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Relaxation of twist helicity in the cascade process of linked quantum vortices
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By numerically solving the three-dimensional Gross-Pitaevskii equation we analyze the cascade process
associated with the evolution and decay of a pair of linked vortex rings. The system decays through a series
of reconnections to produce finally three unlinked, unfolded, almost planar vortex loops. Total helicity, initially
zero, remains unchanged throughout the process. The gradual transfer from writhe (due to initial linking) to twist
helicity, followed by a continuous relaxation of twist across scales during the evolution is shown to be a generic
mechanism that consistently takes place on each individual component.
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I. INTRODUCTION

In his famous paper Moffatt [1] showed that helicity, H,
a conserved quantity of classical ideal fluid mechanics [2]
given by the integral of the scalar product of the velocity
u and vorticity ω = ∇ × u, i.e., H = ∫

u · ω d3x, admits
topological interpretation in terms of Gauss linking number.
This work was then extended to include helicity contributions
from each individual component [3,4]. The importance of
helicity in the study of turbulence was soon recognized [5],
but it took time to appreciate the importance of its geometric
and topological decomposition in the analysis of physical
properties of complex systems (see Refs. [6,7] for reviews).
For a collection of n distinct vortex tubes, helicity can be
written as a discrete sum of contributions, given by

H =
∑
i �=j

�i�jLkij +
∑

i

�2
i (Wri + T wi), (1)

where Lkij is the (Gauss) linking number of the vortex
centerlines Ci and Cj (i �= j, i,j = 1, . . . ,n), and �i,Wri ,
and T wi are, respectively, circulation, writhe, and total twist
of the ith vortex. The sum Wri + T wi is commonly referred
to as the Călugăreanu-White invariant SLi of the ith vortex.
Lkij and SLi are topological invariants, whereas Wri and
T wi are global geometric quantities (for rigorous definitions
see Sec. III below). Helicity can be therefore decomposed in
terms of external helicity [the first term in the right-hand side of
Eq. (1)] and internal helicity [the second term in the right-hand
side of Eq. (1)], and the latter decomposed further in terms of
writhe and twist helicity (�2

i Wri and �2
i T wi , respectively).

These individual contributions help to understand helicity
and energy transfers across reconnections and scales in both
classical and quantum systems.

In this paper, following up previous work done by the
present authors [8] and similar investigations done by
colleagues [9,10], we analyze the cascade process of two
quantum vortex rings V1 and V2 initially linked to form a
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positive Hopf link (see Fig. 1), whose evolution is governed
by the three-dimensional (3D) Gross-Pitaevskii equation
(GPE) [11,12], given by

∂ψ

∂t
= i

2
∇2ψ + i

2
(1 − |ψ |2)ψ (2)

for the complex wave function ψ with background unit
density (|ψ |2 → 1 as |x| → ∞). To avoid difficulties with the
regularization of velocity and helicity [9] we shall take Eq. (1)
as our working definition of helicity and, as will be clarified
by the particular choice of the reference frame for twist (see
again Sec. III below), we shall refer to this quantity as Seifert
helicity [10]. By extracting information from computed data,
we analyze at the highest possible numerical accuracy the
geometric and topological quantities present in Eq. (1), we
determine how writhe and twist change individually and
globally throughout the process, and assess external and
internal helicity changes across reconnections.

II. GOVERNING EQUATIONS

GPE provides a rather accurate model to study quan-
tum vortex reconnection under conservation of the Hamil-
tonian E = K + I , given by the sum of kinetic energy
K = 1

2

∫ ∇ψ · ∇ψ∗d3x and interaction energy I = 1
4

∫
(1 −

|ψ |2)2d3x (where ψ∗ denotes the ψ complex conjugate). As is
well known, Eq. (2) can be decoupled into the standard conti-
nuity equation and momentum equation by using the Madelung
transformation ψ = √

ρ exp(iθ ). After some straightforward
algebra, by taking real and imaginary parts of Eq. (2), we obtain

∂ρ

∂t
+ ∂(ρuk)

∂xk

= 0, (3)

ρ

(
∂uk

∂t
+ ul

∂uk

∂ul

)
= − ∂p

∂xk

+ ∂τkl

∂xl

, (4)

with fluid density ρ = |ψ |2, velocity u = ∇θ , pressure p =
ρ2/4 and (so-called) quantum stress τkl = 1

4ρ
∂2 ln ρ

∂xk∂xl
(k,l =

1,2,3). The term τkl , negligible with respect to the pressure
term at length scales much larger than the healing length
ξ = 1 (of the order of the vortex core), at much smaller scales
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FIG. 1. Time sequence of the evolution of a system of vortex tubes
governed by the Gross-Pitaevskii Eq. (2). Two initially linked vortex
rings V1 and V2 move one against the other till a first reconnection
takes place at time t = 36.5. A single, folded vortex loop is generated
and after a while it self-reconnects (t = 41) producing two loops.
The smaller, secondary loop twists and self-reconnects further (at
t = 50.5) to generate a third loop. No further reconnections are
observed afterwards. The tubes are visualized by the isodensity
surfaces given by ρ = 0.1; the superimposed arrows (red online)
indicate the vorticity direction.

becomes responsible of vortex reconnection [13] since it reg-
ularizes the momentum equation. At these microscopic scales
reconnection can thus be regarded as a purely quantum effect.

III. DEFINITION AND PHYSICAL INTERPRETATION OF
GEOMETRIC AND TOPOLOGICAL PROPERTIES

Quantum vortices are phase defects. As physical singular-
ities of vorticity they can be regarded as zero density lines
where phase is ill defined. However, as we shall see, physical
effects associated with phase are all important and cannot be
neglected by simply reducing vortex evolution to that of the
vortex centerline. As in the classical case, the simultaneous
presence of two or more vortices determine a superimposition
of the induced velocity fields, that in the quantum case is
reflected in the phase. In particular, the simultaneous presence
of two noncoplanar, linked vortex rings (as in the case of our
Hopf link) determines a mutually induced phase twist on each
vortex, a signature of the complex topology of the ambient
space. Note that this twist would not be present if the rings
were not topologically linked.

To detect, visualize, and quantify phase information we
rely on the fact that GPE vortices are fibered by isophase
surfaces. We can then make use of these surfaces to define
(unambiguously) a reference ribbon and, by applying a
straightforward technique proposed in Ref. [8], to measure
twist. The ribbon is defined by two edge curves: a baseline
curve given by the vortex centerline C and a second curve C∗
placed at a constant distance ε (the width of the ribbon) from
C along a unit vector Û orthogonal to the local unit tangent T̂
to C. The ribbon is then identified by the points of constant
phase that lie on the isophase surface given by θ = θ̄ , this
being given by the ε part of the surface bounded by C and C∗.

FIG. 2. A snapshot of the isophase surface θ = π (yellow)
bounded by the vortex axes of V1 (blue) and V2 (green) at t = 23 (i.e.,
before the first reconnection). Plots of total writhe (top right) Wrtot,
sum of total twists (bottom left) T wtot and normalized total helicity
[see Eq. (11)] during the cascade process of Fig. 1. Bullets on the time
axis denote reconnection simulation times at t = t1 = 36.5, t2 = 41,
and t3 = 50.5.

By extending this isophase surface to the whole ambient space
we have a (time-dependent) realization of a single fibration
of the ambient space (see the example of Fig. 2, top-left plot,
where the isophase surface θ = π at t = 23 is shown).

For completeness we recall the standard definition of the
geometric and topological quantities present in Eq. (1). The
linking number between the vortices i and j is given by the
double integral over the axes, given by

Lkij = 1

4π

∫
Ci

∫
Cj

Xi − Xj

‖Xi − Xj‖3
· (dXi × dXj ), (5)

where Xi and Xj denote the position vectors of a point on Ci

and Cj (i �= j ), respectively. Lkij is a topological invariant of
the link: it takes only integer values and in general it provides
a measure of the degree of linking of two (or more) disjoint
components. Hence it contributes to the external helicity of the
disjoint union of two or more vortices.

The writhing number Wri is defined by

Wri = 1

4π

∫
Ci

∫
Ci

Xi − Yi

‖Xi − Yi‖3
· (dXi × dYi), (6)

where Xi and Yi denote two distinct points on the same curve
Ci . Wri is a global geometric property of Ci and it takes real
values. If Ci is a plane curve, its writhe is always zero, but
sometimes even fully twisted space curves may have writhe
equal to zero (when positive and negative writhes compensate).
Since writhe takes into account distortion, it is often a good
indicator of three-dimensional folding.

Total twist is defined by the rate of rotation of the ribbon
unit vector Û around the base curve Ci , i.e.,

T wi = 1

2π

∫
Ci

(
Û × dÛ

ds

)
· dXi . (7)
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It is a global geometric property of the ribbon and it takes real
values. T wi can be decomposed in terms of normalized total
torsion Ti and intrinsic twist Ni , given respectively by

Ti = 1

2π

∫
Ci

τ (s) ds, (8)

and

Ni = 1

2π

∫
Ci

d�(s)

ds
ds = [�]Ci

2π
, (9)

where τ = τ (s) is local torsion (function of arc length s) of
Ci , and � = �(s) the angle between Û and the principal unit
normal N̂ to Ci . Ti takes real values, whereas Ni is an integer
measuring the total number of full turns of Û relative to the
Frenet triad on Ci .

Since torsion computation is a source of great numerical
noise [see, for example, Ref. [8] Fig. 5(b)]—especially across
reconnections—we will not make use of this decomposi-
tion here. Rather, we shall compute twist by selecting and
prescribing an isophase surface of our choice. Its computed
value, being a closed integral over the whole fibration, is thus
independent of the particular surface selected. The chosen
surface is called a Seifert surface of the link, and it actually
prescribes zero framing for the computation of linking num-
bers [10,14,15], hence of helicity. Since the isophase surface
is determined by the defect’s topology, twist is a consequence
of the topological complexity of the whole system. Twist,
which for quantum vortices has no physical meaning, acquires
physical justification through the mathematical realization
of the twisted isophase surfaces associated with the wave
function and therefore admits physical interpretation. Since by
construction local twist is nonzero only when the gradient of
the phase has a component directed along the vortex axis, and
since u = ∇θ , twist provides a measure of the longitudinal
velocity field possibly present along the vortex axis. As in
classical vortex dynamics, this contribution can indeed be
quantified and written in terms of the tangential contribution
to the velocity induced by the Biot-Savart law [10]. Without
loss of generality we can take the ribbon to be on the isophase
surface θ = π and unit width span (for visualization purposes
we actually take ε = ξ/2 = 0.5).

IV. NUMERICAL METHODS

The numerical integration of the GPE (2) is carried out
by employing a second-order Strang splitting Fourier spectral
method. The computational domain is triply periodic. Since
the initial condition is not periodic and we make use of
the fast Fourier transform (FFT), boundary conditions are
made periodic by doubling the computational domain in
each direction with the introduction of mirror vortices. This
well-known technique [16] increases the number of degrees
of freedom eightfold. Since GPE conserves mass exactly,
so does the method, a property often exploited in numerical
simulations of vortex reconnection [8,13,17].

A. Initial conditions

The initial condition is given by two initially circular,
plane vortex rings and is prescribed as in Ref. [8]. Both

FIG. 3. Vortex center lines (in different colors), numbered se-
quentially after each reconnection event that marks a topological
transition. The relative ribbon edge (in black) is always defined on
the isosurface θ = π .

vortices have equal circulation set to � = 2π . In order to avoid
the time-consuming alternative approach based on prescribed
induced velocity field, phase and density computation, and
solution of the dissipative GPE, a new, higher-order Padé
approximation given by ρ0k(r) = a1r

2+a2r
4+a3r

6+a4r
8

1+b1r2+b2r4+b3r6+a4r8 is used
for the density distribution in the plane orthogonal to the vortex
axis (see Ref. [18] for details), with an initial phase θ0k that
changes by 2π in that plane. By mirroring the wave function
we ensure a periodic initial condition ψ0 in both phase and
density. The resulting wave function at t = 0 is thus given
by ψ0 = √

ρ01ρ02 exp [i(θ01 + θ02)]. Initially the two rings
have same radius R0 = 8 and they are placed on mutually
orthogonal planes, centered at (0.5,4.5,0) in the x-y plane and
(0, − 4,0) in the y-z plane (see Fig. 3, t = 0). This asymmetric
initial configuration is used to avoid possible simultaneous
reconnections, giving a clear picture of the cascade process.

The computational domain is given by [−20; 20] ×
[−25; 25] × [−20; 30] and it is chosen to optimize the
observed vortex evolution. The spatial discretization is the
same in each direction, with resolution �x = �y = �z =
ξ/3, 1503 grid points in the physical domain (before mirror-
ing), and time step �t = 1/80 = 0.0125.

B. Postprocessing of numerical data

Particular care has been put in the computation of the
geometric information associated with the vortex centerline
and ribbon. The overall spatial resolution is taken to be
ξ/3; a significantly greater resolution would compromise
computational efficiency (mirroring increases eightfold the
number of computational degrees of freedom). Since at a
postprocessing stage the time-splitting Fourier spectral method
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for singular solutions of the GPE provides accurate evaluation
of the solution between grid points [18], we evaluate ψ at the
much finer resolution of ξ/10 only at points in the tubular
region where ρ � 0.2 (for a vortex core diameter of, say,
ξ = 1, we take, for example, ten grid points). For this we
have employed nonuniform fast Fourier transform (NFFT)
(see Ref. [19]), a package originally written in C language
and recently included in the interface INFFTM developed for
MATLAB and GNU OCTAVE (see Ref. [20] for details).

Once ψ is determined in the tube with sufficiently high
spatial resolution we extract the axis, first by selecting the
points whose density is very small, and then by weighting
the points by taking ω̄ = |ω|/ρ (|ω| �= 0 on the vortex axis
and identically zero elsewhere). Since w̄ increases rapidly as
one moves towards the tube axis, the weighted points collapse
onto C; after reordering, by relying on the local high spatial
resolution provided by INFFTM, a very smooth vortex centerline
is generated. Arc-length derivatives are thus computed without
any further regularization to obtain, for instance, the local
Frenet triad {T̂,N̂,B̂} given by the unit tangent, normal, and
binormal vector. The ribbon edge C∗ is obtained from the tube
axis C (the ribbon baseline) in four steps: (i) a set of equispaced
points is generated on the circle of radius ε = ξ/2 = 0.5,
centered on C and perpendicular to T̂; (ii) at each point,
ψ is evaluated by using INFFTM [20]; (iii) the phase is then
interpolated at a constant value θ̄ = π ; (iv) the ribbon edge C∗,
placed at ε = constant from C on the isophase surface θ̄ = π ,
is computed and width renormalized to 1. By construction
the ribbon is thus given by a smoothly varying function of
arc length, that is then used to compute T w by employing
Eq. (7). Direct use of Eq. (7) by the ribbon technique, rather
than by the decomposition T w = T + N , proves to be quite
reliable and avoids the well-known difficulties represented
by the computation of second- and third-order derivatives
necessary for the estimate of torsion and the singular behavior
at inflexion points [4].

V. VORTEX CASCADE PROCESS: RESULTS

The initially linked vortex rings V1 and V2 evolve and
interact through a cascade process driven by a series of
reconnections and consequent change of topology (see Fig. 1).
After an initial, mutual distortion the rings collide and
undergo a first reconnection at t = t1 = 36.5, producing a
single, large, folded loop that soon after it self-reconnects at
t2 = 41. As a result, two unlinked smaller loops are formed,
propagating away while bending and twisting till one of them
self-reconnects at t3 = 50.5 producing even smaller vortex
rings, which move quickly away from the region. No other
reconnections are observed thereafter. We should remark that
this observed cascade has generic topological features, but
the precise geometry of the evolution is not at all generic,
nor is it a direct consequence of the initial linking. In this
respect the overall time evolution is strongly influenced by the
initial conditions. This is quite evident from considerations on
large-scale dynamics governed by the Biot-Savart induction
law, where small changes in the initial configuration, for
example due to curvature, are known to determine dramatic
changes in geometric dynamics at later times. This explains

why similar cascade processes have not been observed in other
simulations with different initial conditions [9,10].

We compute individual and total contributions to writhe,
twist, and helicity. The initial total writhe Wrtot = Wr(C1#C2)
of the linked rings C1#C2, before the first reconnection
(t < 36.5), is given by the formula demonstrated in Ref. [21],
that is,

Wrtot = Wr(C1#C2) = Wr1 + Wr2 + 2Lk12. (10)

Since initially we have Wr1 = Wr2 = 0 and Lk12 = Lk21 =
+1, we have Wrtot|t=0 = +2. The rings remain linked till the
first reconnection takes place, and after that Lk12 = Lk21 = 0
for all time. The time-dependent behavior of the total writhe
Wrtot is shown in the top-right diagram of Fig. 2. We
notice an almost monotonic, progressive decrease of Wrtot

(allowing for numerical errors), with no appreciable jump
in total writhe throughout the evolution. The small jiggles
appearing around the reconnection times are presumably due
to the presence of spurious numerical errors in the spatial
neighborhood of the reconnection sites. However, careful
refined local numerics indicate that writhe values just before
and after each reconnection event appear to be unaffected by
the topological transition, in agreement with the theoretical
prediction of writhe conservation across reconnection based on
analytical results [21]. However, noticeable changes in writhe
rates seem to characterize the time frame of the reconnection
events, where higher gradients are markedly more present.
Since writhe is a geometric measure of three-dimensional
coiling and folding, the decreasing tail evident in the plot is an
indication that indeed the overall geometry of the system keeps
changing, evolving towards less twisted structures. A similar
trend can be observed also in the later stages of the decay of
vortex links in water, measured by laboratory experiments [22].

The time-dependent behavior of the sum of total twists,
given by T wtot = ∑

i T wi , is shown at the bottom of Fig. 2,
together with the sum Wrtot + T wtot, which by definition
represent the normalized total helicity

H
4π2

= Wrtot + T wtot. (11)

Similarly to total writhe, also T wtot is seen to decrease in
absolute value monotonically. This seems partially consistent
with what has been found for the helicity evolution of a pair
of linked rings (see Ref. [9], Fig. 2, where H = −�2T wtot)
in the time frame of the reconnection phase. On a longer time
scale the different behavior might be due to the comparatively
different core-to-size aspect ratio in ξ units (see also Ref. [10],
Fig. 5 and discussion below). As mentioned earlier, the mutual
induction of vorticity at t = 0 implies the presence of a
longitudinal flow on each vortex ring; this is manifested by
the presence of twist on each vortex, that compensates the
external initial linking in the system. As a result the initial total
helicity is equal to zero. From the bottom-right plot of Fig. 2,
we see that H/4π2 ≈ 0 and it remains almost zero throughout
the process. Hence, writhe conservation across reconnections
implies total twist conservation across reconnections, as shown
by direct inspection of the bottom-right plot of Fig. 2 (a
result confirmed by the algebraic sum of the numerical
values of the individual plots across each reconnection event,
as shown in Fig. 4 below). In the GPE context it is the
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FIG. 4. Plots of individual writhe Wr and twist T w. Numbers
refer to individual components at each stage of the cascade process.
Bullets on the time axis denote the reconnection simulation times
at t = t1 = 36.5, t2 = 41, t3 = 50.5; vertical lines locate topological
transitions.

Hamiltonian to remain conserved under reconnections [8],
with conversion of kinetic energy to sound emission and Kelvin
waves [9,13,23,24]. The fact that helicity appears to remain
constant in spite of reconnections (the small fluctuations of
order ±0.05 are presumably due to numerical errors) may be
physically justified by the presumed negligible depletion of
density core given by the small vortex core-to-size aspect ratio
in relation to the box size (in ξ units), in partial agreement with
the observations made for the trefoil knot GPE simulation by
Scheeler et al. (see Ref. [22], Fig. 5).

Visualization of the ribbon of each vortex component during
evolution is shown in Fig. 3, where each component (denoted
by different colors) is numbered sequentially after each topo-
logical transition (through reconnection). Individual ribbons
are visualized by the individual vortex axes (with colored base-
lines) and ribbon edges in black. As mentioned in Sec. IV B
the ribbons deform smoothly between reconnections allowing
for an accurate computation of the individual contributions
of writhe and twist, relative to each numbered component.
As we see from the two plots of Fig. 4, individual writhe
contributions consistently decrease between reconnections
(allowing for numerical errors), accompanied by an equal and
opposite increase of individual negative twist values. Hence,
in absolute value individual twist keeps decreasing. Before

the first reconnection (i.e., for t < 36.5) SL1 and SL2 remain
basically unchanged and equal to zero (not shown). For t >

36.5 the two loops unlink (Lkij = 0) and total linking remains
essentially zero thereafter (with noticeable minor fluctuations
due to numerical noise). The sudden jump at t1 = 36.5 is
signature of the unlinking process. After this the persistent
decrease in writhe between reconnections corresponds to the
relaxation of folded structures to almost planar vortex rings
of smaller and smaller size, with gradual relaxation of total
twist (in absolute value) of the newly formed structures. This
appears to be a generic process that characterizes the whole
cascade.

VI. CONCLUDING REMARKS

A numerical simulation of the cascade process of a pair
of initially linked quantum vortex rings governed by the
Gross-Pitaevskii equation has been performed. Initially the
vortex rings are identical and are placed in mutually orthogonal
planes. Each vortex ring moves along its own central axis
inducing a longitudinal flow on the other; hence both rings
translate along, and rotate about their own axes with constant
speed, with translation speed about twice that of rotation. After
a first reconnection a long, single, folded loop is generated. A
secondary reconnection leads to the formation of two disjoint,
unlinked, twisted loops and the cascade process continues till
one of the loops reconnects again to form a third small ring.
No other reconnections are observed afterwards. At each stage
we measure individual and total contributions to writhe, twist,
and total helicity (here denoted Seifert helicity) by following
the evolution of the isophase surface given by θ = π , which
provides a smoother computation of twist and other quantities.
By this approach we avoid the computation of total helicity
given by the integral formula and also the computation of total
torsion for total twist, which otherwise would produce too
much numerical noise (preventing also direct comparison with
computation of the integral form of helicity). In this respect
computation of Seifert helicity based on Eq. (1) provides a
much nicer setting. At t = 0 total helicity is zero in spite of
the initial linking, and this because of the presence of a nonzero
total twist in each ring; total helicity remains then essentially
zero throughout the process (with some small fluctuations
presumably due to numerical errors). Since GPE vortices are
fibered by their isophase surfaces this result seems to be in
good agreement with an earlier theoretical proposition on
fibered knots [14]. As the system unlinks through the first
reconnection we have a drop of external helicity compensated
by an equal and opposite increase of internal helicity. During
this unlinking phase total writhe drops and after the first
reconnection, individual writhe keeps decreasing as a signature
of the persistent, gradual evolution towards more planar
structures. This is accompanied by a continuous relaxation
of internal twist (in absolute value); hence, individual twist
relaxation is found to be a generic mechanism regardless of
the initial writhe value. Since total twist is due to contributions
from total torsion and intrinsic twist, the progressive transition
from linked to folded to unlinked, unknotted planar loops
implies progressive decrease of total torsion, and depletion of
kinetic energy into sound emission. Moreover, in agreement
with theoretical predictions [21] total writhe is found to
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remain conserved across reconnections; since total helicity
remains constantly zero, total twist remains also conserved
across reconnections. This too seems to be in agreement
with expectations, which would ascribe a change in helicity
across reconnection to twist transfers [21]. In conclusion, the
cascade process analyzed here is characterized by a generic
production of almost planar, smaller vortex rings and by the

redistribution and relaxation of total twist across scales. Since
writhe is a good indicator of three-dimensional folding and
total twist of torsional energy, our results indicate a preferential
path towards the relaxation of folding to torsional energy
across scales. Testing this preliminary conclusion against
yet more elaborate cascade processes is a subject for future
research.
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