation relations and
the Ward identities of the electroweak theory. The result is a set of logarithmic corrections
that, grouped together, take the form

δM = δLSCM+ δSSCM+ δCM+ δPRM. (3.12)

The first two terms correspond to the double-logarithmic contributions: they originate from
one-loop diagrams in which soft-collinear gauge bosons are exchanged between pairs of ex-
ternal legs. The leading part δLSC consists of angular-independent double logarithms like
L(s), while the subleading part δSSC contains the angular-dependent contributions propor-
tional to l(s) log(|rkl|/s). The other terms are instead single-logarithmic contributions. The
factor δC contains collinear or soft single logarithms, originating from the renormalization
of the asymptotic fields, from corrections to processes involving longitudinal gauge bosons,
and from the emission of collinear virtual gauge bosons from the external legs. δPR collects
instead the contributions of ultraviolet origin, related to the renormalization of the dimen-
sionless parameters.

These NLL corrections can be further grouped in δDL = δLSC + δSSC and in δSL = δC + δPR.
In the following sections we report the analytic formulae for these correction factors. In the
derivation of the results, some group-theoretical quantities are involved, such as the electric
charge Q of the external particles, their weak isospin T a, or the electroweak Casimir Cew:
their values can be found in App. A. We introduce some shorthand notations: with sW and
cW we refer to sin θW and cos θW , respectively, where θW is the Weinberg angle.

3.3 The Goldstone-boson equivalence theorem

In order to obtain the structure of eq. (3.12) for the one-loop electroweak corrections, one
of the fundamental requests is to neglect mass-suppressed matrix elements. However, this
approach is not applicable to processes that involve longitudinal gauge bosons V a

L = ZL,W
±
L .

To understand the reason, we consider a process with a longitudinal gauge boson and n other
external particles,

V a
L (q)ϕ1(p1) . . . ϕn(pn)→ 0. (3.13)

The matrix element is given by

MV aLϕ1...ϕn(q, p1 . . . pn) = εµL(q)G
V aL ϕ1

...ϕ
n

µ (q, p1 . . . pn)
n∏
j=1

vϕj(pj), (3.14)

in which the amputated Green function G is contracted with the Dirac spinors and with the
longitudinal polarization vector

εµL(q) =
qµ

MV a

+O
(
MV a

q0

)
, (3.15)

with q0 = EV a �MV a . We immediately see that the matrix element contains mass terms in
the denominator: in this case, then, it appears clear that the contributions of order Mn

V a E
d−n

cannot be neglected.
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However, in the high-energy limit the dominant part of the longitudinal polarization vec-
tor is proportional to the momentum of the gauge boson: for this reason the matrix element
can be simplified using the electroweak Ward identities. These relations connect amputated
Green functions involving longitudinal gauge bosons with amputated Green functions in-
volving the corresponding Goldstone bosons. The result is the Goldstone-boson equivalence
theorem (GBET) [95, 96], and can be stated as

MV aL ϕ1...ϕn(q, p1 . . . pn) = i(1−QV a )AV aMΦa ϕ1...ϕn(q, p1 . . . pn) +O
(
MEd−1

)
. (3.16)

The factor
AV a = 1 + δAV a (3.17)

consists of a trivial lowest-order contribution and a loop part, that enters the computation
of the single-logarithmic corrections associated to the external particles, contained in δC.

In 1985 this theorem was generalized to matrix elements involving more than one lon-
gitudinal boson. The proof can be found in ref. [97], the result is that the substitution of
eq. (3.16) applies to each of the m bosons involved, and the original matrix element becomes

MV
a1
L ...V amL ϕ1...ϕn(q1 . . . qm, p1 . . . pn) =

m∏
k=1

i(1−QV ak )AV ak

×MΦa1 ...Φam ϕ1...ϕn(q1 . . . qm, p1 . . . pn) +O
(
MEd−1

)
. (3.18)

Thanks to this theorem, at leading order the matrix element can be rewritten as

MV
a1
L ...V amL ϕ1...ϕn

0 =
m∏
k=1

i(1−QV ak )MΦa1 ...Φam ϕ1...ϕn
0 +O

(
MEd−1

)
, (3.19)

while the one-loop corrections split up into two parts, as

δMV
a1
L ...V amL ϕ1...ϕn =

m∑
k=1

δAV
akMV

a1
L ...V amL ϕ1...ϕn

0 +
m∏
k=1

i(1−QV ak )δMΦa1 ...Φam ϕ1...ϕn , (3.20)

which means that the corrections to the GBET are combined with the corrections to the
matrix element involving Goldstone bosons.

3.4 Double-logarithmic corrections

The double-logarithmic corrections originate from those loop diagrams in which virtual gauge
bosons V a= A,Z,W± are exchanged between pairs of external legs. The logarithmic contri-
butions come from the integration region in which the exchanged bosons are soft and collinear
to one of the external particles. Like in QCD, the integrals can be computed using the eikonal
approximation, that consists in neglecting all mass terms and setting the momentum of the
gauge boson to zero. It can be shown that these contributions are the only ones that are
not mass-suppressed in the eikonal limit: for example, the exchange of a fermion between
two external lines would give a suppressed contribution due to the Dirac equation for the
fermionic spinor and to the identity /p2 = p2 = m2

f , that introduces a mass term in the matrix
element.

The detailed derivation of the results can be found in ref. [8]. Here we sketch the procedure
and list the resulting formulae. Considering the exchange of a virtual gauge boson V a between
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two external legs k and l, the one-loop corrections evaluated in eikonal approximation turn
out to be

δDLMϕ1...ϕn =
n∑
k=1

∑
l<k

∑
V a=A,Z,W±

∑
ϕk′ , ϕl′

IV
a

ϕk′ϕk
I V̄

a

ϕl′ϕl
Mϕ1...ϕk′ ...ϕl′ ...ϕn

0

× α

4π

[
log2 |rkl|

M2
V a

+ 2
∑
m=k, l

IC(Mϕm ,MV a ,Mϕm′
)

]
, (3.21)

where the integral

IC(M1,MV a ,M2) = −
∫ 1

0

dx

x
log

(
1 +

M2
2 −M2

V a −M2
1

M2
V a − iε

x+
M2

1

M2
V a − iε

x2

)
(3.22)

gives large logarithms only if the mass of the soft gauge boson V a is much smaller than
one of the other masses. This happens in the case of photon exchange diagrams, and with
weak-boson exchanges in which one of the particles ϕm, ϕm′ is a top quark or a Higgs boson.

The eikonal approximation applies to external chiral fermions, transverse gauge bosons
and Higgs bosons. Because of the longitudinal polarization vectors, matrix elements involving
longitudinal gauge bosons have to be expressed in terms of matrix elements involving the
corresponding Goldstone bosons, using the GBET, according to eq. (3.19). Since the one-
loop corrections to the GBET do not involve double-logarithmic contributions, we can apply
this theorem in its leading-order form,

δDLMV
a1
L ...V amL ϕ1...ϕn =

m∏
k=1

i(1−QV ak )δDLMΦa1 ...Φam ϕ1...ϕn . (3.23)

By inspecting eq. (3.21) we note that the log2(|rkl|/M2
V a) terms are angular-dependent, since

they contain the invariant rkl. In order to make the result as symmetric as possible, we can
split these contributions into

log2 |rkl|
M2

V a

= log2 s

M2
V a

+ 2 log
s

M2
V a

log
|rkl|
s

+ log2 |rkl|
s
. (3.24)

The last term can be neglected if all the invariants are of the same order. In this way we can
separate the leading soft-collinear contributions from the subleading ones, that depend upon
the angles between the involved momenta.

3.4.1 Leading soft-collinear contributions

Using some charge-conservation relations in the high-energy limit, that follow from the
SU(2) × U(1) global symmetry, the angular-independent leading soft-collinear corrections
in eq. (3.21) can be written as a single sum over external legs. Evaluating the sum over
the gauge bosons, and keeping the angular-independent part in eq. (3.24), these corrections
become

δLSCMϕ1...ϕn =
n∑
k=1

∑
ϕk′

δLSC

ϕk′ϕk
Mϕ1...ϕk′ ...ϕn

0 , (3.25)

in which the correction factors take the form

δLSC

ϕk′ϕk
= − α

8π
Cew
ϕk′ϕk

log2 s

M2
W

+ δϕk′ϕk

[
α

4π
(IZϕk)

2 log
s

M2
W

log
M2

Z

M2
W

+ δLSC,h

ϕk
− 1

2
Q2
ϕk
Lem(s, λ2,m2

ϕk
)

]
. (3.26)
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The first term represents the double-logarithmic symmetric electroweak part, proportional to
the electroweak Casimir Cew that can be found in eq. (A.13). This term is always negative,
and diagonal except in the case of neutral gauge bosons, where some mixing happens due to
the non-diagonal components Cew

AZ and Cew
ZA. The factor

Lem(s, λ2,m2
ϕ) =

α

4π

[
2 log

s

M2
W

log
M2

W

λ2
+ log2 M

2
W

λ2
− log2

m2
ϕ

λ2

]
(3.27)

contains logarithms of electromagnetic origin, that diverge when taking the limit of the
photon mass λ → 0. Finally, δLSC,h

ϕk
is relevant only if one of the particles ϕk, ϕk′ is a heavy

quark, a Higgs boson or a longitudinal gauge boson:

δLSC,h

tL
=

α

4π

[
(3c2

W − s2
W )2

72s2
Wc

2
W

log2 m
2
t

M2
Z

+
1

2s2
W

log2 m2
t

M2
W

]
, (3.28)

δLSC,h

bκ
= δκL

α

4π

1

2s2
W

log2 m2
t

M2
W

, (3.29)

δLSC,h

tR
=

α

4π

2s2
W

9c2
W

log2 m
2
t

M2
Z

, (3.30)

δLSC,h

H =
α

4π

[
1

4s2
Wc

2
W

log2 M
2
H

M2
Z

+
1

2s2
W

log2 M
2
H

M2
W

]
, (3.31)

δLSC,h

φ± =
α

4π

1

4s2
W

log2 M
2
H

M2
W

, (3.32)

δLSC,h

χ =
α

4π

1

4s2
Wc

2
W

log2 M
2
H

M2
Z

. (3.33)

3.4.2 Subleading soft-collinear contributions

The second term of eq. (3.24) maintains a sum over the possible pairs of external legs, and
constitutes the subleading part of the corrections,

δSSCMϕ1...ϕn =
n∑
k=1

∑
l<k

∑
V a=A,Z,W±

∑
ϕk′ , ϕl′

δV
a, SSC

ϕk′ϕkϕl′ϕl
Mϕ1...ϕk′ ...ϕl′ ...ϕn

0 . (3.34)

The contributions from the various gauge bosons are:

δA, SSC
ϕk′ϕkϕl′ϕl

=
α

2π

[
log

s

M2
W

+ log
M2

W

λ2

]
log
|rkl|
s

IAϕk′ϕk I
A

ϕl′ϕl
, (3.35)

δZ,SSC
ϕk′ϕkϕl′ϕl

=
α

2π
log

s

M2
W

log
|rkl|
s

IZϕk′ϕk I
Z

ϕl′ϕl
, (3.36)

δW
±, SSC

ϕk′ϕkϕl′ϕl
=

α

2π
log

s

M2
W

log
|rkl|
s

I±ϕk′ϕk I
∓
ϕl′ϕl

. (3.37)

The couplings IA and IZ are diagonal, except for IZ in the neutral scalar sector (H,χ): this
means that also these corrections generally factorize over the original Born matrix element.
For the exchange of W± bosons, owing to the non-diagonal matrices I±, some contributions
coming from SU(2)-transformed Born matrix elements appear. They are generally not related
to the original Born matrix element and have to be evaluated explicitly.
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3.5 Single-logarithmic corrections

The corrections with a single-logarithmic structure originate from the renormalization of
the asymptotic states, from the corrections to the GBET, from mass-singular loop diagrams
in which a collinear virtual gauge boson is emitted and from the renormalization of the
dimensionless parameters that appear in the matrix element. In the derivation of these
results, we exploit the renormalization-scale independence of the S matrix and we set the
dimensional-regularization scale to µ2 = s, so that only mass-singular logarithms of type
log(µ2/M2

W ) and log(s/M2
W ) are large.

3.5.1 Corrections associated to external particles

The first part of these corrections comes from the collinear limit of loop diagrams in which an
external line splits into two internal lines. In this case too, following ref. [8] it can be proven
that, in the collinear approximation, we obtain contributions that are not mass-suppressed
only if at least one of the internal lines after the splitting is a gauge boson.

These corrections must be added to the mass singularities that originate from the renor-
malization of the asymptotic fields and from the corrections to the GBET. The contributions
associated to external fermions, transverse gauge bosons and Higgs bosons are given by the
known field-renormalization constants (FRCs), δZϕk/2 for each external leg. For longitudinal
gauge bosons, together with the FRCs, we also have to consider the corrections to the GBET
δAV

a
as in eq. (3.17).

The FRCs are fixed such that the fields do not mix and the residua of renormalized
propagators are equal to one: this means that the renormalized fields correspond to physical
fields, and no extra wave function renormalization constants are required. For this reason the
wave function renormalization factors that usually appear on the right-hand side of eq. (3.4)
are set to 1.

Taking care of the double counting (for example we have to subtract the soft-collinear
part of the result, already included in δLSC), also these single-logarithmic contributions can
be written as a sum over the external legs,

δCMϕ1...ϕn =
n∑
k=1

∑
ϕk′

δCϕk′ϕkM
ϕ1...ϕk′ ...ϕn
0 , (3.38)

with
δCϕk′ϕk =

(
δWF

ϕk′ϕk
+ δcoll

ϕk′ϕk

)∣∣∣
µ2=s

. (3.39)

For external Higgs bosons the correction factor reads

δCHH =
α

4π

[
2Cew

Φ

(
log

s

M2
W

− log
M2

H

M2
W

)
− 3

4s2
W

m2
t

M2
W

(
log

s

M2
W

− log
m2
t

M2
W

)]
. (3.40)

For transverse gauge bosons, instead, we obtain

δC
V aT V

b
T

=
α

4π

[
1

2
(bew
V aV b

+ bew
AZ EV aV b) log

s

M2
W

+ δV aV b Q
2
V a log

M2
W

λ2

+ δV aV b
M2

V a

24s2
WM

2
W

log
M2

H

M2
W

+ TV aV b log
m2
t

M2
W

]
− 1

2
δV aAδV bA ∆α(M2

W ). (3.41)

The factors bew
V aV b

are given in eqs. (A.36) - (A.39), EV aV b is non-vanishing only for the
neutral gauge-boson combinations EAZ = −EZA = 1, and the last term ∆α(M2

W ) corresponds
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to the running of the electromagnetic coupling constant from zero momentum transfer to the
scale MW ,

∆α(M2
W ) =

α

3π

∑
fjσ 6=t

N f
C Q

2
fjσ

log
M2

W

m2
fjσ

. (3.42)

The sum runs over the generations j = 1, 2, 3 of leptons and quarks with isospin σ = ±,
omitting the top quark, and N f

C is the colour factor. TV aV a has components

TWW =
1

2s2
W

, TZA = 0, TAA =
8

9
,

TZZ =
9− 24s2

W + 32s4
W

36s2
Wc

2
W

, TAZ =
16s2

W − 6

9sWcW
.

(3.43)

The correction factor for external chiral fermions is

δC
fj
′
κ,σ′f

j
κ,σ

= δj′jδσ′σ

{
α

4π

[
3

2
Cew
fjκ,σ

log
s

M2
W

+Q2
fjκ,σ

(
1

2
log

M2
W

m2
f

+ log
M2

W

λ2

)]
+ δC,h

fjκ,σ

}
, (3.44)

in which the term δC,h
fjκ,σ

is relevant only for external heavy quarks,

δC,htL
=

1

8s2
W

[
− l(s) m

2
t

M2
W

+
α

4π
log

m2
t

M2
W

(
m2
t

M2
W

− 16c4
W + 10c2

W + 1

3c2
W

)]
, (3.45)

δC,htR
= − l(s) m2

t

4s2
WM

2
W

+
α

4π
log

m2
t

M2
W

(
m2
t

4s2
WM

2
W

− 2s2
W

3c2
W

)
, (3.46)

δC,hbκ
=

δκL
8s2

W

[
− l(s) m

2
t

M2
W

+
α

4π
log

m2
t

M2
W

(
m2
t

M2
W

− 6

)]
. (3.47)

Finally, for longitudinal gauge bosons we have

δC
V a
′

L V aL

= δ
V a
′
V a

α

4π

[
2Cew

Φ log
s

M2
W

− 3

4s2
W

m2
t

M2
W

(
log

s

M2
W

− log
m2
t

M2
W

)
+

M2
V a

8s2
WM

2
W

log
M2

H

M2
W

+Q2
V a log

M2
W

λ2

]
. (3.48)

3.5.2 Logarithms from parameter renormalization

The last source of logarithmic corrections comes from the renormalization of the parameters
that appear in the considered matrix element. These corrections can be obtained from

δPRMϕ1...ϕn =
∑
λi

∂Mϕ1...ϕn
0

∂λi
δλi

∣∣∣∣∣
µ2=s

, (3.49)

where δλi are the counterterms that renormalize the bare parameters λi,

λi,0 = λi + δλi. (3.50)

At high energies and for matrix elements that are not mass-suppressed, the running of the
masses in the propagators or in couplings with mass dimension gives only mass-suppressed

43



contributions. For this reason, we can restrict ourselves to the running of the dimensionless
parameters λi = g1, g2, λH, λt, i.e. the gauge couplings g1, g2, the Higgs self-coupling λH
and the top-quark Yukawa coupling λt. They represent a convenient set of independent
parameters to describe electroweak processes at high energies, but they are not directly related
to observable quantities. We then use the parameters λi = e, cW , hH, ht, that involve the
electric charge e, the cosine of the Weinberg angle cW and two mass ratios hH = M2

H/M
2
W and

ht = mt/MW . For the renormalization of these parameters the on-shell scheme is adopted [98].
The electric charge is defined in the Thomson limit of Compton scattering, the masses of
the gauge bosons and of the top quark are defined as the poles of the propagators of the
corresponding physical fields and the Weinberg angle is fixed by cW = MW/MZ.

After the parameters have been renormalized, they can be translated into the original set
of parameters by the following relations:

g1 =
e

cW
, g2 =

e

sW
, λH =

e2

2s2
W

hH, λt =
e√
2sW

ht. (3.51)

The relations for the corresponding counterterms, instead, are

δg1

g1

=
δe

e
− 1

2

δc2
W

c2
W

, (3.52)

δg2

g2

=
δe

e
− 1

2

δs2
W

s2
W

=
δe

e
+

c2
W

2s2
W

δc2
W

c2
W

, (3.53)

δλH
λH

= 2
δg2

g2

+
δheff

H

hH
, (3.54)

δλt
λt

=
δg2

g2

+
δht
ht
. (3.55)

In the third relation additional effects originating from tadpole renormalization have been
absorbed into a redefinition of the counterterm δhH → δheff

H .
We now list the counterterms for the physical set of parameters, from which one can

obtain the single-logarithmic corrections to the desired process according to eq. (3.49):

δe

e
=

1

2

[
− α

4π
bew
AA log

µ2

M2
W

+ ∆α(M2
W )

]
, (3.56)

δc2
W

c2
W

=
δM2

W

M2
W

− δM2
Z

M2
Z

=
α

4π

[
sW
cW
bew
AZ log

µ2

M2
W

+
5

6c2
W

log
M2

H

M2
W

− 9 + 6s2
W − 32s4

W

18s2
Wc

2
W

log
m2
t

M2
W

]
, (3.57)

δheff
H

hH
=

α

4π

{[
bew
WW +

3M2
W

s2
WM

2
H

(
1 +

1

2c4
W

)
− 6Cew

Φ

]
log

µ2

M2
W

+
N t
C

3s2
W

log
m2
t

M2
W

+
3M2

H

2s2
WM

2
W

(
log

µ2

M2
W

− log
M2

H

M2
W

)
+
N t
Cm

2
t

s2
WM

2
W

(
1− 2

m2
t

M2
H

)(
log

µ2

M2
W

− log
m2
t

M2
W

)
+

[
3

2
Cew

Φ +
5

6s2
W

− 9M2
W

2s2
WM

2
H

(
1 +

1

2c4
W

)]
log

M2
H

M2
W

}
. (3.58)
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δht
ht

=
α

4π

{
1

2
bew
WW log

µ2

M2
W

+

[
3 + 2N t

C

8s2
W

m2
t

M2
W

− 3

2

(
Cew
tL

+ Cew
tR

)](
log

µ2

M2
W

− log
m2
t

M2
W

)
+

(
1

2s2
W

− 2Cew
Φ

)
log

m2
t

M2
W

+
5

12s2
W

log
M2

H

M2
W

}
, (3.59)

The renormalization of the Weinberg angle is obtained combining the renormalization factors
for the masses of the vector bosons,

δM2
V a

M2
V a

= − α

4π

[
(bew
V aV a − 4Cew

Φ ) log
µ2

M2
W

+
N t
C

2s2
W

m2
t

M2
W

(
log

µ2

M2
W

− log
m2
t

M2
W

)
+

5M2
V a

6s2
WM

2
W

log
M2

H

M2
W

+
2N t

C

3
TV aV a log

m2
t

M2
W

]
. (3.60)

3.6 The leading-pole approximation

In order to derive the one-loop Sudakov electroweak corrections to the associated production
of a Higgs boson and a vector boson that decays leptonically, plus eventually a jet, we must
make some approximations that regard the virtualities of the particles involved. Denoting
by Pi = q, q̄, g a generic parton, the leading-order process can be written as

P1(p1)P2(p2)→ H(p3)V (k)
(
P6(p6)

)
→ H(p3) l1(p4) l̄2(p5)

(
P6(p6)

)
, (3.61)

where k = p4 + p5. In HV production, P6 is not present, and the two incoming partons are
always a quark-antiquark pair. When considering HVj, instead, the additional gluon can be
in both the initial or final state.

As outlined in ref. [99], the treatment of processes that involve the production and decay
of unstable particles like the vector boson V in eq. (3.61) poses some theoretical problems
when considering gauge invariance. In fact, an intermediate gauge boson with momentum
k and mass MV can give rise to poles 1/(k2 −M2

V ) if it is treated as a stable particle. This
problem can be resolved by introducing the gauge boson decay width, i.e. by performing the
replacement

1

k2 −M2
V

−→ 1

k2 −M2
V + iΓVMV

. (3.62)

The decay width arises naturally when resumming to all orders the imaginary parts of higher-
order diagrams that describe the gauge boson self-energy. However, in performing this sum-
mation, only a restricted subset of diagrams is included. The results obtained considering
incomplete higher-order contributions can thus violate the Ward identities of the theory or
retain some gauge dependence.

One way to ensure gauge invariance is to use the pole scheme [99]: in this scheme the
complete amplitude is decomposed by expanding it around the poles. Since the physically-
observable residues of the poles are by themselves gauge invariant, gauge invariance is not
broken if the finite width is taken into account in the pole terms, as in eq. (3.62). This
procedure can be viewed as a gauge-invariant prescription for performing an expansion in
powers of ΓV /MV . However, there is no unique definition of the residues, since their calcu-
lation involves a mapping of off-shell matrix elements with off-shell kinematics to on-shell
matrix elements with restricted kinematics. The ambiguity comes from the fact that this
mapping is not unique, since one has to specify the variables that must be kept fixed in the
mapping. The resulting implementation dependence manifests itself in differences of order
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O(ΓV /MV ). However, when electroweak corrections are taken into account, these differences
become subleading since they are multiplied by a factor α. The intrinsic error associated to
this procedure goes then below 0.1% except far off resonance, where the pole scheme cannot
be viewed as an effective expansion in powers of ΓV /MV .

In order to apply the pole scheme to the associated production processes HV and HVj, we
write the propagator of the unstable gauge boson as a sum over the vector boson polarizations,

1

k2 −M2
V + iΓVMV

(
−gµν +

kµkν

M2
V

)
=

1∑
λ=−1

εµλ(k) ε∗νλ (k)

k2 −M2
V + iΓVMV

. (3.63)

In this way the complete matrix element factorizes into the matrix element for the production
of a Higgs boson and a vector boson (plus eventually a jet), multiplied by the intermediate
fixed-width propagator and by the matrix element for the decay of the vector boson. This is
called leading-pole approximation (LPA),

MP1P̄2→Hl1 l̄2(P6)
0,LPA =

1

k2 −M2
V + iΓVMV

∑
λ

MP1P̄2→HVλ(P6)
0 MVλ→l1 l̄2

0 . (3.64)

The momentum of the vector boson must be projected on shell in order to ensure gauge
invariance, both in the production and in the decay subprocesses. In the overall propagator,
instead, it retains its original value. The sum runs over the physical helicities of the vector
boson.

3.6.1 On-shell projection

In order to use the leading-pole approximation, we need to build a mapping that, conserving
energy and momentum, projects on shell the momentum of the vector boson and rescales its
decay products. We choose to keep fixed the solid angles formed by the vector boson and by
one of the leptons.

In the center-of-mass frame of the HV pair, the spatial momenta of the vector boson and
of the Higgs boson are equal and opposite, ~k = −~p3: as a consequence, preserving the solid
angle of the vector boson also preserves the direction of the Higgs boson. In this frame the
two four-momenta can be written as

k =
(
EV , ~k

)
, p3 =

(
EH,−~k

)
. (3.65)

The condition that has to be fulfilled, in order to have on-shell bosons and preserve the
energy, is √

s = Eon
V + Eon

H =
√
|~p on|2 +M2

V +
√
|~p on|2 +M2

H, (3.66)

where ~p on is a vector with the same direction of ~k. This relation, solved for |~p on|, gives

|~p on| = 1

2
√
s

√
[s− (MV +MH)2] [s− (MV −MH)2], (3.67)

and thus

Eon
V =

√
|~p on|2 +M2

V =
s+M2

V −M2
H

2
√
s

, (3.68)

Eon
H =

√
|~p on|2 +M2

H =
s+M2

H −M2
V

2
√
s

. (3.69)
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Summing up the results, the on-shell projected boson momenta read

kon =
(
Eon
V , ~p

on
)
, pon

3 =
(
Eon
H ,−~p on

)
. (3.70)

At this point we have to rescale the momentum of the decay products, to comply with the
on-shell projection just performed. To this end, we choose to keep fixed the direction of
the lepton l(p4): the result can be obtained simply by multiplying the components of its
momentum by ζon, computed in the following way. Care has to be taken in choosing this
rescaling factor such that both the lepton and the antilepton remain massless. In other words,
the following relations have to be fulfilled together:

(pon
4 + pon

5 )2 = M2
V

pon
4 = ζon p4

pon
5 = pon

V − pon
4

(pon
4 )2 = (pon

5 )2 = 0.

(3.71)

Combining the first two relations and using the fact that the leptons are massless we get
2ζon (p4 · pon

5 ) = M2
V . Inserting now the third relation into this one, we finally obtain the

rescaling factor

ζon =
M2

V

2 (p4 · pon
V )
. (3.72)

For processes that do not involve the production of a jet at Born level, the HV center-of-mass
frame coincides with the partonic one. For HVj processes, since the jet recoils against the
HV pair, we first have to perform a boost in the center-of-mass frame of the Hl1l̄2 system,
and carry out all the previous steps on the boosted momenta. At the end, we return to the
laboratory frame with an inverse boost.

If the center-of-mass energy is smaller than the sum of the vector-boson physical masses,√
s < MV + MH, the argument of the square root in eq. (3.67) becomes negative. In this

case, the event has not enough energy even to produce a vector boson and a Higgs boson at
rest. For this reason, if this happens we set the whole matrix element of eq. (3.64) to zero.

3.6.2 Virtual corrections in the leading-pole approximation

The leading-pole approximation has many advantages in the context of virtual corrections.
Apart from providing a gauge invariant answer, it reduces drastically the number of diagrams
that have to be computed, since the matrix element splits into components with less particles
than the original process. On the other hand, the definition of the LPA is somehow prob-
lematic for photon emission diagrams. Photon radiation from the initial and from the final
states leads to propagators that become resonant at different locations in the phase space,
depending on the photon energy. For this reason, the LPA will be applied only to the virtual
corrections, while for the real emissions, for the computation of the counterterms and for the
leading-order contributions we use the full matrix elements.

In leading-pole approximation, the electroweak corrections to processes that involve the
production and decay of an unstable particle can be divided into two categories: the factor-
izable corrections and the non-factorizable ones. The former are the ones associated either
to the production or to the decay subprocess, while the latter connect these subprocesses.
However, for many processes [100–103], the non-factorizable corrections turn out to be very
small: the most relevant contributions come from the exchange of soft photons between the
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production and decay subprocesses, but they typically give percent-level corrections. For this
reason, in this work we neglect them and focus only on the factorizable ones. The corrections
to the matrix element (3.64) can then be written as

δMP1P̄2→Hl1 l̄2(P6)
LPA =

1

k2 −M2
V + iΓVMV

∑
λ

[
δMP1P̄2→HVλ(P6)MVλ→l1 l̄2

0

+MP1P̄2→HVλ(P6)
0 δMVλ→l1 l̄2

]
, (3.73)

where the various δM denote the virtual corrections to that particular process. Since the
decay process involves no high-energy variables, being all of the kinematic quantities of the
order of MV , the corresponding virtual corrections vanish in the Sudakov limit. For this
reason, we do not consider the term in the second line of eq. (3.73), and we obtain

δMP1P̄2→Hl1 l̄2(P6)
LPA =

1

k2 −M2
V + iΓVMV

∑
λ

δMP1P̄2→HVλ(P6)MVλ→l1 l̄2
0 . (3.74)

The virtual contribution to the cross section is given by the interference between this matrix
element and M0, evaluated in leading-pole approximation.

We need then to compute the matrix elements for the production and the decay sub-
processes, for both transverse and longitudinal V bosons. The production of a longitudinal
gauge boson can be treated using the GBET, substituting it with the corresponding Gold-
stone boson. For the decay process, instead, we can keep the longitudinal gauge boson, since
the GBET applies at high energies and this process does not involve high-energy variables.
Moreover, if we used the GBET, the matrix element for the resulting process would con-
tain a vertex φff ′, that is proportional to the mass of the fermions involved, and thus the
contribution would vanish.
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Chapter 4

The NLO Sudakov corrections to the
HV and HVj processes

This chapter is dedicated to the computation of the NLO Sudakov electroweak corrections
to the associated production of a Higgs boson with a vector boson and eventually a jet, in
leading-pole approximation. We consider only leptonic decays of the vector boson, excluding
the Z → νν̄ channel. In the following we refer to leptons of the first generation, although our
results remain valid also for the other generations, as long as these particles are considered as
massless. With u and d we denote generic up- and down-type quarks, with no assumptions
on their generation, unless specified.

We first describe these processes at leading order, calculating their matrix elements for
both transverse and longitudinal vector bosons. Then, we move to the inclusion of one-
loop corrections in the high-energy regime, deriving the correction factors from the general
formulae described in the previous chapter.

All the group-theoretical quantities involved in the following are listed in App. A, while
the detailed derivation of the results can be found in App. B.

4.1 The HW associated production

We start from describing the production of a Higgs boson with a W boson that decays into
an electron-neutrino pair. Due to the couplings of the W boson, this process involves only
left-chiral quarks and leptons

dL(p1) ūL(p2)→ H(p3)W−(k)→ H(p3) e−L (p4) ν̄e(p5), (4.1)

d̄L(p1)uL(p2)→ H(p3)W+(k)→ H(p3) e+
L (p4) νe(p5). (4.2)

We focus only on these two processes, since the ones with the initial-state particles inter-
changed can be described in the same way, and are related by simple transformations. In
leading-pole approximation, we need the matrix elements for the production and decay of
both transverse and longitudinal W bosons.

4.1.1 Production of a transverse W− boson

The Feynman diagram for the production of a transverse W− boson is shown in the left-hand
side of fig. 4.1. The process can be written as dL(p1) ūL(p2) → H(p3)W−

T (k) or, making all
the particles incoming,

dL(p1) ūL(p2)H(−p3)W+
T (−k)→ 0. (4.3)
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dL(p1)

ūL(p2)

H(p3)

W−
T (k)

W−(q)

dL(p1)

ūL(p2)

H(p3)

φ−(k)

W−(q)

Figure 4.1: Feynman diagram for the associated production of a Higgs boson with a transverse W− bo-
son (left), and with a φ− Goldstone boson (right), at leading order.

Its matrix element can be written as

MdLūLHW
+
T

0 =
e2

√
2s2

W

MW V
CKM

ud

AT−

q2
, (4.4)

where the spinorial part has been grouped in AT− as in eq. (B.7). Here and in the following
sections, q = p1 + p2. The process with exchanged initial particles has the same matrix
element apart from the spinorial part, that becomes

A′T− = −i v̄L(p1)γµuL(p2) εTµ(−k). (4.5)

4.1.2 Production of a longitudinal W− boson

The production of a longitudinal W− boson has the same structure as for a transverse one.
Nevertheless, at high energies this particle has to be substituted by the corresponding Gold-
stone boson, according to the GBET. The result is shown in the right-hand side of fig. 4.1.
The process, with all particles incoming, is

dL(p1) ūL(p2)H(−p3)W+
L (−k)→ 0, (4.6)

and the application of the GBET formula in eq. (3.19) turns it into

MdLūLHW
+
L

0 = i(1−QW+ )MdLūLHφ
+

0 =MdLūLHφ
+

0 . (4.7)

The computation of the matrix element gives

MdLūLHW
+
L

0 =MdLūLHφ
+

0 =
e2

2
√

2s2
W

V CKM

ud

AL−

q2
, (4.8)

having defined AL− as in eq. (B.47). In this case too, the exchange of the initial-state particles
produces a modification only in the spinorial part

A′L− = −i v̄L(p1)γµuL(p2) (−k + p3)µ. (4.9)

By inspecting the results obtained in eqs. (4.4) and (4.8), we see that the former contains
a factor MW , coming from the Higgs vertex, that is absent in the longitudinal case. The
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transverse matrix element is then mass-suppressed and, at high energies, it should be ne-
glected. Moreover, the universal formulae for the electroweak Sudakov corrections, derived
in Chap. 3, are based on some identities that are fulfilled only by matrix elements that, in
the high-energy limit, are not mass-suppressed. Therefore, they should not be applied to
this process. Nevertheless, several results that contribute to the Sudakov logarithms, like
eq. (3.21) or the running-coupling effects, can be applied even to mass-suppressed matrix
elements. We can then compute the Sudakov corrections for the production of a transverse
W boson, and compare the results with the full electroweak one-loop corrections in order to
obtain information about the correctness of this approximation. In Sec. 4.6.3 we study the
relevance of the transverse polarization, both at leading order and with the inclusion of elec-
troweak corrections, to understand if can be effectively neglected due to its mass suppression
or if it has to be included.

4.1.3 Decay of the W− boson

The matrix element for the decay of a W− boson has the same form for all the polarizations λ,

MW−λ →e
−ν̄e

0 = −i e√
2sW

ūL(p4)γµvL(p5) ελµ(k). (4.10)

4.1.4 Production of a transverse W+ boson

The matrix element for the production of a transverse W+ boson,

d̄L(p1)uL(p2)H(−p3)W−
T (−k)→ 0, (4.11)

is very similar to the one for the W− boson, the only relevant change is in the spinorial part,
where the quark spinors are interchanged,

Md̄LuLHW
−
T

0 =
e2

√
2s2

W

MW V
CKM

ud

A′T−
q2

. (4.12)

The exchange of the initial-state particles causes the replacement of A′T− with AT−.

4.1.5 Production of a longitudinal W+ boson

Applying the GBET to the process d̄L(p1)uL(p2)H(−p3)W−
L (−k) → 0 we get, differently

from the W− case,

Md̄LuLHW
−
L

0 = i(1−QW− )Md̄LuLHφ
−

0 = −Md̄LuLHφ
−

0 . (4.13)

The vertex that involves the Goldstone boson changes sign, so that we obtain once again

Md̄LuLHW
−
L

0 = −Md̄LuLHφ
−

0 =
e2

2
√

2s2
W

V CKM

ud

A′L−
q2

. (4.14)

As for the W− boson, changing the initial-state particles amounts to using AL− as spinorial
part. Again, the transverse matrix element is mass-suppressed with respect to the longitudi-
nal one.
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4.1.6 Decay of the W+ boson

The decay of a W+ boson is given for all polarizations by

MW+
λ →e

+νe
0 = −i e√

2sW
ūL(p5)γµvL(p4) ελµ(k). (4.15)

4.1.7 Sudakov electroweak corrections

The Sudakov electroweak corrections can be obtained by applying the procedure described
in Secs. 3.4 and 3.5 to the processes under study.

The correction factors containing logarithms of type log(M2
W/λ

2), which involve the ficti-
tious photon mass λ, represent the IR-divergent part of the corrections coming from photon-
exchange diagrams. In order to obtain a finite result, these contributions should be combined
with the soft-collinear singularities of real photon emission. This subtraction procedure is
performed in the POWHEG BOX RES in dimensional regularization. The POWHEG BOX RES re-
quires the finite part of the virtual cross section with a precise normalization factor, as
described in eqs. (2.11) and (2.12) of ref. [14]. A mapping of the λ-logarithms into ε poles
is then mandatory, in order to consistently match the Sudakov corrections to the POWHEG

subtraction. While for processes with massive fermions and without W bosons in the final
state this mapping is known,

1

2
log2(λ2)→ 1

ε2
, (4.16)

it is not entirely clear if an analogous formula holds for the processes under study. For this
reason, in the following we do not omit the Sudakov correction factors that contain logarithms
of type log(M2

W/λ
2). Further studies regarding this issue will be performed in the near future,

in order to define a matching procedure that allows to obtain correctly matched results.
As will be described in Secs. 4.3.4 and 4.4, for HZ and HZj production a matching

can be derived. This matching is approximate in the HZj case, and exact for HZ. For
the W -boson production processes, instead, this procedure is more complicated, due to the
presence of charged gauge bosons to which the photon couples. The corresponding results,
then, are not precisely matched to the POWHEG BOX RES. This is certainly a problem from
the theoretical point of view and for the analysis of the NLO results obtained including
the Sudakov EW corrections. For the analysis of the showered events in Chap. 5, however,
we focus on the results obtained with full QCD+EW accuracy, that contain the complete
one-loop electroweak corrections and are thus perfectly matched to the POWHEG BOX RES.

The logarithms of type log(M2
W/m

2
f ), that involve the masses of the light fermions mf ,

together with the factor ∆α(M2
W ), are instead relevant only if the on-shell scheme is used,

with α(0) as input. As described in Sec. 4.5, in the implementation of these processes we
use the Gµ scheme, that already incorporates these terms in the definition of αGµ . For these
reasons, in both HV and HVj production, we do not consider the ∆α(M2

W ) term and the
logarithms that contain mf .

Moreover, since the bottom quark is considered as massless, we do not include the
terms δLSC,h

bκ
and δC,hbκ

in our correction factors.
For processes that involve only four particles, p1 + p2 + p3 + p4 → 0, some identities relate

the kinematic invariants: in particular, r12 = r34, r13 = r24 and r14 = r23. The formula that
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describes the subleading soft-collinear corrections, eq. (3.34), simplifies then to

δSSCMϕ1ϕ2ϕ3ϕ4 =
α

2π

∑
V a=A,Z,W±

∑
ϕk′ ,ϕl′

[
log

s

M2
W

+ log
M2

W

M2
V a

]

×
[
log
|r12|
s

(
IV

a

ϕ1′ϕ1
I V̄

a

ϕ2′ϕ2
Mϕ1′ϕ2′ϕ3ϕ4

0 + IV
a

ϕ3′ϕ3
I V̄

a

ϕ4′ϕ4
Mϕ1ϕ2ϕ3′ϕ4′

0

)
+ log

|r13|
s

(
IV

a

ϕ1′ϕ1
I V̄

a

ϕ3′ϕ3
Mϕ1′ϕ2ϕ3′ϕ4

0 + IV
a

ϕ2′ϕ2
I V̄

a

ϕ4′ϕ4
Mϕ1ϕ2′ϕ3ϕ4′

0

)
+ log

|r14|
s

(
IV

a

ϕ1′ϕ1
I V̄

a

ϕ4′ϕ4
Mϕ1′ϕ2ϕ3ϕ4′

0 + IV
a

ϕ2′ϕ2
I V̄

a

ϕ3′ϕ3
Mϕ1ϕ2′ϕ3′ϕ4

0

)]
. (4.17)

To obtain these factors, we split them into two components, one coming from the exchange
of neutral gauge bosons, the other from the exchange of charged bosons

δSSCMdLūLHW
+
T = δSSC,nMdLūLHW

+
T + δSSC,±MdLūLHW

+
T . (4.18)

We now compute the corrections to the associated production of a Higgs boson and a W−

boson, and we obtain the correction factors for the W+ case from these results.

Transverse case

We focus on the process of eq. (4.3), whose matrix element is given in eq. (4.4). In the com-
putation of the single-logarithmic corrections associated to the parameter renormalization,
the parameters that have to be renormalized are e, MW and sW . The correction factor for
the last one can be obtained from

∂M0

∂c2
W

δc2
W = − ∂M0

∂s2
W

δc2
W . (4.19)

Even if MW is a dimensional parameter, in this case its renormalization must not be neglected
because the original matrix element is mass-suppressed. The corresponding correction factor
would indeed give a contribution that scales with energy exactly as the matrix element does.

For the leading soft-collinear contributions we obtain

δLSCMdLūLHW
+
T =

{
− 1

2
L(s)

[
2Cew

q + Cew
Φ + Cew

W

]
+ δLSC,h

H

+ l(s) log
M2

Z

M2
W

[
(IZdL)2 + (IZūL)2 + (IZH)2 + (IZW )2

]
− 1

2

[
Q2
d Lem(s, λ2,m2

d)

+Q2
u Lem(s, λ2,m2

u) +Q2
W Lem(s, λ2,M2

W )
]}
M0, (4.20)

where Cew
q = Cew

dL
= Cew

ūL
and the factors Lem(s, λ2,m2

φ) and δLSC,h
H are given in eqs. (3.27)

and (3.31).
Defining t = (p1−p3)2 = r13 and u = (p1−k)2 = r14, the subleading soft-collinear factors

take the form

δSSC,nMdLūLHW
+
T =

[
2l(s)

(
RdLW+ log

|u|
s
−RuLW+ log

|t|
s

)
+
α

2π
log

M2
W

λ2

(
Qd log

|u|
s
−Qu log

|t|
s

)
QW+

]
M0, (4.21)
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δSSC,±MdLūLHW
+
T = 2l(s) sW

[
log
|t|
s

(
IZuL
2cW
− Qu

2sW
+

IZdL
s2
WcW

)
− log

|u|
s

(
IZdL
2cW
− Qd

2sW
+

IZuL
s2
WcW

)]
M0. (4.22)

Rφ1φ2 is a factor related to the charge and to the weak isospin of the involved particles
according to

Rφ1φ2 = Qφ1Qφ2 + IZφ1I
Z

φ2
. (4.23)

The single-logarithmic corrections associated to external particles read

δCMdLūLHW
+
T =

{
α

4π

[(
3

4s2
W

m2
t

M2
W

+ TWW

)
log

m2
t

M2
W

+

(
1

24s2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

q + 2Cew
Φ +

1

2
bew
WW −

3

4s2
W

m2
t

M2
W

]
+
α

4π
log

M2
W

λ2
(Q2

d +Q2
u +Q2

W )

}
M0, (4.24)

with TWW and bew
WW defined respectively in eqs. (3.43) and (A.39). Finally, for the corrections

from parameter renormalization we obtain

δPRMdLūLHW
+
T =

{
α

4π

[
5

12s2
W

log
M2

H

M2
W

−
(

9 + 6s2
W − 32s4

W

18s4
W

+ TWW −
3

4s2
W

m2
t

M2
W

)
log

m2
t

M2
W

]
+ l(s)

(
− 3

2
bew
WW + 2Cew

Φ −
3

4s2
W

m2
t

M2
W

)}
M0, (4.25)

where we have included the contributions coming from the W -boson mass renormalization.
Moving to the process with the initial-state particles interchanged, we can obtain its

correction factors from the ones that we have just calculated. Indeed, the spinorial part
changes, but this does not influence the structure of the electroweak corrections since they
factorize on it. Most of the corrections involve a sum over the external particles: for this
reason, the exchange of the position of two particles plays no role, and the contributions
remain the same. The only modifications concern the subleading soft-collinear corrections:
interchanging the initial-state particles, the kinematic invariants become |r1j| ↔ |r2j|, for
j = 3, 4, i.e. t becomes u and vice-versa. The subleading soft-collinear corrections can then
be obtained from the previous ones, eqs. (4.21) and (4.22), simply by switching t and u.

The corrections to the production of a transverse W+ boson turn out to be the same
as the ones for HW−

T production, since all of the group-theoretical quantities that appear
in the formulae take the same value for the two kinds of processes considered (for example,
(IZdL)2 = (IZ

d̄L
)2, Cew

W+ = Cew
W−).

Longitudinal case

We now move to the calculation of the corrections to the associated production of a Higgs
boson and a longitudinal W− boson, starting from the process (4.6). By applying the GBET
we found that the matrix element for this process is equivalent to the one for the production
of a Higgs boson and a φ− Goldstone boson. The same equivalence also holds for the one-loop
corrections: for this reason we compute δMdLūLHφ

+
. The matrix element has been computed

in eq. (4.8): in this case, the parameters that have to be renormalized are only e and sW .
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The leading soft-collinear contributions take the form

δLSCMdLūLHφ
+

=

{
− L(s)

(
Cew
q + Cew

Φ

)
+ δLSC,h

H + δLSC,h

φ±

+ l(s) log
M2

Z

M2
W

[
(IZdL)2 + (IZūL)2 + (IZH)2 + (IZφ+)2

]
− 1

2

[
Q2
d Lem(s, λ2,m2

d)

+Q2
u Lem(s, λ2,m2

u) +Q2
φ Lem(s, λ2,M2

W )
]}
M0, (4.26)

while the subleading ones, split according to eq. (4.18), read

δSSC,nMdLūLHφ
+

=
α

2π
log

M2
W

λ2

(
Qd log

|u|
s
−Qu log

|t|
s

)
Qφ+M0

+ 2l(s)

[
log
|t|
s

(
iIZHχI

Z

dL
−RuLφ+

)
− log

|u|
s

(
iIZHχI

Z

uL
−RdLφ+

)]
M0, (4.27)

δSSC,±MdLūLHφ
+

= 2l(s)

[
log
|t|
s

(
iIZHχI

Z

dL
−RuLφ+

)
− log

|u|
s

(
iIZHχI

Z

uL
−RdLφ+

)]
M0. (4.28)

In the end, the single-logarithmic corrections are

δCMdLūLHφ
+

=

{
α

4π

[
3

2s2
W

m2
t

M2
W

log
m2
t

M2
W

+

(
1

8s2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

q + 4Cew
Φ −

3

2s2
W

m2
t

M2
W

]
+ log

M2
W

λ2
(Q2

d +Q2
u +Q2

φ)

}
M0, (4.29)

δPRMdLūLHφ
+

=

[
α

4π

(
5

6s2
W

log
M2

H

M2
W

− 9 + 6s2
W − 32s4

W

18s4
W

log
m2
t

M2
W

)
− bew

WW l(s)

]
M0. (4.30)

The correction factors for the process with the initial-state particles interchanged, and the
ones for the production of a longitudinal W+ boson, can be obtained by applying the same
procedure described in the transverse case.

4.2 The HWj associated production

The quark-initiated associated production of a Higgs boson with a W boson and a jet is given
by the following partonic processes,

dL(p1) ūL(p2) → H(p3)W−(k) g(p6)→ H(p3) e−L (p4) ν̄e(p5) g(p6), (4.31)

d̄L(p1)uL(p2) → H(p3)W+(k) g(p6)→ H(p3) e+
L (p4) νe(p5) g(p6), (4.32)

plus the ones with an initial-state particle interchanged with the final-state gluon. We begin
by describing the process (4.31): by applying the leading-pole approximation we see that,
also for HWj production, we need to distinguish between transverse and longitudinal W
bosons. Nevertheless, the results are very similar to the HW case: the only relevant change
is the insertion of a gluon along the fermionic line. We first write the fermionic current as

Sµνκ = v̄κ(p2)

[
γµ

/p1
− /p6

(p1 − p6)2
γν + γν

/p6
− /p2

(p6 − p2)2
γµ
]
uκ(p1), (4.33)
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in which κ labels the chirality of the quarks involved. The processes and its matrix elements,
with all particles incoming, are then

dL(p1) ūL(p2)H(−p3)W+
λ (−k) g(−p6)→ 0, (4.34)

MdLūLHW
+
T g

0 = − i

q2

e2

√
2s2

W

MW V
CKM

ud gst
a Sµνκ εTµ(−k) εν(−p6), (4.35)

MdLūLHW
+
L g

0 = MdLūLHφ
+g

0 = − i

q2

e2

2
√

2s2
W

V CKM

ud gst
a Sµνκ (−k + p3)µ εν(−p6), (4.36)

being gs the strong coupling constant and ta the colour matrix. The matrix element with the
initial-state particles interchanged can be obtained by modifying the spinorial part as done
in HW production, while the processes with a gluon in the initial state can be described by
applying crossing symmetry.

The computation of the Sudakov corrections almost comes for free from the HW case.
This is due to the fact that the only added particle, the gluon, is not involved in the elec-
troweak corrections because of its quantum numbers: for this reason many of the corrections,
that consist in a sum of radiator functions over the external particles, remain unchanged. In
particular, δLSCM, δCM and δPRM maintain the same values of HW production for both the
transverse and the longitudinal cases. The only change is in δSSCM, because with five parti-
cles involved the kinematic invariants are not equal one to another anymore. Moreover, when
considering processes with the gluon in the initial state, the application of crossing symmetry
modifies some of the kinematic invariants rkl. For example, in the process gūL → HW−

λ d̄L the
kinematic logarithm related to the exchange of a vector boson between the two quarks does
not involve anymore r12, but rather r26. By applying crossing symmetry, however, we can
use the original correction factors in which we perform the exchange r12 ↔ r26. As a result,
in these cases log(|r12|/s) does not vanish anymore. Applying the general formula (3.34) for
the subleading soft-collinear corrections, in the transverse case we obtain

δSSC,nMdLūLHW
+
T g =

α

2π
log

M2
W

λ2

(
log
|r14|
s

QdQW+ − log
|r24|
s

QuQW+ − log
|r12|
s

QdQu

)
M0

+ 2l(s)

(
log
|r14|
s

RdLW+− log
|r24|
s

RuLW+− log
|r12|
s

RdLuL

)
M0, (4.37)

δSSC,±MdLūLHW
+
T g = 2l(s)sW

[
log
|r23|
s

(
Qd

2sW
− IZdL

2cW

)
+ log

|r24|
s

IZdL
s2
WcW

− log
|r13|
s

(
Qu

2sW
− IZuL

2cW

)
− log

|r14|
s

IZuL
s2
WcW

]
M0. (4.38)

For the production of a longitudinal W− boson, instead, the results are

δSSC,nMdLūLHφ
+g =

α

2π
log

M2
W

λ2

(
log
|r14|
s

QdQφ+ log
|r24|
s

QuQφ+ − log
|r12|
s

QuQd

)
M0

+ 2l(s)

[
− log

|r12|
s

RuLdL + log
|r14|
s

RdLφ+ − log
|r24|
s

RuLφ+

+ iIZHχ

(
log
|r13|
s

IZdL − log
|r23|
s

IZuL + log
|r34|
s

IZφ+

)]
M0, (4.39)
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δSSC,±MdLūLHφ
+g = 2l(s)

[
log
|r23|
s

RdLφ+ − log
|r13|
s

RuLφ+

− iIZHχ
(

log
|r14|
s

IZuL − log
|r24|
s

IZdL

)]
M0. (4.40)

The corrections to the process with the exchanged initial particles can be obtained from
these ones by transposing r13 ↔ r23 and r14 ↔ r24. The W+ case has the same leading-order
matrix element as the W−, apart from the spinorial component, and the same corrections.

4.3 The HZ associated production

By repeating the procedure used in the previous sections we can obtain the Sudakov correc-
tions to the associated production of a Higgs boson and a Z boson. The main difference with
respect to the production of a W boson is that the neutral gauge boson couples to both left-
and right-handed currents. We use

q(p1) q̄(p2)→ H(p3)Z(k)→ H(p3) e+(p4) e−(p5) (4.41)

as working example, and we obtain the results for the process with initial-state particles
interchanged in the same way as in the HW case. Since both left- and right-handed particles
are involved, we can write the process in leading-pole approximation, making the chiralities
κ, κ′ explicit, as

Mqκq̄κ→He+κ′e
−
κ′

0,LPA =
1

k2 −M2
Z + iΓZMZ

∑
λ

Mqκq̄κ→HZλ
0 MZλ→e+κ′e

−
κ′

0 . (4.42)

When computing the squared matrix element, the only terms that contribute to the final
result are∣∣∣Mqq̄→He+e−

0,LPA

∣∣∣2 =
1

(k2 −M2
Z)2 + Γ2

ZM
2
Z

∑
κ, κ′

∣∣∣∣∣∑
λ

Mqκq̄κ→HZλ
0 MZλ→e+κ′e

−
κ′

0

∣∣∣∣∣
2

. (4.43)

We then need the matrix elements for the production and decay of both transverse and
longitudinal Z bosons, with the different chiralities involved.

4.3.1 Production of a transverse Z boson

The production of a transverse Z boson, q(p1) q̄(p2)→ H(p3)ZT (k), where q stands for both
up- and down-type quarks, has the same structure as the W boson case. Making all the
particles incoming this process becomes

q(p1) q̄(p2)H(−p3)ZT (−k)→ 0. (4.44)

In writing the matrix element we keep track of the quark chirality κ in the group-theoretical
quantities involved, so that we can describe both the left- and right-handed cases at the same
time. The matrix element for this process can then be written as

Mqq̄HZT
0 =

e2MZ

sWcW

∑
κ

IZqκ
AκTZ
q2

, (4.45)

with the spinorial part collected in AκTZ according to eq. (B.78). The process with exchanged
initial particles gives the same matrix element apart from the spinorial part, that becomes

A
′κ
TZ = −i v̄κ(p1)γµuκ(p2) εTµ(−k). (4.46)
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4.3.2 Production of a longitudinal Z boson

The production of a longitudinal Z boson, with all particles incoming, reads

q(p1) q̄(p2)H(−p3)ZL(−k)→ 0, (4.47)

and the application of the GBET formula gives

Mqq̄HZL
0 = i(1−QZ)Mqq̄Hχ

0 = iMqq̄Hχ
0 . (4.48)

The matrix element is

Mqq̄HZL
0 = iMqq̄Hχ

0 =
e2

2sWcW

∑
κ

IZqκ
AκLZ
q2

, (4.49)

having defined AκLZ in eq. (B.126). Even in this case, the exchange of the initial-state particles
modifies only the spinorial part, turning it into

A
′κ
LZ = −i v̄κ(p1)γµuκ(p2) (−k + p3)µ. (4.50)

As we can see by inspecting the results obtained, the mass-suppression of the transverse
matrix element manifests itself also for the Z boson case, due to the fact that the topology
of the HW and HZ production processes is the same. The comments of Sec. 4.1.2 on the
relevance of the transverse polarization also hold for this process.

4.3.3 Decay of the Z boson

The matrix element for the decay of a Z boson is the same for all the polarizations λ, and is
made up of two components, one for each lepton chirality κ′, like for the quark current,

MZλ→e+e−
0 = −ie

∑
κ′

IZeκ′ ūκ′(p5)γµvκ′(p4) ελµ(k). (4.51)

4.3.4 Sudakov electroweak corrections

Transverse case

For the process in eq. (4.44) the matrix element has the form given in eq. (4.45): we thus
need to compute the correction factors for left- and right-handed initial state particles, that
multiply the corresponding part of the matrix element. The structure of these factors how-
ever remains the same both varying the flavour q of the particles involved and considering
different chiralities κ. The corrections coming from parameter renormalization involve the
renormalization of e, cW and MZ, that has to be included for the same reasons of MW . In
performing the renormalization of the Weinberg angle, we recall that it appears also in the
definition of IZqκ , as in eq. (A.12).

For the process involving qκ and its corresponding antiparticle, the leading soft-collinear
corrections read

δLSCMqκq̄κHZT =

{
− 1

2
L(s)

[
2Cew

qκ + Cew
Φ + Cew

ZZ

]
+ δLSC,h

H

+ l(s) log
M2

Z

M2
W

[
2
(
IZqκ
)2

+ (IZH)2
]
−Q2

q Lem(s, λ2,m2
q)

}
M0. (4.52)
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The subleading soft-collinear contributions, instead, have a different form for up- and down-
type quarks. Moreover, they come only from the exchange of charged bosons, and for this
reason they involve only left-handed particles. Defining a common factor

F SSC

T = − cW (1 + c2
W )

2s3
W

[
log
|t|
s

+ log
|u|
s

]
, (4.53)

the corrections for up- and down-type quarks become

δSSCMuκūκHZT = δκL l(s)
F SSC
T

IZuκ
M0, (4.54)

δSSCMdκd̄κHZT = − δκL l(s)
∑
ui

|V CKM

uid
|2 F

SSC
T

IZdκ
M0, (4.55)

in which the sum over the quark generations does not include the top quark, ui = u, c.
Moving to the single-logarithmic contributions, we obtain

δCMqκq̄κHZT =

{
α

4π

[(
3

4s2
W

m2
t

M2
W

+ TZZ

)
log

m2
t

M2
W

+

(
M2

Z

24s2
WM

2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

qκ + 2Cew
Φ +

1

2
bew
ZZ −

3

4s2
W

m2
t

M2
W

]
+
α

2π
Q2
q log

M2
W

λ2

}
M0, (4.56)

δPRMqκq̄κHZT =

{
α

4π

[(
5

6s2
W

+
5ρqκ
6c2

W

− 5M2
Z

12s2
WM

2
W

)
log

M2
H

M2
W

−
(

9 + 6s2
W − 32s4

W

18s2
W

(
1

s2
W

+
ρqκ
c2
W

)
+ TZZ −

3

4s2
W

m2
t

M2
W

)
log

m2
t

M2
W

]
+ l(s)

[
−bew

WW + ρqκ
sW
cW
bew
AZ + 2Cew

Φ −
1

2
bew
ZZ −

3

4s2
W

m2
t

M2
W

]}
M0, (4.57)

with the flavour- and chirality-dependent factor ρqκ defined in eq. (B.121).
The process with interchanged initial-state particles gives the same correction factors:

to obtain them we should perform a t ↔ u exchange, but eq. (4.53) is symmetric in these
invariants.

Longitudinal case

We now analyze the production of a longitudinal Z boson, see eq. (4.47), that, as usual,
has to be treated according to the GBET, and it gives the matrix element of eq. (4.49): the
parameters that have to be renormalized are therefore e and cW .

For the longitudinal case too we consider the corrections to the process involving quarks
q with chirality κ: the leading soft-collinear corrections are

δLSCMqκq̄κHχ =

{
−L(s)

[
Cew
qκ + Cew

Φ

]
+ 2l(s) log

M2
Z

M2
W

[
(IZqκ)2 + (IZH)2

]
+ δLSC,h

H + δLSC,h

χ −Q2
q Lem(s, λ2,m2

q)

}
M0. (4.58)

To compute the subleading soft-collinear contributions we define a common factor

F SSC

L = − cW
s3
W

[
log
|t|
s

+ log
|u|
s

]
, (4.59)
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and separate the corrections to processes with initial-state up- and down-type quarks accord-
ing to

δSSCMuκūκHχ = δκL l(s)
F SSC
L

IZuκ
M0, (4.60)

δSSCMdκd̄κHχ = − δκL l(s)
∑
ui

|V CKM

uid
|2 F

SSC
L

IZdκ
M0. (4.61)

Finally, the single-logarithmic corrections are

δCMqκq̄κHχ =

{
α

4π

[
3

2s2
W

m2
t

M2
W

log
m2
t

M2
W

+

(
M2

Z

8s2
WM

2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

qκ + 4Cew
Φ −

3

2s2
W

m2
t

M2
W

]
+
α

2π
Q2
q log

M2
W

λ2

}
M0, (4.62)

δPRMqκq̄κHχ =

{
α

4π

(
1

s2
W

+
ρqκ
c2
W

)[
5

6
log

M2
H

M2
W

− 9 + 6s2
W − 32s4

W

18s2
W

log
m2
t

M2
W

]
+ l(s)

[
−bew

WW + ρqκ
sW
cW

bew
AZ

]}
M0. (4.63)

Interchanging the initial-state particles does not modify the results, for the same symmetry
reasons explained before.

For HZ production we can easily perform the matching between the λ-logarithms and
the ε poles. In fact, since the only virtual diagram that involves the exchange of a photon
is the correction to the quark vertex, we know exactly this correction factor in dimensional
regularization. By setting µ2 = s, all the dominant contributions vanish, and the same must
hold for the Sudakov corrections expressed in logarithmic form. To this end, we can neglect
all the terms proportional to log(M2

W/λ
2), and add the following term to the final result,

δmatch
λ Mqκq̄κHZλ = Q2

q [L(s)− 3l(s)]M0. (4.64)

The double-logarithmic term is needed to cancel the photonic contribution to Cew in the δLSC

factors, while the single-logarithmic one removes the charge-dependence of Cew in δC.

4.4 The HZj associated production

The last process to be implemented is the HZj associated production process. The quark-
initiated partonic process is given by

q(p1) q̄(p2)→ H(p3)Z(k) g(p6)→ H(p3) e+(p4) e−(p5) g(p6), (4.65)

plus initial-state particles interchanged and crossing-symmetry processes. The matrix ele-
ments for the production of a transverse and a longitudinal Z boson are similar to the ones
in HZ production, with the insertion of a gluon,

q(p1) q̄(p2)H(−p3)Zλ(−k) g(−p6)→ 0, (4.66)

Mqq̄HZT g
0 = − i

q2

e2

sWcW
MZ gst

a
∑
κ

IZqκ S
µν
κ εTµ(−k) εν(−p6), (4.67)

Mqq̄HZLg
0 = iMqq̄Hχg

0 = − i

q2

e2

2sWcW
gst

a
∑
κ

IZqκ S
µν
κ (−k + p3)µ εν(−p6). (4.68)
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The fermionic current Sµνκ is defined in eq. (4.33). The Sudakov corrections are almost equal
to the case without the jet, apart from the subleading soft-collinear contributions. For the
transverse case we have

δSSC,nMqκq̄κHZT g = −
[
2 l(s)Rqκqκ+

α

2π
log

M2
W

λ2
Q2
q

]
log
|r12|
s
M0, (4.69)

δSSC,±MuκūκHZT g =
l(s) δκL
IZuL

{
− 1

s2
W

[
1

2
sWcW

(
log
|r13|
s

+ log
|r23|
s

)
+ IZdL log

|r12|
s

+
c3
W

sW

(
log
|r14|
s

+ log
|r24|
s

)]
+ 2c3

W

(
Qu

sW
− IZuL
cW

)
log
|r34|
s

}
M0, (4.70)

δSSC,±Mdκd̄κHZT g =
l(s) δκL
IZdL

{
1

s2
W

∑
ui

|V CKM

uid
|2
[

1

2
sWcW

(
log
|r13|
s

+ log
|r23|
s

)

− IZuL log
|r12|
s

+
c3
W

sW

(
log
|r14|
s

+ log
|r24|
s

)]
+ 2c3

W

(
Qd

sW
− IZdL
cW

)
log
|r34|
s

}
M0, (4.71)

having distinguished between up- and down-type initial quarks. The corrections to the lon-
gitudinal case take the form

δSSC,nMqκq̄κHχg = − 2l(s)

[
Rqκqκ log

|r12|
s

+
(
iIZHχ

)2
log
|r34|
s

]
M0

+
α

2π
Q2
q log

M2
W

λ2
log
|r12|
s
M0, (4.72)

δSSC,±MuκūκHχg = − l(s)δκL
s2
WI

Z
uL

[
IZdL log

|r12|
s

+
RuLφ−

iIZHχ
log
|r34|
s

+
cW
2sW

(
log
|r13|
s

+ log
|r14|
s

+ log
|r23|
s

+ log
|r24|
s

)]
M0, (4.73)

δSSC,±Mdκd̄κHχg =
l(s)δκL
s2
WI

Z
dL

{
− log

|r34|
s

RdLφ−

iIZHχ
+
∑
i

|V CKM

uid
|2
[
−IZuL log

|r12|
s

+
cW
2sW

(
log
|r13|
s

+ log
|r14|
s

+ log
|r23|
s

+ log
|r24|
s

)]}
M0. (4.74)

These results also hold for the processes with exchanged initial quarks, because they would
require the permutations r13 ↔ r23 and r14 ↔ r24, but the expressions above are sym-
metric under it. For this process, the matching of the λ-logarithms into ε poles is not as
straightforward as in the HZ case, and we cannot define a matching contribution analogous
to eq. (4.64). Nevertheless, the complete photonic one-loop corrections can be obtained by
evaluating the analytic QCD virtual amplitude with CF = 1 and CA = 0. This does not
represent the Sudakov photonic corrections, but it is still a result that, in the high-energy
limit, gives the correct behaviour. By inserting it in place of the formulae for the Sudakov
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photonic corrections, adding also a term

δmatch
λ Mqκq̄κHZλg = Q2

q

[
L(s)− 3l(s) + 2l(s) log

|r12|
s

]
M0, (4.75)

in order to cancel the photonic contributions to δLSC, δSSC and δC, we can then have more
precise predictions than what would be obtained by simply neglecting the log(M2

W/λ
2) terms

without introducing any matching factor.

4.5 Input parameters

In this thesis we consider LHC proton-proton collisions at a center-of-mass energy of 13 TeV.
As input parameters to study HV and HVj production we use the following masses and
widths for the gauge bosons,

MZ = 91.1876 GeV, ΓZ = 2.509 GeV,

MW = 80.399 GeV, ΓW = 2.099 GeV. (4.76)

The widths of the W and Z bosons are consistently calculated at NLO QCD using the other
input parameters. We consider the Higgs boson on shell, with zero width and a mass equal
to MH = 125 GeV. Assigning a finite width to the Higgs boson in the final state could
invalidate some Ward identities of the electroweak theory: proceeding with zero width, we
avoid these possible problems. The treatment of unstable particles is done in the complex-
mass scheme [104]. In this scheme the masses are considered as complex quantities,

µ2
i = M2

i − iΓiMi for i = W,Z, t. (4.77)

This leads to complex couplings and, in particular, to a complex weak mixing angle. The
electroweak couplings are then derived according to the Gµ scheme, that represents the
optimal choice to describe pure SU(2) interactions at the electroweak scale. The fundamental
parameters are the (complex-valued) masses of the W and Z bosons and the Fermi constant,
Gµ = 1.16637×10−5 GeV−2. Starting from them, the Weinberg angle and the electromagnetic
coupling constant are given by

s2
W ≡ 1− µ2

W

µ2
Z

= 1− c2
W , α =

∣∣∣∣∣
√

2s2
Wµ

2
WGµ

π

∣∣∣∣∣ =
1

132.28
, (4.78)

and all the other couplings can be derived accordingly. In this scheme, the weak corrections
to muon decay are included in the renormalization of the electric charge [40]: as a conse-
quence, the electroweak corrections are independent of logarithms of the light-quark masses.
Moreover, this definition of α effectively resums the contributions associated with the run-
ning of the electromagnetic coupling constant from zero energy transfer to the electroweak
scale MW , that correspond to the factor ∆α(M2

W ) of eq. (3.42). For the values of the CKM
matrix we use

|V CKM| =

d s b
u
c
t

 0.97428 0.2253 0.00347
0.2252 0.97345 0.0410
0.00862 0.0403 0.999152

 .
(4.79)

We use the NNPDF2.3 as 0119 qed parton distribution set [105], that includes QED contri-
butions to the parton evolution (PDF number 244800 from LHAPDF6 [106]). The value of
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αs(MZ) from this set is 0.119. Finally, in HV production, the renormalization and factoriza-
tion scales are set equal to the invariant mass of the HV pair at underlying-Born level,

µR = µF = MHV , M2
HV =

(
pH + pl1 + pl̄2

)2
, (4.80)

while in HVj the MiNLO procedure discussed in Sec. 2.5.1 is applied, and the scales are set
accordingly.

4.6 Validations

We now illustrate several validation checks that we have done. We first compare the NLO EW
predictions of the POWHEG BOX RES for HW and HZ production with the fixed-order NLO
results obtained with HAWK [41]. To this end, we set the flag qed qcd to 1 in the input file in
order to compute only electroweak corrections. These are obtained by including the virtual
contribution and the real emission of a photon, as explained in Sec. 2.1.1. Then, we verify
the validity of the leading-pole approximation and carry out some studies on the relevance
of the vector-boson polarizations, both at leading order and with the inclusion of NLL EW
corrections.

Since in these tests we include different contributions to the virtual electroweak cross
section (i.e. the full corrections or their Sudakov approximation), we need to be able to
switch between them. The POWHEG BOX RES implementation of the processes under study
offers this possibility, by changing the value of the flag select ew virt in the input file.
When this flag is set to 1 the full virtual contribution, provided by OpenLoops, is evaluated.
By setting it to 2, instead, the virtual electroweak cross section is obtained by computing
only its high-energy limit, using the formulae derived in Secs. 4.1.7 and 4.2 for the associated
production of a Higgs boson, a W boson and eventually a jet, and applying the formulae
in Secs. 4.3.4 and 4.4 for HZ/HZj. The leading-order and the real terms are obtained by
considering the corresponding complete matrix elements, i.e. without applying the leading-
pole approximation, as explained in Sec. 3.6.2. The Born amplitudes that enter the Sudakov
corrections are instead factorized into production and decay terms, and are computed in the
high-energy limit. The corresponding formulae can be found in the previous sections of this
chapter. Finally, by choosing 0, the virtual electroweak contribution is completely excluded.
If no value is selected, the default behaviour of the code is to perform the full calculation.

4.6.1 Comparison of the electroweak corrections to HV produc-
tion with HAWK

In this section we compare the NLO EW POWHEG BOX RES implementation of HV produc-
tion with the NLO results obtained with HAWK. This code was originally designed for the
description of Higgs boson production via vector boson fusion, but the topology of the two
processes is very similar since the same amplitudes appear in a crossed variant. The code
has then been adapted by the authors to deal also with the associated production processes.

HAWK gives the possibility to include or omit real corrections due to photon-initiated
processes: since in the POWHEG BOX RES these ones have not been taken into account because
of the smallness of the photon PDF, we exclude them accordingly in the HAWK computation.
The CKM matrix elements are set to

|V CKM

ud | = |V CKM

cs | = 0.974, |V CKM

us | = |V CKM

cd | =
√

1− |V CKM
ud |2, (4.81)
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omitting the mixing with the third generation of quarks. Moreover, owing to the smallness of
the bb̄-initiated contribution in HZ production, this channel has not been included. Finally,
since in HAWK the renormalization and factorization scales are by default set to the sum of
the Higgs and the vector boson physical masses,

µR = µF = MV +MH, V = W,Z, (4.82)

in this comparison we set the POWHEG BOX RES scales accordingly. Moving to event selections,
photons are recombined with charged leptons if Rγl < 0.1, where Rγl is the angular separation
variable in the y − φ plane, between the photon and the charged lepton,

Rγl =
√

(yγ − yl)2 + ∆φ2
γl. (4.83)

Here, y denotes the rapidity, and φγl the angle between l and γ. In case of recombination of
the photon with the lepton, we simply add their momenta and consider the resulting particle
as a “dressed lepton”. If more than one charged lepton is present in the final state, the
possible recombination is performed with the lepton having the smallest value of Rγl. After
recombination, we apply the following cuts on the charged leptons,

plT > 20 GeV, |yl| < 2.5, (4.84)

while for HW production we also require a missing transverse momentum of

/ET > 25 GeV. (4.85)

In the following we show the results for this comparison.
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Figure 4.2: NLO EW predictions for the transverse momentum of the Higgs boson in HW production.
Comparison between the POWHEG BOX RES (solid lines) and the HAWK (dashed lines) implementations, for
both HW− and HW+ production. Due to the complete overlap of the curves, the dashed lines are hardly
visible.

In the figures related to HW production, the POWHEG BOX RES results are plotted with a
solid line, while the HAWK ones are plotted with a dashed line. In many plots some lines are
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hardly visible: this is due to the complete overlap among the curves. The distributions for
HW+ production are reported in blue, and the ones for HW− production are shown in red.
The vertical bars represent the statistical errors associated to the integration procedure.

Figure 4.2 shows this comparison for the Higgs boson transverse-momentum distribution.
The agreement between the POWHEG BOX RES and the HAWK implementations is perfect within
the statistical uncertainties, such that the two curves are almost indistinguishable. Similar
conclusions can be drawn for the Higgs boson rapidity and pseudorapidity, reported in figs. 4.3
and 4.4: the two curves are indistinguishable in the whole yH and ηH ranges considered. Then,
in figs. 4.5 and 4.6 we show the missing transverse momentum and the rapidity of the lepton:
for these distributions too the agreement between the implementations is remarkable.
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Figure 4.3: NLO EW predictions for the rapidity of the Higgs boson. Same labels as in fig. 4.2.
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Figure 4.4: NLO EW predictions for the pseudorapidity of the Higgs boson. Same labels as in fig. 4.2.
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Figure 4.5: NLO EW predictions for the missing transverse momentum. Same labels as in fig. 4.2.
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Figure 4.6: NLO EW predictions for the rapidity of the lepton. Same labels as fig. 4.2.

At the end, in figs. 4.7 - 4.11 we repeat this comparison for HZ production, drawing the
same conclusions. We remark that, even for this series of plots, the complete overlap between
the two results makes one of the curves hardly visible. Nevertheless, each plot contains two
curves.
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Figure 4.7: NLO EW predictions for the transverse momentum of the Higgs boson in HZ production.
Comparison between the POWHEG BOX RES and the HAWK implementations.
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Figure 4.8: NLO EW predictions for the rapidity of the Higgs boson. Same labels as in fig. 4.7.
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Figure 4.9: NLO EW predictions for the pseudorapidity of the Higgs boson. Same labels as in fig. 4.7.
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Figure 4.10: NLO EW predictions for the transverse momentum of the electron. Same labels as in fig. 4.7.
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Figure 4.11: NLO EW predictions for the rapidity of the electron. Same labels as in fig. 4.7.

4.6.2 Validation of the leading-pole approximation

In order to implement the Sudakov corrections, we first have to make sure that the leading-
pole approximation provides a good estimate of the full matrix element. We focus on HW
and HWj production: we consider leading-order results, and we compare the complete re-
sults with the ones obtained using the approximated matrix elements. For HWj, we apply
the MiNLO procedure described in Sec. 2.5.1 in order not to require a minimum transverse
momentum for the leading jet. In the plots, the complete results are reported with a solid
line, while the approximated ones are shown with a dashed line. In some plots, due to the
overlap between the solid and the dashed curves, the latter is hardly visible. Nevertheless,
each plot contains both solid and dashed lines. The vertical bars represent the statistical
errors associated to the integration procedure.

HW− HW+ HW−j HW+j

σLO [fb] 51.19± 0.04 80.09± 0.06 44.07± 0.03 69.53± 0.05

σLO
LPA [fb] 50.89± 0.04 79.64± 0.06 43.83± 0.03 69.15± 0.05

Table 4.1: Total leading-order cross section for the HW and HWj production processes at a center-of-mass
energy of

√
s = 13 TeV, for the complete calculation and for its leading-pole approximation. The HWj cross

sections have been computed with the MiNLO procedure active.

We begin by giving the total cross sections in tab. 4.1: the differences between the two
implementations are less than 1%. Moving to more differential cross sections, we plot the
W -boson transverse momentum in fig. 4.12. These distributions disagree for values of pT
below 60 GeV, with discrepancies that reach 10%, while above this value the agreement be-
tween the two implementations is remarkable. This is due to the fact that, if the partonic
center-of-mass energy is not high enough, when performing the on-shell projection the argu-
ment of the square root in eq. (3.67) becomes negative. When this happens, as explained in
Sec. 3.6.1, we set the whole matrix element to zero. As a consequence, the low-pT region,
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Figure 4.12: Leading-order predictions for the transverse momentum of the W boson in two different ranges
of pW

T . Comparison between the full matrix element (solid lines) and its leading-pole approximation (dashed
lines), for both HW− and HW+ production.

generally characterized by a smaller center-of-mass energy, is not described adequately by
the leading-pole approximation.
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Figure 4.13: Leading-order predictions for the invariant mass of the W boson. Same labels as in fig. 4.12.

The invariant mass distribution of fig. 4.13 shows what one expects from the leading-pole
approximation: it agrees with the full result near the resonance peak, while it is not reliable
far off resonance.

The same conclusions can be drawn for the lepton transverse momentum, its rapidity and
the Higgs boson rapidity, shown in figs. 4.14 - 4.16. Similar results can be obtained for HWj
production, as can be seen in figs. 4.17 - 4.21, and for HZ/HZj production, not shown here
since they do not differ much from the W -boson case.

We can thus conclude that the LPA is a good approximation of the complete calculation,
and we can use it to compute the NLL electroweak corrections.
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Figure 4.14: Leading-order predictions for the transverse momentum of the lepton. Same labels as in fig. 4.12.
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Figure 4.15: Leading-order predictions for the rapidity of the lepton. Same labels as in fig. 4.12.
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Figure 4.16: Leading-order predictions for the rapidity of the Higgs boson. Same labels as in fig. 4.12.
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Figure 4.17: Leading-order predictions for the transverse momentum of the W boson in two different ranges
of pW

T . Comparison between the full matrix element (solid lines) and its leading-pole approximation (dashed
lines), for both HW−j and HW+j production.
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Figure 4.18: Leading-order predictions for the invariant mass of the W boson. Same labels as in fig. 4.17.
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Figure 4.19: Leading-order predictions for the transverse momentum of the lepton. Same labels as in fig. 4.17.
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Figure 4.20: Leading-order predictions for the rapidity of the lepton. Same labels as in fig. 4.17.
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Figure 4.21: Leading-order predictions for the rapidity of the Higgs boson. Same labels as in fig. 4.17.

4.6.3 Relevance of the vector-boson polarizations

Leading-order results

We now investigate the impact of the different vector-boson polarizations on the total and
differential cross sections. As shown before, the matrix element for the production of a
transverse vector boson is mass-suppressed, since it contains a factor MV that is absent in
the longitudinal case. When the center-of-mass energy is high enough, then, its contribution
to the total result should be negligible. We analyze this energy dependence for HZ and
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HZj production. The W -boson production processes have the same behaviour, and are not
reported.
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Figure 4.22: Leading-order predictions in leading-pole approximation for the transverse momentum of the
Higgs boson in two different ranges of pH

T , for HZ production. Comparison between the results obtained
considering a transverse (T) and a longitudinal (L) Z boson.
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Figure 4.23: Leading-order predictions in leading-pole approximation for the transverse momentum of the
electron in two different ranges of pe

−

T . Same labels as in fig. 4.22.

By inspecting fig. 4.22, that shows the Higgs boson transverse-momentum distribution in
two different ranges of pHT , we can clearly see that, starting from pHT ∼ MZ, the contribution
coming from the transversely polarized Z boson becomes rapidly subdominant, and in the
TeV region it is smaller than the longitudinal one by 2-3 orders of magnitude. Since at leading
order the two bosons are produced back-to-back, the partonic center-of-mass energy must be
least

√
s & 2pHT , which in turn means that when pHT > MZ we are approaching the Sudakov

region. The same conclusions can be drawn also for the transverse-momentum distribution
of the electron, in fig. 4.23. In this case the predominance of the longitudinal polarization
becomes manifest at even lower pT values, around 50 GeV.

In figs. 4.24 and 4.25 we show the same plots for HZj production, for which we can draw
very similar conclusions. For this reason, from now on, we focus only on HZ production.

We compare now the leading-order calculation of HZ production performed in leading-
pole approximation with the one obtained using only the longitudinal polarization. We expect
some discrepancies between the two results, especially in the low-energy region, that decrease
when moving towards the Sudakov regime. By analyzing the total cross section, reported in
tab. 4.2, we find large differences.
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Figure 4.24: Leading-order predictions in leading-pole approximation for the transverse momentum of the
Higgs boson in two different ranges of pH

T , for HZj production. Comparison between the results obtained
considering a transverse (T) and a longitudinal (L) Z boson.
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Figure 4.25: Leading-order predictions in leading-pole approximation for the transverse momentum of the
electron in two different ranges of pe

−

T . Same labels as in fig. 4.24.

σLO
LPA [fb] σLO

LPA,L [fb]

21.894± 0.005 11.213± 0.002

Table 4.2: Total leading-order cross section in leading-pole approximation for the HZ production process at
a center-of-mass energy of

√
s = 13 TeV, and results obtained considering only a longitudinal Z boson.

This result is consistent with the fact that the low-pT region determines the bulk of the
cross section, and here the transverse-polarization contribution is not negligible, being it
comparable with the longitudinal one, or even bigger (as shown in fig. 4.22).

The analysis of the Higgs boson transverse momentum, reported in fig. 4.26, confirms
this fact. At pHT ∼ 500 GeV (or, in other words,

√
s & 1 TeV) the two implementations

start overlapping, becoming equal in the TeV region where the transverse component is
highly mass-suppressed. The rapidity distribution in fig. 4.27, instead, reflects the striking
difference observed at the level of total cross section: here we find differences of order 50%
or more between the two implementations.

Summing up, if we limit to leading-order calculations the transverse component cannot
be neglected in order to have reliable results, because it contributes to the bulk of the cross
section.
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Figure 4.26: Leading-order predictions in leading-pole approximation for the transverse momentum of the
Higgs boson in two different ranges of pH

T . Comparison between the results obtained considering the complete
process and the ones with a longitudinal Z boson.
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Figure 4.27: Leading-order predictions in leading-pole approximation for the rapidity of the Higgs boson.
Same labels as in fig. 4.26.

Next-to-leading-logarithmic electroweak results

When introducing NLL electroweak corrections, instead, the mass suppression becomes ev-
ident also in the low-pT regions. In the following figures we show the same distributions
just analyzed, with the inclusion of the full Born matrix element, the approximated one-loop
corrections and real photon radiation.

σNLLEW [fb] σNLLEW
L [fb]

21.886± 0.005 22.160± 0.005

Table 4.3: Total NLL EW cross section for the HZ production process at a center-of-mass energy of√
s = 13 TeV, and results obtained considering only a longitudinal Z boson.

We compare the NLL corrections with the ones obtained considering only the longitudinal
matrix element. Looking at the total cross sections in tab. 4.3, we find very small differences
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between the two implementations. These results are extremely similar to σLO
LPA in tab. 4.2:

this reflects the small impact of the electroweak corrections on inclusive quantities. The
similarity of the results of tab. 4.3, together with the differences between σNLLEW

L and σLO
LPA,L

of tab. 4.2, can be ascribed to the fact that, when including NLL EW corrections, the Born
term gives the dominant contribution to the total cross section, and it is computed using the
full matrix element rather than its expression in leading-pole approximation.
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Figure 4.28: NLL EW predictions for the transverse momentum of the Higgs boson in two different ranges
of pH

T . Comparison between the results obtained considering the complete process and the ones with a
longitudinal Z boson.
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Figure 4.29: NLL EW predictions for the rapidity of the Higgs boson. Same labels as in fig. 4.28.

Moving to more exclusive distributions, in figs. 4.28 and 4.29 we find very good agreement:
looking at the transverse momentum of the Higgs boson the low-pT differences almost vanish,
while in the rapidity distribution the differences change from about 50% in fig. 4.27 to 1-2%
in fig. 4.29.

In conclusion, since the Sudakov approximation is not fully reliable for mass-suppressed
matrix elements, as explained in Sec. 4.1.2, and since their impact on the NLL results is neg-
ligible, when considering NLL electroweak calculations we can omit the contribution coming
from the transversely polarized vector bosons. In the following, all the results reported with
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NLL EW corrections will involve only the longitudinal vector boson. We remark that the con-
tributions from the transverse vector boson are neglected only in the approximated one-loop
correction factors, while the Born and real terms are computed considering the full matrix
elements.
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Chapter 5

Phenomenological results

In this chapter we present numerical predictions and kinematic distributions for the associated
production of a Higgs boson with a leptonically-decaying vector boson and eventually a
jet, in proton-proton collisions at a center-of-mass energy of 13 TeV. We mainly focus on
observables that are sensitive to electroweak corrections, since our aim is to investigate their
role at hadron colliders. For each process, we first compare fixed-order NLO results: we
analyze the differences between the NLO EW corrections and their NLL approximation, and
the impact of the electroweak sector on the QCD results. Then, we compare NLO+PS events
with QCD and QCD+EW accuracy, applying some kinematic cuts that reproduce the typical
experimental setup.

When performing the NLO analysis of processes computed at QCD+EW accuracy, the
photon cannot be identified, since all the contributions to the real cross section that share the
same underlying Born are collected together by the POWHEG BOX RES. Given a Born configu-
ration, then, the radiated particle can be both a photon or a gluon. For this reason photons
cannot be recombined with the leptons when the two particles are collinear, and moreover the
momentum of the vector boson cannot be reconstructed from its final-state decay products.
This limitation could be easily removed in future versions of the POWHEG BOX RES, if needed.
Nevertheless, the HEPEVT common block stores also the momenta of the decaying resonances:
we can then have access to the momentum of the vector boson, and we can use it to perform
some consistency checks that involve the HV pair. In the rest of the NLO analysis, we
focus instead on kinematic distributions that do not involve the photon, namely the total
cross section, the Higgs boson distributions and the missing transverse momentum. In case
photon distributions are needed at NLO, the code can be run considering only electroweak
corrections, as explained in Sec. 2.1.1. In this case, indeed, the radiated particle can only be
a photon, and it can easily be identified.

In the ratio plots we use some shorthand notations: the label QCD stands for the pure
NLO QCD implementation, with FULL we refer to the NLO QCD + NLO EW results, and
NLL denotes the combination of the NLO QCD corrections with the NLL EW ones.

In the generation of events with QCD+EW accuracy, we adopt a variant of the procedure
described in Sec. 2.4. To avoid time-consuming computations, we first produce events with
NLO QCD + NLL EW accuracy. In this way we obtain events with a weight very similar to
the complete QCD+EW cross section. Then, we apply the reweighting procedure starting
from these results. In all the plots presented in this chapter, the vertical bars represent the
statistical errors associated to the integration procedure.
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5.1 The interface to the Monte Carlo shower program

Pythia 8

In order to generate events with NLO+PS accuracy, including both QCD and QED cor-
rections, we interface our HV and HVj generators to the Monte Carlo shower program
Pythia 8.1. To this purpose, in the initialization phase we perform the following calls, that
are required when interfacing Pythia 8.1 to NLO+PS generators:

pythia.readString("SpaceShower:pTmaxMatch = 1");

pythia.readString("TimeShower:pTmaxMatch = 1");

Since we are including also photon-shower effects, we have photon radiation associated with
the production process and from the final-state leptons. The subsequent three calls turn on
the electromagnetic shower for both cases, while the last one keeps the produced photons
stable:

pythia.readString("TimeShower:QEDshowerByL = on");

pythia.readString("TimeShower:QEDshowerByQ = on");

pythia.readString("SpaceShower:QEDshowerByQ = on");

pythia.readString("TimeShower:QEDshowerByGamma = off");

In this analysis we do not include hadronization effects, by setting the flag nohad to 1 in the
input file, and we do not consider the decay of the Higgs boson. Being a scalar, its decay can
easily be simulated a posteriori.

In the standard behaviour of the POWHEG BOX RES only the hardest radiation is stored,
so that for each event at most one of the decaying resonances includes a NLO-accurate
radiation. Moreover, in case of initial-state radiation, QED emission occurs in competition
with QCD. The POWHEG BOX RES uses the highest-bid mechanism to decide what kind of
radiation (QED or QCD, from the initial or from the final state) has to be generated. Due to
the larger center-of-mass energy available at the production stage, initial-state radiation is
preferred with respect to the final-state one, and since quarks tend to radiate gluons rather
than photons, in the initial state QCD radiation is favoured.

For this reason, QED emission from the decay of the resonance would not take place very
often at Les Houches level, and this radiation would be mainly generated by the Monte Carlo
shower program. The resonance-aware formalism offers the opportunity to further improve
the POWHEG radiation formula. In the resonance-unaware version of the POWHEG BOX, radiation
is generated according to eq. (4.17) of ref. [13],

dσ = B̄(ΦB) dΦB

[
∆(q2

0) +
∑
α

∆(k2
T ,α)

Rα(Φα(ΦB,Φrad))

B(ΦB)
dΦrad

]
. (5.1)

The term ∆(q2
0) corresponds to the probability that no radiation is generated with hardness

above a cutoff q0, and its kinematics corresponds to the Born one. In the second term,
each α labels a collinear singular region of the real cross section, and the real matrix element
is decomposed into terms singular only in the region α, such that

R =
∑
α

Rα. (5.2)

Finally, even the real phase space Φα(ΦB,Φrad) depends upon the singular region α, and is a
function of the Born kinematics and of the three radiation variables. For the Sudakov form
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factor the following relation holds,

∆(q2) =
∏
α

∆α(q2), (5.3)

where each term ∆α(q2) has the structure of eq. (2.10) with R replaced by Rα. As explained
in Sec. 2.1, if resonances are present, the traditional decomposition into singular regions
is revised as follows: each α labels a particular singular region with a specific resonance
structure, such that collinear partons originate from the same resonance. Moreover, the
mapping of the real kinematics into its underlying-Born one is done in such a way that it
preserves the virtuality of the resonance associated to that singular region. This formalism
offers the possibility to further improve the POWHEG radiation formula: we rewrite eq. (5.1) as

dσ = B̄(ΦB) dΦB

∏
α

[
∆α(q2

0) + ∆α(k2
T ,α)

Rα(Φα(ΦB,Φ
α
rad))

B(ΦB)
dΦα

rad

]
, (5.4)

where, by writing Φα
rad, we imply that the radiation variables are now independent for each

singular region. By expanding the product, we get a term with no emissions, plus terms
with multiple emissions. It can be shown [62, 107] that, as far as the hardest radiation is
concerned, this formula is equivalent to eq. (5.1). With this improvement, radiation from
each singular region is generated and, instead of keeping only the hardest one, all radiations
are stored. As a result, the Les Houches event file will contain a radiated particle for each
decaying resonance, plus possibly one emission from the initial state. This radiation has
NLO+LL accuracy in each resonance, so that the subsequent shower from each resonance
generated by a Monte Carlo shower program like Pythia or Herwig has to be softer than the
POWHEG one. The POWHEG BOX RES can be run in this more “general” mode by setting the
flag allrad to 1 in the input file. All of our results are obtained by activating this option.

Since the Les Houches Interface does not provide a standard mechanism to veto radiation
coming from resonance decays, we do not impose restrictions in the generation of QED
radiation from the shower, and we implement a dedicated veto procedure. QCD initial-state
radiation, instead, is treated by the shower program in the usual way, with the hardness of
the emitted partons limited by the value of scalup, that is passed to Pythia 8.1 via the
Les Houches Interface.

We first scan the Les Houches event to identify the photons that have been generated
by the POWHEG BOX RES, determining if they come from the production or from the decay
subprocess. We repeat the same procedure on the photons after the shower, identifying those
produced by the shower algorithm. In HVj production, photons radiated by the jet with the
highest transverse momentum are considered as coming from the production stage. We then
apply the veto procedure in the following way. For each of the photons produced by the initial-
state shower we compute its transverse momentum, and we store the maximum value pmax

T .
If at Les Houches level there are no photons, we veto the event if pmax

T is greater than scalup,
since in the initial state the emission of a photon competes with QCD radiation. If instead
there is already a photon at Les Houches level, the event is vetoed if pmax

T is greater than the
transverse momentum of this photon. This condition effectively amounts to requiring that
no QED radiation is generated by the shower with transverse momentum greater than the
one produced by the POWHEG BOX RES.

Since, in order to ensure momentum conservation, the reshuffling procedure that is applied
during the shower slightly modifies the momentum of the particles, we also check that pmax

T

does not exceed the hardness of the Les Houches photon after reshuffling: if this happens,
the event is vetoed.
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When inspecting particles that come from the decay of a resonance, the variable scalup

plays no role: we then need to fix the maximum value allowed for the photon hardness. If at
Les Houches level there are no photons coming from the decay of the vector boson, it means
that the POWHEG BOX RES has not been able to generate radiation harder than a minimum
value of 10−3 GeV (rad ptsqmin em = 1e-6). Since the shower must generate particles softer
than the POWHEG radiation, we require all the produced photons to have hardness smaller than
the square root of rad ptsqmin em.

If instead a photon is already present, we evaluate its transverse momentum with respect
to the emitter in the center-of-mass frame of the mother resonance, and store this result
in pmax

T , rel. In the HZ and HZj processes, at Les Houches level it is not possible to know if
the photon has been emitted by the lepton or by the antilepton: pmax

T , rel will then contain the
minimum value between the two relative transverse momenta. At this point we veto the event
if, among the produced photons, the maximum relative transverse momentum is greater than
pmax
T , rel. We also check that this photon is softer than the one already present at Les Houches

level after reshuffling.

5.2 Phenomenological setup

We use the same settings for the input parameters of Sec. 4.5. In the analysis of Les Houches
events, before and after the matching to the shower algorithm, we impose some kinematic cuts
that are instead not applied at fixed-order NLO level. The photon cannot be experimentally
distinguished from charged leptons or partons if the two particles are too close in phase space.
For this reason we apply to the photons a fixed-cone isolation prescription, as described in
ref. [108]: for each final-state parton j we compute its transverse energy, defined as

ET ,j =
Ej
|~pj|

pT,j, (5.5)

together with the angular separation Rγj, defined in eq. (4.83), between the parton and the
photon. The photon is considered isolated from the partons if the transverse partonic energy
inside a cone of half-angle R0 is limited by∑

Rγj<R0

ET ,j < εh p
γ
T , (5.6)

being pγT the transverse momentum of the photon. We use R0 = 0.4 and εh = 0.5. Then, we
consider the photon isolated from charged leptons if Rγl > 0.1 for each final-state lepton l.
If this is not the case, we recombine the two particles obtaining a “dressed” lepton. Jets are
defined according to the anti-kT algorithm, as implemented in the fastjet package [109, 110],
with R = 0.5. Moreover, we impose the following kinematic cuts: for every charged lepton
we require

plT ≥ 25 GeV, |yl| ≤ 2.5, (5.7)

and for HW/HWj events we also impose

/ET ≥ 25 GeV, (5.8)

where with /ET we refer to the neutrino momentum, not including the contributions coming
from soft jets or photons. In events that involve the production of a Z boson, the invariant
mass of the dressed-lepton pair is required to be

60 GeV ≤ m(l+l−) ≤ 140 GeV, (5.9)
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while in order to obtain the transverse-momentum and the rapidity distributions of the
hardest isolated photon we require

pγT > 10 GeV. (5.10)

For all the other observables that involve photons (such as the transverse momentum of the
charged leptons), instead, we are completely inclusive over photon production. Finally, we
reconstruct the vector-boson momentum by combining the momenta of the dressed leptons
that come from its decay, and we discuss the impact of the optional additional cuts on the
transverse momentum of the Higgs and vector bosons,

pHT ≥ 200 GeV, pVT ≥ 190 GeV. (5.11)

The selection of events with a boosted Higgs boson is useful to improve the signal-over-
background ratio in the context of H → bb̄ studies. However, symmetric cuts induce large
radiative corrections in fixed-order calculations, in the transverse-momentum distributions
of the Higgs and vector bosons near the cut. Since, in HV production, at leading order
these particles are produced back-to-back, any initial-state radiation decreases pHT or pVT , and
the event may not pass the kinematic cut anymore. Therefore, the differential cross section
near the cut is sensitive to collinear and soft initial-state radiation. By choosing these slightly
asymmetric cuts this large sensitivity to higher-order corrections can be removed. We remark
that this potential problem affects only fixed-order NLO results, since with showered events
the Sudakov form factor associated to the radiation tames the soft/collinear divergence.

5.3 The HW associated production

We begin by verifying the correct implementation of the Sudakov electroweak corrections.
Then, we analyze the impact of the complete electroweak corrections on the QCD results,
both at NLO and with the inclusion of the parton shower. All the figures in this section
contain predictions for HW− production in the left-hand-side plot, and for HW+ production
in the right-hand-side one.

5.3.1 Fixed-order NLO results

The total NLO cross sections are reported in tab. 5.1. The inclusion of electroweak corrections
decreases the QCD cross sections by about −6.5% for HW− production, and by about −7%
for the HW+ case. The Sudakov results, instead, are slightly bigger than the full QCD+EW
ones, with differences around 7.5%. However, we do no expect good agreement, since they
provide a good approximation of the complete electroweak calculation in the high-energy
regime, while, at lower energies, where the bulk of the events is concentrated, they fail to
capture the correct behaviour. We also note that the NLO QCD + NLL EW total cross
sections are very similar to the NLO QCD ones. This confirms us that this approximation is
not reliable for completely inclusive quantities, like the total cross section, as already pointed
out in the validation phase.

σNLOQCD
NLOEW [fb] σNLOQCD

NLLEW [fb] σNLOQCD [fb]

HW− 55.31± 0.02 59.49± 0.01 59.25± 0.03

HW+ 86.91± 0.02 93.37± 0.02 93.24± 0.05

Table 5.1: Total cross sections for the HW production process at a center-of-mass energy of
√
s = 13 TeV,

including NLO QCD + NLO EW, NLO QCD + NLL EW and NLO QCD corrections.
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Figure 5.1: NLO predictions for the invariant mass of the HW pair, for both HW− (left) and HW+ (right)
production. Comparison between the full QCD+EW calculation and the QCD results (in red in the ratio
panel), and between the approximated QCD+EW calculation and the QCD results (in black in the ratio
panel).

In some kinematic distributions, instead, the reliability of the Sudakov approximation
can be better investigated. In fig. 5.1 we plot the invariant mass of the HW pair: the lower
panel contains the ratio between the FULL and the QCD implementations, together with the
ratio between the NLL and the QCD results. By inspecting these distributions we can make
two comments. First, as expected, the ratio plots overlap when the invariant mass reaches
the TeV region. Since for HV production this quantity coincides with the partonic center-
of-mass energy, MHW & 1 TeV means that we are approaching the Sudakov region, where
the NLO QCD + NLL EW implementation provides a good approximation of the complete
calculation. Secondly, although the impact of electroweak corrections is rather modest on the
total cross section, in the tail of this distribution it becomes relevant. Above 1 TeV, indeed,
the relative corrections are more than −15%, and they further increase at higher MHW values,
reaching −25% at MHW∼ 2 TeV.
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Figure 5.2: NLO predictions for the transverse momentum of the Higgs boson. Same labels as in fig. 5.1.

In fig. 5.2 we show the transverse momentum of the Higgs boson, for which we can draw
similar conclusions. The Sudakov approximation converges to the complete calculation for
pHT > 500 GeV, and the effect of the electroweak corrections is more pronounced than in the
HW invariant mass. In fact, at pHT ∼ 2 TeV the relative corrections reach −35%, for both
HW− and HW+ production.
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Figure 5.3: NLO predictions for the pseudorapidity of the Higgs boson. Same labels as in fig. 5.1.
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Figure 5.4: NLO rapidity distribution of the Higgs boson, for both HW− (left) and HW+ (right) production,
with kinematic cuts of 100 GeV and 300 GeV on its transverse momentum. Comparison between the complete
QCD+EW calculation (solid lines) and its Sudakov approximation (dashed lines).

Figure 5.3 shows the pseudorapidity distribution of the Higgs boson. From the lower
panel, we can say that the full electroweak corrections have an almost constant effect on the
QCD result. The NLL result, instead, gives a negligible correction: this reflects the problem
already pointed out at the level of total cross section, since this quantity is integrated over
all emissions. In fig. 5.4 we study in a different way how the approximated result converges
to the complete one when moving to the high-energy regime. This plot shows the rapidity
of the Higgs boson, comparing the FULL and the NLL calculations with kinematic cuts on
its transverse momentum. The blue curves are obtained by applying a 300 GeV cut: the
complete implementation and its Sudakov approximation are much more similar than the
results obtained with a 100 GeV cut (in red), as can be seen from the ratio plot.

Finally, in fig. 5.5 we see that the electroweak corrections have a sizable impact also on the
missing transverse momentum, of the same order as the corrections to the Higgs-boson pT ,
and that the Sudakov results provide a good approximation in the high-/ET region.

From the previous plots, it is clear that the inclusion of electroweak corrections is fun-
damental if one wants to reach a percent-level precision in the high-energy tails of several
distributions. In addition, we can conclude that the NLL corrections represent a good ap-
proximation of the complete result when focusing on the high-energy tails of the transverse-
momentum distributions. On the other hand, for more inclusive distributions such as the
total cross section and the rapidity, they are not a good approximation.
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Figure 5.5: NLO predictions for the missing transverse momentum. Same labels as in fig. 5.1.

5.3.2 Parton-shower-level predictions

We study now the behaviour of the POWHEG BOX RES results obtained with Monte Carlo
Les Houches events, before and after the Pythia 8.1 shower. We compare the QCD+EW
distributions at NLO with the corresponding Les Houches events. Then, we study the impact
of the electroweak corrections on the QCD results at NLO+PS accuracy.

Comparisons among NLO, Les Houches and Pythia results at QCD+EW accuracy

In fig. 5.6 we analyze the rapidity of the HW pair: we clearly see very good agreement, within
the integration errors, of the three distributions, as expected in view of the inclusiveness of
this NLO quantity.
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Figure 5.6: Rapidity distribution of the HW pair, for both HW− (left) and HW+ (right) production.
Comparisons among the NLO results, the hardest event produced by the POWHEG BOX RES (LHE) and the
NLO+PS predictions, for combined QCD+EW corrections.

Another interesting distribution is the transverse momentum of the HW pair, shown in
fig 5.7. As expected, the NLO result displays the typical divergent behaviour at low pT , due
to the collinear and soft singularity that affects the real emission. At Les Houches level,
instead, the divergence is tamed by the Sudakov form factor. The effect of the parton shower
is rather modest in the tail of the distribution, while at low pT it slightly shifts the position
of the Sudakov peak.

We analyze now a few distributions for the hardest photon. Its transverse momentum, to
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Figure 5.7: Transverse-momentum distribution of the HW pair. Same labels as in fig. 5.6.
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Figure 5.8: Transverse-momentum distribution of the hardest photon, for both HW− (left) and HW+ (right)
production. Comparison between the hardest event produced by the POWHEG BOX RES (LHE) and the
NLO+PS predictions, for combined QCD+EW corrections.
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Figure 5.9: Rapidity distribution of the hardest photon, for HW−j production. Same labels as in fig. 5.8.

which a cut of 10 GeV is applied, as in eq. (5.10), is reported in fig. 5.8: comparing the two
results we see that the completion of the shower, provided by Pythia, gives a contribution of
roughly 20% in the range pγT > 30 GeV, while below this value the increase is slightly more
pronounced. Similar conclusions can be drawn by inspecting the photon rapidity, in fig. 5.9:
the shower raises the Les Houches distribution by about 20% in the whole yγ range.
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Impact of the electroweak corrections in NLO+PS events

The impact of the QCD+EW corrections on the pure QCD results at NLO+PS level is
illustrated in the following plots, in which the cuts given in Sec. 5.2 have been applied. The
total cross sections, collected in tab. 5.2, totally agree with the NLO results of tab. 5.1. The
small differences can be ascribed to the fact that the NLO+PS results contain contributions
beyond the NLO.

σNLO+PS
QCD+EW [fb] σNLO+PS

QCD [fb]

HW− 55.29± 0.08 59.42± 0.09

HW+ 87.3± 0.2 93.2± 0.1

Table 5.2: Total NLO+PS cross sections for the HW production process at a center-of-mass energy of√
s = 13 TeV, including QCD+EW and QCD corrections.
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Figure 5.10: NLO+PS predictions for the transverse momentum of the charged lepton, for both HW− (left)
and HW+ (right) production. Comparison between the full QCD+EW calculation and the QCD results.

4×10−3

5×10−3

6×10−3

7×10−3

8×10−3

d
σ
/d

y
e
−

[p
b
]

13 TeV HW−

ra
ti
o

ye
−

d
σ
/d

y
e
−

[p
b
]

13 TeV HW−

ra
ti
o

Pythia 8.1 QCD+EW
Pythia 8.1 QCD

0.8
0.9
1.0

-2 -1 0 1 2

6×10−3

7×10−3

9×10−3

10−2

d
σ
/d

y
e
+

[p
b
]

13 TeV HW+

ra
ti
o

ye
+

d
σ
/d

y
e
+

[p
b
]

13 TeV HW+

ra
ti
o

Pythia 8.1 QCD+EW
Pythia 8.1 QCD

0.8
0.9
1.0

-2 -1 0 1 2

Figure 5.11: NLO+PS predictions for the rapidity of the charged lepton. Same labels as in fig. 5.10.

In figs. 5.10 and 5.11 we show the transverse momentum and the rapidity of the charged
lepton, to which the cuts of eq. (5.7) have been imposed. The shape of the pT distribution
changes drastically in the high-pT region, where differences with respect to the pure QCD
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corrections become of the order of −30% above 1 TeV. In the rapidity distribution, instead,
the impact of the electroweak sector is constant and of the order of −10%.
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Figure 5.12: NLO+PS predictions for the transverse mass of the W boson. Same labels as in fig. 5.10.

In fig. 5.12 we plot the transverse mass of the W boson,

mW

T =
√

2 peT /ET (1− cos ∆φ), (5.12)

where ∆φ is the azimuthal angle between the electron and the missing transverse momentum.
For this distribution too, we require a minimum value for peT and /ET , as in eqs. (5.7) and (5.8).
As for the lepton rapidity, the electroweak corrections do not change the shape but lower it
by roughly 10% with respect to the pure QCD corrections.
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Figure 5.13: NLO+PS predictions for the transverse momentum of the Higgs boson in the boosted regime.
Same labels as in fig. 5.10.

Finally, in figs. 5.13 and 5.14 we show the transverse momentum and the rapidity of the
Higgs boson, in the boosted regime defined by the cuts of eq. (5.11): for these distributions
we can draw similar comments as those for the charged lepton. The same considerations are
valid for the W boson, so we do not show the corresponding distributions.

5.4 The HWj associated production

In this section we study the associated production of a Higgs boson with a W boson and a
jet. As shown in the previous section, the behaviour of the W− and W+ cases is very similar.
We then report only the results for HW−j production.
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Figure 5.14: NLO+PS predictions for the rapidity of the Higgs boson in the boosted regime. Same labels as
in fig. 5.10.

5.4.1 Fixed-order NLO results

We begin by giving the total NLO cross section. Table 5.3 contains the results obtained by
applying the MiNLO procedure to HWj production. In fact, without the inclusion of MiNLO, we
should need a minimal cut on the transverse momentum of the leading jet, i.e. the jet with the
highest transverse momentum. In tab. 5.4, instead, we report the total cross section obtained
by requiring a minimum transverse momentum of 20 GeV for the leading jet. The differences
between the full QCD+EW results and the QCD implementation are of about −4% when
the MiNLO procedure is applied, and of −2% with the minimal cut. The approximated NLL
results give instead a positive contribution to the QCD cross section, increasing it of 4% in
both cases.

σNLOQCD
NLOEW [fb] σNLOQCD

NLLEW [fb] σNLOQCD [fb]

55.3± 0.1 59.6± 0.1 57.46± 0.02

Table 5.3: Total cross sections for the HW−j production process at a center-of-mass energy of
√
s = 13 TeV,

including NLO QCD + NLO EW, NLO QCD + NLL EW and NLO QCD corrections, computed with the
MiNLO procedure active.

σNLOQCD
NLOEW [fb] σNLOQCD

NLLEW [fb] σNLOQCD [fb]

26.19± 0.04 27.82± 0.04 26.720± 0.008

Table 5.4: Total cross sections for the HW−j production process at a center-of-mass energy of
√
s = 13 TeV,

including NLO QCD + NLO EW, NLO QCD + NLL EW and NLO QCD corrections, with a minimum
transverse-momentum cut of 20 GeV on the leading jet.

In fig. 5.15 we show the transverse momentum and the invariant mass of the HW− pair,
comparing both the full QCD+EW and the NLL computations with the QCD results. As
the energy increases, we approach the region where pHWT and MHW are much greater than the
Higgs- and W -boson masses. In this regime, the NLL result provides a good approximation
of the full correction: from the ratio plots, indeed, we see that the distributions overlap.

In fig. 5.16 we show the transverse momentum of the Higgs boson. As inHW− production,
for values of pT near 500 GeV the Sudakov approximation converges to the full calculation.
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Figure 5.15: NLO predictions for the transverse momentum (left) and the invariant mass (right) of the HW
pair, for HW−j production. Comparison between the full QCD+EW calculation and the QCD results (in
red in the ratio panel), and between the approximated QCD+EW calculation and the QCD results (in black
in the ratio panel).
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Figure 5.16: NLO predictions for the transverse momentum of the Higgs boson. Same labels as in fig. 5.15.

The relative corrections with respect to the pure QCD implementation are more pronounced,
reaching −50% around 2 TeV. This is due to the fact that, thanks to the inclusion of MiNLO,
the electroweak corrections can be applied in the full phase space, including also the con-
tributions coming from the Born-level jet. These contributions are not present in the HW
implementation, since in that case the jet does not receive NLO QCD+EW corrections.

The pseudorapidity distribution of the Higgs boson is reported in fig. 5.17: the effect of
the full electroweak corrections on the QCD results is constant, and of the order of −5%.
The ratio NLL/QCD, instead, reflects the fact that the approximated cross section is bigger
than the QCD one. Then, in fig. 5.18, we analyze the rapidity of the Higgs boson, comparing
the FULL and the NLL calculations with kinematic cuts on the transverse momentum of the
Higgs boson. The blue curves are obtained by applying a 300 GeV cut, while the red ones
are obtained with a 100 GeV cut. The lower panel shows that the discrepancies between the
complete implementation and its Sudakov approximation decrease when increasing the cut.

We compare now some distributions for the leading jet. Figure 5.19 shows its transverse
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Figure 5.17: NLO predictions for the pseudorapidity of the Higgs boson. Same labels as in fig. 5.15.
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Figure 5.18: NLO rapidity distribution of the Higgs boson, for HW−j production, with kinematic cuts
of 100 GeV and 300 GeV on its transverse momentum. Comparison between the complete QCD+EW
calculation (solid lines) and its Sudakov approximation (dashed lines).

momentum in two different pj1T ranges. For this distribution, the electroweak corrections give
the most relevant contributions in the low-pT region, while starting from pj1T ∼ 25 GeV their
effect becomes of order −5%. The NLL results, instead, converge to the FULL ones for values
of pj1T around 200 GeV, while below 150 GeV they give a positive contribution to the differ-
ential cross section. We also note that these distributions are not divergent: this is due to
the inclusion of the MiNLO prescription, that tames the collinear singularity. By inspecting
the leading-jet rapidity in fig. 5.20, instead, we see that the electroweak corrections are dis-
tributed rather uniformly over the full yj1 range, for both the complete and the approximated
calculation.
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Figure 5.19: NLO predictions for the transverse momentum of the leading jet in two different pj1T ranges.
Same labels as in fig. 5.15.
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Figure 5.20: NLO predictions for the rapidity of the leading jet. Same labels as in fig. 5.15.

5.4.2 Parton-shower-level predictions

As we have done for HW production, in this section we present a few results for the full
showered final state, comparing them with the ones obtained with the POWHEG BOX RES

hardest event (LHE) and with the fixed-order NLO results. We applied the cuts of eqs. (5.7)
and (5.8) to the decay products of the W boson, and we required a minimum transverse
momentum of 10 GeV for the hardest photon, as in eq. (5.10).

Comparisons among NLO, Les Houches and Pythia results at QCD+EW accuracy

In fig. 5.21 we analyze the rapidity distribution of the HW system: due to the presence of
MiNLO, this quantity is finite and we find very good agreement among the three curves.

In fig. 5.22 we plot the transverse momentum of the HW pair, that at leading order recoils
against the jet. There are no divergences in the small-pT region, due to the use of the MiNLO

procedure. As far as the subleading jet is concerned, in fig. 5.23 we see that the NLO result
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is divergent at small transverse momenta. The LHE results, and consequently the NLO+PS
ones, display instead the typical Sudakov shoulder of the resummed results.
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Figure 5.21: Rapidity distribution of the HW pair, for HW−j production. Comparisons among the NLO re-
sults, the hardest event produced by the POWHEG BOX RES (LHE) and the NLO+PS predictions, for combined
QCD+EW corrections.
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Figure 5.22: Transverse-momentum distribution of the HW pair. Same labels as in fig. 5.21.

In fig. 5.24 the rapidity distribution of the hardest photon is reported. This plot presents
some differences with respect to the HW− case (shown in fig. 5.9). Here, the contribution
coming from the shower is almost negligible on the whole yγ range. Similar conclusions can
be drawn for the transverse-momentum distribution of the photon, shown in fig. 5.25.
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Figure 5.23: Transverse-momentum distribution of the subleading jet. Same labels as in fig. 5.21.
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Figure 5.24: Rapidity distribution of the hardest photon. Comparison between the hardest event produced
by the POWHEG BOX RES (LHE) and the NLO+PS predictions, for combined QCD+EW corrections.
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Figure 5.25: Transverse-momentum distribution of the hardest photon. Same labels as in fig. 5.24.

Impact of the electroweak corrections in NLO+PS events

At the end, we study the impact of the electroweak corrections on the QCD results at
NLO+PS level. The values of the total cross section are reported in tabs. 5.5 and 5.6. The
former collects the results obtained by applying the MiNLO procedure, while in the latter a
minimum transverse-momentum cut of 20 GeV on the leading jet is imposed. By inspecting
tabs. 5.3 and 5.4, that contain the corresponding NLO results, we find good agreement.

σNLO+PS
QCD+EW [fb] σNLO+PS

QCD [fb]

55.29± 0.08 57.49± 0.04

Table 5.5: Total NLO+PS cross sections for the HW−j production process at a center-of-mass energy of√
s = 13 TeV, including QCD+EW and QCD corrections, computed with the MiNLO procedure active.

σNLO+PS
QCD+EW [fb] σNLO+PS

QCD [fb]

25.46± 0.04 26.90± 0.03

Table 5.6: Total NLO+PS cross sections for the HW−j production process at a center-of-mass energy of√
s = 13 TeV, including QCD+EW and QCD corrections, with a minimum transverse-momentum cut of

20 GeV on the leading jet.

Turning to exclusive kinematic quantities, in fig. 5.26 we show the missing transverse mo-
mentum, to which the cut of eq. (5.8) has been imposed, and in fig. 5.27 the pT of the leading
jet. Then, in figs. 5.28 and 5.29 we plot the transverse momentum and the rapidity of the
Higgs boson in the boosted regime defined by the cuts of eq. (5.11). While the missing
transverse momentum and the Higgs-boson distributions behave in a similar way as in HW
production, giving corrections that reach −30% at high-pT values and constant corrections of
about −10% in the whole yH range considered, the leading-jet transverse momentum receives
small corrections from the electroweak sector. We have checked that for several other typical
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kinematic distributions involving the jet we can draw similar conclusions. For this reason,
we do not show them in here.
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Figure 5.26: NLO+PS predictions for the missing transverse momentum, for HW−j production. Comparison
between the full QCD+EW calculation and the QCD results.
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Figure 5.27: NLO+PS predictions for the transverse momentum of the leading jet. Same labels as in fig. 5.26.
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Figure 5.28: NLO+PS predictions for the transverse momentum of the Higgs boson in the boosted regime.
Same labels as in fig. 5.26.
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Figure 5.29: NLO+PS predictions for the rapidity of the Higgs boson in the boosted regime. Same labels as
in fig. 5.26.

5.5 The HZ associated production

We now move to the discussion of the associated production of a Higgs boson and a Z boson.
Considering that the HW and HZ results are very similar, in the following we show fewer
plots with respect to the previous sections. Nevertheless, differently from the HW and HWj
processes, the momentum of the vector boson can be experimentally reconstructed, due to
its decay into charged leptons. We then show also NLO+PS predictions for quantities that
directly involve the Z boson, like its invariant mass, since it is known that the electroweak
corrections slightly change its shape.
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5.5.1 Fixed-order NLO results

The NLO QCD+NLO EW, NLO QCD+NLL EW and NLO QCD total cross sections for HZ
production are reported in tab. 5.7. The full electroweak corrections have a modest impact
on the QCD result, of less than 5%, while the NLL corrections give a negligible contribution.

σNLOQCD
NLOEW [fb] σNLOQCD

NLLEW [fb] σNLOQCD [fb]

24.382± 0.008 25.457± 0.008 25.551± 0.005

Table 5.7: Total cross sections for the HZ production process at a center-of-mass energy of
√
s = 13 TeV,

including NLO QCD + NLO EW, NLO QCD + NLL EW and NLO QCD corrections.
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Figure 5.30: NLO predictions for the invariant mass of the HZ pair, for HZ production. Comparison between
the full QCD+EW calculation and the QCD results (in red in the ratio panel), and between the approximated
QCD+EW calculation and the QCD results (in black in the ratio panel).

In fig. 5.30 we study the validity of the Sudakov approximation, and the impact of the
electroweak corrections on the QCD results, for the invariant mass of the HZ pair. We find a
behaviour similar to HW production (shown in fig. 5.1): the electroweak corrections decrease
the differential cross section by about 15% in the TeV region, while the NLL result converges
to the full one around 700 GeV, with small differences at the percent level.

In fig. 5.31 we inspect the transverse-momentum distribution of the Higgs boson. The
effect of the electroweak corrections on the high-energy tail is more pronounced than in the
invariant mass of the HZ system, reaching −30% at 2 TeV. The NLL corrections overlap at
rather low values of pHT : already around 250 GeV the agreement between the two implemen-
tations is remarkable.

The predictions for the Higgs boson pseudorapidity and rapidity further clarify the role of
the approximated Sudakov corrections. In the pseudorapidity distribution, shown in fig. 5.32,
the ratio NLL/QCD reflects the fact that the Sudakov corrections give a negligible contribution
to inclusive quantities, as pointed out at the level of total cross section. Looking at the
impact of the full electroweak corrections, instead, we find again a constant contribution on
the whole ηH range, of about −5%. In fig. 5.33 we inspect the rapidity distribution of the
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Figure 5.31: NLO predictions for the transverse momentum of the Higgs boson. Same labels as in fig. 5.30.

Higgs boson, applying two kinematic cuts on pHT and comparing the FULL results with the NLL
ones. With a 100 GeV cut the discrepancy between the two implementations is less than 3%,
while with a 300 GeV cut the two results are almost indistinguishable.
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Figure 5.32: NLO predictions for the pseudorapidity of the Higgs boson. Same labels as in fig. 5.30.

5.5.2 Parton-shower-level predictions

We now discuss the POWHEG BOX RES results, before and after the shower performed by
Pythia 8.1. As done in Sec. 5.3.2 for HW production, we first compare QCD+EW differ-
ential cross sections at NLO level with the corresponding ones at Les Houches and shower
level. Then, we discuss the role of the electroweak corrections at NLO+PS accuracy.
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Figure 5.33: NLO rapidity distribution of the Higgs boson, forHZ production, with kinematic cuts of 100 GeV
and 300 GeV on its transverse momentum. Comparison between the complete QCD+EW calculation (solid
lines) and its Sudakov approximation (dashed lines).

Comparisons among NLO, Les Houches and Pythia results at QCD+EW accuracy

One of the most inclusive distributions is the rapidity of the HZ pair, shown in fig. 5.34: by
inspecting the lower panel we see a very good agreement among the three distributions.
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Figure 5.34: Rapidity distribution of the HZ pair, for HZ production. Comparisons among the NLO results,
the hardest event produced by the POWHEG BOX RES (LHE) and the NLO+PS predictions, for combined
QCD+EW corrections.

The transverse-momentum distribution of the HZ system, reported in fig. 5.35, is affected
by the typical NLO divergence that vanishes when adding the Sudakov form factor. The effect
of the shower is more visible in the low-pT region, where it completes the POWHEG-initiated
shower with the rest of the shower.
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Figure 5.35: Transverse-momentum distribution of the HZ pair. Same labels as in fig. 5.34.

In figs. 5.36 and 5.37 we plot the rapidity and the transverse momentum of the hardest
photon, obtained imposing a 10 GeV cut on its transverse momentum, as in eq. (5.10). In
both the distributions we see an increase of about 10% in the whole pγT and yγ ranges when
moving from Les Houches to NLO+PS events. The effect of the shower is more moderate
with respect to HW production (figs. 5.8 and 5.9), where it amounts to roughly 20%.
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Figure 5.36: Rapidity distribution of the hardest photon, for HZ production. Comparison between the hard-
est event produced by the POWHEG BOX RES (LHE) and the NLO+PS predictions, for combined QCD+EW
corrections.

Impact of the electroweak corrections in NLO+PS events

In the following we focus on complete NLO+PS events, evaluating the impact of the elec-
troweak corrections on the QCD results. The typical experimental setup is reproduced by
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Figure 5.37: Transverse-momentum distribution of the hardest photon. Same labels as in fig. 5.36.

σNLO+PS
QCD+EW [fb] σNLO+PS

QCD [fb]

24.34± 0.03 25.60± 0.03

Table 5.8: Total NLO+PS cross sections for the HZ production process at a center-of-mass energy of√
s = 13 TeV, including QCD+EW and QCD corrections.

applying the cuts of eqs. (5.7) and (5.9) to the leptons. The values of the total cross sections
are reported in tab. 5.8. These results are in remarkable agreement with the ones obtained
at NLO level, collected in tab. 5.7, and show a decrease of about 5% due to the electroweak
sector.

In fig. 5.38 we show the transverse-momentum distributions of the two charged leptons,
together with their rapidities in fig. 5.39. In the high-energy tails of the pT distributions,
the electroweak corrections decrease the differential cross section by roughly −30%, and in
the rapidity range considered the electroweak corrections give a constant contribution of
about −5%.
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Figure 5.38: NLO+PS predictions for the transverse momentum of the electron (left) and of the
positron (right), for HZ production. Comparison between the full QCD+EW calculation and the QCD
results.
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Figure 5.39: NLO+PS predictions for rapidity of the electron (left) and of the positron (right). Same labels
as in fig. 5.38.
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Figure 5.40: NLO+PS predictions for the invariant mass of the lepton pair. Same labels as in fig. 5.38.

The invariant mass of the lepton pair changes considerably when considering QCD+EW
events. In fig. 5.40 we see an increase of the differential cross section in the low-mass region,
that reaches 50% around the lower limit for MZ imposed by the kinematic cut of eq. (5.9) on
the Z-boson decay products. Around the peak and at higher values of invariant mass, instead,
the contribution from the electroweak sector amounts to roughly −10%. This distortion is
due to the fact that we are considering the invariant mass of the “dressed” leptons. In the
QCD case, all the photons are produced by the shower algorithm, and for this reason they
are likely to be near in phase space to the leptons. They are then often recombined, and
the momentum of the dressed-lepton pair quite resembles the momentum of the Z-boson
resonance. When including QCD+EW corrections, instead, the hardest photon emission is
produced by the POWHEG BOX RES, and this particle can be well separated from the lepton.
Since in this case it is not recombined with its emitter, the shape of the invariant mass
changes.

Finally, in figs. 5.41 and 5.42 we analyze the transverse-momentum and rapidity distribu-
tions of the Z boson in the boosted regime defined by the cuts of eq. (5.11). These results are
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very similar to the ones obtained for the Higgs boson in HW production (figs. 5.13 and 5.14).
While the electroweak corrections have a constant impact on the rapidity distribution, of
about −10% in the whole yZ range, the high-energy tail of the transverse momentum shows
differences with respect to the pure QCD results of the order of −25% for pT > 1 TeV.
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Figure 5.41: NLO+PS predictions for the transverse momentum of the Z boson in the boosted regime. Same
labels as in fig. 5.38.
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Figure 5.42: NLO+PS predictions for the rapidity of the Z boson in the boosted regime. Same labels as in
fig. 5.38.

5.6 The HZj associated production

In this section we analyze the associated production of a Higgs boson with a Z boson and a
jet. As done for HWj production, we apply the MiNLO procedure in order not to require a
minimum transverse momentum for the leading jet and to leave to MiNLO the choice of scales
at underlying-Born level.
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5.6.1 Fixed-order NLO results

The total NLO cross sections are reported in tabs. 5.9 and 5.10. The former shows the results
obtained by applying the MiNLO prescription, while for the latter we applied a cut of 20 GeV
on the transverse momentum of the leading jet. The differences between the full QCD+EW

σNLOQCD
NLOEW [fb] σNLOQCD

NLLEW [fb] σNLOQCD [fb]

24.59± 0.07 25.84± 0.07 24.801± 0.009

Table 5.9: Total cross sections for the HZj production process at a center-of-mass energy of
√
s = 13 TeV,

including NLO QCD + NLO EW, NLO QCD + NLL EW and NLO QCD corrections, computed with the
MiNLO procedure active.

σNLOQCD
NLOEW [fb] σNLOQCD

NLLEW [fb] σNLOQCD [fb]

12.13± 0.03 12.69± 0.01 11.720± 0.004

Table 5.10: Total cross sections for the HZj production process at a center-of-mass energy of
√
s = 13 TeV,

including NLO QCD + NLO EW, NLO QCD + NLL EW and NLO QCD corrections, with a minimum
transverse-momentum cut of 20 GeV on the leading jet.

results and the QCD implementation are very small when the MiNLO procedure is activated,
of the order of 1.5%, while the approximated NLL cross section is bigger than the QCD one
of 5%. When a minimum transverse momentum is required, instead, both the full QCD+EW
results and their NLL approximation are bigger than the QCD ones by about 4%. A similar
behaviour occurred in HWj production (see tabs. 5.3 and 5.4): we can then conclude that
for the HVj processes the Sudakov approximation does not give a good estimate of the NLO
EW correction to the inclusive cross section.
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Figure 5.43: NLO predictions for the transverse momentum (left) and the invariant mass (right) of the HZ
pair, for HZj production. Comparison between the full QCD+EW calculation and the QCD results (in red
in the ratio panel), and between the approximated QCD+EW calculation and the QCD results (in black in
the ratio panel).

Figure 5.43 shows the transverse momentum and the invariant mass of the HZ system:
the lower panel displays the ratio between the FULL and the QCD implementations, and the
ratio between the NLL and the QCD results. The high-energy behaviour of MHZ is similar to
HZ production: the decrease of the invariant mass due to the inclusion of the electroweak
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corrections is around −20% above 1.5 TeV, and in this region the FULL and the NLL results
converge to the same behaviour. Looking at the transverse-momentum distribution, instead,
this overlap is visible starting from pHZT ∼ 300 GeV.
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Figure 5.44: NLO predictions for the transverse momentum of the Higgs boson. Same labels as in fig. 5.43.

In fig. 5.44 we plot the transverse momentum of the Higgs boson. The effect of the
electroweak corrections on the QCD predictions is about −50% around 2 TeV, while below
200 GeV, where the bulk of the events is concentrated, is almost negligible. As remarked
in Sec. 5.4.1 when analyzing HWj production, the electroweak corrections give a more pro-
nounced effect with respect to HZ production. This is due to the inclusion of the MiNLO

prescription, that allows to apply the electroweak corrections in the full phase space, in-
cluding also the contributions coming from the Born-level jet that are absent in the HZ
case.

As far as the pseudorapidity of the Higgs boson is concerned we see, in fig. 5.45, that the
full electroweak corrections have a constant and very small impact on this distribution, while
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Figure 5.45: NLO predictions for the pseudorapidity of the Higgs boson. Same labels as in fig. 5.43.
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Figure 5.46: NLO rapidity distribution of the Higgs boson, for HZj production, with kinematic cuts
of 100 GeV and 300 GeV on its transverse momentum. Comparison between the complete QCD+EW
calculation (solid lines) and its Sudakov approximation (dashed lines).

the NLL approximation gives a positive contribution, as remarked in the analysis of the total
cross sections. Figure 5.46, instead, shows the Higgs-boson rapidity distribution obtained
with kinematic cuts of 100 GeV and 300 GeV on its transverse momentum, and compares
the NLO QCD+EW results with their NLL approximation. By inspecting the lower panel
we see that, while with the lower cut the FULL results are smaller than the NLL ones by
about 5%, with a 300 GeV cut this difference decreases, reaching 1-2%.
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Figure 5.47: NLO predictions for the transverse momentum of the leading jet in two different pj1T ranges.
Same labels as in fig. 5.43.

We now analyze some distributions for the leading jet: in fig. 5.47 we show its transverse
momentum in two different pj1T ranges. As already pointed out in HWj production, both
the full and the approximated electroweak corrections give the most relevant contributions in
the low-pT region: from 20 GeV up to 150 GeV, their contribution increases the differential
cross section, while at higher values of pj1T their contribution becomes negligible. Looking at
the leading-jet rapidity in fig. 5.48, instead, we find a negligible contribution in the range
|yj1 | < 3, and a contribution of the order of −5% for |yj1 | > 3.
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Figure 5.48: NLO predictions for the rapidity of the leading jet. Same labels as in fig. 5.43.

5.6.2 Parton-shower-level predictions

In this section we compare three outputs: the showered POWHEG BOX RES results, the events
at Les Houches level, and the fixed-order NLO predictions.

Comparisons among NLO, Les Houches and Pythia results at QCD+EW accuracy

Similarly to what done in the previous sections, we first inspect the rapidity of the HZ
system, shown in fig. 5.49. Due to the presence of MiNLO, this quantity is finite and we see a
very good agreement, within the integration errors, of the three distributions.
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Figure 5.49: Rapidity distribution of the HZ pair, for HZj production. Comparisons among the NLO results,
the hardest event produced by the POWHEG BOX RES (LHE) and the NLO+PS predictions, for combined
QCD+EW corrections.

In fig. 5.50 we plot the transverse momentum of the HZ pair. At leading order, this
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system recoils against the leading jet: the inclusion of the MiNLO prescription tames the NLO
divergence associated to the small-pT region.
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Figure 5.50: Transverse-momentum distribution of the HZ pair. Same labels as in fig. 5.49.
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Figure 5.51: Transverse-momentum distribution of the subleading jet. Same labels as in fig. 5.49.

The NLO singularity is instead visible in the transverse momentum of the subleading jet,
in fig. 5.51. The Les Houches and showered results are finite at low pT , due to the POWHEG BOX

Sudakov form factor associated with the radiated parton.
In fig. 5.52 we show the rapidity distribution of the hardest photon, obtained with a cut

of 10 GeV on its transverse momentum, as explained in Sec. 5.2. This plot presents some
differences with respect to the HZ case (in fig. 5.36): here, the contribution coming from the
shower is almost negligible on the whole yγ range. Similar conclusions can be drawn for the
transverse-momentum distribution of the photon, shown in fig. 5.53.
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Figure 5.52: Rapidity distribution of the hardest photon, for HZj production. Comparison between the hard-
est event produced by the POWHEG BOX RES (LHE) and the NLO+PS predictions, for combined QCD+EW
corrections.
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Figure 5.53: Transverse-momentum distribution of the hardest photon. Same labels as in fig. 5.52.

Impact of the electroweak corrections in NLO+PS events

We conclude this section by studying the impact of the electroweak sector on the QCD one at
NLO+PS level. For the total NLO+PS cross section the results obtained with the inclusion
of the MiNLO prescription are collected in tab. 5.11, while tab. 5.12 contains the results for
the cross section with a cut of 20 GeV on the transverse momentum of the leading jet. If we
compare these results with the NLO cross sections, we can find a good agreement, with small
differences that can be ascribed to the fact that the NLO+PS results contain contributions
beyond the NLO.
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σNLO+PS
QCD+EW [fb] σNLO+PS

QCD [fb]

25.0± 0.2 24.84± 0.02

Table 5.11: Total NLO+PS cross sections for the HZj production process at a center-of-mass energy of√
s = 13 TeV, including QCD+EW and QCD corrections, computed with the MiNLO procedure active.

σNLO+PS
QCD+EW [fb] σNLO+PS

QCD [fb]

11.46± 0.01 11.84± 0.01

Table 5.12: Total NLO+PS cross sections for the HZj production process, at a center-of-mass energy of√
s = 13 TeV, including QCD+EW and QCD corrections, computed with a minimum transverse-momentum

cut of 20 GeV on the leading jet.

Looking at less inclusive quantities, the transverse momentum of the leading jet, reported
in fig. 5.54, receives very small corrections in the whole pj1T range, as pointed out in HWj
production. The same behaviour holds for other typical kinematic distributions involving the
jet, that therefore we do not show.

In fig. 5.55, instead, we show the transverse momentum of the Z boson in the boosted
regime, for which we can draw conclusions similar to the ones of the previous sections.
The electroweak corrections give a negative contribution, that in the tail of the distribution
reaches −40%. The rapidity and invariant mass of the Z boson, together with the transverse
momentum of the charged leptons, do not have appreciable differences with respect to the
HZ case, so they are not reported here.
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Figure 5.54: NLO+PS predictions for the transverse momentum of the leading jet, for HZj production.
Comparison between the full QCD+EW calculation and the QCD results.
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Figure 5.55: NLO+PS predictions for the transverse momentum of the Z boson in the boosted regime. Same
labels as in fig. 5.54.

5.7 Parton-shower-level comparison between the HV

and HVj generators

After analyzing the four classes of processes separately, in this section we discuss and compare
the NLO+PS QCD+EW results for HV and HVj production, reproducing the analysis
performed in ref. [12], where only QCD corrections were considered. This comparison is
motivated by the fact that the improved MiNLO prescription applied in HVj production
achieves NLO accuracy for observables that are inclusive in the HV production, i.e. when
the associated jet is not resolved. For HW and HWj production, we show results for the
production of a W− boson only. Similar results can be obtained for the W+ case.

In tab. 5.13 we collect the total cross sections for the considered processes at NLO+PS
QCD+EW level, for different scale combinations. The scale variations are obtained by mul-
tiplying the renormalization and factorization scales µR and µF , whose central value for HV
production is defined in eq. (4.80), by the factors KR and KF respectively, where

(KR, KF ) =

(
1

2
,
1

2

)
,

(
1

2
, 1

)
,

(
1,

1

2

)
, (1, 1) , (2, 1) , (1, 2) , (2, 2) , (5.13)

and by taking the envelope of the resulting predictions. In the HVj case, due to the inclusion
of the MiNLO prescription, this multiplication is performed for each of the several renormal-
ization scales that appear in the process. The Sudakov form factor is also changed, according
to this prescription, as explained in Sec. 2.5.1.

The results are fairly consistent: the central-scale cross sections are slightly bigger in
the HVj processes than in HV , with differences of the order of 1% for the W case and of
about 3% for the Z case. The scale variation is larger in the HVj implementations, and
it shrinks if a symmetric scale variation is performed, as can be seen by inspecting the last
two rows of the table. Since in the POWHEG BOX RES the scale variation is performed only
in the inclusive NLO cross section (the B̄ function in the POWHEG jargon), and not in the
scale associated to the radiation, these uncertainty bands are narrower than what would be
obtained by varying all the scales in a fixed-order NLO computation.
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(KR, KF ) σNLO+PS

HW− [fb] σNLO+PS

HW−j [fb] σNLO+PS

HZ [fb] σNLO+PS

HZj [fb]

(1, 1) 55.29± 0.08 55.25± 0.08 24.34± 0.03 24.9± 0.2

(1, 2) 56.06± 0.08 56.50± 0.09 24.66± 0.03 25.4± 0.2

(2, 1) 54.63± 0.08 53.50± 0.07 24.06± 0.03 24.0± 0.2(
1, 1

2

)
54.55± 0.08 52.68± 0.08 24.03± 0.03 23.8± 0.2(

1
2
, 1
)

56.09± 0.08 55.7± 0.1 24.68± 0.03 25.5± 0.3(
1
2
, 1

2

)
55.44± 0.08 55.9± 0.1 24.41± 0.03 25.5± 0.3

(2, 2) 55.45± 0.08 55.52± 0.08 24.40± 0.03 24.8± 0.2

Table 5.13: Total NLO+PS cross sections for the HV and HVj production processes at a center-of-mass
energy of

√
s = 13 TeV, for different scale combinations. The HVj processes are computed with the MiNLO

procedure active.
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Figure 5.56: NLO+PS comparison between the HW− rapidity distributions in the HW and in the HWj
computation. The left-hand-side plot shows the 7-point scale-variation band for the HW generator, while
the right-hand-side plot shows the HWj 7-point band.
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Figure 5.57: NLO+PS comparison between the electron rapidity distributions in the HW and in the HWj
computation. The bands are obtained as in fig. 5.56.
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Moving to more exclusive quantities, we first analyze in fig. 5.56 the rapidity distribution of
the HW system. In this and in the following plots, the red bands represent the uncertainty
associated to the scale variations, while the blue bars represent the statistical uncertainties
of the integration procedure. The plot on the left-hand side shows the uncertainty band
of the HW process, while the right-hand-side one shows the uncertainty band of the HWj
generator. Since this quantity is predicted at NLO by both processes, we find very good
agreement. The uncertainty band is larger in the HWj case: this is due to the fact that for
HW production there is no renormalization-scale dependence at leading order, while in HWj
such dependence is present. The same agreement can be found in another inclusive quantity,
i.e. the rapidity of the electron, shown in fig. 5.57.
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Figure 5.58: NLO+PS comparison between the HW transverse-momentum distributions in the HW and in
the HWj computation. The bands are obtained as in fig. 5.56.
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Figure 5.59: Same comparison as in fig. 5.58, in a different pHW
T range.

In figs. 5.58 and 5.59 we compare the transverse momentum of the HW pair, in two
different pT ranges. Here we observe some differences, as discussed in the original paper, due
to the fact that this distribution is only computed at leading order in HW production, while
it has NLO accuracy in the other case. Since we included also electroweak corrections, in our
plots these differences are slightly more pronounced than in the pure QCD implementation.
We can also note that the uncertainty band for the HW generator is smaller than the HWj
one. This is due to the fact that, at Born level, HW production does not depend upon αs,
while HWj production does, and this dependence amplifies the bands.

In figs. 5.60 - 5.63 we repeat these comparisons for HZ and HZj production, for which
we can draw similar conclusions as for the HW/HWj comparison.
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Figure 5.60: NLO+PS comparison between the HZ rapidity distributions in the HZ and in the HZj com-
putation. The left-hand-side plot shows the 7-point scale-variation band for the HZ generator, while the
right-hand-side plot shows the HZj 7-point band.
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Figure 5.61: NLO+PS comparison between the electron rapidity distributions in the HZ and in the HZj
computation. The bands are obtained as in fig. 5.60.
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Figure 5.62: NLO+PS comparison between the HZ transverse-momentum distributions in the HZ and in
the HZj computation. The bands are obtained as in fig. 5.60.
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Figure 5.63: Same comparison as in fig. 5.62, in a different pHW
T range.
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Conclusions

In this thesis we have presented original theoretical results on the combined QCD+EW
corrections to the associated production of a Higgs boson with a leptonically-decaying vector
boson and eventually a jet (HV/HVj) in hadronic collisions, at NLO + parton-shower level.

To describe the associated production processes at combined QCD+EW accuracy, we
extended a previous NLO+PS QCD calculation, including also the full electroweak corrections
and their Sudakov approximation. We implemented them in the POWHEG BOX RES, a Monte
Carlo event generator with NLO accuracy that can be interfaced to parton- and photon-
shower generators according to the POWHEG method. This program is an extension of the
POWHEG BOX: it considerably improves the precision in the description of processes where the
radiation can originate from the decay of massive resonances. Photon radiation from massive
leptons was already introduced in this framework, and we have added the treatment of photon
radiation from final-state massless charged particles.

In the first part of this thesis we computed the Sudakov corrections to the associated
production processes HV and HVj. We distinguished between the production of transverse
and longitudinal vector bosons, since they behave in different ways in the high-energy limit.
We found a negligible contribution coming from the transversely polarized vector boson, in
the high-energy region

√
s & 1 TeV. This can be ascribed to the fact that the corresponding

matrix element is mass-suppressed with respect to the longitudinal one, so at high energies
it gives contributions of less than 1% to the total result.

Then, we analyzed HV and HVj production in proton-proton collisions at a center-of-
mass energy of 13 TeV. We focused on the transverse momentum of the final-state particles, in
the high-energy regime. The discrepancies between the approximated NLL and the complete
calculations turned out to be of the order of 1-2% in HW and HWj production, and of 5%
for the Z-boson case. When inspecting more inclusive quantities, like the total cross section
and the rapidity distributions, the NLL approximation has not provided reliable results,
presenting differences with respect to the complete calculation of 8% for HW and HWj
production, and of 5% for HZ and HZj. Moreover we found that, while the full electroweak
corrections always decrease the pure QCD predictions, in HWj and HZj production the
Sudakov approximation gives a positive contribution to the total cross sections and to the
rapidity distributions. However, we did not expect the NLL approximation to be good for
these inclusive quantities.

The electroweak corrections have sizable impact on several transverse-momentum distri-
butions at high pT . For example, in HV production we found that the electroweak corrections
decrease the QCD results of 15% at pT values of the vector boson of 1 TeV, while around 2 TeV
the corrections amount to −30%. For HVj production, the effect is even more pronounced,
reaching −20% at 1 TeV and −40% at 2 TeV. The rapidity distributions, the transverse
mass of the vector boson and the typical kinematic distributions involving the jets, instead,
receive constant negative contributions in the whole rapidity ranges considered, of the order
of 5-10%, depending on the process.
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It is then important to include the electroweak corrections when computing collider ob-
servables in the high-energy regime, since they change in a non-negligible way the shape of
many kinematic distributions.

A good approximation of the complete result can be obtained by including the NLL
approximated results, i.e. those that contain the Sudakov logarithms up to order next-to-
leading. Using approximated expressions for the full one-loop electroweak virtual amplitudes
drastically reduces the computational cost. While this approximation is valid in the tails of
some transverse-momentum distributions, starting from pT -values of the order of 500 GeV,
it differs with respect to the full electroweak results for more inclusive quantities.

The work presented in this thesis provides the first NLO+PS simulation of the associated
production of a Higgs boson with a leptonically-decaying vector boson and eventually a jet
at hadron colliders, with combined QCD+EW accuracy and with the possibility to include
the complete one-loop electroweak corrections or their high-energy limit. Thanks to the
improvements introduced in the POWHEG BOX RES for the treatment of photon radiation,
and to the interface to the OpenLoops generator, this framework can consistently simulate
Standard Model processes at NLO+PS EW accuracy. This is a good starting point for future
works, towards the automation of the generation of Standard Model processes at NLO+PS
QCD+EW accuracy, to comply with the experimental results that are coming from the LHC
Run 2.

120



Appendix A

Representations of the gauge group

In this appendix we define the generators of the SU(2) × U(1) gauge group, and we list
some useful group-theoretical quantities that are used in the calculation of the electroweak
corrections in Sudakov approximation.

A.1 SU(2) × U(1) generators

The infinitesimal global SU(2)× U(1) transformations of the fields ϕi are determined by

δϕi = ie
∑

V a=A,Z,W±

∑
ϕi′

IV
a

ϕiϕi′
δθV

a

ϕi′ , (A.1)

where δθV
a

are the infinitesimal gauge parameters, and the matrices IV
a

ϕiϕi′
are the generators

that determine the gauge couplings. In other words, ieIV
a

ϕiϕi′
is the coupling corresponding

to the gauge vertex V aϕ̄iϕi′ , with all fields incoming. The representation of these matrices
depends on ϕ: in general it is not irreducible.

Since the transformation rule for the complex-conjugate fields is fixed by the complex
conjugation of eq. (A.1), the following relation holds,(

IV
a

ϕiϕj

)∗
= −I V̄ a

ϕ+
i ϕ

+
j
, (A.2)

where V̄ a and ϕ+
i are the charge-conjugated fields of V a and ϕi. Owing to the unitarity of

representations, in a real basis in which V̄ a = V a the generators are self-adjoint, so that

I V̄
a

ϕiϕj
=
(
IV

a

ϕjϕi

)∗
, (A.3)

and combining these two relations we obtain

IV
a

ϕiϕj
= −IV a

ϕ+
j ϕ

+
i
. (A.4)

The generators in the adjoint representation are connected to the structure constants through
a set of commutation relations,[

IV
a

, IV
b
]
ϕiϕj

=
i

sW

∑
V c

εV
aV bV c I V̄

c

ϕiϕj
. (A.5)
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A.2 Bases for gauge fields

Group-theoretical quantities can be expressed in two different bases. The symmetric basis is
formed by the U(1) and SU(2) gauge bosons Ṽ = (B,W 3,W 1,W 2)

T
. The physical basis, in-

stead, can be obtained by considering the charge and mass eigenstates, V = (A,Z,W+,W−)
T

.
The relation between these two bases is

A = cWB − sWW 3, (A.6)

Z = sWB + cWW
3, (A.7)

W± =
W 1 ∓ iW 2

√
2

, (A.8)

or, in matrix notation, V = U(θW )Ṽ , where

U(θW ) =


cW −sW 0 0
sW cW 0 0
0 0 1√

2
− i√

2

0 0 1√
2

i√
2

 . (A.9)

We can then express the generators of the gauge group, and some other useful group-
theoretical quantities, in the two different bases. The generators of the gauge group in
the symmetric basis can be written in terms of the components of the weak isospin T a, the
hypercharge Y and the relation with the electric charge Q = T 3 + Y/2, according to

ĨB = − 1

cW

Y

2
, ĨW

a

=
1

sW
T a, a = 1, 2, 3. (A.10)

Defining a vector Ĩ Ṽ = (ĨB, ĨW
3
, ĨW

1
, ĨW

2
), the generators IV = (IA, IZ , IW

+
, IW

−
) of the

physical basis can be obtained employing the matrix (A.9), through IV = Ĩ ṼU †(θW ), where

U †(θW ) = U−1(θW ) =


cW sW 0 0
−sW cW 0 0

0 0 1√
2

1√
2

0 0 i√
2
− i√

2

 . (A.11)

The result is

IA = −Q, IZ =
T 3 −Qs2

W

sWcW
, I± =

1

sW
T± =

1

sW

T 1 ± iT 2

√
2

. (A.12)

A.3 Relevant group-theoretical quantities

We first introduce the electroweak Casimir operator, defined as the sum over the squared
SU(2) and U(1) generators,

Cew
ϕiϕi′

=
∑

V a=A,Z,W±

(
IV

a

I V̄
a
)
ϕiϕi′

=
1

c2
W

(
Y

2

)2

ϕiϕi′

+
1

s2
W

CSU(2)
ϕiϕi′

, (A.13)

where the SU(2) Casimir operator is

CSU(2) =
3∑

a=1

(T a)2 . (A.14)
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For fermions and scalars the electroweak Casimir operator is diagonal,

Cew
ϕiϕi′

= δϕiϕi′

[
Y 2
ϕi

4c2
W

+
|T 3
ϕi
|
(
|T 3
ϕi
|+ 1

)
s2
W

]
, (A.15)

while for gauge bosons it is non-diagonal in the neutral components of the physical basis,
and reads

Cew
V aV b

=
2

s2
W


s2
W −sWcW 0 0

−sWcW c2
W 0 0

0 0 1 0
0 0 0 1

 , V a = A,Z,W+,W−. (A.16)

A.3.1 Fermions

The fermionic doublets fκ = (fκ,+, fκ,−)T transform according to the fundamental represen-
tation, depending on the chirality κ = L,R. The only non-diagonal operators are I±, because
the coupling with a W± boson changes the flavour of the fermion. For the lepton and quark
doublets, Lκ = (νκ, lκ)

T and Qκ = (uκ, dκ)
T , the eigenvalues of the operators are listed in

tab. A.1.

Y/2 Q T 3 CSU(2)
(
IA
)2 (

IZ
)2

Cew

νL, ν̄L ∓1
2

0 ±1
2

3
4

0 1
4s2W c2W

1+2c2W
4s2W c2W

lL, l̄L ∓1
2
∓1 ∓1

2
3
4

1
(c2W−s

2
W )2

4s2W c2W

1+2c2W
4s2W c2W

lR, l̄R ∓1 ∓1 0 0 1
s2W
c2W

1
c2W

uL, ūL ±1
6
±2

3
±1

2
3
4

4
9

(3c2W−s
2
W )2

36s2W c2W

s2W+27c2W
36s2W c2W

dL, d̄L ±1
6
∓1

3
∓1

2
3
4

1
9

(3c2W+s2W )2

36s2W c2W

s2W+27c2W
36s2W c2W

uR, ūR ±2
3
±2

3
0 0 4

9

4s2W
9c2W

4
9c2W

dR, d̄R ∓1
3
∓1

3
0 0 1

9

s2W
9c2W

1
9c2W

Table A.1: Eigenvalues of the relevant SU(2)×U(1) operators for the lepton and quark doublets.

For I± instead we have

Iσfκ′,σ′fκ,−σ′ = − Iσf̄κ′,−σ′ f̄κ,σ′ = δκLδκ′L
δσσ′√
2sW

. (A.17)

If the particles involved are quarks, this operator has to be multiplied by the corresponding
CKM matrix element.

A.3.2 Scalar fields

The symmetric scalar doublet, Φ = (φ+, φ0)T and Φ∗ = (φ−, φ∗0)T , transforms like fermions,
according to the fundamental representation. Its quantum numbers correspond to those of
the left-handed leptons in the previous table, with

φ+ ↔ l̄L, φ− ↔ lL, φ0 ↔ ν̄L, φ∗0 ↔ νL. (A.18)
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In the physical basis, after symmetry breaking the φ0 component is parametrized by the mass
eigenstates

φ0 =
1√
2

(v +H + iχ). (A.19)

In this basis, S = (H,χ), the operators Q,CSU(2),
(
IA
)2
,
(
IZ
)2

and Cew remain unchanged (in
particular IZH = IZχ = IZν̄L), while T 3 and Y become non-diagonal,

T 3
SS′ = −

(
Y

2

)
SS′

= − 1

2

(
0 i
−i 0

)
, (A.20)

so that

IZHχ = − IZχH = − i

2sWcW
. (A.21)

The I± couplings take the values

Iσ
Sφ−σ′

= − Iσ
φσ′S

= δσσ′I
σ
S , IσH = − σ

2sW
, Iσχ = − i

2sW
. (A.22)

A.3.3 Gauge fields

In the adjoint representation, under which gauge bosons transform, the generators are fixed
by the structure constants of the gauge group through eq. (A.5),

IV
a

V̄ cV b =
i

sW
εV

aV bV c =


(−1)p+1 if V aV bV c = π(AW+W−),

(−1)p cW
sW

if V aV bV c = π(ZW+W−),

0 otherwise.

(A.23)

The symbol π denotes a permutation, and (−1)p represents the sign of this permutation. In
the symmetric basis the diagonal operators have the eigenvalues reported in tab. A.2.

Y/2 Q T 3 CSU(2)
(
IA
)2 (

IZ
)2

Cew

W± 0 ±1 ±1 2 1
c2W
s2W

2
s2W

W 3 0 0 0 2 0 0 2
s2W

B 0 0 0 0 0 0 0

Table A.2: Eigenvalues of the relevant SU(2)×U(1) operators for gauge fields in the symmetric basis.

In the physical basis, the operators that have vanishing eigenvalues in the neutral sector
remain unchanged: their values can be found in tab. A.3.

Y/2 Q T 3
(
IA
)2 (

IZ
)2

W± 0 ±1 ±1 1
c2W
s2W

Z 0 0 0 0 0

A 0 0 0 0 0

Table A.3: Eigenvalues of the relevant SU(2)×U(1) operators for gauge fields in the physical basis.
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The remaining operators become non-diagonal in the neutral sector N = (A,Z), and read

Cew
NN ′ =

1

s2
W

C
SU(2)
NN ′ =

2

s2
W

(
s2
W −sWcW

−sWcW c2
W

)
. (A.24)

At the end, in the physical basis the non-vanishing components of the I± couplings are

Iσ
NW−σ′

= − Iσ
Wσ′N

= δσσ′I
σ
N , IσA = −σ, IσZ = σ

cW
sW
. (A.25)

A.3.4 Dynkin operator

The group-theoretical object that appears in gauge boson self-energies is the Dynkin operator,

Dew
V aV b(ϕ) ≡ Tr

{
I V̄

a

(ϕ)IV
b

(ϕ)
}

=
∑
ϕi,ϕi′

I V̄
a

ϕiϕi′
IV

b

ϕi′ϕi
. (A.26)

The indices a, b are those of the gauge group. The trace is performed over the isospin doublet
for ϕ = Φ, fL, fR, and over the gauge group for ϕ = V . In the latter case the Dynkin operator
corresponds to the electroweak Casimir operator,

Dew
V aV b(V ) = Cew

V aV b . (A.27)

In the symmetric basis D̃ew is diagonal,

D̃ew
V aV b(ϕ) = δV aV b D̃

ew
a (ϕ). (A.28)

The SU(2) and U(1) eigenvalues of the fundamental representation, ϕ = Φ, fL, are

D̃ew
B (ϕ) =

Y 2
ϕ

2c2
W

ξ, D̃ew
W (ϕ) =

1

2s2
W

ξ, (A.29)

where ξ = 1 for fermions, and ξ = 2 for the scalar doublet. For right-handed fermions instead
we have

D̃ew
B (fR) =

Y 2
fR,+

+ Y 2
fR,−

4c2
W

, D̃ew
W (fR) = 0. (A.30)

In the physical basis, the charged components are

Dew

WσWσ′ (ϕ) = δσσ′ D̃
ew
W (ϕ). (A.31)

For the neutral components, instead, the eigenvalues for the scalar doublet and the left-
handed fermion doublet read

D̃ew
NN′(ϕ) =

[
U(θW )D̃ew(ϕ)U(θW )−1

]
NN′

=
1

2

 1 + Y 2
ϕ

Y 2
ϕ s

2
W−c

2
W

sW cW

Y 2
ϕ s

2
W−c

2
W

sW cW

Y 2
ϕ s

4
W+c4W

s2W c2W

 , (A.32)

while for right-handed fermions

D̃ew
NN′(fR) = D̃ew

B (fR)

(
c2
W cWsW

cWsW s2
W

)
. (A.33)
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The explicit values of the Dynkin operator are listed in tab. A.4.

Dew
AA Dew

AZ Dew
ZZ Dew

W

Φ 2
s2W−c

2
W

sW cW

s4W+c4W
s2W c2W

1
s2W

LL 1
s2W−c

2
W

2sW cW

s4W+c4W
2s2W c2W

1
2s2W

LR 1 sW
cW

s2W
c2W

0

QL
5
9

s2W−9c2W
18sW cW

s4W+9c4W
18s2W c2W

1
2s2W

QR
5
9

5sW
9cW

5s2W
9c2W

0

Table A.4: Eigenvalues of the Dynkin operator for the scalar doublet and for fermions.

A.3.5 β-function coefficients

In gauge boson self-energies, the sums of gauge-boson, scalar and fermionic loops give the
following combination of Dynkin operators,

bew
V aV b

≡ 11

3
Dew
V aV b

(V )− 1

6
Dew
V aV b

(Φ)− 2

3

∑
f=Q,L

3∑
j=1

N f
C

∑
κ=L,R

Dew
V aV b

(f jκ), (A.34)

which is proportional to the one-loop coefficients of the β-function. In the symmetric basis
b̃ew
V aV b

is diagonal, and its eigenvalues are

b̃ew
B = − 41

6c2
W

, b̃ew
W =

19

6s2
W

. (A.35)

They describe the running of the hypercharge and weak-isospin coupling constants. In the
physical basis the single components read

bew
AA = c2

W b̃
ew
B + s2

W b̃
ew
W = − 11

3
, (A.36)

bew
AZ = sWcW (b̃ew

B − b̃ew
W ) = − 19 + 22s2

W

6sWcW
, (A.37)

bew
ZZ = s2

W b̃
ew
B + c2

W b̃
ew
W =

19− 38s2
W − 22s4

W

6s2
Wc

2
W

, (A.38)

bew

WσWσ′ = δσσ′ b̃
ew
B =

19

6s2
W

. (A.39)

The AA component determines the running of the electric charge, while the AZ component
is associated with the running of the weak mixing angle.
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Appendix B

Computation of the Sudakov
corrections

In this appendix we derive the results reported in Chap. 4 for the computation of the Sudakov
electroweak corrections to the HW and HZ associated production processes in leading-pole
approximation, distinguishing between transverse and longitudinal vector bosons. All the
relevant group-theoretical quantities that appear in the formulae can be found in App. A,
while the Feynman rules used to obtain these results are taken from App. C of ref. [8]. We
report here, for completeness, the high-energy logarithms defined in eq. (3.10),

L(s) ≡ α

4π
log2 s

M2
W

, l(s) ≡ α

4π
log

s

M2
W

. (B.1)

As explained in Sec. 4.1.7, the logarithmic corrections containing the fictitious photon mass λ
and the light fermion masses mf are not included. We neglect also the factors δLSC,h

bκ
and δC,hbκ

,
since we are considering the bottom quark as massless.

In the following, u and d denote generic up- and down-type quarks, regardless of their
generation, unless specified. The intermediate and final results are written in such a way that
they can be easily adapted to the HVj processes. In more detail, the subleading soft-collinear
corrections can be obtained from the ones computed here by including the terms proportional
to log(|r12|/s) and log(|r34|/s). Moreover, with more than four particles involved, r13 6= r24

and r14 6= r23. For the W boson, we focus on W− production, since the W+ results can be
obtained from the ones we derive here through simple relations. For all the processes under
study, the relation q = p1 + p2 holds.

B.1 The HW−
T

associated production

The leading-order process, with all the particles incoming, is

dL(p1) ūL(p2)H(−p3)W+
T (−k)→ 0, (B.2)

and its matrix element reads

MdLūLHW
+
T

0 = v̄L(p2)V µ
dūW+ uL(p1)

(−i)
q2 −M2

W

ie2v
{
I−, I+

}
HH

εTµ(−k). (B.3)

V µ
dūW+ represents the vertex duW ,

V µ
dūW+ = (−ieγµ)

1− γ5

2
I+
ud V

CKM

ud , (B.4)
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while the WWH vertex gives a factor

ie2v
{
I−, I+

}
HH

= ie2v
1

2s2
W

. (B.5)

We can simplify eq. (B.3) inserting the vacuum expectation value v = 2MWsW/e, the value
of I+

ud taken from eq. (A.17), neglecting M2
W in the denominator of the propagator and

considering that the helicity projector acts on left-handed spinors, so that (1− γ5)uL = 2uL,

MdLūLHW
+
T

0 = − i

q2

e2

√
2s2

W

MW V
CKM

ud v̄L(p2)γµuL(p1) εTµ(−k) =
e2

√
2s2

W

MW V
CKM

ud

AT−

q2
, (B.6)

having grouped the spinorial part of the matrix element in

AT− = −i v̄L(p2)γµuL(p1) εTµ(−k). (B.7)

B.1.1 Leading soft-collinear contributions

In order to obtain these correction factors we apply the formulae (3.25) and (3.26). For the
process under consideration we have:

k = 1 : ϕ1 = ϕ1′ = dL

δLSC

dLdL
= − 1

2
L(s)Cew

dL
+ l(s) log

M2
Z

M2
W

(IZdL)2− 1

2
Q2
d Lem(s, λ2,m2

d), (B.8)

k = 2 : ϕ2 = ϕ2′ = ūL

δLSC

ūLūL
= − 1

2
L(s)Cew

ūL
+ l(s) log

M2
Z

M2
W

(IZūL)2− 1

2
Q2
u Lem(s, λ2,m2

u), (B.9)

k = 3 : ϕ3 = ϕ3′ = H

δLSC

HH = − 1

2
L(s)Cew

Φ + l(s) log
M2

Z

M2
W

(IZH)2 + δLSC,h

H , (B.10)

k = 4 : ϕ4 = ϕ4′ = W+
T

δLSC

W+W+ = − 1

2
L(s)Cew

W+ + l(s) log
M2

Z

M2
W

(IZ
W+)2− 1

2
Q2
W Lem(s, λ2,M2

W ), (B.11)

with δLSC,h

H , relevant only for external Higgs bosons, defined in eq. (3.31). Summing these
contributions, and considering that Cew

dL
= Cew

ūL
≡ Cew

q , we obtain

δLSCMdLūLHW
+
T =

{
− 1

2
L(s)

[
2Cew

q + Cew
Φ + Cew

W

]
+ δLSC,h

H

+ l(s) log
M2

Z

M2
W

[
(IZdL)2 + (IZūL)2 + (IZH)2 + (IZW )2

]
− 1

2

[
Q2
d Lem(s, λ2,m2

d)

+Q2
u Lem(s, λ2,m2

u) +Q2
W Lem(s, λ2,M2

W )
]}
M0. (B.12)

B.1.2 Subleading soft-collinear contributions

When considering processes that involve four particles, the subleading soft-collinear correc-
tions take the form of eq. (4.17). Since r12 = r34 = s, all the terms multiplied by log(|r12|/s)

128



and log(|r34|/s) vanish. Nevertheless, in HWj production they may become relevant, because
of the switch of the kinematic invariants required by crossing symmetry. For this reason we
include them in our computation: from these results, then, it is possible to easily obtain the
correction factors for HWj production. This procedure is adopted for all the other processes
described in this appendix. In the following we list the relevant terms.

Photon exchange

∑
IAϕ1′dL

IAϕ2′ ūL
Mϕ1′ϕ2′HW

+
T

0 = IAdLdL I
A
ūLūL
M0 = −QdQuM0, (B.13)∑

IAϕ2′ ūL
IAϕ4′W

+
T
MdLϕ2′Hϕ4′

0 = IAūLūL I
A
W+W+M0 = −QuQW+M0, (B.14)∑

IAϕ1′dL
IAϕ4′W

+
T
Mϕ1′ ūLHϕ4′

0 = IAdLdL I
A
W+W+M0 = QdQW+M0. (B.15)

Z-boson exchange

∑
IZϕ1′dL

IZϕ2′ ūL
Mϕ1′ϕ2′HW

+
T

0 = IZdLdL I
Z
ūLūL
M0 = −IZdL IZuLM0, (B.16)∑

IZϕ1′dL
IZϕ3′H

Mϕ1′ ūLϕ3′W
+
T

0 = IZdLdL I
Z
χHM

dLūLχW
+
T

0 = 0, (B.17)∑
IZϕ2′ ūL

IZϕ4′W
+
T
MdLϕ2′Hϕ4′

0 = IZūLūL I
Z
W+W+M0 = −IZuL IZW+M0, (B.18)∑

IZϕ1′dL
IZϕ4′W

+
T
Mϕ1′ ūLHϕ4′

0 = IZdLdL I
Z
W+W+M0 = IZdL I

Z
W+M0, (B.19)∑

IZϕ2′ ūL
IZϕ3′H

MdLϕ2′ϕ3′W
+
T

0 = IZūLūL I
Z
χHM

dLūLχW
+
T

0 = 0, (B.20)∑
IZϕ3′H

IZϕ4′W
+
T
MdLūLϕ3′ϕ4′

0 = IZχH I
Z
W+W+MdLūLχW

+
T

0 = 0. (B.21)

The terms that multiplyMdLūLχW
+
T

0 vanish, since in this matrix element the Goldstone boson
is coupled to massless fermions, and this coupling is proportional to the fermion mass.

W+-boson exchange

∑
I+
ϕ1′dL

I−ϕ3′H
Mϕ1′ ūLϕ3′W

+
T

0 = I+
ud I

−
φ−HM

uLūLφ
−W+

T
0

= − 1

2
√

2s2
W

V CKM

ud MuLūLφ
−W+

T
0 , (B.22)

∑
I+
ϕ2′ ūL

I−
ϕ4′W

+
T

MdLϕ2′Hϕ4′
0 = I+

d̄ū

(
I−
AW+MdLd̄LHA

0 + I−
ZW+MdLd̄LHZ

0

)
=

cW√
2s2

W

V CKM

ud MdLd̄LHZ
0 , (B.23)

∑
I+
ϕ1′dL

I−
ϕ4′W

+
T

Mϕ1′ ūLHϕ4′
0 = I+

ud

(
I−
AW+MuLūLHA

0 + I−
ZW+MuLūLHZ

0

)
= − cW√

2s2
W

V CKM

ud MuLūLHZ
0 , (B.24)
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∑
I+
ϕ2′ ūL

I−ϕ3′H
MdLϕ2′ϕ3′W

+
T

0 = I+
d̄ū
I−φ−HM

dLd̄Lφ
−W+

T
0

=
1

2
√

2s2
W

V CKM

ud MdLd̄Lφ
−W+

T
0 , (B.25)

∑
I+
ϕ3′H

I−
ϕ4′W

+
T

MdLūLϕ3′ϕ4′
0 = I+

φ+H

(
I−
AW+MdLūLφ

+A
0 + I−

ZW+MdLūLφ
+Z

0

)
=

1

2sW

(
MdLūLφ

+A
0 − cW

sW
MdLūLφ

+Z
0

)
. (B.26)

MqLq̄LHA
0 vanishes because of the Higgs boson coupling to massless quarks. The processes

MqLq̄Lφ
−W+

T
0 occur through an intermediate photon or Z boson: they are related to M0 by

MqLq̄Lφ
−W+

T
0 =

2
√

2s3
W

V CKM
ud

[
Qq

2sW
− IZqL

2cW

]
M0. (B.27)

The processes MqLq̄LHZ
0 , instead, can be written in terms of M0 as

MqLq̄LHZ
0 =

√
2sW
c2
W

IZqL
V CKM
ud

M0. (B.28)

Finally, for the matrix elements MdLūLφ
+A

0 and MdLūLφ
+Z

0 we obtain

MdLūLφ
+A

0 = − sWM0, MdLūLφ
+Z

0 = − s
2
W

cW
M0, (B.29)

so that the term multiplying log(|r34|/s) vanishes independently of the value assumed by r34.

W−-boson exchange

No contributions come from the exchange of a W− boson.

Final results

We can write the subleading soft-collinear corrections grouping the neutral- and charged-
boson terms, as

δSSCMdLūLHW
+
T = δSSC,nMdLūLHW

+
T + δSSC,±MdLūLHW

+
T . (B.30)

Defining t = r13 and u = r14 these correction factors take the form

δSSC,nMdLūLHW
+
T =

[
2l(s)

(
RdLW+ log

|u|
s
−RuLW+ log

|t|
s

)
+
α

2π
log

M2
W

λ2

(
Qd log

|u|
s
−Qu log

|t|
s

)
QW+

]
M0, (B.31)

δSSC,±MdLūLHW
+
T = 2l(s) sW

[
log
|t|
s

(
IZuL
2cW
− Qu

2sW
+

IZdL
s2
WcW

)
− log

|u|
s

(
IZdL
2cW
− Qd

2sW
+

IZuL
s2
WcW

)]
M0, (B.32)

in which Rφ1φ2 is related to the charge and to the weak isospin of the involved particles
according to

Rφ1φ2 = Qφ1Qφ2 + IZφ1I
Z

φ2
. (B.33)
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B.1.3 Single-logarithmic corrections: external particles

The corrections associated to external particles take the form described in Sec. 3.5. For this
process we obtain

k = 1 : ϕ1 = ϕ1′ = dL

δCdLdL =
3

2
l(s)Cew

dL
+
α

4π
Q2
d log

M2
W

λ
, (B.34)

k = 2 : ϕ2 = ϕ2′ = ūL

δCūLūL =
3

2
l(s)Cew

ūL
+
α

4π
Q2
u log

M2
W

λ
, (B.35)

k = 3 : ϕ3 = ϕ3′ = H

δCHH =
α

4π

(
2Cew

Φ log
s

M2
H

− 3

4s2
W

m2
t

M2
W

log
s

m2
t

)
, (B.36)

k = 4 : ϕ4 = ϕ4′ = W+
T

δC
W+W+ =

1

2
bew
WW l(s) +

α

4π

(
1

24s2
W

log
M2

H

M2
W

+ TWW log
m2
t

M2
W

+Q2
W log

M2
W

λ2

)
, (B.37)

where TWW is taken from eq. (3.43). Manipulating the logarithms in eq. (B.36) in order to
isolate l(s), the result is

δCMdLūLHW
+
T =

{
α

4π

[(
3

4s2
W

m2
t

M2
W

+ TWW

)
log

m2
t

M2
W

+

(
1

24s2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

q + 2Cew
Φ +

1

2
bew
WW −

3

4s2
W

m2
t

M2
W

]
+
α

4π
log

M2
W

λ2
(Q2

d +Q2
u +Q2

W )

}
M0. (B.38)

B.1.4 Single-logarithmic corrections: parameter renormalization

The parameters appearing in the leading-order process, that have to be renormalized, are
e, sW and MW . In principle the last parameter should not be considered, carrying it a
mass dimension. Since the original matrix element is mass-suppressed, however, the factor
(∂M0/∂M

2
W ) δM2

W has the same energy dependence of M0, so it has to be included. These
corrections are then given by

δPRMdLūLHW
+
T =

(
∂M0

∂e
δe+

∂M0

∂c2
W

δc2
W +

∂M0

∂M2
W

δM2
W

)∣∣∣∣
µ2=s

, (B.39)

with

∂M0

∂e
=

2

e
M0, (B.40)

∂M0

∂c2
W

= − ∂M0

∂s2
W

=
M0

s2
W

, (B.41)

∂M0

∂M2
W

=
M0

2M2
W

. (B.42)
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The factors δe, δc2
W and δM2

W can be obtained from eqs. (3.56), (3.57) and (3.60). Grouping
together the various terms, and considering that

cW
sW
bew
AZ − bew

AA = −bew
WW , (B.43)

we get

δPRMdLūLHW
+
T =

{
α

4π

[
5

12s2
W

log
M2

H

M2
W

−
(

9 + 6s2
W − 32s4

W

18s4
W

+ TWW −
3

4s2
W

m2
t

M2
W

)
log

m2
t

M2
W

]
+ l(s)

(
− 3

2
bew
WW + 2Cew

Φ −
3

4s2
W

m2
t

M2
W

)}
M0. (B.44)

B.2 The HW−
L

associated production

For the production of a longitudinal W− boson,

dL(p1) ūL(p2)H(−p3)W+
L (−k)→ 0, (B.45)

the GBET has to be applied, giving MdLūLHW
+
L

0 = MdLūLHφ
+

0 . The HWφ vertex gives a
factor ieI−

Hφ+(−k + p3)µ. The matrix element can then be written as

MdLūLHW
+
L

0 = MdLūLHφ
+

0 = v̄L(p2)V µ
dūW+uL(p1)

(−i)
q2 −M2

W

ieI−
Hφ+ (−k + p3)µ

= − i

q2

e2

2
√

2s2
W

V CKM

ud v̄L(p2)γµuL(p1) (−k + p3)µ

=
e2

2
√

2s2
W

V CKM

ud

AL−

q2
, (B.46)

having defined V µ
dūW+ in eq. (B.4) and

AL− = − i v̄L(p2)γµuL(p1) (−k + p3)µ. (B.47)

B.2.1 Leading soft-collinear contributions

To obtain these corrections we apply the same formulae used in the transverse case. Apart
from the Goldstone boson, the factors for the other particles remain unchanged and are not
reported.

δLSC

φ+φ+ = − 1

2
L(s)Cew

Φ + l(s) log
M2

Z

M2
W

(IZφ+)2 + δLSC,h

φ± −
1

2
Q2
φ Lem(s, λ2,M2

W ), (B.48)

with δLSC,h

φ± defined in eq. (3.32). We then get

δLSCMdLūLHφ
+

=

{
− L(s)

(
Cew
q + Cew

Φ

)
+ δLSC,h

H + δLSC,h

φ±

+ l(s) log
M2

Z

M2
W

[
(IZdL)2 + (IZūL)2 + (IZH)2 + (IZφ+)2

]
− 1

2

[
Q2
d Lem(s, λ2,m2

d)

+Q2
u Lem(s, λ2,m2

u) +Q2
φ Lem(s, λ2,M2

W )
]}
M0. (B.49)
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B.2.2 Subleading soft-collinear contributions

Photon exchange∑
IAϕ1′dL

IAϕ2′ ūL
Mϕ1′ϕ2′Hφ

+

0 = IAdLdL I
A
ūLūL
M0 = −QdQuM0, (B.50)∑

IAϕ2′ ūL
IAϕ4′φ

+MdLϕ2′Hϕ4′
0 = IAūLūL I

A
φ+φ+M0 = −QuQφ+M0, (B.51)∑

IAϕ1′dL
IAϕ4′φ

+Mϕ1′ ūLHϕ4′
0 = IAdLdL I

A
φ+φ+M0 = QdQφ+M0. (B.52)

Z-boson exchange∑
IZϕ1′dL

IZϕ2′ ūL
Mϕ1′ϕ2′Hφ

+

0 = IZdLdL I
Z
ūLūL
M0 = −IZdL IZuLM0, (B.53)∑

IZϕ1′dL
IZϕ3′H

Mϕ1′ ūLϕ3′φ
+

0 = IZdLdL I
Z
χHMdLūLχφ

+

0 = −IZdL IZHχM
dLūLχφ

+

0 , (B.54)∑
IZϕ2′ ūL

IZϕ4′φ
+MdLϕ2′Hϕ4′

0 = IZūLūL I
Z
φ+φ+M0 = −IZuL IZφ+M0, (B.55)∑

IZϕ1′dL
IZϕ4′φ

+Mϕ1′ ūLHϕ4′
0 = IZdLdL I

Z
φ+φ+M0 = IZdL I

Z
φ+M0, (B.56)∑

IZϕ2′ ūL
IZϕ3′H

MdLϕ2′ϕ3′φ
+

0 = IZūLūL I
Z
χHMdLūLχφ

+

0 = IZuL I
Z
HχMdLūLχφ

+

0 , (B.57)∑
IZϕ3′H

IZϕ4′φ
+MdLūLϕ3′ϕ4′

0 = IZχH I
Z
φ+φ+MdLūLχφ

+

0 = −IZHχ IZφ+MdLūLχφ
+

0 . (B.58)

The process MdLūLχφ
+

0 occurs through an intermediate W− boson, and is related to M0 by

MdLūLχφ
+

0 = − iM0. (B.59)

W+-boson exchange∑
I+
ϕ1′dL

I−ϕ3′H
Mϕ1′ ūLϕ3′φ

+

0 = I+
ud I

−
φ−HM

uLūLφ
−φ+

0 = − 1

2
√

2s2
W

V CKM

ud MuLūLφ
−φ+

0 , (B.60)

∑
I+
ϕ2′ ūL

I−ϕ4′φ
+MdLϕ2′Hϕ4′

0 = I+
d̄ū

(
I−
Hφ+
MdLd̄LHH

0 + I−χφ+M
dLd̄LHχ
0

)
=

i

2
√

2s2
W

V CKM

ud MdLd̄LHχ
0 , (B.61)

∑
I+
ϕ1′dL

I−ϕ4′φ
+Mϕ1′ ūLHϕ4′

0 = I+
ud

(
I−
Hφ+
MuLūLHH

0 + I−χφ+M
uLūLHχ
0

)
= − i

2
√

2s2
W

V CKM

ud MuLūLHχ
0 , (B.62)

∑
I+
ϕ2′ ūL

I−ϕ3′H
MdLϕ2′ϕ3′φ

+

0 = I+
d̄ū
I−φ−HM

dLd̄Lφ
−φ+

0 =
1

2
√

2s2
W

V CKM

ud MdLd̄Lφ
−φ+

0 , (B.63)

∑
I+
ϕ3′H

I−ϕ4′φ
+MdLūLϕ3′ϕ4′

0 = I+
φ+H

(
I−
Hφ+
MdLūLφ

+H
0 + I−

χφ+
MdLūLφ

+χ
0

)
=

1

4s2
W

(
MdLūLφ

+H
0 − iMdLūLφ

+χ
0

)
. (B.64)
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MqLq̄LHH
0 vanishes, because it can only be realized through Higgs bosons that couple to

massless quarks. The processes MqLq̄Lφ
−φ+

0 , instead, occur with an intermediate photon or
Z boson, and they are related to M0 through

MqLq̄Lφ
−φ+

0 =
2
√

2s2
W

V CKM
ud

RqLφ+M0. (B.65)

The processes MqLq̄LHχ
0 have an intermediate Z boson, and can be written in terms of M0

according to

MqLq̄LHχ
0 =

2
√

2s2
W

V CKM
ud

IZqL I
Z

HχM0. (B.66)

The matrix element with an intermediate χ boson, and the one with the final state particles
directly connected to the quark current, vanish because of the coupling between these particles

and the quarks. Finally, for MdLūLφ
+H

0 and MdLūLφ
+χ

0 we obtain

MdLūLφ
+H

0 = −M0, MdLūLφ
+χ

0 = iM0, (B.67)

so that the terms that multiply log(|r34|/s) vanish.

W−-boson exchange

No contributions come from the exchange of a W− boson.

Final results

We combine the subleading soft-collinear corrections into neutral- and charged-boson terms,

δSSC,nMdLūLHφ
+

=
α

2π
log

M2
W

λ2

(
Qd log

|u|
s
−Qu log

|t|
s

)
Qφ+M0

+ 2l(s)

[
log
|t|
s

(
iIZHχ I

Z

dL
−RuLφ+

)
− log

|u|
s

(
iIZHχ I

Z

uL
−RdLφ+

)]
M0, (B.68)

δSSC,±MdLūLHφ
+

= 2l(s)

[
log
|t|
s

(
iIZHχ I

Z

dL
−RuLφ+

)
− log

|u|
s

(
iIZHχ I

Z

uL
−RdLφ+

)]
M0. (B.69)

The non-photonic part of these correction factors turns out to be the same: this is due to the
fact that, for this process, the exchange of Z bosons gives diagrams that are topologically
equivalent to the ones obtained by exchanging charged gauge bosons.

B.2.3 Single-logarithmic corrections: external particles

The correction factors for the quarks and for the Higgs boson are the same as the transverse
case. For the Goldstone boson, instead, we have

δCφ+φ+ = 2Cew
Φ l(s) +

α

4π

(
− 3

4s2
W

m2
t

M2
W

log
s

m2
t

+
1

8s2
W

log
M2

H

M2
W

+Q2
φ log

M2
W

λ2

)
. (B.70)

Summing the contributions and making l(s) explicit,

δCMdLūLHφ
+

=

{
α

4π

[
3

2s2
W

m2
t

M2
W

log
m2
t

M2
W

+

(
1

8s2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

q + 4Cew
Φ −

3

2s2
W

m2
t

M2
W

]
+ log

M2
W

λ2
(Q2

d +Q2
u +Q2

φ)

}
M0. (B.71)
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B.2.4 Single-logarithmic corrections: parameter renormalization

The matrix element involves the same parameters as the transverse case apart from MW .
The corrections due to parameter renormalization are then given by the renormalization of
e and sW , and the combination of these factors gives

δPRMdLūLHφ
+

=

[
α

4π

(
5

6s2
W

log
M2

H

M2
W

− 9 + 6s2
W − 32s4

W

18s4
W

log
m2
t

M2
W

)
− bew

WW l(s)

]
M0. (B.72)

B.3 The HZT associated production

For the associated production of a Higgs boson and a transverse Z boson the leading-order
process is

q(p1) q̄(p2)H(−p3)ZT (−k)→ 0, (B.73)

and its matrix element can be written as

Mqq̄HZT
0 = v̄(p2)V µ

qq̄Z u(p1)
(−i)

q2 −M2
Z

ie2v {IZ, IZ}
HH

εTµ(−k). (B.74)

In this case V µ
qq̄Z , representing the vertex qq̄Z, contains both the helicity projectors: for a

generic fermion f its value is

V µ

ff̄Z
= (−ieγµ)

[
1− γ5

2
IZfL +

1 + γ5

2
IZfR

]
. (B.75)

The vertex ZZH instead gives a factor

ie2v {IZ, IZ}
HH

= i
eMZ

sWcW
. (B.76)

Inserting these results into eq. (B.74) we can split it into two contributions, coming from the
different chiralities involved, due to the action of the helicity projectors on the quark current,

Mqq̄HZT
0 = − i

q2

e2MZ

sWcW
v̄(p2) γµ

[
1− γ5

2
IZqL +

1 + γ5

2
IZqR

]
u(p1) εTµ(−k)

= − i

q2

e2MZ

sWcW

∑
κ

IZqκ v̄κ(p2)γµuκ(p1) εTµ(−k)
e2MZ

sWcW

∑
κ

IZqκ
AκTZ
q2

. (B.77)

The spinorial part has been collected in

AκTZ = −i v̄κ(p2)γµuκ(p1) εTµ(−k). (B.78)

B.3.1 Leading soft-collinear contributions

We compute the correction factors for both left- and right-handed quarks, that multiply the
corresponding part of the leading-order matrix element: in the following we then write explic-
itly their chirality. The application of the formulae for the leading soft-collinear corrections
gives

k = 1 : ϕ1 = ϕ1′ = qκ

δLSC

qκqκ = − 1

2
L(s)Cew

qκ + l(s) log
M2

Z

M2
W

(IZqκ)2− 1

2
Q2
q Lem(s, λ2,m2

q), (B.79)
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k = 2 : ϕ2 = ϕ2′ = q̄κ

δLSC

q̄κq̄κ = − 1

2
L(s)Cew

q̄κ + l(s) log
M2

Z

M2
W

(IZq̄κ)2− 1

2
Q2
q Lem(s, λ2,m2

q), (B.80)

k = 3 : ϕ3 = ϕ3′ = H

δLSC

HH = − 1

2
L(s)Cew

Φ + l(s) log
M2

Z

M2
W

(IZH)2 + δLSC,h

H , (B.81)

k = 4 : ϕ4 = A,ZT

δLSC

AZ Mqκq̄κHA
0 = − 1

2
L(s)Cew

AZMqκq̄κHA
0 = 0, (B.82)

δLSC

ZZ = − 1

2
L(s)Cew

ZZ. (B.83)

The correction factor in eq. (B.82) vanishes because of the topology of the process, since the
Higgs boson couples with fermions that are considered as massless. Since Cew

qκ = Cew
q̄κ and(

IZqκ
)2

=
(
IZq̄κ
)2

, we obtain

δLSCMqκq̄κHZT =

{
− 1

2
L(s)

[
2Cew

qκ + Cew
Φ + Cew

ZZ

]
+ δLSC,h

H

+ l(s) log
M2

Z

M2
W

[
2
(
IZqκ
)2

+ (IZH)2
]
−Q2

q Lem(s, λ2,m2
q)

}
M0. (B.84)

B.3.2 Subleading soft-collinear contributions

For the subleading soft-collinear corrections we apply the same procedure adopted in the
HW process, distinguishing between up- and down-type quarks. The corrections coming
from the exchange of charged gauge bosons are non-vanishing only if the quarks involved are
left-handed.

Photon exchange

∑
IAϕ1′qκ

IAϕ2′ q̄κ
Mϕ1′ϕ2′HZT

0 = IAqκqκ I
A
q̄κq̄κM0 = −Q2

qM0. (B.85)

Z-boson exchange

∑
IZϕ1′qκ

IZϕ2′ q̄κ
Mϕ1′ϕ2′HZT

0 = IZqκqκ I
Z
q̄κq̄κM0 = −(IZqκ)2M0, (B.86)∑

IZϕ1′qκ
IZϕ3′H

Mϕ1′ q̄κϕ3′ZT
0 = IZqκqκ I

Z
χHMqκq̄κχZT

0 = 0, (B.87)∑
IZϕ2′ q̄κ

IZϕ3′H
Mqκϕ2′ϕ3′ZT

0 = IZq̄κq̄κ I
Z
χHMqκq̄κχZT

0 = 0. (B.88)

The terms that involve Mqκq̄κχZT
0 vanish because of the coupling between massless quarks

and the Goldstone boson χ.
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W+-boson exchange with initial-state up-type quarks

∑
I+
ϕ2′ ūL

I−ϕ3′H
MuLϕ2′ϕ3′ZT

0 =
∑
i

I+
d̄iū
I−φ−HM

uLd̄iLφ
−ZT

0

=
1

2
√

2s2
W

∑
i

V CKM

udi
MuLd̄iLφ

−ZT
0 , (B.89)

∑
I+
ϕ2′ ūL

I−ϕ4′ZT
MuLϕ2′Hϕ4′

0 =
∑
i

I+
d̄iū
I−
W−Z
MuLd̄iLHW

−

0

= − cW√
2s2

W

∑
i

V CKM

udi
MuLd̄iLHW

−

0 , (B.90)

∑
I+
ϕ3′H

I−ϕ4′ZT
MuLūLϕ3′ϕ4′

0 = I+
φ+H

I−
W−Z
MuLūLφ

+W−

0 =
cW
2s2

W

MuLūLφ
+W−

0 . (B.91)

W−-boson exchange with initial-state up-type quarks

∑
I−ϕ1′uL

I+
ϕ2′ ūL

Mϕ1′ϕ2′HZT
0 =

∑
i

I−diu I
+
d̄iū
MdiLd̄iLHZT

0

= − 1

2s2
W

∑
i

|V CKM

udi
|2MdiLd̄iLHZT

0 = − 1

2s2
W

MdLd̄LHZT
0 , (B.92)

∑
I−ϕ1′uL

I+
ϕ3′H
Mϕ1′ ūLϕ3′ZT

0 =
∑
i

I−diu I
+
φ+HM

diLūLφ
+ZT

0

=
1

2
√

2s2
W

∑
i

V CKM

udi
MdiLūLφ

+ZT
0 , (B.93)

∑
I−ϕ1′uL

I+
ϕ4′ZT

Mϕ1′ ūLHϕ4′
0 =

∑
i

I−diuI
+
W+Z
MdiLūLHW

+

0

= − cW√
2s2

W

∑
i

V CKM

udi
MdiLūLHW

+

0 , (B.94)

∑
I−ϕ3′H

I+
ϕ4′ZT

MuLūLϕ3′ϕ4′
0 = I−

φ−H
I+
W+Z
MuLūLφ

−W+

0 =
cW
2s2

W

MuLūLφ
−W+

0 . (B.95)

In eq. (B.92), since the sum runs over the three down-type quark generations we have used
the unitarity property of the CKM matrix,

∑
i |V CKM

udi
|2 = 1, to simplify the result. The

resulting correction factor involves then a generic down-type quark, choosing a particular
generation does not produce any change.

W+-boson exchange with initial-state down-type quarks

With initial-state down-type quarks the mixing among the quark generations due to the
exchange of charged bosons does not include the top quark. The sum over the generations
runs then only over ui = u, c. Therefore, in this case we cannot use the unitarity property of
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the CKM matrix anymore.∑
I+
ϕ1′dL

I−
ϕ2′ d̄L

Mϕ1′ϕ2′HZT
0 =

∑
i

I+
uid
I−
ūid̄
MuiLūiLHZT

0

= − 1

2s2
W

∑
i

|V CKM

uid
|2MuiLūiLHZT

0 , (B.96)

∑
I+
ϕ1′dL

I−ϕ3′H
Mϕ1′ d̄Lϕ3′ZT

0 =
∑
i

I+
uid
I−φ−HM

uiLd̄Lφ
−ZT

0

= − 1

2
√

2s2
W

∑
i

V CKM

uid
MuiLd̄Lφ

−ZT
0 , (B.97)

∑
I+
ϕ1′dL

I−ϕ4′ZT
Mϕ1′ d̄LHϕ4′

0 =
∑
i

I+
uid
I−
W−Z
MuiLd̄LHW

−

0

=
cW√
2s2

W

∑
i

V CKM

uid
MuiLd̄LHW

−

0 , (B.98)

∑
I+
ϕ3′H

I−ϕ4′ZT
MdLd̄Lϕ3′ϕ4′

0 = I+
φ+H

I−
W−Z
MdLd̄Lφ

+W−

0 =
cW
2s2

W

MdLd̄Lφ
+W−

0 . (B.99)

W−-boson exchange with initial-state down-type quarks

∑
I−
ϕ2′ d̄L

I+
ϕ3′H
MdLϕ2′ϕ3′ZT

0 =
∑
i

I−
ūid̄
I+
φ+HM

dLūiLφ
+ZT

0

= − 1

2
√

2s2
W

∑
i

V CKM

uid
MdLūiLφ

+ZT
0 , (B.100)

∑
I−
ϕ2′ d̄L

I+
ϕ4′ZT

MdLϕ2′Hϕ4′
0 =

∑
i

I−
ūid̄
I+
W+Z
MdLūiLHW

+

0

=
cW√
2s2

W

∑
i

V CKM

uid
MdLūiLHW

+

0 , (B.101)

∑
I−ϕ3′H

I+
ϕ4′ZT

MdLd̄Lϕ3′ϕ4′
0 = I−

φ−H
I+
W+Z
MdLd̄Lφ

−W+

0 =
cW
2s2

W

MdLd̄Lφ
−W+

0 . (B.102)

Transformed matrix elements

The matrix elements MuLd̄Lφ
−ZT

0 and MdLūLφ
+ZT

0 are related to the original matrix element
with initial-state quarks qL by

MuLd̄Lφ
−ZT

0 =MdLūLφ
+ZT

0 = − sWcW√
2

V CKM
ud

IZqL
MqLq̄LHZT

0 . (B.103)

For the matrix elements MuLd̄LHW
−

0 and MdLūLHW
+

0 , instead, we can write

MuLd̄LHW
−

0 =MdLūLHW
+

0 =
c2
W√
2sW

V CKM
ud

IZqL
MqLq̄LHZT

0 . (B.104)
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The processesMqLq̄Lφ
+W−

0 andMqLq̄Lφ
−W+

0 occur through an intermediate photon or Z boson:
they can be written in terms of the original matrix element as

MqLq̄Lφ
+W−

0 =MqLq̄Lφ
−W+

0 =
s2
Wc

2
W

IZqL

(
Qq

sW
− IZqL
cW

)
M0. (B.105)

Finally, the HZ production processes with up- and down-type initial quarks can be related
one to each other by

MuLūLHZT
0

IZuL
=
MdLd̄LHZT

0

IZdL
. (B.106)

Final results

Since the corrections coming from the exchange of neutral gauge bosons include only terms
that multiply log(|r12|/s), for this process they do not give any contribution. The only
relevant corrections arise from the exchange of charged gauge bosons: defining a common
factor

F SSC

T = −
[
log
|t|
s

+ log
|u|
s

]
cW (1 + c2

W )

2s3
W

, (B.107)

the corrections for up- and down-type quarks are

δSSCMuκūκHZT = δκL l(s)
F SSC
T

IZuκ
M0, (B.108)

δSSCMdκd̄κHZT = − δκL l(s)
∑
ui

|V CKM

uid
|2 F

SSC
T

IZdκ
M0. (B.109)

In the derivation of the result (B.108) we used again the unitarity property of the CKM
matrix: indeed, combining the transformed matrix elements with their prefactors, we obtain∑

i |V CKM
udi
|2.

B.3.3 Single-logarithmic corrections: external particles

For the process in which the incoming particles are quarks q with chirality κ the corrections
associated to the external particles are

k = 1 : ϕ1 = ϕ1′ = qκ

δCqκqκ =
3

2
l(s)Cew

qκ +
α

4π
Q2
q log

M2
W

λ2
, (B.110)

k = 2 : ϕ2 = ϕ2′ = q̄κ

δCq̄Lq̄L =
3

2
l(s)Cew

q̄κ +
α

4π
Q2
q log

M2
W

λ2
, (B.111)

k = 3 : ϕ3 = ϕ3′ = H

δCHH =
α

4π

(
2Cew

Φ log
s

M2
H

− 3

4s2
W

m2
t

M2
W

log
s

m2
t

)
, (B.112)

k = 4 : ϕ4 = A,ZT

δCAZMqκq̄κHA
0 = 0, (B.113)

δCZZ =
1

2
bew
ZZ l(s) +

α

4π

(
M2

Z

24s2
WM

2
W

log
M2

H

M2
W

+ TZZ log
m2
t

M2
W

)
, (B.114)
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in which TZZ is taken from eq. (3.43) and the contribution in eq. (B.113) vanishes for the
same reasons explained in the computation of δLSC. The result is then

δCMqκq̄κHZT =

{
α

4π

[(
3

4s2
W

m2
t

M2
W

+ TZZ

)
log

m2
t

M2
W

+

(
M2

Z

24s2
WM

2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

qκ + 2Cew
Φ +

1

2
bew
ZZ −

3

4s2
W

m2
t

M2
W

]
+
α

2π
Q2
q log

M2
W

λ2

}
M0. (B.115)

B.3.4 Single-logarithmic corrections: parameter renormalization

The parameters appearing in the leading-order process, that have to be renormalized, are
e, cW and MZ, the latter for the same reasons explained in HW production. The Weinberg
angle also appears in the definition of IZqκ : the matrix element can be rewritten as

Mqq̄HZT
0 =

∑
κ

e2MZ

sWcW

T 3
qκ −Qqs

2
W

sWcW

AκTZ
q2

=
∑
κ

g2
2 MZ

T 3
qκ −Qqs

2
W

1− s2
W

AκTZ
q2

. (B.116)

We then get

δPRMqq̄HZT =

(
∂M0

∂g2

δg2 +
∂M0

∂c2
W

δc2
W +

∂M0

∂M2
Z

δM2
Z

)∣∣∣∣
µ2=s

. (B.117)

The partial derivatives with respect to the involved parameters are

∂M0

∂g2

=
2

g2

M0, (B.118)

∂M0

∂c2
W

= − ∂M0

∂s2
W

=
M0

c2
W

Qq − T 3
qκ

T 3
qκ −Qqs2

W

=
M0

c2
W

ρκ, (B.119)

∂M0

∂M2
Z

=
M0

2M2
Z

, (B.120)

having defined

ρκ =
Qq − T 3

qκ

T 3
qκ −Qqs2

W

. (B.121)

Adding up the various contributions, for the corrections from parameter renormalization we
obtain

δPRMqκq̄κHZT =

{
α

4π

[(
5

6s2
W

+
5ρqκ
6c2

W

− 5M2
Z

12s2
WM

2
W

)
log

M2
H

M2
W

−
(

9 + 6s2
W − 32s4

W

18s2
W

(
1

s2
W

+
ρqκ
c2
W

)
+ TZZ −

3

4s2
W

m2
t

M2
W

)
log

m2
t

M2
W

]
+ l(s)

[
−bew

WW + ρqκ
sW
cW
bew
AZ + 2Cew

Φ −
1

2
bew
ZZ −

3

4s2
W

m2
t

M2
W

]}
M0. (B.122)
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B.4 The HZL associated production

For the process
qκ(p1) q̄κ(p2)H(−p3)ZL(−k)→ 0, (B.123)

the application of the GBET gives Mqκq̄κHZL
0 = iMqκq̄κHχ

0 . The HZχ vertex contributes to
the matrix element with a factor ieIZHχ(−k + p3)µ, giving

Mqq̄Hχ
0 = v̄(p2)V µ

qq̄Z u(p1)
(−i)

q2 −M2
W

ieIZHχ (−k + p3)µ

= − 1

q2

e2

2sWcW
v̄(p2) γµ

[
1− γ5

2
IZqL +

1 + γ5

2
IZqR

]
u(p1) (−k + p3)µ

= − 1

q2

e2

2sWcW

∑
κ

IZqκ v̄κ(p2)γµuκ(p1) (−k + p3)µ. (B.124)

Combining these relations, we obtain

Mqq̄HZL
0 = iMqq̄Hχ

0 = − i

q2

e2

2sWcW

∑
κ

IZqκ v̄κ(p2)γµuκ(p1) (−k + p3)µ

=
e2

2sWcW

∑
κ

IZqκ
AκLZ
q2

, (B.125)

in which
AκLZ = −i v̄κ(p2)γµuκ(p1) (−k + p3)µ. (B.126)

B.4.1 Leading soft-collinear contributions

We apply the same formulae used in the transverse case. Apart from the Goldstone boson,
the factors for the other particles remain unchanged,

δLSC

χχ = − 1

2
L(s)Cew

Φ + l(s) log
M2

Z

M2
W

(IZχ )2 + δLSC,h

χ , (B.127)

with δLSC,h
χ defined in eq. (3.33). We then obtain

δLSCMqκq̄κHχ =

{
−L(s)

[
Cew
qκ + Cew

Φ

]
+ 2l(s) log

M2
Z

M2
W

[
(IZqκ)2 + (IZH)2

]
+ δLSC,h

H + δLSC,h

χ −Q2
q Lem(s, λ2,m2

q)

}
M0. (B.128)

B.4.2 Subleading soft-collinear contributions

Photon exchange

∑
IAϕ1′qκ

IAϕ2′ q̄κ
Mϕ1′ϕ2′Hχ

0 = IAqκqκ I
A
q̄κq̄κM0 = −Q2

qM0. (B.129)
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Z-boson exchange

∑
IZϕ1′qκ

IZϕ2′ q̄κ
Mϕ1′ϕ2′Hχ

0 = IZqκqκ I
Z
q̄κq̄κM0 = −(IZqκ)2M0, (B.130)∑

IZϕ1′qκ
IZϕ3′H

Mϕ1′ q̄κϕ3′χ
0 = IZqκqκ I

Z
χHMqκq̄κχχ

0 = 0, (B.131)∑
IZϕ1′qκ

IZϕ4′χ
Mϕ1′ q̄κHϕ4′

0 = IZqκqκ I
Z
HχMqκq̄κHH

0 = 0, (B.132)∑
IZϕ2′ q̄κ

IZϕ3′H
Mqκϕ2′ϕ3′χ

0 = IZq̄κq̄κ I
Z
χHMqκq̄κχχ

0 = 0, (B.133)∑
IZϕ2′ q̄κ

IZϕ4′χ
Mqκϕ2′Hϕ4′

0 = IZq̄κq̄κ I
Z
HχMqκq̄κHH

0 = 0, (B.134)∑
IZϕ3′H

IZϕ4′χ
Mqκq̄κϕ3′ϕ4′

0 = IZχH I
Z
HχMqκq̄κχH

0 = (iIZHχ)
2Mqκq̄κχH

0 . (B.135)

The terms that involveMqκq̄κχχ
0 andMqκq̄κHH

0 vanish, since these matrix elements contain a
coupling between massless quarks and the Goldstone boson χ or the Higgs boson. Mqκq̄κχH

0

is instead related to the original matrix element by

Mqκq̄κχH
0 = −M0. (B.136)

W+-boson exchange with initial-state up-type quarks

∑
I+
ϕ2′ ūL

I−ϕ3′H
MuLϕ2′ϕ3′χ

0 =
∑
i

I+
d̄iū
I−φ−HM

uLd̄iLφ
−χ

0

=
1

2
√

2s2
W

∑
i

V CKM

udi
MuLd̄iLφ

−χ
0 , (B.137)

∑
I+
ϕ2′ ūL

I−ϕ4′χ
MuLϕ2′Hϕ4′

0 =
∑
i

I+
d̄iū
I−φ−χM

uLd̄iLHφ
−

0

= − i

2
√

2s2
W

∑
i

V CKM

udi
MuLd̄iLHφ

−

0 , (B.138)

∑
I+
ϕ3′H

I−ϕ4′χ
MuLūLϕ3′ϕ4′

0 = I+
φ+HI

−
φ−χM

uLūLφ
+φ−

0 =
i

4s2
W

MuLūLφ
+φ−

0 . (B.139)

W−-boson exchange with initial-state up-type quarks

∑
I−ϕ1′uL

I+
ϕ2′ ūL

Mϕ1′ϕ2′Hχ
0 =

∑
i

I−diu I
+
d̄iū
MdiLd̄iLHχ

0

= − 1

2s2
W

∑
i

|V CKM

udi
|2MdiLd̄iLHχ

0 = − 1

2s2
W

MdLd̄LHχ
0 , (B.140)

∑
I−ϕ1′uL

I+
ϕ3′H
Mϕ1′ ūLϕ3′χ

0 =
∑
i

I−diu I
+
φ+HM

diLūLφ
+χ

0

=
1

2
√

2s2
W

∑
i

V CKM

udi
MdiLūLφ

+χ
0 , (B.141)
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∑
I−ϕ1′uL

I+
ϕ4′χ
Mϕ1′ ūLHϕ4′

0 =
∑
i

I−diuI
+
φ+χM

diLūLHφ
+

0

=
i

2
√

2s2
W

∑
i

V CKM

udi
MdiLūLHφ

+

0 , (B.142)

∑
I−ϕ3′H

I+
ϕ4′χ
MuLūLϕ3′ϕ4′

0 = I−φ−HI
+
φ+χM

uLūLφ
−φ+

0 = − i

4s2
W

MuLūLφ
−φ+

0 . (B.143)

In these computations too we used the unitarity property of the CKM matrix to simplify the
results.

W+-boson exchange with initial-state down-type quarks

∑
I+
ϕ1′dL

I−
ϕ2′ d̄L

Mϕ1′ϕ2′Hχ
0 =

∑
i

I+
uid
I−
ūid̄
MuiLūiLHχ

0

= − 1

2s2
W

∑
i

|V CKM

uid
|2MuiLūiLHχ

0 , (B.144)

∑
I+
ϕ1′dL

I−ϕ3′H
Mϕ1′ d̄Lϕ3′χ

0 =
∑
i

I+
uid
I−φ−HM

uiLd̄Lφ
−χ

0

= − 1

2
√

2s2
W

∑
i

V CKM

uid
MuiLd̄Lφ

−χ
0 , (B.145)

∑
I+
ϕ1′dL

I−ϕ4′χ
Mϕ1′ d̄LHϕ4′

0 =
∑
i

I+
uid
I−φ−χM

uiLd̄LHφ
−

0

=
i

2
√

2s2
W

∑
i

V CKM

uid
MuiLd̄LHφ

−

0 , (B.146)

∑
I+
ϕ3′H

I−ϕ4′χ
MdLd̄Lϕ3′ϕ4′

0 = I+
φ+HI

−
φ−χM

dLd̄Lφ
+φ−

0 =
i

4s2
W

MdLd̄Lφ
+φ−

0 . (B.147)

W−-boson exchange with initial-state down-type quarks

∑
I−
ϕ2′ d̄L

I+
ϕ3′H
MdLϕ2′ϕ3′χ

0 =
∑
i

I−
ūid̄
I+
φ+HM

dLūiLφ
+χ

0

= − 1

2
√

2s2
W

∑
i

V CKM

uid
MdLūiLφ

+χ
0 , (B.148)

∑
I−
ϕ2′ d̄L

I+
ϕ4′χ
MdLϕ2′Hϕ4′

0 =
∑
i

I−
ūid̄
I+
φ+χM

dLūiLHφ
+

0

= − i

2
√

2s2
W

∑
i

V CKM

uid
MdLūiLHφ

+

0 , (B.149)

∑
I−ϕ3′H

I+
ϕ4′χ
MdLd̄Lϕ3′ϕ4′

0 = I−φ−HI
+
φ+χM

dLd̄Lφ
−φ+

0 = − i

4s2
W

MdLd̄Lφ
−φ+

0 . (B.150)
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Transformed matrix elements

MuLd̄Lφ
−χ

0 andMdLūLφ
+χ

0 are related to the original matrix element with initial-state quarks
qL by

MuLd̄Lφ
−χ

0 =MdLūLφ
+χ

0 = − cW√
2sW

V CKM
ud

IZqL
MqLq̄LHχ

0 . (B.151)

Calling this result M0, for the matrix elements MuLd̄LHφ
−

0 and MdLūLHφ
+

0 we obtain

MuLd̄LHφ
−

0 = −MdLūLHφ
+

0 = iM0. (B.152)

The processes MqLq̄Lφ
+φ−

0 and MqLq̄Lφ
−φ+

0 occur through an intermediate photon or Z boson:
they can be written in terms of the original matrix element as

MqLq̄Lφ
+φ−

0 = −MqLq̄Lφ
−φ+

0 =
RqLφ−

IZqLI
Z
Hχ

M0. (B.153)

Finally, the Hχ production processes with up- and down-type initial quarks are related one
to each other by

MuLūLHχ
0

IZuL
=
MdLd̄LHχ

0

IZdL
. (B.154)

Final results

For the production of a longitudinal Z boson too, the corrections coming from the exchange
of neutral gauge bosons do not give any contribution. Defining a factor

F SSC

L = − cW
s3
W

[
log
|t|
s

+ log
|u|
s

]
, (B.155)

the corrections for up- and down-type quarks are

δSSCMuκūκHχ = δκL l(s)
F SSC
L

IZuκ
M0, (B.156)

δSSCMdκd̄κHχ = − δκL l(s)
∑
ui

|V CKM

uid
|2 F

SSC
L

IZdκ
M0. (B.157)

B.4.3 Single-logarithmic corrections: external particles

Even for this type of corrections the only difference with respect to the transverse case is in
the Goldstone-boson term,

δCχχ = 2Cew
Φ l(s) +

α

4π

(
− 3

4s2
W

m2
t

M2
W

log
s

m2
t

+
M2

Z

8s2
WM

2
W

log
M2

H

M2
W

)
. (B.158)

Summing the contributions,

δCMqκq̄κHχ =

{
α

4π

[
3

2s2
W

m2
t

M2
W

log
m2
t

M2
W

+

(
M2

Z

8s2
WM

2
W

− 2Cew
Φ

)
log

M2
H

M2
W

]
+ l(s)

[
3Cew

qκ + 4Cew
Φ −

3

2s2
W

m2
t

M2
W

]
+
α

2π
Q2
q log

M2
W

λ2

}
M0. (B.159)
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B.4.4 Single-logarithmic corrections: parameter renormalization

The matrix element involves the same parameters as the transverse case apart from MZ: the
corrections due to parameter renormalization are then given by the renormalization of e and
cW derived in the previous section. The combination of these factors gives

δPRMqκq̄κHZT =

{
α

4π

(
1

s2
W

+
ρqκ
c2
W

)[
5

6
log

M2
H

M2
W

− 9 + 6s2
W − 32s4

W

18s2
W

log
m2
t

M2
W

]
+ l(s)

[
−bew

WW + ρqκ
sW
cW
bew
AZ

]}
M0. (B.160)
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