
SCUOLA DI DOTTORATO
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

	
Department	of	

Informatics,	Systemistics	and	COmmunications	
	
	
PhD	program:	Informatics												 	 	 	 							 	 														Cycle	 XXIX	
	
	
	
	
	
	

Software Architectures For Embedded Systems
Supporting Assisted Living

	
	
	
	

	
	

Surname:				Mobilio	Name:		Marco	 	

Registration	number				701812	 	 	 	 	 					
	
	
	
	
	

Tutor:				Prof.	Giuseppe	Vizzari	 	 	 	 	 	 	 					

Supervisor:			Prof.	Daniela	Micucci	
	
	

Coordinator:				Prof.	Stefania	Bandini		 	 	 	 					
	
	

ACADEMIC	YEAR				2016/2017	 	 	 			
	

“To my Grandfather”

Abstract

In coming decades, population is set to become slightly smaller in
more developed countries, but much older. This increase results in
a growing need for supports (human or technological) that enables
the older population to perform daily activities. This originated
an increasing interest in Ambient Assisted Living (AAL), which en-
compasses technological solutions supporting elderly people in their
daily life at their homes.

The structure of an AAL system generally includes a layer in
charge of acquiring data from the field, and a layer in charge of re-
alising the application logic. For example, a fall detection system,
acquires both accelerometer and acoustic data from the field, and
exploits them to detect fall by relying on a machine learning tech-
nique.

Usually, AAL system are implemented as vertical solutions in
which often there is not a clear separation between the two main
layers. This rises several issues, which include at least a poor reuse
of the system components since their responsibilities overlap, and a
scarce liability to software evolution mostly because data is strongly
coupled with its source, thus changing the source requires modifying
the application logic too.

To promote reusability and evolution, an AAL system should
keep accurately separated issues related to acquisition from those
related to reasoning. It follows that data, once acquired, should
be completely decoupled from its source. This allows to change
the physical characteristics of the sources of information without af-
fecting the application logic layer. Moreover, the acquisition layer,
should be structured so that the basic acquisition mechanisms (trig-
gering sources at specified frequencies, and distributing the acquired
data) should be kept separated from the part of the software that

iii

iv

interacts whit the specific source (i.e., the software driver). This
allows to reuse the basic mechanisms and to program the drivers for
the needed sensors only. If a new or different sensor is required, it
suffices to add/change the sensor driver and to properly configure
the basic mechanisms so that the change can actually implemented.

The aim of this work is to propose a novel approach to the design
of the acquisition layer that overcomes the limitation of traditional
solutions. The approach consists of two different sets of architectural
abstractions:

Time Driven Sensor Hub (TDSH) is a set of architectural ab-
straction for developing timed acquisition systems that are easily
configurable for what concerns both the type of the sensors needed
and their acquisition frequencies.

Subjective sPaces Architecture for Contextualising hEterogeneous
Sources (SPACES) is a set of architectural abstractions aimed at
representing sensors measurements that are independent from the
sensors characteristics. Such set can reduce the effort for data fusion
and interpretation, moreover it enforces both the reuse of existing
infrastructure and the openness of the sensing layer by providing a
common framework for representing sensors readings.

The final result of this work consists in two concrete designs
and implementations that reify the TDSH and SPACES models. A
test scenario has been considered to contextualise the usefulness of
the proposed approaches and to test the actual correctness of each
component.

The example scenario is built upon the case of fall detection, an
application case studied in order to be aware of peculiarities of the
chosen domain. The example system is based on the proposed sets of
architectural abstraction and exploits an accelerometer and a linear
microphonic array to perform fall detection.

Contents

Introduction xv
Motivations . xv
Contributions . xviii
Outline . xix

1 State of the Art 1
1.1 Ambient Assisted Living Systems 1

1.1.1 AAL Stakeholders . 3
1.2 Enabling Technologies of AAL Systems 4

1.2.1 Sensing . 4
1.2.2 Reasoning . 7
1.2.3 Interacting . 8
1.2.4 Acting . 10
1.2.5 Communication . 11

1.3 Data Acquisition Systems . 12
1.3.1 Challenges of Data Acquisition Systems 12
1.3.2 Available Systems and approaches 13

1.4 AAL Systems and Platforms . 15
1.4.1 Evolution of AAL Technology 15
1.4.2 Existing AAL Platforms 17

1.5 Architectures for AAL Systems 19

2 TANA - Timed Acquisition and Normalisation Architecture 23
2.1 TANA Overview . 24

2.1.1 Acquistion . 25
2.1.2 Normalisation . 25
2.1.3 Putting Together . 26

2.2 Case Studies . 27

v

vi CONTENTS

2.2.1 The Acquisition Case Study 27
2.2.2 The Normalisation Case Study 28

3 Time Driven Sensor Hub 31
3.1 Time Awareness Machine . 31

3.1.1 Timer . 32
3.1.2 Clock . 33
3.1.3 Timeline . 33
3.1.4 Time Aware Entities . 36

3.2 Microcontrollers . 41
3.2.1 Anatomy of a microcontroller 42
3.2.2 Available Microcontroller Boards 43
3.2.3 Software Architectures and Embedded Systems 45
3.2.4 Software Development for Embedded Systems 46

3.3 TAM for Embedded Systems . 47
3.3.1 Performers and Durations 47
3.3.2 Timelines, Timeds, and Buffers 47

3.4 TDSH Concrete Architecture . 49
3.4.1 Timer . 50
3.4.2 Performer . 55
3.4.3 Engine . 62
3.4.4 Reflection and Configuration 62

3.5 Implementation . 65
3.5.1 Implementation Choices 65
3.5.2 The TDSH Components 65
3.5.3 The System Overhead . 71

3.6 Acquisition Case Study . 74
3.6.1 Wearable Accelerometer readings 75
3.6.2 Environmental Microphonic Array 77
3.6.3 Fall Detector . 82
3.6.4 Discussion . 83

4 Subjective sPaces Architecture for Contextualising hEteroge-
neous Sources 85
4.1 SPACES - The Underlaying Concepts 85
4.2 Spatial Model . 86

4.2.1 Core Concepts . 87
4.2.2 The Concept of Dimension 87
4.2.3 Zone and Membership Function 89
4.2.4 The Stimulus . 90
4.2.5 The Source . 94
4.2.6 The Mapping Function . 95

4.3 SPACES Concrete Architecture 98
4.3.1 Space and Location . 99
4.3.2 Dimension and Value . 101
4.3.3 Zone . 101

CONTENTS vii

4.3.4 Stimulus and Measure . 103
4.3.5 Mapping Function . 105

4.4 Implementation . 105
4.4.1 Implementation Choices 106
4.4.2 The SPACES Packages 106

4.5 Normalisation Case Study . 110
4.5.1 The Concepts Needed . 110
4.5.2 Implemented Classes . 112
4.5.3 The Fall Detection Application 118
4.5.4 Discussion . 119

5 Conclusions 121
5.1 Summary of Contribution . 121

5.1.1 Time Driven Sensor Hub 122
5.1.2 Subjective sPaces Architecture for Contextualising hEt-

erogeneous Sources . 122
5.1.3 Publications . 122

5.2 Future Developments . 123

List of Figures

1 Italy Population Pyramid. xvi
2 Dependency Ratio of japan, Italy, and World average from 1960

to 2014 (World DataBank Data). xvii

1.1 Capabilities in AAL systems. 4
1.2 Methodologies adopted to design AAL platforms. 19
1.3 Architectures distribution in AAL solutions. 20
1.4 AAL-related activities handled in the reviewed papers. 21

2.1 Overview of the proposed model. 25

3.1 Timer Behaviour. 32
3.2 Basic Concepts related to Timers. 33
3.3 Virtual Timers with variable Durations. 34
3.4 Concepts related to Clocks. 34
3.5 Concepts related to Timelines. 35
3.6 Connection of a Clock to a Timeline. 35
3.7 Entity classification according to the relation with the basic con-

cepts. 36
3.8 Combinations of time-related behaviours. 37
3.9 Time Driven Entities. 37
3.10 Time Driven Entities with the Deadline concept. 38
3.11 Classification of Time Aware Entities and combinations of time-

related behaviours. 39
3.12 Classification of Time Aware Entities and combinations of time-

related behaviours. 40
3.13 States diagrams of performers. 41
3.14 Basic components of a microcontroller. 42
3.15 Structure of a concrete Timeline. 48

ix

x LIST OF FIGURES

3.16 Structure of an embedded Timeline. 49
3.17 TDSH base classes. 50
3.18 States of the System. 51
3.19 States of a Timer. 52
3.20 Concrete design of a Timer. 53
3.21 Execution of a Timer. 54
3.22 Execution of the Ground Timer. 55
3.23 Concrete design of a Performer. 56
3.24 Data Hierarchy. 57
3.25 Buffer example. 58
3.26 Perform operation. 60
3.27 Expose operation. 61
3.28 Concrete design of the Engine. 62
3.29 Execute operation. 63
3.30 The TDSH Interface. 64
3.31 The TDSHLib Library. 66
3.32 The configuration of the environment. 67
3.33 The STM32F4-TDSH Library. 68
3.34 The TDSH set of libraries. 71
3.35 Execution time example. 73
3.36 Case Study Structure. 74
3.37 Magnitude of a simulated fall at 50 Hz. 75
3.38 The TDSH structure for the Accelerometer node. 77
3.39 The microphone unit used. 78
3.40 The continuous ADC setting adopted. 79
3.41 The TDSH structure for the microphone array. 81
3.42 The fall detection algorithm. 82

4.1 Core concepts, meta representations and corresponding instances. 87
4.2 The concept of Dimension. 88
4.3 The Dimension elements. 88
4.4 Examples of spaces. 89
4.5 Space, Location, and Zone. 90
4.6 The Zone Model. 91
4.7 The Stimulus. 91
4.8 Therm1 Temperature space and zone example. 92
4.9 The cone model and representation. 93
4.10 Camera positioning space. 94
4.11 The Source Model. 95
4.12 The Mapping Function. 96
4.13 The Pose of the therm1 space. 97
4.14 The mapping of a cone. 98
4.15 The stimulus mapping chain. 98
4.16 The Space and Location classes. 99
4.17 The implemented Space specialisations. 100
4.18 The Location specialisations. 101

LIST OF FIGURES xi

4.19 The Dimension class. 101
4.20 The Zone and MembershipFunction classes. 102
4.21 The MembershipFunction specialisations. 103
4.22 The Stimulus, Measure, and SensorMeasure classes. 104
4.23 The Sensor and Source classes. 104
4.24 The Stimulus Pipeline. 105
4.25 The MappingFunction class. 105
4.26 The spaceCore package. 107
4.27 The dataCore package. 107
4.28 The Library package. 108
4.29 The library.locations package. 109
4.30 The library.mappingFunctions package. 110
4.31 Instances representing the accelerometric positioning contextual-

isation. 115
4.32 The classes for representing audio information. 116
4.33 the ConeMembershipFunction class. 116
4.34 The FallDetector and Fall classes. 118
4.35 The updated application algorithm. 119

List of Tables

1.1 AmI features captured by different definitions 2

3.1 Timers states transitions . 51
3.2 Timers states transitions . 53
3.3 Accelerometer data sample . 76
3.4 TDSH timers settings for the wearable node 76
3.5 Sampling rates and relatives frequencies 78
3.6 Microphonic array data sample 80
3.7 TDSH Timers settings for the environmental node 81

xiii

Introduction

Motivations
The rise in life expectancy is one of the great achievements of the twentieth cen-
tury. As an example life expectancy in 1950 was 65 years in the more developed
countries and 42 in the less developed regions. By 2010-2015, it is estimated
to be 78 years and 68 years respectively. This is a still running trend, as life
expectancy is projected to reach 83 years in developed regions and 75 years in
less developed regions by 2045-2050 [92]. Figure 1 clearly shows how this trend
reflects in the population pyramid of Italy, from 1950 to 2050. It is clearly
visible how in 1950 (Figure 1a) the vast majority of the population was under
35 years old, while it is expected to by over 60 in 2050 (Figure 1b).

Another factor that is contributing to the increase of the population average
age is a long-term downtrend in fertility that is being experienced by the most
developed countries, especially in Europe [42]. As a result natural population
growth rates are in decline or even decrease. This decline in fertility is hap-
pening after the phenomenon known as baby booming, which is defined as the
steep increase in fertility during the years after the second World War (usually
confined between 1946 and 1964); the progress of baby-boomers toward retire-
ment age will represent a substantial increase and fast in the proportion of old
people.

Moreover, the net immigration rates which could theoretically offset the
decline in the working-age population, have remained generally low in most
European countries. Those demographic trends cause population ageing, which
rises a number of issues:

• The decrease of the working-age population results in decline in human
capital, which could reduce productivity.

• Pension and social insurance systems can become heavily burdened.

xv

xvi INTRODUCTION

(a) 1950, population: 46.111.000 (b) 2050, population: 56.512.000

Figure 1: Italy Population Pyramid.

• A growing number of elderly will require long-term health care services.
Considering constant the current use rates, the number of people requir-
ing such services will double by 2040 [12], increasing the related public
spending.

• Population in need of care services will increase much faster than the work-
ing age population, this could result in the impossibility of providing the
needed services even in the case of financial stability. The ratio between
the number of dependents (people younger than 15 or older than 64) and
the working age population (those ages between 15 and 64) is known as
the Age Dependency Ratio, Figure 2 shows the dependency ratio of Italy
and Japan (another fast ageing country) compared with the World aver-
age from 1960 to 2014: from the picture, it is clearly visible the increasing
size of the elderly compared to the global population.

The oncoming shortage of caregivers and the strong desire of the great ma-
jority of older adults to live in their own homes and communities [36] originated
a still increasing interest in what has been defined as Ambient Assisted Living
[52]. AAL encompasses technical systems to support people in their daily rou-
tines to allow an independent and safe lifestyle as long as possible. Often AAL
solutions focus on the needs of special interest groups other than elderly, such
as people with disabilities or people with temporarily need of assistance [41].

The spectrum of AAL systems is very wide, for example there are platforms
for social inclusion that aim at keeping the users in touch with their caregivers
and family members; proposals focus on keeping the users physically and men-
tally active proposing daily activities and allowing them to keep track of their
progress [80].

AAL systems usually rely on information from the environment in order to

xvii

0
5
10
15
20
25
30
35
40
45
50

1960
1966

1972
1978

1984
1990

1996
2002

2008
2014

Italy Japan World

Figure 2: Dependency Ratio of japan, Italy, and World average from 1960 to
2014 (World DataBank Data).

properly work. All the systems that rely on sensors and actuators in order to
perform any kind of activity recognition and act on the environment to provide
feedback falls within this category.

One of the main issues in this kind of systems is sensor heterogeneity: to
perform their elaboration applications often require different kinds of data and
therefore different sensors. Moreover, sensor information is not enough to al-
low applications to make meaningful inferences. Information about the spatial
position of sensed data is often a key component in AAL applications and Am-
bient Intelligence in general. For example, a movement or a sound coming from
a location known to be forbidden may be used in a home surveillance system
(AmI) or a loud noise might trigger an alarm as symptom of a fall (AAL), but
it would make sense only to trigger the alarm in the case of sound being from
near the floor (e.g. someone or something falling) instead of mid air (e.g. hands
clapping).

Another peculiarity of AAL systems is that different sensors can be used to
obtain the same high level information. For example movements can be detected
from cameras, from microphones, or presence sensors (PIRs). Moreover there
are applications in which sensors types and positions differ from user to user in
order to be effective. For example systems for monitoring of physically impaired
people: pressure sensors may be used to determine if a user is spending to much
time on a static position on the wheelchair or applying to much pressure. The
number and position of pressure sensors should be determined individually for
each user as everyone has different issues and peculiarities. Customisation and
easy configurability are therefore key factors for these systems.

In most cases domain applications have no direct interest in knowing the
exact source of the information or how it has been inferred. In the majority of
available solutions however, they have to consider low level information about

xviii INTRODUCTION

the physical sources in order to interpret data or add the spatial information.
These kind of behaviours, while allowing a precise control and knowledge of the
data, reduce the reusability of software, and they are not resilient to changes in
the sensors configuration [88].

The following solutions are good candidate to achieve reusability and evolu-
tion:

• Separation between acquisition dynamics and sensors configurations. This
allows both to have simultaneously different type of sensors with differ-
ent frequency controlled by the same acquisition node, and to ease the
customisation of the sensors according to the application and the users.

• Data exploited by the application logic should be as decoupled by its
physical source so that a change of the sensor does not imply an upgrade
of the application logic also. Moreover, since location and time of the
observed events may help the application logic to make its inferences,
acquired data should be placed in in temporal and space context.

Contributions
The aim of this work is to propose a novel approach to the design of the acquisi-
tion layer that overcomes the limitation of traditional solutions. The approach
consists of two different sets of architectural abstractions:

1. Time Driven Sensor Hub (TDSH) is a set of architectural abstraction
for developing timed acquisition systems that are easily configurable both
in terms of sampling rates and kind of sensors. The derived framework
consists in a set of architectural abstractions that allow time-related as-
pects to be explicitly treated as first-class objects at the application level.
Both the temporal behaviour of an application and the way the applica-
tion deals with information placed in a temporal context can be modelled
by means of such abstractions, thus narrowing the semantic gap between
specification and implementation. Moreover, TDSH carefully separates
behavioural policies from implementation details improving portability
and simplifying the realisation of adaptive systems.

2. Subjective sPaces Architecture for Contextualising hEterogeneous Sources
(SPACES), a set of architectural abstractions aimed at representing sen-
sors measurements that are independent from the sensors technology.
Such set can reduce the effort for data fusion and interpretation, moreover
it enforces both the reuse of existing infrastructure and the openness of the
sensing layer by providing a common framework for representing sensors
readings. The abstractions rely on the concepts of space. Data is localised
both in a positioning and in a measurement space that are subjective with
respect to the entity that is observing the data. Mapping functions allow
data to be mapped into different spaces so that different entities relying
on different spaces can reason on data.

xix

Both the proposals have been implemented in order to test their feasibil-
ity. Moreover a test scenario is provided to contextualise the usefulness of the
proposed approaches and to test the actual correctness of each component.

Outline
The rest of the document is organised as follows:

• Chapter 1 gives a brief overview of the state of the art in Ambient Assisted
Living and its enabling technologies. It also mentions some systems aimed
at data acquisition and some available systems.

• Chapter 2 presents a general overview of the proposed abstractions, di-
viding it in two main activities.

• Chapter 3 explains the TDSH model, along with its implementation

• Chapter 4 presents the SPACES model, describing its main concepts and
usage.

• Chapter 5 draws some conclusions and presents future development about
the proposed models.

Acknowledgements
First of all I would like to thank my mighty mentor and supervisor Prof. Daniela
Micucci for being the best guide for the academic world I could hope to find.

I also wish to thank Prof. Stefania Bandini and Prof. Hiroko Kudo for
giving me suggestions, reviewing my thesis, and making my visiting time in
Tokyo possible; Prof. Toshi Kato for the hospitality at Chuo University, it was
an amazing experience; Prof. Carlos Medrano, my other reviewer, for the useful
comments and insights.

A mention is due to my colleagues and friends at SAL, both from the past
and currents.

Finally I would like to thank Prof. Leonardo Mariani, for giving me the
opportunity to continue my journey in the academic world.

CHAPTER 1

State of the Art

This chapter gives an overview of the state of the art in Ambient Assisted
Living systems. In particular, Section 1.1 gives a more specific contextualisation
of AAL inside the field of Ambient Intelligence and Assisted Living. Data
acquisition systems in general terms are also described, it is noteworthy how
only the acquisition and representation of sensor data are the focus of this
work, with long-term storage, reasoning and actuation being out of scope.

1.1 Ambient Assisted Living Systems
The oncoming shortage of caregivers, along with the strong desire of the great
majority of older adults to live in their own homes and communities instead of
institutional settings [36] originated a still increasing interest in what has been
defined as Ambient Assisted Living (AAL) [52].

AAL encompasses technical systems to support people in their daily rou-
tines to allow an independent and safe lifestyle as long as possible. Often AAL
solutions focus on the needs of special interest groups other than elderly, such
as people with disabilities or people with temporarily need of assistance [41].
The main goal of AAL has been defined in [52] as the application of Ambient
Intelligence (AmI) technology to enable people with specific demands. AmI is
considered as a (relatively) new research area for distributed, non-intrusive, and
intelligent software systems [79]. Along the years many different definitions of
AmI have been proposed and in [27] the different features of AmI systems ex-
pressed by the different definitions have been classified as in Table 1.1 and are
the followings: Sensitive (S), Responsive (R), Adaptive (A), Transparent (T),
Ubiquitous (U), and Intelligent (I). Sensitivity, Responsiveness and Adaptiv-
ity are concepts that closely relates AmI with Context-Aware Systems, a term

1

2 CHAPTER 1. STATE OF THE ART

Table 1.1: AmI features captured by different definitions

Definition S R A T U I
A developing technology that will increasingly
make our everyday environment sensitive and
responsive to our presence [4].

X X

A potential future in which we will be
surrounded by intelligent objects and in which the
environment will recognise the presence of
persons and will respond to it in an undetectable
manner [34].

X X X X

It is an environment where digital technology
senses what people want, through interconnected
and personalized interfaces embedded, invisibly,
around us [74].

X X X X X

A vision of future daily life... contains the
assumption that intelligent technology should
disappear into our environment to bring
humans an easy and entertaining life [29].

X X X

A new research area for distributed, non-intrusive,
and intelligent software systems[79]. X X

In an AmI environment people are surrounded
with networks of embedded intelligent devices
that can sense their state, anticipate, and perhaps
adapt to their needs [94].

X X X X X

introduced in [82]: these systems are aware of the users presence (sensitivity),
interact with him (responsiveness) and can adapt based on the context (adap-
tivity). On the other hand, transparency and ubiquity are derived from the
concepts of disappearing computer [97] and ubiquitous computing [96], both in-
troduced by Mark Weiser in 1991 and 1993 respectively.

A similar feature analysis has been performed by Acampora et al. in [8], in
which the characteristics of an AmI system are:

• Context awareness, it exploits contextual and situational information.

• Personalisation, it is tailored to the different needs of each user.

• Anticipation, it can understand specific needs without active actions from
the user.

• Adaptivity, it is able to adapt to the changing needs of individuals

• Ubiquity, it is seamlessly integrated with the environment.

• Transparency, it does not stay in the way of the user, it is part of the
background.

1.1. AAL SYSTEMS 3

While here ”intelligence” is not stated as a feature, is intended as a key as-
pect: in particular, by exploiting Artificial Intelligence (AI), AmI systems can
be more sensitive, responsive, adaptive, and ubiquitous [27, 8]. In [79], specifi-
cally, AmI is seen as a research area that stands at the intersection between AI
and Software Engineering (SE). AmI algorithms perceive the state of the envi-
ronment and users with sensors, reasons about the data using a variety of AI
techniques and acts upon the environment using actuators in order to achieve
their goals.

1.1.1 AAL Stakeholders
Understanding who are the main stakeholders in AAL and their needs is of
crucial importance to design and develop useful AmI systems for Assisted Living
(AL). Four different classes of stakeholders have been identified in [3]:

1. The primary stakeholders are the elderly users and their informal care-
givers (mainly their families).

2. The secondary stakeholders group includes service providers for the pri-
mary stakeholders.

3. The Tertiary stakeholders are the organisations supplying goods and ser-
vices (i.e. the AAL technologies producers).

4. The quaternary stakeholders include the policy makers, insurance com-
panies and the other organisations that analyse the economic and legal
context of AAL.

The main needs of the elderly are about:

• Social Inclusion: they should be able to contribute to the society, main-
tains connections with their social networks and in general to reduce lone-
liness, insecurity, vulnerability, and isolation, especially in rural areas.

• Quality of Living: they should be supported in their home environment in
order to reduce the risk of accidents, to enable early detection of developing
illnesses, and to provide prompt help in case of accidents. Moreover those
illness already present, such as chronic diseases should be managed at
home, rather than requiring hospitalisation.

• Human Rights: They should be able to maintain an adequate purchasing
power to satisfy their primary needs. Moreover the avoidance of any form
of maltreatment is a crucial point for people with dementia living with
caregivers.

Informal caregivers, on the other hand, are mainly family members with no
professional experience in long-term care services. They performs about 60% of
the care requests and are usually unpaid. Without proper training or support
they can suffer from physical and psychological issues and they caregiving work

4 CHAPTER 1. STATE OF THE ART

may not be adequate. For these reasons, they need to be supported with policies
and training as well as to be equipped with the right technological tools in order
to provide optimal services and assisting in critical decisions.

1.2 Enabling Technologies of AAL Systems
AAL systems usually rely on the sense-act/interact loop depicted in Figure 1.1.

Interact
Ask NotifyAct Sense

Environment

Reason

Figure 1.1: Capabilities in AAL systems.

The Sensing and the Asking activities capture respectively information from
the environment and wanted from the users. Reasoning is in charge of inter-
preting captured data to act on the environment and on the user respectively
through the Acting and the Notifing capabilities. The user can be considered as
part of the environment itself: information about him can be obtained through
Q&A or observation capabilities. Finally, in order to cooperate, each activity
relies on Communicating technologies depicted as pink arrows in Figure 1.1.

1.2.1 Sensing
Sensing is the fundamental capability of an AAL system because sensors cap-
ture information about the environments and the people who inhabit it. Sensors
are usually enriched with processing and communication capabilities. Such sen-
sors are commonly called smart sensors, which can be seen as a special case
of smart objects, that is, autonomous cyber-physical objects augmented with
sensing (or actuating), processing, storing, and networking capabilities [39]. In
AAL systems sensors are generally divided in two main categories: wearable and
environmental.

Wearable Sensors.

Wearable sensors are positioned directly or indirectly on the human body. They
usually monitor the physiological state of a person and her/his position and body

1.2. ENABLING TECHNOLOGIES OF AAL SYSTEMS 5

movements. Concerning the person’s physical state, a wide range of parameters
can be obtained from different sensors, for example:

• Tympanic, skin, oral, and rectal temperatures are obtained by thermistors.

• Blood pressure is sensed through sphygmomanometer cuff [71].

• Carbon dioxide is commonly measured by a capnograph.

• Oxygen saturation is acquired by devices that rely on pulse oximetry.

• Heart’s electrical activity is measured with a electrocardiography.

• Blood chemistry is usually sensed by means of chemical sensors.

Person’s position and movements are commonly exploited in order to perform
ADLs (Activities of Daily Living) recognition and classification [61] and, more
recently, fall detection [63, 56]. The most common monitored parameters are:

• Outdoor position is generally acquired via GPS (Global Positioning Sys-
tem) devices by the resection process using the distances measured to
satellites.

• Detection and identification of a person are generally obtained by Fre-
quency IDentification (RFID).

• Body position and movement are normally obtained by tri-axial accelerom-
eters, magnetometers, and angular rate sensors.

Environmental Sensors.

Environmental sensors are embedded into the environment. They typically de-
tect conditions that are descriptive of the environment or interactions between
users and the environment. Research in this specific field is usually divided
between video-based and non-video-based solutions.

Video-Based AAL Solutions. Vision-based solutions for AAL applications
(VAAL) is a trending topic mainly due to the high versatility of cameras. The
most explored areas are activity recognition in the rehabilitation and health
care [22], and fall detection [81, 68]. A noteworthy innovative approach is in
exploiting video technology to recognise and monitor physiological data. The
main concern over the adoption of VAAL is the loss of privacy [22]. Moreover,
those solutions must be accepted by potential users and their families, who may
have concerns even in applications that claim to ensure privacy [100].

6 CHAPTER 1. STATE OF THE ART

Non-Video-Based AAL Solutions. Sensors in this category usually have
only a few parameters they can monitor, reason for which they are often com-
bined together. Some examples of sensed parameters are:

• Ambient light is usually measured with sensors based on photodiodes.

• Room temperature is acquired as body temperature, thus using thermis-
tors.

• Humidity is usually sensed by a Relative Humidity (RH) sensor.

• Movement and presence are usually sensed by Passive Infrared Sensors
(PIR).

• Door/window/cabinet open/closed is usually obtained by a magnetic prox-
imity switch based on reed elements.

• Pressure, intended as the force applied toward a surface, is obtained by
force-sensing resistors that can be easily attached to flat surfaces such as
chairs.

• Environmental sounds are sensed through microphones. The more widely
adopted are Electret, which are specific kind of capacitor microphones that
do not need a constant source of electrical charge to operate. Microphones
can be used as presence sensor (like PIRs) or to achieve acoustic source
localisation [72, 50]. Localising the source of a sound can be used to
perform a more precise indoor positioning or for fall detection [73, 77, 56].

• Odours provide a lot of information about the surrounding environment.
In recent years, many researchers have focused on developing olfactory
sensors, able to capture and distinguish odours [31].

Environmental sensors overcome the main issue of wearable sensors by not
requiring the users to always wear them. However, they have their own issues
(apart privacy and acceptability problems): their price is higher, their require
installation (and, thus, related cost), and they are fixed on their location, thus
operating as long as the user is at home.

Trends in Sensor Technology.

Since wearable sensors loose their functionalities if not worn, the research trends
are toward size and weight reduction, durability, and waterproofing. Micro-
electromechanical Systems (MEMS, but it is also known as micro-machines in
Japan or Micro Systems Technology (MST) in Europe) is an innovative tech-
nology consisting in miniaturising mechanical and electromechanical elements
using micro-fabrication techniques. Miniaturisation has also enabled ingestible
sensors and implantable sensors, mostly used in professional medical environ-
ments. Ingestible sensors are systems integrated into ingested devices such as
pills. They are conceived to be powered by the body and communicate through

1.2. ENABLING TECHNOLOGIES OF AAL SYSTEMS 7

the tissue. These sensors can monitor ingested food, weight, and various phys-
iological parameters, but also body position and activity, thus favouring users
sustaining healthy habits and clinicians providing more effective healthcare ser-
vices [78]. Implantable sensors are used in post-surgery: once implanted they
can monitor and transmit data about the load, strain, pressure, and temperature
of the healing site of surgery.

1.2.2 Reasoning
Reasoning is the process of converting data acquired from the field to meaningful
information, which may have different meaning at multiple levels of interpre-
tation (e.g., 12 o’clock (noon) may mean 12:00, mid-day, day time and so on),
depending on the personal context of the user. Personal Context is defined
as user specific context information: parts of the environment (e.g. things, ser-
vices, and other persons) accessed by the user; the physiological state (e.g. pulse,
blood pressure, weight) and psychological state (e.g. mood and stress); the tasks
that are being performed; the social aspects of the current user (e.g. friends,
neutrals, co-workers, relatives); the spatio-temporal aspects of the other context
components from the user point of view [69]. The main properties related to
reasoning are: data collection and processing; activity recognition, modelling,
and prediction; decision support; spatio-temporal reasoning. Different reasoning
modules exploiting different properties can be combined in a single application.
Artificial Intelligence (AI) can help in obtaining better performing modules and
thus to be able to produce more useful applications.

Data collection and processing.

Data acquired via the sense activity is usually easy to collect and process, how-
ever the amount of such data is a challenge especially if audio and visual in-
formation is included. Being able to obtain and integrate information from
different kinds of sensors and sources is crucial to make AAL systems able to
recognise events and conditions and, thus, to identify contexts and status. This
skill is called sensor data fusion and is defined as the process of combining data
to refine state estimates and predictions [86].

Activity recognition, modelling, and prediction.

Reasoning technologies in AAL should be able to understand the contexts and
the current status not only by using static rules and patters, but also dynamic
and reactive models that take into consideration complex information (e.g., be-
haviour models of users). Moreover, they should be able to extract relevant
information (data mining) and update the same models (learning machine).
Specifically, AAL systems need to have capabilities such as: reinforcement learn-
ing (i.e., learning from the world observations), learning to learn (i.e., learning
from previous experiences), developmental learning (i.e., learning from the world

8 CHAPTER 1. STATE OF THE ART

exploration), and e-Learning (i.e., learning from the Web and information tech-
nology) [3].

One of the main contribution that reasoning algorithms offer is the ability
to recognise user activities. Different methods are available to recognise activ-
ities [8]: template matching techniques [17], generative approaches [20, 89, 98],
decision trees [62], discriminative approaches [58, 38, 63].

Models of the user behaviours and the recognition of activities are funda-
mental for predicting probable statuses and context outcomes. This property
is necessary both for anticipating possible negative events and conditions, thus
acting in order to avoid them, and for predicting desires of the users, thus
increasing their satisfaction.

Although recognising normal activities has a key role in health applications,
abnormal events are very important too, as they usually indicate a crisis or
an abrupt change in regimen that is associated with health issues. Likewise
normal activities, abnormal activities can be recognised by classifiers, which
usually require to be trained with datasets containing examples of the activities
to be recognised. However, datasets containing activities related to critical
situations (such as heart disfunction or falls) are rarely available. For these
reasons, anomaly detection in AAL is receiving an increasing interest [77, 23, 63].

Decision support.

Decision Support System (DSS) is a general term for any computer application
that supports enhanced decision making. DSSs have been widely adopted in
healthcare, assisting physicians and professionals in general by analysing pa-
tients data [51].

Spatio-temporal reasoning.

Being able to reason on spatial and temporal dimensions is a key element for
understanding the current situation. For example, a smart house system is able
to recognise if someone turns on a cooker and leaves it unattended for more than
10 minutes; if this happens the system takes action by autonomously turning off
the cooker and/or warning the user [27]. Thus, a number of proposal have been
made in order to enable spatio-temporal reasoning in AAL contexts [14, 40, 64].

1.2.3 Interacting
Interaction is a well studied area under the umbrella of the Human Computer
Interactions (HCI) and it encompasses all kinds of tool, both software and hard-
ware, that allow the interaction process between the user and the system [7].
When designing an AAL system, attention must be put in the interacting ac-
tivity because it has been pointed out that AAL systems will go unused if they
are difficult or unnatural to use for the residents, especially the elderly.

The HCI may be explicit or implicit. Explicit HCI (eHCI) is used explicitly
by the user who ask the system for something. This kind of interaction is in

1.2. ENABLING TECHNOLOGIES OF AAL SYSTEMS 9

direct contrast with the idea of invisible computing, disappearing interfaces, and
ambient intelligence in general. eHCI always require some sort of dialog between
a user and the system and this dialog brings the computer to the centre of the
user’s activity.

Implicit HCI (iHCI) tries to reduce the gap between natural interaction and
HCI by including implicit elements into the communication: the system acquires
implicit input (i.e., human actions and behaviours done to achieve a goal, not
primarily regarded as interaction with a computer) and may present implicit
output (i.e., output from a computer that is not directly related to an explicit
input and that is seamlessly integrated with the environment and the task of
the user) [83]. The basic idea is that the system can perceive users’ interaction
with the physical environment, and, thus, can anticipate the goals of the user.

Towards a Natural Interaction.

The analysis of the key issues in interaction and communication between humans
offers a starting point toward new forms of HCIs. Three concepts have been
identified as crucial toward better interactions:

• Shared knowledge. In interactions between humans a common knowledge
base is essential; it is usually extensive but not explicitly mentioned. Any
communication between humans takes some sort of common knowledge
for granted and it usually includes a complete world and language model,
which is obvious for humans but very hard to grasp formally.

• Communication errors and recovery. Communication is almost never er-
ror free. Conversations may include small misunderstandings and ambi-
guities, however in a normal dialog these issues are solved by the speakers
through reiteration. In human conversations is therefore normal to relay
on the ability of recognise and resolve communication errors. However,
in interactive computer systems that are invisible, such abilities are less
trivial.

• Situation and context. The meaning of the words as well as the way the
human communication is carried out are heavily influenced by the con-
text (i.e., the environment and the situation that lead to communication),
which provides a common ground that generates implicit conventions.

Comparing the way in which people interact to the way people interact
with machines, it becomes clear that HCIs are still at their early stages. What
humans expect from interactions is dependent on the situation, which is one of
the concepts on which the field of Context Awareness Computing is based [6].

Interaction in the AAL domain.

As mentioned at the beginning of this section, one of the key aspects in the
success of any technological solution is its usability and acceptability according
to end-user perspectives [3].

10 CHAPTER 1. STATE OF THE ART

This is particularly true in AAL because most of the current and near fu-
ture end-users of any AAL system are individuals with low to none affinity for
technology. In order to develop successful interfaces for AAL services, designers
should act accordingly to usability and acceptability criteria. Among all the
theories, the most important are the Technology Acceptance Model [33], the
Unified Theory of Acceptance and Use of Technology [95], and the Usability
Theory [2].

1.2.4 Acting
Adding acting capabilities to an AAL system can be seen as obtaining the
equivalent of a Closed Loop Control System in Control Theory, although the
parameters affected by the actuation may not always be monitored by sensors
and not every sensed parameter may be influenced by the actuations.

While sensors are required to understand and monitor the physical world,
actuators are those mechanical objects that act on the physical world as a con-
sequence of a software system action.

The number of different available sensors greatly outnumbers the number of
actuators. However a few key actuators are sufficient to build a large number
of complex smart objects.

The most common and simple actuators are already present in most of the
homes, but almost always they are standalone systems. For example, indoor
illumination and air conditioning (AC) systems. First attempts into making
illumination systems more context aware have been achieved by coupling light-
bulbs with motion sensors (PIRs): this way the lights do not require any explicit
interaction in order to be switched on or off, but the movement of the user is
an implicit input that cause the lights switching.

Actuators.

As mentioned, there is a small set of common actuators that are used as building
blocks in AAL systems. Some examples are:

• Relays are usually electromechanical devices acting as remote switches
that can be activated by a software system through a low-power signal.

• MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are tran-
sistors and serve as switches. Compared to relays, MOSFETs are usually
very small and some of them can switch almost 10 orders of magnitude
faster then relays. However, magnetic fields, static electricity, and heat
can easily broke them. They are usually employed to operate in low am-
perage situations (e.g., to switch on/off led lights or motors and servos).

• Lights have been among the first actuators included in AmI system. Mod-
ern lights for AAL usually support dimmer facilities, provide different
light colours, and include a small micro controller handling communica-
tion. Most of the modern lightning solutions are based on Light Emitting

1.2. ENABLING TECHNOLOGIES OF AAL SYSTEMS 11

Diodes (LEDs) that can come to full brightness without need for a warm-
up time.

• Motors commonly used are the DC (Direct Current) ones. Their are used
in garage doors, curtains, or wheel chairs. A DC motor is a device that
converts electrical energy into mechanical energy. In order to increase
precision, stepper motors are usually adopted. Another highly used class
of electric motors are servo motors, which are electric motors that can
push or rotate an object with great precision. Servo motors are commonly
adopted for precise, small movements that may require high torque.

• Screens and speakers provide feedback or information by transforming elec-
trical data into physical phenomenons, light emissions, and sound waves
respectively.

• Haptic feedback engines date back to 1968 [87], but only in recent studies
they have been consistently considered in AmI solutions. Haptic Inter-
faces are used to provide tactile feedback (skin perception of temperature
and pressure). It is a technology that complements visual and audio chan-
nels [3]. Force and positional feedback is considered as the next step of
haptic interfaces for Virtual Reality, as they can also provide information
on strength, weight, force, and shape.

1.2.5 Communication
Communicating capabilities are key aspects of AALs, since they are usually
made up of distributed devices cooperating to provide the desired services.
Three different types of networks are considered in AAL systems:

• WANs are employed whenever an AAL system needs to transmit infor-
mation outside the system. Today solutions usually exploit an Internet
connection obtained through one of the different providers available. With
the increasing number of devices connected to the Internet, identification
and addressing have been the most studied issues, which resulted in IPv6.

• LANs are used within home systems. They count different classes of tech-
nologies, such as cabled connections, powerline communications or wireless
LAN (WLAN). Home automation often exploits dedicated buses, which
means that gateways must be considered in order to put home automation
systems in communication with the rest of the AAL structure.

• BANs derives from the widespread use of wearable devices [8, 49]. In a
BAN sensors and actuators (mostly haptic, sound, or visual) are attached
on clothes or directly on the body and less frequently implanted under
the skin. BANs are characterised by three communication layers: intra-
BAN (communication within the BAN), inter-BAN (connection between
body sensors and Access Points), and beyond-BAN (streaming body sensor
data to metropolitan areas, for example, to remote database where the

12 CHAPTER 1. STATE OF THE ART

users’ profiles and medical histories are stored and made accessible to
professional caregivers.)

1.3 Data Acquisition Systems
In this context Data Acquisition Systems are those systems aimed at acquiring
data from physical sensors. They can be seen as a specific branch of Cyber-
Physical Systems (CPS). While there is no formal definition, CPSs are defined
as transformative technologies for managing interconnected systems between its
physical assets and computational capabilities [16, 55].

1.3.1 Challenges of Data Acquisition Systems
In the branch of CPSs that deals with sensor information, common solutions
feature a vertical integration of all the concerned steps, from the acquisition from
the physical sources, through the manipulation of the data, up to the fruition of
information. While this kind of vertical solutions offer a tight control over the
final applications at the expenses of hardware and middleware flexibility, as well
as software reuse in general. In order to avoid such architectural pitfalls, as an
example, [88] presents a prototype architecture for CPSs. The proposal is based
on a series of observations about the interaction between the human society
and the physical world. From these considerations, a list of basic properties
that future CPSs should have:

• Global Reference Time. It should be accepted by every component, in-
cluding human users, physical devices and software logic;

• Event/Information Driven. In this context Events represents the raw facts
acquired by sensors (or perceived by users) and named Sensor Events,
or actions performed by actuators (or, again, users) defined as Actuator
Events. Information represents the abstraction of the physical world ob-
tained through event processing;

• Dynamic Confidence. This concept is strictly related to the property of
global reference time (in terms of an acquisition time consistent at system
level) and Lifespan, which determines how much time has to pass before
the confidence of an event/information drops to zero. Confidence and
confidence fading equations determine events and information confidence
and how it fades over time. These values can vary widely depending on the
application domain, but the concepts should be applicable to every CPSs.
A principle related to the event/information confidence is Trustworthiness,
defined as the amount of trust that a receiver component has with regard
to a specific event/information source.

• Publish/Subscribe Scheme. The idea that the best approach as commu-
nication scheme derives from the fact that it is currently adopted in the
human society. By using this mechanism each CPS module acts as a

1.3. DATA ACQUISITION SYSTEMS 13

human being that only subscribes to interesting events/information and
publishes new information when necessary.

• Semantic Control Laws. With this term context awareness and user cus-
tomisation is intended. With the abstraction of the real-time physical
world proposed, system behaviours related to the environment context
according to user defined conditions and scenarios can be controlled.

• New Networking Techniques. In order to support future CPSs, new tech-
niques for data transmission that support and are optimised for the pub-
lish/subscribe scheme and timing synchronisation. Moreover, they pro-
pose that if a network is able to determine that the confidence of an
information drops to zero, it could be unnecessary to continue forwarding
that information.

This list of properties highlights a number of open research challenges such
as how a global reference time can be provided in a large scale heterogenous
system or how the event/information model should be formalised.

Moreover, in [54], the issue of reliability is presented. Embedded systems
have required levels of reliability and predictability rather than general-purpose
computing. However the physical world they interact with is not entirely pre-
dictable, which means that they must be robust to unexpected conditions and
adaptable to subsystem failures. The approach proposed is that at any level of
abstraction components should be predictable and reliable if technology allows
it. In case reliability and predictability are not feasible at the current level,
the next abstraction level should compensate with robustness. Another issue
exposed in [54] is the lack of the concept of timing in the semantics of standard
programming languages. As an example, in [99] the authors claim that ”it is
prudent to extend the conceptual framework of sequential programming as little
as possible and, in particular, to avoid the notion of execution time”. Hiding
timing properties has been a common practice for computer scientist, however
in an embedded system, computations interact directly with the physical world
where time related concepts may not be avoided.

1.3.2 Available Systems and approaches
A unified and accepted approach to overcome the presented issues, while sat-
isfying the mentioned properties is still missing. There are a great variety of
acquisition systems proposed in the literature, however they are usually big dis-
tributed systems, such as the ones presented in [28, 11, 9] where the acquisition
part of the system is usually just presented as an “acquisition node” without
any information on how the software on such node is structured. Even smaller
systems, usually more focused on single tasks such as fall detection or human
activities recognition suffer from the same issue of non-disclosure about the ac-
quisition nodes platforms, they are usually just mentioned as present and the
focus is on the task of choice or the communication of data[5, 25, 76]. As some

14 CHAPTER 1. STATE OF THE ART

of these proposals exploit smartphones as acquisition nodes, they usually are
just extracted through dedicated applications [23, 30, 85].

There are however a number of different proposals focusing on subsets of the
discussed issues, some of them are here presented.

Time Specific solutions

Giotto, as an example, represents a programming language extended to include
timed semantics. Its main goal is the separation between logical correctness
(functionality and timing) and physical realisation (mapping and scheduling),
while remaining platform independent. It has been proposed in [45] and it is
specifically aimed for embedded control applications.

In the Giotto model, the period invocation of tasks, reading of sensor values,
and writing of actuator values are triggered by real-time with the result that a
Giotto program does not specify in any way when tasks are scheduled, the only
assurance provided by the Giotto compiler is the respect of the logical semantics
(functionality and timings).

While the Giotto model assure that tasks timings are respected, such timings
are not exposed as a first class object, thus they are not dynamically available
at the application level.

Sensors and actuators representation

A different approach is presented in [26]. Here timing aspects are not treated,
but the proposed system focus on the abstraction of the physical world and a
data driven approach. Specifically, the concept of Virtual Node is presented: a
virtual node is a programming abstraction aimed at simplify the development of
decentralised applications; data acquired by a set of sensors can be aggregated
and elaborated according to an application-provided function and treated as
the reading of a single Virtual Sensor. Similarly, a Virtual Actuator acts as an
aggregation point for the distribution of commands to a set of actual actuator
nodes. Virtual nodes allow the application developer to focus on the application
logic by treating a number of different nodes as one, thus not having to deal
with the complexity of communication and data management.

The concepts proposed in [26] are contextualised in the case of Wireless Sen-
sor Networks (WSN), but the underlying ideas stand also for different topolo-
gies. The main issues in this approach are based on the fact that the aggregation
function is integrated within the virtual nodes, but are application dependant,
which means that the high level developer has to deal with the lower levels of
the system where it would be ideal, in order to improve reuse, maintainability
and modularity, to have as few levels as possible that are domain dependant.
Moreover the architecture of virtual nodes is not exposed, thus making it im-
possible to reason about the scalability and maintainability of the lower levels
of the system.

A slightly different definition of Virtual Sensor (VS) is given in [60]: here a
VS is defined as a product of spatial, temporal and/or thematic transformation

1.4. AAL SYSTEMS AND PLATFORMS 15

of data (either raw data or information from other VSs). A VS behaves like a
real sensor, in terms of emitting timed data, but it may include newly defined
thematic concepts or observations that are not available from the raw sensor
point of view. An ontology for data streams and the concept of VS are also
proposed. The Virtual Sensor Ontology include geographical information about
the sensors in order to group VSs into different presentation and analysis layers
based on their position.

Data representation

Another example is [75], where the authors propose a layered architecture that
provides the low-level software, the middleware, and the upper-level services
with detailed specifications of the involved sensors. In this approach sensors are
well modelled, but their knowledge is distributed throughout all the system. In
[32] the issues of management of large amount of data acquired from sensors
are considered: the proposed approach consists in transforming sensor data in
what authors call a set of observations that are meaningful for the applications.
Lower levels embed semantics that is strictly related to the specific application.
This lead to scarce reusability as the same abstraction rules for a specific sensor
may not be applicable in different contexts.

Finally, database approach is growing interest. Indeed, the database ap-
proach allows heterogeneous applications to access the same sensor data via
declarative queries. This kind of solutions may resolve data heterogeneity at the
application level, but there still persists the issue of sensor data management,
since most of the existing solutions suppose homogeneous sensors generating
data according to the same format [44].

The described proposals are valid regardless of the application domain, since
the focus of this work is on Ambient Assisted Living, an in-depth review of some
enabling technologies, such as sensors and actuators is done in Section 1.2 within
the description of the AAL domain, where also systems that cover the whole
pipeline, from acquisition to fruition of sensor data are presented.

1.4 AAL Systems and Platforms
1.4.1 Evolution of AAL Technology
There are three generations of technologies supporting AAL [43, 18].

First generation solutions requires users to wear a device, generally equipped
with a button that the user can press in order to alert call centers, informal
caregivers (family members), or emergency services. A reduction of the stress
levels among the users and the caregivers, the reduction of hospital admissions,
and the delayed transfers to long-term care facilities are some of the benefits
achieved [84]. The limitations are mainly related to the responsive-only nature
of the systems: if the user is physically harmed or mentally incapacitated, she/he
may not be able to trigger the alarm. Moreover, highly risk situations such as
night wandering may occur without the device being worn.

16 CHAPTER 1. STATE OF THE ART

Second generation solutions usually feature a proactive behaviour. They are
able to autonomously detect emergency situations, such as falls [68], or environ-
mental hazards, such as gas leaks [70]. As they do not require an interaction
with the user, these systems are especially suitable for older adults with normal
cognitive ageing or mild cognitive impairment [70, 18]. The main drawback is
the obtrusiveness of the employed devices.

Third generation solutions are the most advanced and exploit recent ICT
advancements. Third generation solutions are not only able to detect and report
problems, but proactively try to prevent problems and emergency situations.
Prevention can be achieved by two different activities: the first is the monitoring
of the user’s vital signs, and of any eventual change in his mobility and activity
patterns, thus predicting ongoing changes in health status; the second activity
is aimed at limiting the exposure of the user to high risk situations on the basis
of actions performed and by using actuators.

Fall detection systems represents a good example of three stages of evolution
of AAL systems: early proposals were passive and relied on the user actions;
contemporary solutions are autonomous and proactively detect falls; finally,
most innovative approaches are going toward falls prediction and avoidance.

Falls represent a major health risk that impacts the quality of life of elderly.
Roughly 30% of the over 65 population falls at least once per year, the rate
rapidly increases with age and among people affected by Alzheimer’s disease.
Fallers not able to get up by themselves and that lay for an extended period
will more likely require hospitalisation and face higher dying risks [63].

The factors that impact the risk of falls have been classified in two cate-
gories: intrinsic and extrinsic risk factors. Intrinsic risk factors include age, low
mobility, bone fragility, poor balance, chronic diseases, cognitive and dementia
problems, Parkinson disease, sight problems, use of drugs that can affect the
mind, incorrect lifestyle (inactivity, use of alcohol, and obesity), and previous
falls. Extrinsic risk factors are usually related to incorrect use of shoes and
clothes as well as drugs cocktails. Finally some environmental risk factors re-
lated to indoor falls have been identified as slipping floors, stairs, and the need
to reach high objects. Only 8% of people without any of the risk factors fell,
compared to 19% of people with one risk factors, 32% of people with two, 60%
of people with three, and 78% with four or more risk factors [90]. In order
to promptly detect and notify falls, most common technological solutions ex-
ploit wearables accelerometers embedded in smartphones [63, 85, 30] or ad-hoc
devices [56, 48]. Most of the proposals use domain knowledge algorithms, usu-
ally based on empirically defined thresholds. More advanced solutions exploit
machine learning techniques, with most of them requiring fall data in order to
properly train the classifiers. Since real fall data are quite difficult to achieve,
those solutions rely on simulated falls. However, simulated falls are not truly
representative of actual falls [53]. Thus, Micucci et al. [63] evaluate the efficacy
of anomaly detectors trained on ADL data only. Their findings suggest that
prior understanding of fall patterns is not required.

1.4. AAL SYSTEMS 17

1.4.2 Existing AAL Platforms
A number of platforms have been proposed in the literature, one of the first
and more general purpose AAL projects was CASAS, that stands for Center
for Advanced Studies in Adaptive Systems. Its goal is to design a smart home
kit that is lightweight, extendable, and with a set of key capabilities [28]. In
CASAS environments as intelligent agents, whose status (and of their residents)
is perceived using several environmental sensors. Actions are taken using con-
trollers with the aim of improving comfort, safety, and/or productivity of the
residents. A three layered architecture characterizes CASAS: the Physical layer
deals with sense and act activities, the Middleware layer manages communica-
tion exploiting the publish/subscribe paradigm, and the Application layer hosts
applications that reason on the data provided by the middleware.

Other solutions are more directly focused toward the phenomenon of the
ageing population and therefore to the elderly.

As an example, the iNtelligent Integrated Network For Aged people (NINFA)
is a project focused on the users wellness. The aim is to build a service platform
suited for elder people whose user interface allows to deliver at home different
services, such as user supervision, communication and interaction among users
for social inclusion, exergame delivering [80], and general monitoring of the
wellness [67]. To allow an early diagnose, discourse and conversation analysis
is applied to monitor verbal behaviour of people affected by different types of
disorders (e.g., aphasia, traumatic brain injury, dementia). Moreover, to per-
form motor/cognitive analysis, the system deliveries a set of custom designed
exergames via HCIs suitable for elderly or motor impaired patients. Another so-
lution focused on prevention of age-related issues is ROBOCARE. The ROBO-
CARE approach comprises sensors, robots, and other intelligent agents that
collaborate to support users. ROBOCARE is an example of a branch of AAL
solutions that are exploring the advantages and challenges of integrating assis-
tive and social robots within the systems. Specifically, it is based on a mobile
robot unit, an environmental stereo-camera, and a wearable activity monitoring
module. Based on the observations obtained by the camera and the wearable
unit, the system applies automated reasoning to determine if the user activ-
ities fall within predefined and valid patterns. Such patterns are defined by
caregivers also considering the user’s medical state [24].

There are also other solutions, that aim to support users with specific needs,
regardless of their age. As an example, the BackHome project is focused on
designing, implementing, and validating person centred solutions to end users
with functional diversity. The project aims at studying how brain-neural com-
puter interfaces and other assistive technologies can help professionals, users,
and their families in the transition from hospitalisation to home care. Back-
Home main goal is to help end users to accomplish goals that are otherwise
impossible, difficult, or create dependence on a carer [15]. The outcome of the
project is a tele-monitoring and home support system [65].

Nefti et al. propose a multi agent system for monitoring dementia suffer-
ers. Besides classical sensors (such as, temperature sensor and infrared motion

18 CHAPTER 1. STATE OF THE ART

sensors), the system uses specific sensors, such as natural gas and monoxide
sensors, smart cup in order to measure regular fluid intakes, flood sensors near
sinks, and magnetic contact switches for monitoring doors and windows [70].

Jeet et al. propose a system in which verbal and nonverbal interfaces are used
to obtain an intuitive and efficient hands-free control of home appliances [47].

Alesii et al. propose a solution targeted to people affected by the Down Syn-
drome. The system provides a presence and identification system for domestic
safety, a dedicated time management system to help organise and schedule daily
actions, and remote monitoring, control, and communication to allow caregivers
and educators sending messages and monitoring the user situation [10].

Lind et al. propose a solution targeted to people with severe heart fail-
ure, taking into consideration how an heart monitoring system should work
in a contest where users are used to heart monitoring but not accustomed to
technology [59].

Innovative Platforms for Wearable Technologies.

Current measures related to health and disease are often insensitive, episodic,
subjective, and usually not designed to provide meaningful feedback to indi-
viduals [19]. Current research in wearable devices and smartphones opens new
opportunities in the collection of those data. A great opportunity comes form
Apple that in March 2015 announced Research Kit (RK), an open source frame-
work for medical research that enables researchers that develop iOS applications
to access relevant data for their studies coming from all the people that use RK-
based applications. Moreover, information will be available with more regularity
as people use and interact with their devices. In the following, some example of
applications and studies based on RK will be provided.

mPower. The mPower is an app is a clinical observational study about Parkin-
son disease conducted through an app interface. The app collect information
through surveys and frequent sensor-based recordings from participants with
and without Parkinson disease. The ultimate goal is to exploit these real-
world data toward the quantification of the ebbs-and-flows of Parkinson symp-
toms [19].

Autism & Beyond. Autism & Beyond aims to test new video technology
able to analyse child’s emotion and behaviour. The app shows four short video
clips while using the front facing camera to record the child’s reactions to the
videos, which are designed to make him/her smile, laugh, and be surprised.
After the acquisition, the analysis module marks key landmarks on the child’s
face and assesses him/her emotional responses. The goal is not to provide at-
home diagnosis, but to see whether this approach works well enough to gather
useful data [35].

EpiWatch. EpiWatch helps users to manage their epilepsy by tracking the
seizures and possible triggers, medications, and side effects. Data are collected

1.5. ARCHITECTURES FOR AAL SYSTEMS 19

from sensors and from surveys that investigate the activities performed and the
user’s state before and after the attacks, and notes about medical adherence [1].

Cardiogram. Cardiogram applies deep learning techniques to cardiology in
order to detect anomalous patterns of heart-rate variability, and to study atrial
fibrillation, which is the most common heart arrhythmia. Data is collected from
people suffering from heart diseases as well from normal one using an app on
the Apple Watch [46].

1.5 Architectures for AAL Systems
Section 1.4 gave an overview of some of the available solutions and AAL plat-
forms. This section will provide an overview of the architectural choices of the
actual AAL systems. The main aim of this section is therefore to overview the
different technological infrastructures adopted for the AAL domain, specifically
which are the architectures, the methodologies, the techniques, and technologies
used in the design, development and implementation phases of available AAL
solutions.

The first issue on the task is that a great number of papers do not report nor
seem to adopt any kind of architectural pattern or methodology for the design
of the AAL services.

To contextualise such lack of information, [21] proposes a systematic sur-
vey of the AAL systems and states that, on a sample of 236 papers presenting
various AAL solutions, the majority of them did not report to have followed
any particular methodology (157 papers). Among the ones that described the
methodology 67% are Goal-Oriented (53 proposals), while the remaining arti-
cles are distributed among Agent-Oriented methodology (9), Feature-Oriented
methodology(6), and Service-Oriented Methodology (7) as pictured in Figure
1.2.

67% 3%
3%
4%

22%

2%

ad Hoc
Goal-Oriented
Agent-Oriented
Feature-Oriented
Service-Oriented
Not Declared

Figure 1.2: Methodologies adopted to design AAL platforms.

20 CHAPTER 1. STATE OF THE ART

Regarding the architectural patterns used, almost half of the papers adopted
ad Hoc solutions (51%), while the rest is distributed among Multi-Agent Sys-
tems (MAS) (19%), Service Oriented Architectures (SOA) (12%), Client/Server
(C/S) structures (8%), Event Driven Architectures (EDA) (2%), and Model
Driven Architectures (MDA) (1%). The chart in Figure 1.3 summarises the
distribution of architectural patterns in AAL systems.

0

30

60

90

120

ad
Ho
c

MA
S

SO
A C/

S
ED
A

MD
A

No
t D
ecl
are
d

N° of Papers

Figure 1.3: Architectures distribution in AAL solutions.

The high distribution of ad Hoc solutions, hints at lack of attention at those
quality attributes related to architectural design of software systems. Specifi-
cally, these kind of approaches usually result in systems featuring high vertical
integration, with tight control of the entire software stack from the end user
application to the sensor hardware. The main consequence is a low level of
modularity, which is known to be related to low resilience in maintainability
low to none ability to reuse some parts of the software.

Moreover, while some available solutions are built on modular frameworks
and address the issue of maintainability [13], the other issues mentioned in
this work are still to be addressed. As an example the problem of custom
configuration of physical sensors, based on each user characteristics has not
been covered, as well as the need of low level knowledge at higher levels in order
to fully understand the sensed data.

Finally, the usefulness of a standardised way to acquire, represent, and han-
dle data, is confirmed by the fact that the great majority of the identified main
activities handled by AAL systems to fulfil their goals are related to inference
and manipulation of sensor data[21]:

• Activity Recognition: the identification of Activities of Daily Living.

• Control Vital Status: the monitoring of the vital parameters of patients.

• Position Tracking: the finding or tracking of patients position, both indoor
and outdoor.

1.5. AAL ARCHITECTURES 21

• Interaction: the activities aimed at allowing the user to deal with assistive
technologies.

• Multimedia Analysis: the activities focused on elaboration of multimedia
data.

• Data Analysis: the analyses for the discovery of relations, properties, and
general knowledge in different kinds of data.

• Data Sharing: the sharing of information and knowledge among the AAL
stakeholders.

• Communication: the activities aimed at simplifying the collaboration be-
tween users

The different activities and their distribution among the reviewed papers are
listed in the chart in Figure 1.4

Activity Recognition

Control Vital Status

Position Tracking

Interaction

MultimediaAnalysis

DataAnalysis Data

Sharing

Communication

Not Declared

0 27,5 55 82,5 110

13

30

30

35

38

45

47

62

106

N° of Papers

Figure 1.4: AAL-related activities handled in the reviewed papers.

From these analyses arise the need for standard horizontal solutions able to
abstract from the specific sensors and data exploited. Such solutions could ease
the higher application levels development and adaptation to new sensors and
data.

CHAPTER 2

TANA - Timed Acquisition and Normalisation Architecture

This chapter gives an overview of the proposed solution. As mentioned in Sec-
tion 1.5 most of the AAL systems require acquisition and handling of sensor
data in order to fulfil their domain goals.

A well structured architecture should dominate the complexity of such kind
of system. The complexity is due, besides to applicative related issues, also
to the heterogeneity of the sensors available and simultaneously used. Such
architecture should separate the aspects related to the data acquisition, its
normalisation, and its fruition. This kind of conceptual separation leads to
the realisation of modular systems, whose components are easily changeable,
maintained and reused in different contexts. The focus of this thesis is on the
acquisition and distribution of data.

Acquisition The acquisition task requires a set of architectural abstractions
that:

1. Simplifies the realisation of customisable data acquisition systems.

2. Controls and expose the acquisition rates at application level without ex-
posing the underlaying complexity.

The former point enables to model and develop large scale systems that can
be easily tailored for the different contexts in which they are employed. The
latter instead allows to face unexpected situations (such as emergencies) or to
adapt to a change of context. As an example if a workout is detected the heart
rate sampling rate should increase to better represent the current situation, as
well as it should increase in case of supposed heart failure or arrhythmia and
decrease in situations where the pulse is known to be lower (i.e. sleep).

23

24 CHAPTER 2. TANA

Distribution Once the data has been acquired, it should be represented in
an homogeneous form regardless of the kind of the sensed information. This
approach allow the domain applications to seamlessly integrate and interpret
data from new or different sensors without having to learn how such data is
structured and how should be interpreted. The data representation should also
include aspects related to the timing and to the physical position of the sensed
information. A spatio-temporal contextualisation simplifies the realisation of
complex behaviours and inferences.

The proposal of this thesis follow this conceptual separation and presents
different models for the acquisition activity and the distribution activity. Specif-
ically, the distribution activity will from now on be referred as normalisation
activity, as the main focus of the proposed model is on the contextualisation of
sensed data in a normalised manner, thus enabling the definition of standardised
ways to abstract such data.

The resulting architecture has been named Timed Acquisition and Normal-
isation Architecture (TANA). TANA covers the activities of acquisition and
normalisation of data, and both their logical structures and actual implemen-
tations are explained.

The remainder of the chapter is organised as follows: Section 2.1 will intro-
duce the general TANA structure, while Section 2.2 will cover the case studies
used for the validation of each activity.

2.1 TANA Overview

As mentioned in Section 1.5, common available solutions and commercial prod-
ucts usually feature a vertical integration of the data pipeline, dealing with
all the aspects from the physical acquisition to the domain application, thus
reducing flexibility, reuse, and the other issues mentioned in the Section 1.3.

The main goal of TANA is to enable applications to reason on domain specific
issues disregarding information about the physical nature and positioning of the
sources of data, while instead focusing on meaningful information contextualised
in space and time.

In order to achieve such goal, three main activities related to sensor data
have been identified: Acquisition, Normalisation, and Fruition.

Data acquisition and normalisation activities have been already introduced,
while fruition of data consists in the specific domain applications that ultimately
make use of the produced data in order to offer specific services to the users.
The fruition of data is therefore very specific to the application domain and thus
not part of the main focus of this work. Some specific examples of applications
based on sensor data are nonetheless modelled and mentioned as case studies
used to verify the feasibility of proposed models. Figure 2.1 pictures the ver-
tical structure of TANA, with its two components at the bottom and domain
applications as fruition activities at the top.

2.1. TANA OVERVIEW 25

Time
Normalisation

Spatial
Normalisation

Fruition

Normalisation

Acquisition

Figure 2.1: Overview of the proposed model.

2.1.1 Acquistion
The activity of acquisition is reified by a set of architectural abstractions named
Time Driven Sensor Hub (TDSH). TDSH underlying idea is that time should be
a full-fledged first class object that applicative layers can observe and control.
Such set of architectural abstractions is supported by a running machine accord-
ing to the principle of separation of concerns, two different concepts are treated:
time drivenness and time observability. A time driven activity is activated by
events that are assumed to model the flow of time, while a time observer activ-
ity is aware of the current time (in terms of system time). This activities are
reified by performers and clocks. Performers are the entities that accomplish
time driven activities such as the acquisition of data from physical sensors, while
clocks keeps track of the passing time. The consistency of timing for performers
activations and clocks updates is performed by the running machine supported
by a hierarchically organised set of timers. As an example, an application that
exploits heart pulse information, may use TDSH in order obtain a precise timing
in data acquisition. In case of a change of context (i.e. emergencies, workouts,
sleep) it could slow down all the acquisition related activities, while maintaining
consistency among the data.

2.1.2 Normalisation
The Normalisation activity is reified by a set of architectural abstractions de-
fined Subjective sPaces Architecture for Contextualising hEterogeneous Sources
(SPACES). The underlaying idea of SPACES is that applicative layers should
not deal with intrinsics characteristics of acquisition devices, but should focus

26 CHAPTER 2. TANA

on the provided data, being able to understand and contextualise them without
such information about sensors. Moreover the modification or introduction of
new sources for similar information should be completely transparent to the
existing applications.

SPACES represents a set of architectural abstractions aimed at representing
sensors measurements. Such abstractions rely on the concept of space. Sensed
information is contextualised in time (the time of acquisition) and space, in
terms of physical position. A key concept is that in most cases, a physical posi-
tion of the acquired data cannot be determined by domain applications without
information about the originating source and its own position. A clear example
is any information extracted from a camera image. In common approaches, the
final application can infer the physical position about such data only by directly
knowing not only the position of the source of the image, but it also needs knowl-
edge about its inner characteristics (i.e. aperture and depth of field). A well
structured data representation should allow to embed positioning information
within the data itself, thus freeing the application from the burden of knowledge
of every physical devices it exploits.

However, different applications may reason on different spatial models. For
this reason the concept of a mapping function, able to take a spatial information
related to a specific space and convert it to a different space has been introduced.
This allow to have the same information contextualised at different abstraction
levels. As an example, any information that has a positioning information in
room coordinates, may be mapped to its corresponding values in building or
world coordinates, thus allowing each application to access it with the most
appropriate spatial information.

Moreover, a similar approach may be applied to the representation of the
data itself: at any abstraction level a standard way of representing a kind of
data is defined (a Measurement Space). Any application that reason at a specific
level needs only to know how to interpret data defined in such manner, without
having to know how each physical devices originated it.

As with positioning information, by defining this measurements standards
at room or building levels, any kind of information that is well contextualised
is directly usable by the applications.

Conversion functions act as mapping between different spaces with different
data representation. As an example is possible to define a room in which every
temperature value must be in Fahrenheit degrees. If at building level, temper-
ature readings are to be handled in Celsius degrees, the conversion function
between the two scales acts as a mapping function.

2.1.3 Putting Together
The final result is a set of well defined specifications to represent sensor read-
ings and their positions, having applications only to know such representation,
regardless of the underlaying hardware components and any eventual change
among those.

2.2. CASE STUDIES 27

Acquisition components obtained following the TDSH principles are meant
to be deployed in small, embedded, systems; each one handling a handful of dif-
ferent sensors and providing information to the normalisation level, represented
by SPACES enabled components. Each SPACES entity should be able to handle
multiple TDSH modules and provide the normalised data to different fruition
activities, which may be in different application domains, such as healthcare,
home automation, and surveillance.

2.2 Case Studies
In this section, the case studies for the activities of acquisition and normalisation
of data are described.

As mentioned, the proposed architecture only covers the two lower activities
of an AAL System (acquisition and normalisation); however in order to be
aware of peculiarities of the chosen domain, a thorough analysis of fall detection
systems have been performed. Moreover a number experiments regarding the
various fall detection techniques have been performed, thus covering also the
fruition level of the architecture. The results of the fall detection study are
published in [63]. Given the familiarity with the specific kind of application,
the application scenario chosen as a test case in this work is also about fall
detection.

As most of the fall detectors proposed in the literature are based on ac-
celerometers, a similar approach was chosen for this scenario.

2.2.1 The Acquisition Case Study
The main research question handled in the study of an example scenario for
data acquisition is about validation: is the TDSH approach feasible? Is it
useful? Does it allow the deployment of meaningful application components
based on it?

The case study is quite straightforward: a wearable node equipped with a
triaxial accelerometer is deployed; accelerometric data can be used in order to
perform fall detection, the actual algorithm is irrelevant, as it represents the
logic of the domain application.

Extracting the accelerometric data using the principles of TDSH enables to
prove the feasibility of the approach. However, the acquisition of a single sensor
may be an oversimplification of real application. As one of the most common is-
sues with accelerometer based fall detection systems is an high number of False
Positive (FP) [56], it is reasonable to assume that an advanced fall detector
could feature a second kind of sensor with the aim of lowering the FP. To this
end, a variety of different approaches have been proposed in the literature, for
the purpose of this scenario an approach similar to [76] has been considered. In
addition to the accelerometer, a microphonic array is also deployed. A micro-
phonic array is composed by a set of microphones that must be activated and
sampled individually, but consistently with each other. Once obtained, acoustic

28 CHAPTER 2. TANA

information from the array can be used to estimate the height of the source of
a specific sound. A loud sound that is originated near the floor is more likely
to be related to the fall of a user or an object than a sound that has is origin in
mid air.

For the height estimation a number of different approaches are presented
in the literature, with the more commons being the Time Difference of Arrival
(TDOA) and the Phase Delay. Time difference of arrival is a basic way to obtain
a direction estimation of the source and its working principle is based on the
different time that takes the same audio waves to reach different microphones
at placed at fixed known positions. On the other hand, phase delay is a more
complex way to achieve the same goal, it does not imply a strong correlation
on every sound sensed by both microphones; usually is achieved by exploiting
the Fast Fourier Transform (FFT). In this case, cross correlation between the
microphones information must be calculated.

In the sample scenario the final behaviour is then as follows: the accelerom-
eter and the microphones are sampled in a synchronised manner. If the applica-
tion detects a possible fall by analysing the accelerometric information, it cross
checks the result with the microphonic data from the same time window. In
case a loud sound has been sensed with a near floor altitude at the same time of
the accelerations that originated the first fall-alarm, the fall detector confirms
the fall and acts accordingly. On the other hand, if the audio information does
not confirm the possibility of a fall, the application may discard the fall-alarm
related to the accelerometer as a FP or lower its confidence in the inference.

The addition of a microphonic array has been considered as it represents
a logical and state of the art addition to a basic accelerometer-based fall de-
tector. Moreover, starting the validation from the accelerometer and then add
the microphones, allows to provide an incremental scenario for the acquisition
framework. In particular the acquisition of acceleration data represents a basic
setup, with a single sensor. On the other hand, sampling a microphonic array
represents a test for a multi-sensor scenario with strict constraints in terms of
time-synchronisation (all the microphones in the array must be synchronised
with each other).

2.2.2 The Normalisation Case Study
For what concerns the SPACES approach, the main question is about the fea-
sibility of the data representation: can data be represented as proposed in the
SPACES model? Does the SPACES approach remove the need of hardware
knowledge to exploit the positioning information of the data? Is it flexible
enough to adapt to heterogenous sensor data?

The example scenario for SPACES builds up onto the one presented for
acquiring data. A first assumption is that the microphonic array is placed sta-
tionary within a room that has a spatial representation in the system. As a
result, every information acquired from the array, should have a positioning
information that relates to such room. This positioning information is not the
position of the microphones, but it should represent an estimation of the posi-

2.2. CASE STUDIES 29

tion of the generated sounds in room coordinates; such coordinates have to be
obtained from the position of the array and some of its physical characteristics,
such as the distance between the microphones. A second assumption regards
the position of the accelerometer: it is feasible to assume that a different system
component is able to provide the position of the accelerometer within the room.
with the accelerometer position available in room coordinates, it is possible to
contextualise the accelerations with respect of the room space. It is important
to note that in this specific case, the standard contextualisation of the accelero-
metric data is not trivial: accelerations have directional components; in order
to decouple them from the physical device, their values must be calculated ex-
ploiting the orientation of the device with respect of the room. Considering a
stationary device that only senses the gravitational acceleration as an example,
the direction of the acceleration is strictly dependent on the orientation of the
device with respect of the room.

As a result, the fall detection application, instead of having to know the phys-
ical sensors, may monitor only the information that are contextualised inside
the room. Since every information related to the room is well defined and struc-
tured, the application should be able to understand every information without
dealing with the intrinsic characteristics of the devices.

CHAPTER 3

Time Driven Sensor Hub

In this chapter the design and modelling of the TDSH component are discussed.
As introduced TDSH is a set of architectural abstractions aimed at providing
consistent timing for sensor acquisition and exposing time-related concepts at
application level.

The chapter is organised as follow: Section 3.1 introduces the time awareness
principles that represents the foundations of TDSH, Section 3.2 and Section 3.3
give an introduction on microcontrollers and some hints on how the starting
model has been adapted in order to be suitable for microcontrollers, Section 3.4
introduces the concrete model of TDSH and Section 3.5 highlights some of the
implementation aspects of the actual framework. Finally Section 3.6 covers how
the applicative scenario introduced in Section 2.2.1 can be implemented using
the TDSH model.

3.1 Time Awareness Machine
Time Awareness Machine (TAM) is a set of architectural abstractions, firstly
introduced in [37]. There, the concept of Time Aware System is intended as
a collection of different Time Aware Components, which are in charge of reify
activities related to the concept of time: three kinds of time aware activities
have been identified:

1. a Time Driven activity is triggered by events that are assumed to model
the flow of time (for example, it periodically samples incoming data).

2. a Time Observer activity observes “what time it is” (for example, it ob-
serves the current time to timestamp the generated data).

31

32 CHAPTER 3. TDSH

3. a Time Conscious activity reasons about facts placed in a temporal con-
text, no matter when the computation is realised (for example, it performs
off-line statistics on historical data).

The properties of drivenness, consciousness and observability can be en-
abled by means of three well distinguished concepts (architectural abstractions):
Timer, Clock, and Timeline.

3.1.1 Timer
A Timer is defined as a cyclic source of events all of the same type: two succes-
sive events define a duration. A timer generates events by means of its emitEvent
operation, as shown in the state diagram of Figure 3.1a

active

emitEvent()

(a) Timer

active

count()

count()

(b) Virtual Timer

Figure 3.1: Timer Behaviour.

A Virtual Timer is a timer whose event generation is constrained by the
behaviour of its reference timer: it counts (by means of the count operation)
the number of events it receives from its reference timer and generates an event
when this number equals a predefined value. The duration is thus specialised
to a virtual duration. This behaviour is shown in the state diagram of Figure
3.1b. A virtual timer is also characterised by the possibility to modify the value
of its duration (by means of the setDuration operation), modifying the speed at
which events are generated.

Timers can be arranged in hierarchies, in which every descendant timer has
exactly one reference timer. The root of every hierarchy is a Ground Timer,
which is a timer whose durations are not constrained by the durations of another
timer.

3.1. TIME AWARENESS MACHINE 33

Therefore, the durations of a ground timer can be interpreted as intervals of
the real external time, so that the events generated by a ground timer can be
interpreted as marking the advance of time. Figure 3.2 sketches the described
concepts.

-emitEvent()
Timer Durat ion

-value
VirtualDurat ionGroundTimer -internalCounter

+count()
+setDuration(Duration)

VirtualTimer
-durat ion

1

-durat ion
1

-reference1

0..*

{redefines duration}

Figure 3.2: Basic Concepts related to Timers.

Using the concepts shown in Figure 3.2, it is also possible to define timers
with variable durations, by calling the setDuration operation every time a dif-
ferent value is required for the duration. In order to simplify the management
of timers with variable durations, it is possible to extend the basic concepts as
sketched in Figure 3.3a.

A virtual timer maintains an ordered list of durations that can be modified by
means of the addDuration and removeDuration operations. Figure 3.3b shows
the state diagram of a timer with three predefined durations: each time the
internal counter equals the value of the current duration, the timer switches to
the next duration in the list by means of the setDuration operation and then
emits the event.

3.1.2 Clock
A Clock is associated to a timer and counts (by means of its increment operation)
the events it receives from its timer. The event count can be interpreted as the
current time of the clock (see Figure 3.4). Thus, time is not a primitive concept
but it is built from events.

3.1.3 Timeline
A Timeline is a data structure (thus intrinsically discrete) which constitutes a
static representation of time as a numbered sequence of grains. A grain is an
elementary unit of time identified by its index and whose interior cannot be
inspected. A Time Interval, defined on a timeline, is a subset of contiguous
grains belonging to that timeline.

34 CHAPTER 3. TDSH

1..*

1

-internalCounter
+count()
+setDuration(Duration)
+addDuration(Duration)
+removeDuration(Duration)

VirtualTimer

-current duration
-value
VirtualDurat ion

-durations

<<ordered>>

(a) Concepts for timers with variable durations.

active

count()

count()

(b) State Diagram

Figure 3.3: Virtual Timers with variable Durations.

-emitEvent()
Timer

-current time
+increment()

Clock
1

0..1
emitEvent

Figure 3.4: Concepts related to Clocks.

A virtual timeline is a timeline whose grains (virtual grains) have a duration
that can be expressed as a time interval in the associated reference timeline.
Timelines can thus be arranged in hierarchies. The root of every hierarchy is a
Ground Timeline, which is a timeline whose grain durations are not constrained
by the grains of another timeline.

In each hierarchy, the ground timeline is therefore the only one whose grains
can be interpreted as an elementary time interval in an arbitrary ground refer-
ence time (e.g., the “real” time from the application viewpoint).

With the concept of Timed are intended any assertions regarding the system
domain that is contextualised in time by a time interval that represents its
interval of validity. The concepts related to timelines are shown in Figure 3.5.

3.1. TIME AWARENESS MACHINE 35

TimeInterval

- index
Grain

VirtualGrain

GroundGrain

VirtualTimeline

GroundTimeline

Timel ine

Timed

1..*

duration 1

end1

grains 1..*

begin 1 reference
0..*

1

0..*

1
1..*

valid in

<<ordered>>

defined over

<<ordered>>
{redefines grains}

<<ordered>>
{redefines grains}

Figure 3.5: Concepts related to Timelines.

By connecting a clock with a timeline, it is possible to interpret as present
time on the associated timeline the grain whose index equals the clock’s current
time (see Figure 3.6). Every time the clock receives an event from the connected
timer, it advances the present time on the corresponding timeline by one grain.

The clock also defines the concepts of past and future in the associated
timeline: the grains with index less than current time belong to the past of
the timeline and the grains with index greater than current time belong to the
future of the timeline.

- index
Grain Timel ine

-current time
+increment()

Clock
-emitEvent()

Timer

grains

1..*

present time
0..1

timeline

clock

0..1

0..1

0..1
1

advances time

emitEvent

<<ordered>>

Figure 3.6: Connection of a Clock to a Timeline.

36 CHAPTER 3. TDSH

3.1.4 Time Aware Entities
With the term time aware entity we denote any kind of entity that performs
(by means of the perform operation) time aware activities (see Figure 3.7).

+perform()
Time Aware Entity

Time Driven Entity

+observe()
+expose()

Time Conscious Entity

+readClocks()
Time Observer Entity

-current time
+increment()

Clock

Timel ine

-emitEvent()
Timer

activated by

reads time from

reasons on

Figure 3.7: Entity classification according to the relation with the basic con-
cepts.

According to the three concepts introduced in the previous sections, the
following basic classes of time aware activities can be identified:

• Time Driven Entity: an entity whose activation is triggered by a virtual
timer when the events generated by the ground timer are interpreted as
equally spaced with respect to the real external time.

• Time Observer Entity: an entity that reads current time from one or more
clocks.

• Time Conscious Entity: an entity that reads/writes timed facts on a time-
line without any reference to when such a management is actually realised.

More articulated behaviours can be obtained by combining the three basic
entities, as sketched in Figure 3.8.

With the term time aware entity is denoted any entity that performs (using
a perform operation) time aware activities. From the three concepts introduced
in Section 3.1, three classes of time aware activities have been identified:

Time Driven Entities

A time driven entity is associated to its activating timer, as sketched in Figure
3.9a. As depicted in the state diagram of Figure 3.9b, a time driven entity

3.1. TIME AWARENESS MACHINE 37

+perform()
Time Aware Entity

Time Driven Entity

+observe()
+expose()

Time Conscious Entity

+readClocks()
Time Observer Entity

Time Driven Time Observer
Enti ty

Time Conscious Time Observer
Enti tyTime Driven Time Conscious

Enti ty

Time Driven Time Conscious
Time Observer Entity

Figure 3.8: Combinations of time-related behaviours.

enters the running state when its activating timer emits an event. In this state,
it performs its domain-dependant operation. At the end of the execution, the
entity goes back to the idle state.

+perform()
Time Driven Entity

-internalCounter
+count()
+setDuration(Duration)

VirtualTimer
-value
VirtualDurat ion

-durat ion
1

activating timer

*

1

{redefines duration}

(a) Concepts for simple time driven activation.

running
[entry / perform]

idle
[end of execution]

emitEvent()

(b) Simplified state diagram for a pure time driven entity.

Figure 3.9: Time Driven Entities.

38 CHAPTER 3. TDSH

This simple model assumes that the deadline for an execution coincides with
the beginning of the next execution. To adapt the model to the general case
where deadlines temporally precede the beginning of the next execution, it is
possible to associate a second timer to each time driven entity, as sketched in
Figure 3.10a.

When the deadline timer emits an event, the associated time driven entity
must have already completed the perform operation. It follows that a time
driven entity must include an additional state, denoted terminated, as depicted
in Figure 3.10b.

+perform()
Time Driven Entity

-internalCounter
+count()
+setDuration(Duration)

VirtualTimer
-value
VirtualDurat ion

-durat ion
1

activating timer
1

deadline timer

*

1

*

{redefines duration}

(a) Concepts for advanced time driven behaviour.

terminated

running
[entry / perform]

idle

emitEvent()

[end of execution]

emitEvent()

(b) State diagram for a pure time driven entity.

Figure 3.10: Time Driven Entities with the Deadline concept.

Time Conscious Time Driven Entities

Some care must be used to guarantee consistency when designing entities that
are both time driven and time conscious. In fact, it is desirable that the be-
haviour of all the entities that happen to be triggered simultaneously does not
depend on the order in which the executions are actually managed, which may
be affected by low-level details such as the number of available cores or the
particular scheduling algorithm that is being used.

It is therefore necessary to guarantee that all the time conscious entities that
are triggered simultaneously share the same view of the timelines in which they
are interested, to avoid the situation of an entity that reads timed facts written

3.1. TIME AWARENESS MACHINE 39

by another entity triggered simultaneously just because the latter was granted
higher execution priority by the low-level scheduler.

A possible solution for this consistency problem is that all entities read timed
facts immediately when they are activated by the corresponding activating timer
and write timed facts only when they receive an event by the corresponding
deadline timer, even if the actual execution ends before the deadline.

The structure that realises this mechanism is described by the state diagram
of Figure 3.11, that enriches the one of Figure 3.10b by introducing effects in
the transitions triggered by timers. More precisely, the effect of an event from
the activating timer is the reading of facts by means of the observe operation,
whereas the effect of an event from the deadline timer is the writing of facts by
means of the expose operation.

terminated

running
[entry / perform]

idle

emitEvent()/expose()

emitEvent()/observe()

[end of execution]

Figure 3.11: Classification of Time Aware Entities and combinations of time-
related behaviours.

In an actual implementation, the concrete component in charge of the exe-
cution of entities must guarantee that when the execution of a set of entities is
triggered, all the entities of the set read timed facts before any one of them is
allowed to start the actual execution, and that every entity writes timed facts
only at the deadline for its execution.

Moreover, since the interior of a grain is not inspectable, if the timeline is
connected to a clock, facts must be written on a timeline only at the end of
the present grain. This is realised by means of the writeTimeds operation of a
timeline. Such behaviour is described in Figure 3.12.

Performers

Performers are entities that accomplish domain dependant time sensitive ac-
tivities, thus they are time sensitive entities. It follows that their activation
is triggered by the ticks of a timer. The performer activity is reified by the
perform operation, whose duration must be less than or equal to the period of
the ticking timer to fulfil real-time constraints.

As depicted in Figure 3.13a, two states characterise a performer: waiting
and running. When its ticking timer ticks, the performer passes in the running
state, which implies the execution of its perform operation. When this operation
is completed, the performer passes in the waiting state.

40 CHAPTER 3. TDSH

l oop

op t

l oop

op t

l oop

l oop

[for each Time Driven Entity whose activating timer ticked]

[if entity is a Time Conscious Entity]

[for each Time Driven Entity whose activating timer ticked]

op t

[if the timer is associated to a clock and a timeline]

[for each timer which ticked]

[If the entity is a Timer Conscious Entity]

[for each Time Driven Entity whose deadline timer ticked]

: Timeline: Time Driven
Entity

: Time Driven
Time Conscious

Entity

: Execution
Manager

: Timer

1.1.4: perform()

1.1.3: observe()

1.1.2: writeTimeds()

1.1.1: expose()

1.1: trigger()

1: emitEvent()

Figure 3.12: Classification of Time Aware Entities and combinations of time-
related behaviours.

Performers can be further classified. A time conscious performer reads and
writes timed data from or to one or more timelines.

A time observer performer reads one or more clocks to get their current
times. The states of a time observer performer are the same as the ones of a
pure time driven performer.

Different is the case of time conscious performers, since they deal with time-
lines. A time conscious performer is expected to read timed data, to perform
some operations (possibly on the read information) and to write new timed in-
formation. However, the duration of the perform operation is in general not
negligible and can be shorter than the duration of the grain.

Because time is discrete and what happens inside a grain is not observable,
timeds cannot be written directly at the end of the perform operation. Thus, a
performer must read from timelines at the beginning of a grain and can write
on them only at the end of the grain. As the end of a grain is the same as the

3.2. MICROCONTROLLERS 41

runningwaiting perform()

(a) Performer States.

running

reading

writ ing

waiting

perform()

observe()

expose()

(b) Time Conscious Performer states

Figure 3.13: States diagrams of performers.

beginning of the next one, writing at the end of a grain is equivalent to writing
them at the beginning of the next grain.

Therefore, a time conscious performer writes information at the beginning
of the next grain. This behaviour is depicted in Figure 3.13b. The expose
operation writes timed information to timelines, whereas the observe operation
reads them from timelines.

3.2 Microcontrollers
A microcontroller (or MicroController Unit, also known as MCU) is usually
denoted as a device where CPU, memory, and I/O capabilities are wrapped in
an integrated circuit programmed to perform a specific task. Usually I/O is
performed towards switches, LEDs, sensors, and actuators.

According to Moore’s Law microcontrollers have shrunk in size and increased
in processing power, allowing to embed logic and computational power even in
disposable objects, such as smart boxes for commercial products. Nowadays
MCUs are embedded in the majority of appliances, gadgets, and other electronic
devices.

42 CHAPTER 3. TDSH

3.2.1 Anatomy of a microcontroller
From a technical point of view, the basic internal designs are similar among
MCUs. The typical components of a microcontroller are shown in Figure 3.14.

Volatile
Memory

Processor
Core

Non-Volatile
Memory

Timer
Module

Interrupt
Module

Analog I/O
Module

Serial
Interface
Module

Digital I/O
Module

Internal Bus

Figure 3.14: Basic components of a microcontroller.

Processor Core: The CPU of the controller. Being a stripped down mi-
croprocessor, it contains the arithmetic logic unit, the control unit, and the
registers.

Volatile Memory: Is the memory used by the MCU for temporary storage
and peripherals configurations. In microcontrollers it is usually SRAM (Static
Random Access Memory), which does not require a new electrical charge every
few milliseconds like DRAM (Dynamic Random Access Memory) that is the
most common kind of RAM found in personal computers.

Non-Volatile Memory: It may be split in program memory and data mem-
ory with the former being used to store the programs of the microcontroller and
the latter for other data. Memory in this category includes common ROM (Read
Only Memory), PROM (Programmable ROM), EPROM (Erasable PROM),
EEPROM (Electrical EPROM) and FLASH. Most common and usable solu-
tions uses EEPROM as program memory: it cannot be changed by the program
running on the MCU CPU, but it can be erased and rewritten from a personal
computer by means of specific programs.

Timer Module: Almost every controller has at least one, and usually two or
three timers that can be used to timestamp events, measure intervals, and count
events. Many controllers also contain PWM (Pulse Width Modulation) outputs,
which is relies on timers for controlling its duty cycle. In critical systems, where
microcontrollers are vastly adopted, it is important to be able to detect errors
and deadlocks in the program and the hardware itself, for this reason many
controllers embed watchdog timers that are used to reset the unit in case of
“crashes”.

3.2. MICROCONTROLLERS 43

Digital I/O Module: It allows digital/logic communication with the MCU
and the external world. The signals are that of TTL (Transistor Transistor
Logic) or CMOS (Complementary Metal-Oxide Semiconductor) logic. Digital
ports are one of the main features of microcontrollers and their numbers varies
from just a few to almost one hundred, depending on the controller family and
type.

Analog I/O Module: It is based on ADCs (Analog to Digital Converters)
that may feature from 2 to 16 channels and usually has a resolution between 8
and 12 bits). It often includes DACs (Digital to Analog Converters and analog
comparators.

Interrupt Module: Interrupts are used for interrupting the program flow in
case of events, both external or internal, deemed as important. Basically they
enable the microcontroller to monitor certain events in the background, while
running its program and react to such events by temporary pausing the main
program to handle the interrupt.

Serial Interface Module: Controllers generally have at least one serial in-
terface that is used to download the program and for data communication in
general. An example is the USART (Universal Synchronous/Asynchronous Re-
ceiver/Transmitter) peripheral that utilises the RS232 Standard. Many con-
trollers also offer others serial interfaces, like SPI (Synchronous Peripheral In-
terface) and SCI (Serial Connect Interface).

Moreover, many microcontrollers integrate bus controllers for common busses
such as IIC and CAN. Larger controllers, may also embed PCI, USB or Ethernet
interfaces.

Finally some units are also equipped with additional hardware for debugging
purposes, an activity that on microcontrollers is not as straightforward as it is
on desktop environments.

3.2.2 Available Microcontroller Boards
As explained, microcontrollers are technically the single silicone chip that in-
cludes all the components mentioned in Section 3.2.1.

However, likewise normal CPUs in desktop environments, a single MCU
is useful only if a surrounding hardware environment is present. In the case
of MCUs they are usually called Single Microcontroller Boards (simply board,
from now on)[66].

A board is a printed circuit that contains all the necessary elements to exploit
the functionalities (ADCs, communication means, etc.) of an MCU. The final
goal of boards is to be immediately useful to an application developer, without
having to re-design and build the controller hardware. Due to their increasing
computational power and communicational capabilities some boards are now

44 CHAPTER 3. TDSH

also defined as single board computers. Here some of the most known boards
are introduced.

Arduino

Arduino1 is probably the world most known family of MCU boards. It is an
open source computing platform based on low power microcontrollers, as well
as a minimalistic development environment. Being open source there are a
number of clones, variations and accessories; but a standard Arduino board
is equipped with an 8, 16 or 32 bit AVR (a family of RISC microcontrollers)
produced by Atmel. Early versions used to be programmed via RS232 ports,
but current models are easily programmed by USB and some specific models
allow programming over Bluetooth or WIFI connections. The Arduino family
is quite basic, with low computational power and and memory, but it stands
from the competition for the great community and material available online.

Raspberry Pi

The Raspberry Pi Foundation2 is a non-profit organisation from the UK and
they built the first Pi board in order to bring back the kind of simple program-
ming and tinkering typical of the 1980s. It is built on the Broadcom BCM2835
and BCM2836, which are multimedia application processors geared towards
mobile and embedded devices. They include ARM processors in the order of
hundreds of MHz, GPU, 512Mb to 1 GB RAM, and MicroSD socket for boot
media and persistent storage. The Pi family, opposed to the Arduino, supports
complex Operating Systems such as many Linux distributions and (limited to
the last model) Windows 10. Its main programming language is Python, but
Java, Ruby, and C/C++ are also supported.

BeagleBoard

The BeagleBoard3 is the response from Texas Instrument to the Pi success. It is
open-source, based on ARM architecture and its focused on graphic rendering
and output, with some models having HDMI output. The standard models
are equipped with 1 GHz ARM processors and feature either wired or wireless
network capabilities. An SD card reader and USB are also present. Similarly to
the Raspberry Pi, the BeagleBone is more focused on high level programming
(supporting a number of desktop level Operating Systems) rather than low level
applications that deal with sensor, while still supporting such functionalities
through standard 12 bit ADCs.

1https://www.arduino.cc
2https://www.raspberrypi.org
3https://beagleboard.org

3.2. MICROCONTROLLERS 45

STM32

The STM324 is a line of products from STMicroelectronics. It has been built
for cost-conscious applications that require performance, connectivity, and en-
ergy efficiency. They are equipped with different 32 bit RISC ARM processors,
such as the Cortex-M0 or the Cortex-M4. It is the third family of single board
computers from STMicroelectronics. The F4 series has been the first to mount
the Cortex-M4 and to support DSP and floating point instructions.

The Arduino boards, while perfect for simple and quick projects, are generally
too simple and limited for supporting complex architectures and frameworks
onboard.

On the other hand, boards like the Raspberry Pi and the BeagleBone support
reading and reasoning on sensor data, but their focus is more on applications
that require visual output and their general usage of high level Operating Sys-
tems make them non suited for low level, real-time operations and reasoning.

These are the main reason for which the final choice fell on the STM32
family from STMicroelectronics, specifically on the STM32F4 board. There are
of course a great number of other possibilities, but the STM32F4 boards are
quite well documented, with a fairly active community and are easily available.

3.2.3 Software Architectures and Embedded Systems
Microcontrollers, both in commercial available boards or ad hoc solutions, are
employed in what are called Embedded Systems. An embedded system usually
relies on microcontrollers, but solutions based on standard microprocessors are
also present.

Embedded systems are dedicated to specific tasks, which allow them to be
highly optimised in comparison with standard software components on general
purpose machines, they are usually considered part of a bigger system (e.g. the
control system of a washing machine) and interact with the real world.

Software architecture nowadays represents an area of intense research. The
literature offers a great variety of proposals for different application domains
that cover both desktop and embedded systems. However, software architec-
tures are usually strictly related to the application for which they are proposed
and there is the lack of general approaches that tackle those issues that are
peculiar or more critical in embedded systems. [93] is one of the few examples
that applies general architectural considerations that are independent from the
application domain but common among embedded systems, such as efficiency,
hardware limitations, and architecture-compliant implementations.

One of the main questions is deciding which aspects of an embedded software
system have to be considered critical from an architectural perspective. It is
reasonable to assume that as in standard architectures components, connectors
and how they are configured are considered as basic building blocks, but further

4http://www.st.com/en/microcontrollers/stm32-32-bit-arm-cortex-
mcus.html?querycriteria=productId=SC1169

46 CHAPTER 3. TDSH

aspects should be taken into consideration. As an example in embedded de-
velopment, software may be built only based on specifications, with the actual
platforms being non-available or even non-existent at time of development.

3.2.4 Software Development for Embedded Systems

Software development for embedded systems is in large part comparable to de-
velopment for a common workstation, however, there are some crucial differences
that make development for embedded systems more complex.

Actually, despite the fact that there are no conceptual differences to the
development process, due to the peculiarities and limitations of direct hardware
access, the challenges faced by developers are quite different than whose working
in high level environments.

High level programming is “just” software development and there is the
perception that embedded development is similar, but done at the software side
of the border between software and hardware. In fact, embedded development
requires to constantly have to “cross” over to the hardware side of the system, in
order to fully understand the interaction between the microcontroller software
and the associated hardware. It is important to understand what happens to
the source code after it has been compiled, examples are how the various data
types are actually mapped in memory or which optimisations are done by the
compiler or seemingly right source code, might not produce the expected results.

On top of such conceptual differences, embedded development presents some
physical differences as well: as an example target systems are generally small
and dedicated and do not provide any support for software development. De-
bugging support is usually limited or inexistent, while debugging needs have the
additional elements of timing and hardware behaviour. Hardware issue such as
spikes on data due to noise are very hard to identify and usually produce inter-
mittent and transient failures.

The fact that debugging support is generally scarce is important as an em-
bedded software system is typically developed and tested in a simulated environ-
ment as the target hardware, as mentioned, may be still inexistent or other way
unavailable. This fact may represent an issue as the characteristics of the target
environment directly affect certain software decisions, such as the distribution
of components or the means of communication.

Finally, as mentioned, there is also the issue of resource constraints to con-
sider. While nowadays memory usage and optimisation are often negligible in
desktop environments they are key aspects in embedded systems. Power con-
sumption is another example, while it is of no concern in common development
it becomes pivotal in battery-powered embedded systems.

Due to all these reasons, development of embedded solutions requires to be
particularly meticulous and patient in finding bugs that may be inherent to the
hardware itself.

3.3. TAM FOR EMBEDDED SYSTEMS 47

3.3 TAM for Embedded Systems
Time critical components of applications are usually modelled as small dedicated
nodes that embeds and handle the strict time constraints, while the rest of the
application may reason on more relaxed timings. The TAM framework is aimed
at modelling such components, however the current design has been validated
only through a desktop based solution (using the Java language). As explained
in section 3.2.4 designing and developing architectural abstractions and frame-
works for embedded systems requires a dedicated evaluation of characteristics
such as computational complexity and memory usage.

In order to better suit smaller target systems, the set of available structures
and features have been examined, re-designed and, in some cases, eliminated. As
an example, while all the three time-related aspects are treated, time-conscious
entities (timelines) had to be redesigned and are explained in 3.3.2. Moreover
in order to maintain consistency and reduce the system overhead in terms of
memory, only a single clock is considered for each framework instance. This
restriction avoid the need to keep track of changes in timers duration that would
impact the proportion of the duration of virtual grains with respect to the grains
of the ground clock.

3.3.1 Performers and Durations
In Section 3.1.4 the description of performers is given. However due to implicit
limitations of an embedded platform (discussed in Section 3.2) only their basic
behaviour has been modelled. Moreover, the general lack of multiple cores and
no common support for multithreading as hardware and software limitations,
impose a more restrictive assumption about performers duration.

Not only the duration of a performer execution must be less than the time
that elapses between the performer activations, but it must be lower that the
fastest time grain considered in the framework and counted by the ground timer.
In fact, the execution of all the performers of the system combined, should be
lower than the configured resolution for the platform itself.

The reasons for this strict limitations are related to the sequential execution
of a single-thread application on a single-core machine, more details are given
in Section 3.5.3, where the actual implementation is discussed.

3.3.2 Timelines, Timeds, and Buffers
The concept of timeline has been introduced in Section 3.1.3. The concrete
model of a timeline is however more complex and includes a dedicated manager
in charge of handling the storage of timed information put inside its timeline.
This allow to have different policies in terms of handling of data.

A basic manager stores the facts in RAM as a List at runtime, but looses any
information at shutdown. A more complex manager also stores the information
on a persistent storage memory for further access and analysis. Moreover other
managers can be easily added to the framework in order to exploit different

48 CHAPTER 3. TDSH

patterns for data handling (as an example, a database-based approach has been
looked into). Figure 3.15 shows the definition of the timeline in the desktop
implementation.

-serialVersionUID : long = 2051961490465202394L
<<Property>> -clock : Clock
<<Property>> -grainMap : TreeMap<Long, Long>
-timedsToBeAdded : ArrayList<Timed>
-timedsToBeRemoved : ArrayList<Timed>
#timeds : ArrayList<Timed>
<<Property>> -name : String = ""
<<Property>> #referenceTimeLine : TimeLine
<<Property>> -manager : TimedValueManager
-TimeLine()
+TimeLine(name : String, manager : TimedValueManager)
+init() : void
+updateGrains() : void
+addTimed(fact : Timed) : void
+removeTimed(fact : Timed) : void
+grainExpired() : void
+getReferenceDuration() : long
+getGroundDuration() : long
+getReferenceInterval(interval : TimeInterval) : TimeInterval
+getGroundInterval(interval : TimeInterval) : TimeInterval
+getTimeds(interval : TimeInterval) : ArrayList<Timed>
+getTimeds(timeGrain : long) : ArrayList<Timed>
+getAllTimeds() : ArrayList<Timed>
-findReferenceTimeLine() : void

TimeLine

-serialVersionUID : long = -1924610559713740465L
TimedValueManager

-serialVersionUID : long = 8444844067372396133L
+PlainTimeLine(name : String, manager : PlainManager)

PlainTimeLine

-serialVersionUID : long = -6096314139316086495L
PlainManager

-serialVersionUID : long = 8444844067372396133L
+EnhancedTimeLine(nam e : String, manager : EnhancedManager)

EnhancedTimeLine

-serialVersionUID : long = -7452913928755483647L
EnhancedManager

-manager

#referenceTimeLine

{redefines manager}

{redefines manager}

Figure 3.15: Structure of a concrete Timeline.

Such a complex design is too cumbersome for embedded platforms and the
concept of timeline had to be revisited. In order to lighten the framework some
assumptions had to be made:

• The only purpose of a timeline is to act as blackboard for timed informa-
tion, in fact enabling the share of such information.

• Long term storage of timed information, if needed, has to be assessed
explicitly and outside timelines.

• In order to reduce memory usage and to be able to perform consistent
estimations of the memory needed for the systems, their capacity should
be limited.

• Components that read and write information into timelines are responsible
for correct memory allocation and deallocation of the data they write and
read.

From assumptions such those, a simpler model has been chosen, based on a
CircularBuffer. The model of a concrete buffer is showed in Figure 3.16, where
Data is the corresponding of a Timed as described in Section 3.1.3: it keeps the
same characteristics of being a container of any kind of information, as long as
it is enriched with a timestamp.

3.4. TDSH CONCRETE ARCHITECTURE 49

Empty
Half
Full

<<enumerat ion>>
BufferConstants

-buf_ : T[/* @@VP_C_PP_BEGIN SIZEMAX */ 1024/* @@VP_C_PP_...
-wp_ : T*
-rp_ : T*
-tail_ : T*
-remain_ : uint16_t
+ C i r c u l a r B u f f e r ()
+ C i r c u l a r B u f f e r ()
+push(value : T) : void
+pop() : T
+pop(toRead : int) : vector<T>
+remain() : int
+clear() : void

CircularBuffer

-_timestamp : unsigned int
+Data(timestamp : unsigned int)
+Data()
+getTimeStamp() : unsigned int
+toString() : string

Data

T : Data

Figure 3.16: Structure of an embedded Timeline.

3.4 TDSH Concrete Architecture
The concrete design of the Time Driven Sensor Hub is based on the main TAM
concepts presented in Section 3.1. The focus on embedded platforms and their
peculiarities as mentioned in Section 3.2 led to specific design choices such as
the ones mentioned in Section 3.3. The main classes of the resulting design are
pictured in Figure 3.17.

The Ticker is the software representation of the external time trigger and it
is considered as the time source for the TDSH framework. The Timer entity rep-
resents the base of the TAM model: a specific timer (named the GroundTimer)
is connected to the ticker and ticked by it. Each timer may have a number of
sub-timers to which it acts as reference.

Every timer is also characterised by a period that determines upon how many
ticks of its reference timer it has to trigger. This mechanism act as a prescaler
and it allows to obtain a hierarchy of timers where the groundTimer is the root
of the hierarchy.

Each timer may have a related Clock and the clock attached to the ground-
Timer is named GroundClock. As in TAM, a clock counts the time passed since
the startup of the systems in terms of ticks of the timer it is associated to.

Performers are the reification of purely time-driven entities and represent
the operative nodes of the framework. Performers are attached to timers and
their execution is triggered by them when their internal counters match their
periods.

By chaining timers and performers like discussed in Section 3.1, it is possible
to design a system in which operations are strictly timed and it is possible to
know exactly when any information has been produced in terms of local time,
by looking at the clock corresponding to the timer that triggered the performer
execution.

50 CHAPTER 3. TDSH

Timer

GroundTimer

Clock Engine

Performer

PerformerTask

Ticker

1

Ground Clock
1

1

reference
1

*

referenceTimer

*

*

1
*

1

1

1

1

*
1

reference
1

1

1
Ground Clock

1

1

1

*
1

*
referenceTimer

*

1

1

1

1

1

11
1

Figure 3.17: TDSH base classes.

The system behaviour is characterised by the following states:

• Built, it is the state in which the system enters after the configuration of
the framework topology has been loaded.

• Ready, is the state representing the fully configured system (topology +
initial states), but it is not running.

• Running, it represents the state in which the system is running.

• Suspended, it is the state in which the system has been paused, it stops
the advance of time from the framework point of view.

The operations enabling the transitions between the states are described in
Table 3.1.

3.4.1 Timer
The structure of a Timer, retains most of the characteristics from the original
TAM model, nonetheless its behaviour has been better defined: the possible
states of a timer are pictured in Figure 3.19:

3.4. TDSH CONCRETE ARCHITECTURE 51

Table 3.1: Timers states transitions

Name Parameters Behaviour

setConfiguration Configuration

configuration

Loads the topological configuration
of the system.

setState SystemStates

initStates

Configures the states of timers and
performers (their periods and cur-
rent state). To maintain consis-
tency, it cannot be invoked while the
system is running.

start - Starts the system after it has been
fully configured.

pause - Interrupts the execution of the sys-
tem, without modifying the configu-
ration.

resume - Recover the normal execution of the
system after it has been suspended.

shutDown - Stops the execution of the system
and removes the framework instance
from the memory.

Built Ready Running

Suspended

shutDown()

setConfiguration(conf iguration)

setStates(initStates)
start()

pause() resume()

setStates(initStates)

Figure 3.18: States of the System.

• Built, it represents the state in which a timer is after its instantiation.

52 CHAPTER 3. TDSH

Running

SuspendedBuilt reset(int, suspended)

resume()

reset()/reset(int)

pause()

reset()/reset(int)

reset(int, running) reset(int, suspended)

reset(int)/reset(int,running)

Figure 3.19: States of a Timer.

• Running, its the state of execution. It is the default state for an initialised
timer (which is an instantiated timer upon which a valid period value has
been set).

• Suspended, it represents the state of a timer that has been put on hold.
It is also possible to initialise a timer in this state instead of running.

The transitions between such states are instead described in Table 3.2 and
are labelled with the stereotype <<Runtime>> in Figure 3.20 that pictures the
concrete design of a timer. the operations stereotyped as <<Configuration>>
and <<Reflection>> are, as the names suggest for configuration of the timer
and its related elements and for reflection purposes, these aspects are treated in
Section 3.4.4.

Figure 3.20 also shows how a Timer holds reference to all of its subTimers
and performers. Moreover it have a reference that links it to its reference
timer.

The operational behaviour of a timer is pictured in Figure 3.21, when a
timer (t1) is ticked, it increments its internal counter and if it matches its
current period it emits an event. The event emission implies ticking all of its
sub-timers (t2) and setting its performers (p) to be executed. The execution of
the performers is not contextual to the timer execution and it is handled by the
Engine, as described in Section 3.4.3.

3.4. TDSH CONCRETE ARCHITECTURE 53

Table 3.2: Timers states transitions

Name Parameters Behaviour

pause - Stops the execution of the timer, which
means that it will not increment its in-
ternal counter.

resume - Re-starts the execution of the timer (in-
ternal counter increment, tick propaga-
tion and performers execution).

reset - It does not change the current state, but
it clears the internal counter.

reset int newPeriod It does not change the current state: it
clears the internal counter and sets the
period value to newPeriod.

reset int newPeriod

TimerStates newState

It clears the internal counter, sets the
period value to newPeriod and changes
state to newState.

- id : int
-refID : int
-period : int
-internalCounter : int
-currentState : TimerState
-performers : vector<Performer*>
-subTimers : vector<Timer*>
-reference : Timer
+Timer(id : int)
+getId() : int
+tick()
-emit_event()
<<Configuration>> +linkTimer(timer : Timer *)
<<Configuration>> +unlinkTimer(timerID : int)
<<Configuration>> +linkPerformer(performer : Performer *)
<<Configuration>> +unlinkPerformer(performerID : int)
<<Runtime>> +pause()
<<Runtime>> +resume()
<<Runtime>> +reset()
<<Runtime>> +reset(uint : newPeriod)
<<Runtime>> +reset(uint : newPeriod, status : TimerState)
<<Reflection>> +getPerformersIDs() : vector<int>
<<Reflection>> +getAncestorID() : int
<<Reflection>> +getDescendantsIDs() : vector<int>
<<Reflection>> +getCurrentState() : TimerState

Timer

-frequency : int
-tolerance : int
-tickGT()
-t ick()
-run()

Ticker

-engine : Engine
GroundT imer

1

Figure 3.20: Concrete design of a Timer.

54 CHAPTER 3. TDSH

[internalCounter % period ==0]

a l t

[if is RUNNING]

a l t

l oop

l oop

[for each Timer]

[for each Performer]

t2 : Timert1 : Timer p : Performer

1.2.2: setToRun()

1.2.1: tick()

1.2: emit_event()

1.1: internalCounter++

1: tick()

Figure 3.21: Execution of a Timer.

3.4. TDSH CONCRETE ARCHITECTURE 55

Ground Timer and Ticker

The timer that starts the tick propagation is the GroundTimer. Its behaviour
is bounded to the global state of the system pictured in Figure 3.18. The
ground timer is defined as a timer that holds a reference to the Engine and it is
referenced by the Ticker as pictured in Figure 3.20. The attributes of the ticker
are used in order to define the base frequency of the system (in milliseconds)
and the tolerance for delays.

As shown in Figure 3.22 whenever the physical ticker interface ticker (which
is external and independent from the system) ticks the ground timer gt it in-
crements the ground clock gc and then iteratively ticks all the timers that are
directly attached to it. After the clock and all the timers have been ticked it
start the execution of the Engine, discussed in Section 3.4.3.

a l t

[if is RUNNING]

gt : GroundTimer gc : Clockengine : Engineticker : Ticker

1.1.1.3: execute()

1.1.1.2: Timer::tick()

1.1.1.1: tick()

1: tick()

1.1.1: tick()

1.1: tickGT()

Figure 3.22: Execution of the Ground Timer.

3.4.2 Performer
As pictured in Figure 3.23, the concept of performer has been reified in two dif-
ferent entities: the Performer and the PerformerTask. The performer reifies all
the characteristic of a TAM performer (see Section 3.1.4), with some additional
functionalities in order to handle its buffers. The PerformerTask is a simple

56 CHAPTER 3. TDSH

entity that has the only duty of defining the task that has to be performed. It
can also use the write* routines in order to store and diffuse information.

- inputs

-outputs-SIZEMAX : int
+push(element : T)
+pop() : T
+pop(num : int) : vector<T>
+remain() : int
+clear()

CircularBuffer
T : Data

-commands

-ID : int
-refTimerID : int -
hasToRun : bool
-running : bool
+perform() +expose()
+setToRun()
+isRunning() : bool
+hasToRun() : bool
#getNow() : int
-handleCommands()
<<Configuration>> +addInputBuffer(buffer : CircularBuffer<Data*> *) : int
<<Configuration>> +removeInputBuffer(buffer : CircularBuffer<Data*> *) : void
<<Configuration>> +addOutputBuffer(buffer : CircularBuffer<Data*> *) : int
<<Configuration>> +removeOutputBuffer(buffer : CircularBuffer<Data*> *) : void
<<Configuration>> +addCommandBuffer(buffer : CircularBuffer<Command*> *) : int
<<Configuration>> +removeCommandBuffer(buffer : CircularBuffer<Command*> *) : void
<<Configuration>> +addAlarmBuffer(buffer : CircularBuffer<Alarm*> *) : int
<<Configuration>> +removeAlarmBuffer(buffer : CircularBuffer<Alarm*> *) : void
<<Reflection>> +getReferenceTimerID() : int

Performer
-outputs

-alarms

- inputs

-tempBuffer : Vector<Data*>
-alarmsTempBuffer : Vector<Alarm*>
-inputs : CircularBuffer<Data*>[]
+perform(int)
-writeData(Data *)
-writeAlarm(Alarm *)
+handleCommand(Command *)
+getTempBuffer() : vector<Reading*>
+getAlarmsTempBuffer() : vector<Alarm*>

PerformerTask

-commands

- task

-alarms

- task

Figure 3.23: Concrete design of a Performer.

While it is easy to see the task being performed (hence, the performerTask
entity) as a state machine, the performer itself does not have any particular
state definition, since its state is bounded to the one of its activation timer.

Buffers and Data

As mentioned in Section 3.3.2 The concrete design of timelines has to face
issues such as memory management and thus a more low level practical solution
has been proposed. Instead of generic (illimitate) timelines, there will be a
set of Buffers that performers can read and write; specifically, the considered
structure is that of a CircularBuffer.

Circular buffers allow to avoid an uncontrolled growth in memory usage (as
they are limited), but are more flexible than normal arrays. Moreover, in case
of need older data would be erased in favour of newer timed information, which
is by assumption more useful and meaningful since it represents a more recent
state of the environment.

CircularBuffer is a template class and it can be instantiated with a generic
object type named Data, also introduced as the concrete counterpart of the
concept of timed.

Standard interactions are designed as follows:

• push(T) is the function used in order to add a data element to the buffer.

• pop() will return the first element of the buffer, which means the older
element still on the buffer.

• pop(int) is equivalent to the pop(), but will return a vector of data
elements composed by the last n elements of the buffer.

• remain() returns the number of items still present on the buffer.

3.4. TDSH CONCRETE ARCHITECTURE 57

• clear() empties the buffer without returning any element.

While the parametrisation of the buffer with the Data type allows more
flexibility and reuse, TDSH is devoted to sensor based application, which is
why more data types have been designed in order to take account of different
behaviours.

For example, an application may be interested in sending a specific Command
to a running performer, like the change of a threshold; on the other hand, the
same performer may be interested to produce an Alarm if its readings are over
such threshold.

This specialisations lead to the definition of the data hierarchy pictured in
Figure 3.24.

Reading

-timeStamp : long
Data

CommandAlarm

Figure 3.24: Data Hierarchy.

The assumption is that commands may easily be handled differently from
other input data and they may have to be dealt as soon as the performer is acti-
vated. Similarly alarms may be sent to a dedicated status-controller performer
and not as a performer usual output.

As an example, Consider the scenario of a simple thermostat, where there
is a temperature probe that is polled periodically: each information is sent to
the central station for statistical purposes and, in case the temperature value is
below some given threshold t, it turns on the heater. The TDSH setup for this
scenario can be the one pictured in Figure 3.25. Each performer is designed as
follow:

• P1 is the acquisition performer, its activation timer V T1 has an activation
period of 6. V T0 has the same timing of the ground timer GT , which
is itself paced at a 10 seconds period, giving P1 an acquisition rate of 1
per minute. Each value polled from the probe is stored in a Temperatur-
eReading value, which is a specialisation of the Reading type that also
holds a float value for the temperature. Finally, every TemperatureRead-
ing is placed both in buffer B1 and B2.

• P2 is the temperature monitor, in case the temperature values obtained
through P1 are below the given threshold t, it produces an alarm and put
it inside its buffer B3. Also, P2 features a second buffer, B4, that is used
as input and in which commands for changing the threshold values can be
placed.

58 CHAPTER 3. TDSH

• P3 represents the communication module: it collects information from
both buffers B1 and B3 and then sends them outside the system through,
as an example, a serial communication using the bluetooth standard. Since
most of today communication standards for embedded platforms features
bidirectional communication, it is reasonable to assume that it also handles
incoming communications from outside the system such as the commands
interpreted by P2: for this reason it features B4 as one of its buffers and
it writes on it the commands received.

Figure 3.25: Buffer example.

In order to better define the relationships between a performer and the
various types of data it handles, its association with the CircularBuffer class
has been specialised accordingly. A performer therefore holds four sets of buffers:

• Inputs, are buffers that hold readings that are used as input by a performer
From the performer point of view, these are read-only buffers.

• Outputs, are buffers that can hold any Data subclass in which a performer
stores the outputs of its acquisitions or elaborations, so from its perspec-
tive they are write-only and the types of data written will depends on the
nature of the performer.

• Commands, are buffer in which only commands are allowed and are used
to send commands to a specific performer. From the performer point of
view, these are read-only buffers.

• Alarms, on the other hand, only holds alarms and are used by the per-
former to notify whoever may be interested of an abnormal situation; they
are usually write-only by the point of view of the performer that creates
them.

3.4. TDSH CONCRETE ARCHITECTURE 59

Since a performer may receive inputs and commands from more than one
other performer, each one has a set of input and command buffers.

Similarly, each performer may have a number of alarm buffers (the buffers on
which it writes the alarms it generates) and output buffers. The need for more
than one output buffer per type tracks back to one of the assumptions presented
in Section 3.3.2, specifically the one about memory management responsibility:
performers who pop information from a buffer are in charge of handling it and
of its correct disposal.

This decision implies that once an information is popped from the buffer,
the data structure does not retain a reference to the removed data, losing in
fact the ability to access it and handle its memory deallocation. On the other
hand, a performer that reads data from a buffer is in charge of deallocating it
once it has made its computations and produced its output (if any).

The fact that each performer can (and should) deallocate the memory of the
data it reads, means that if more than one performer needs to reason upon the
same data, it should be duplicated and placed on different buffers, otherwise a
performer could deallocate or modify an object before a different performer has
finished using it.

Buffers therefore act as blackboard that allows to link different performers
together and share data in a producer-consumer scheme. The same buffer will
be identified as an outputBuffer from the producer and as an inputBuffer from
the consumer point of view.

Since the design of the TDSH is focused on embedded platforms, memory
optimisations have been considered: as an example, the inputs buffers of the
performer are actually the same one of the performerTask, in order to prevent
superfluous memory usage.

Once defined how the performer class handles data, it is necessary to clarify
how this data is accessed and stored by a performerTask. As pictured in Figure
3.23 the performerTask has a reference to the inputs buffers: that is because
it could benefit from knowing from which buffer each information comes from.
In all the other situations, the performerTask would not benefit by facing the
complexity of the buffers arrays and for this reason such cases are handled
differently.

The output of data is performed by the writeData operation: the presence of
multiple buffers is transparent from the task perspective, it will be its containing
performer duty to handle eventual multiple data distribution inside numerous
buffers. the same goes for alarms that are stored by the performerTask by means
of the writeAlarm operation.

On the other hand, commands are an input buffer and for such reason,
to simplify their handling by the task, it has been defined the handleCommand
function: it takes a single command as a parameter and is invoked on the task on
each command received by the container performer before executing the actual
perform of the task, as shown in Figure 3.26.

As described in Section 3.1.4, the write and read actions of shared informa-
tion should be synchronised with the activation times of the producer and of the
consumer respectively. Since one of the assumption of TAM is that a time grain

60 CHAPTER 3. TDSH

[for each commandBuffer in CommandBuffers]

l oop

l oop

[for each Command in commandBuffer]

engine : Engine
task : PerformerTaskp : Performer

1.4: perform(now : int)

1.5: running = false

1.2: running = true

1.1: hasToRun = false

1: perform()

1.3: handleCommand(command : Command*)

Figure 3.26: Perform operation.

is atomic and indivisible, anything that happens at a given time grain cannot
be stored within the same grain as this would violate the atomic property. For
this reason all the writings on the buffers are synchronised at the end of a ”tick
iteration”, which means that information is written after all the timers have
been ticked and all the performers that should activate at such instant have
been executed.

This approach enforces data consistency between performers triggered at the
same grain as another assumption of the TAM model is that all performers that
are executed at the same grain must be perceived as simultaneous.

Consider the example scenario previously introduced and that at a specific
time instant t, both P1, P2, and P3 have to be executed. The execution order
of the performers is virtually casual and should not affect the outcome of the
system. Consider the execution order 1)P2, 2)P1, 3)P3: in such case P2 would
read the previous value produced by P1 as valid for the instant t. After P2 ends
P1 updates values in B1 and B2. Finally P3 is executed and reads the new value
as the value for the instant t. This results in having two different values as
output from P1 at the same instant, which not only is theoretically wrong, but
may also lead to practical issues.

This kind of issue is avoided by using temporary buffers within the write*

3.4. TDSH CONCRETE ARCHITECTURE 61

functions and defining an expose inside the performer class that moves the in-
formation from the temporary buffer into the buffers set for outputs and alarms.
The logic of the expose oepration is pictured in Figure 3.27

[for each alarm in alarmsTempBuffer]

l oop

l oop

[for each alarmBuffer in AlarmBuffers]

l oop

[for each reading in tempBuffer]

l oop

[for each outputBuffer in outputBuffers]

engine : Engine task : PerformerTaskp : Performer

1: expose()

1.3: outputBuffer.add(reading)

1.2: tempBuffer

1.1: getTempBuffer() : vector<Reading*>

3: alarmBuffer.add(alarm)

1.4: tempBuffer.clear()

2.1: alarmBuffer

2: getAlarmsTempBuffer() : vector<Alarm*>

Figure 3.27: Expose operation.

The expose operation is called at the end of every execution loop of the
system and is triggered by the engine on every performer that has been executed.
The performer gathers the new information produced by the task and placed
into the temporary buffer and writes it into each performer output buffer, then
clears the temporary buffer and repeat the same actions on the alarms temporary
buffer.

62 CHAPTER 3. TDSH

3.4.3 Engine

-currentState : GlobalState
-timers : vector<Timer*>
-performers : vector<Performer*>
<<Configuration>> +addTimer(int)
<<Configuration>> +addTimerWithRef(int, int)
<<Configuration>> +addTimer(int, int)
<<Configuration>> +addTimerWithRef(int, int, int)
<<Configuration>> +removeTimer(int)
<<Configuration>> +addPerformer(int, int, PerformerTask *)
<<Configuration>> +removePerformer(int)
<<Configuration>> +addPerformerInputBuffer(int, CircularBuffer<Data*> *)
<<Configuration>> +removePerformerInputBuffer(int, CircularBuffer<Data*> *)
<<Configuration>> +addPerformerOutputBuffer(int, CircularBuffer<Data*> *)
<<Configuration>> +removePerformerOutputBuffer(int, CircularBuffer<Data*> *)
<<Configuration>> +addPerformerCommandBuffer(int, CircularBuffer<Command*> *)
<<Configuration>> +removePerformerCommandBuffer(int, CircularBuffer<Command*> *)
<<Configuration>> +addPerformerAlarmBuffer(int, CircularBuffer<Alarm*> *)
<<Configuration>> +removePerformerAlarmBuffer(int, CircularBuffer<Alarm*> *)
<<Reflection>> +getPerformersIDs()
<<Reflection>> +getTimersIDs()
<<Reflection>> +getCurrentState()
<<RuntimeGlobal>> +start()
<<RuntimeGlobal>> +shutDown()
<<RuntimeGlobal>> +pause()
<<RuntimeGlobal>> +resume()
<<Runtime>> +pause(int)
<<Runtime>> +resume(int)
<<Runtime>> +reset(int)
<<Runtime>> +reset(int, int)
<<Runtime>> +reset(int, int, TimerState)
+execute()
+addCommand(int, Command)
+getTimerWithID(int)
+getPerformerWithID(int)
+getGroundTimer()

Engine

Figure 3.28: Concrete design of the Engine.

Engine is the entity in charge of coordinating the access and modification of
the TDSH configuration. As pictured in Figure 3.28 the engine holds references
to all the performers and timer, but is still a passive component. Every time the
ticker triggers the ground timer, it in turn starts an update cycle by ticking its
sub-timers and calling the execute function on the engine (as pictured in Figure
3.22). The execute operation itself is pictured in Figure 3.29: firstly it checks
which performers need to be activated by means of the hasToRun flag that is
set as shown in Figure 3.21, then it launch the perform operation on them (see
Figure 3.26), and finally exposes any new data produced by the performers that
have been executed by calling the expose operation on them (Figure 3.27).

3.4.4 Reflection and Configuration
TDSH configuration can be seen as a two fold procedure:

• Topological configuration: In TDSH topology is considered as the defini-
tion of the hierarchical structure of timers and how eventual performers
are connected to such timers.

• State configuration: the state configuration is the set of values assigned
to each timer in terms of period and currentState, the latter represent the
state (running or suspended) in which each timer will be initialised.

3.4. TDSH CONCRETE ARCHITECTURE 63

l oop

[for each Performer]

a l t

[if hasToRun]

l oop

[For each executed Performer]

p : Performerengine : Enginegt : GroundTimer

1.3: perform()

1.2: hasToRun

1.1: hasToRun() : bool

1: execute()

1.4: expose()

Figure 3.29: Execute operation.

Topological Configuration

The topological configuration, is again a two step process: first there is the
definition of the structure in descriptive terms, such as a JSON file describing
the timers tree and their performers; secondly there is the actual allocation of
the data structures or objects derived by the textual description.

The definition of the description can be done by hand or a dedicated tool
may be created. But in both cases it is reasonable to suppose that it is generated
outside the micro controller and on a more user friendly environment (such as
a tablet or a desktop machine).

The allocation of the hierarchical structure can be fulfilled with two ap-
proaches:

1. Can be statically written inside the micro controller firmware and loaded
with it by a desktop machine.

2. Can be performed by the micro controller itself during boot.

64 CHAPTER 3. TDSH

In the former case, the descriptive file will be used by an interpreter that
will instruct the assembler in order to obtain the right structures initialised. In
the latter instead, such file may be loaded onto the micro controller that while
booting will follow it and initialise the structure.

The on board initialisation represent a more modern approach, also given
the fact that today micro controllers feature enough computational power to
interpret strings. For that reason, it is the approach pursued in this work. The
entity in charge of the configuration has been named Manager.

The manager must initialise and connect every timer, performer and buffer,
it may do so by reading the structure from a file. In order to expose the config-
uration features that the manager exploits, an interface named TDSHInterface
defining such operations have been designed and is pictured in Figure 3.30.

Domain applications and other components use the primitives defined in the
interface and exploited by the manager in order to control the whole framework
based on the configuration and external input (actual communication is provided
by a dedicated communication performer).

+addCommand(int, Command)
<<Configuration>> +setConfiguration(Configuration)
<<Configuration>> +setState(SystemStates)
<<RuntimeGlobal>> +start()
<<RuntimeGlobal>> +stop()
<<RuntimeGlobal>> +pause()
<<RuntimeGlobal>> +resume()
<<Runtime>> +start(int)
<<Runtime>> +stop(int)
<<Runtime>> +pause(int)
<<Runtime>> +resume(int)
<<Runtime>> +reset(int)
<<Runtime>> +reset(int, int)

<<Interface>>
TDSHInterface

Figure 3.30: The TDSH Interface.

In turn, the manager relies on the engine as handling point of the single
TDSH components as it exposes a set of functions aimed at adding and removing
both timers and performers (aka it acts as a factory); it also allows the linkage
of buffers to performers.

To enable timers to have sub-timers and performers, functionalities like
linkTimer, linkPerformer and addInputBuffer have been introduced in the
timer and performer classes.

All the configuration functions are labelled with the <<Configuration>>
stereotype in all the components.

State Configuration

The basic state configuration can be achieved by the reset functions defined in
timers and explained in Section 3.4.1. The engine exploits those functions and
expose a similar set that allows the choice of the specific timer to initialise.

3.5. IMPLEMENTATION 65

Reflection

At runtime, an application may be interested in knowing the current status of
the framework, for that the <<Reflection>> functionalities have been added to
all the entities.

For example, a timer exposes information about its current state, its refer-
ence timer, its sub-timers and the list of its performers. Note that timers and
performers are returned as lists of IDs. Similarly the engine makes available in-
formation about the global state and the lists of performers and timers currently
in the system.

3.5 Implementation
In this section, the implementation of the various components of TDSH and the
structure of the TDSH Library is discussed.

3.5.1 Implementation Choices
The TDSH frameworks aims at being deployed onto modern micro-controllers,
which means that it has to take into consideration the reduced resources avail-
able, but can still expect reasonable computational power and communication
capabilities.

As a reference point with regard to a plausible platform a number of choices
have been considered, and finally the STM32F4 boards family from STMicro-
electronics5 have been chosen, as mentioned in Section 3.2.2. The programming
language of choice was C++, as it is cross-platform and supported by the vast
majority of the modern micro-controllers (STM32F4 boards included), while
offering the benefits of the Object-Oriented Programming paradigm.

The reference Integrated Development Environment (IDE) for developing on
STM32F4 boards is Atollic Studio, a commercial IDE based on Eclipse. However
it is possible to configure the environment also for Eclipse itself, which being
free and opensource has been preferred to its commercial counterpart.

3.5.2 The TDSH Components
The implementation of the TDSH has been divided into two main components:
the TDSHLib and the STM32F4-TDSH, with the former representing the core,
device agnostic part of the framework, while the latter is strictly dependent on
the hardware of choice.

TDSHLib

The TDSHLib library pictured in Figure 3.31 represents the core of the TDSH.
5www.st.com

66 CHAPTER 3. TDSH

<< l ib ra r y>>
TDSHLib

Data

ReadingData

Command

Alarm

TDSH Core

CircularBuffer

TimerGroundTimer

Clock

Engine

Performer

PerformerTask

<<Inter face>>
TDSHInterface

Manager

Ticker

T : Data

referenceTimer

*

1
reference

1 *
Ground Clock

1

1

*

1

1

11

1

1

*

1
1

Figure 3.31: The TDSHLib Library.

The library is divided in two main packages: TDSH Core and Data. TDSH
Core contains the core classes that reify the components introduced in Section
3.4.

The behaviour of the components is consistent with the description given,
with the only restriction of the Manager class, which currently only holds a
static configuration that must be arranged at code level prior to loading the
firmware onto the board for execution and initialises the framework as pictured
in Figure 3.32.

The primitives for proper configuration mechanisms and dynamic reconfigu-
ration of the topologic structure of the framework have been included and such
functionalities are under development.

The Data package instead contains all the basic models for sensor readings,
commands, and alarms, as well as the circular buffer class used to store and
share the information.

STM32F4-TDSH

Figure 3.33 represents the hardware specific components. The STM32F4-TDSH
library is built upon the TDSHLib and exploits some of the hardware character-
istics of the STM32F4 Discovery board. Figure 3.33 shows the main packages
in this library

In the Core package the classes of the TDSH Core package from the TDSHLib
library are specialised for the hardware. The STM32F4Ticker class is a specific
kind of Ticker that exploits the Systick as a source for generating ticks.

The Systick is one of the internal timers of the ARM cortex-m4 cpu that
powers the board that counts down from a reload value to zero, it wraps when
it reaches zero and it does not decrement when the processor is halted for

3.5. IMPLEMENTATION 67

manager : Manager engine : Engine gt : GroundTImer

l oop

t1 : T imer

t2 : T imer

t3 : T imer

p : Performer

task : PerformerTask

l oop

[for each Timer to add]

a l t

1: loadConfiguration() ...

1.1: addTimerWithRef(id : int, period : int, refId : int)

[for each Performer to add]

1.1.2: getTimerWithID(idTimer : int) : Timer*

a l t

1.2: addTimer(id : int, period : int)

1.2.2: linkTimer(timer :Timer*)

1.1.1: Timer(id : int)

[else]

1.1.3: linkTimer(timer : Timer*)

1.2.1: Timer(id : int)

[if has Ref]

1.5: linkPerformer(performer : Performer*)

1.4: Performer(id, task)

1.3:

Figure 3.32: The configuration of the environment.

debugging. It is often used for producing the main system event clock. The
timer speed is directly dependent on the cpu clock speed and it is configured as
shown in Listing 3.1: the function HAL_InitTick initialises the systick timer in
order to obtain a resolution of 1 ms and sets the priority of its interrupt.

In case of use of the standard HAL_Delay function from a peripheral ISR
(interrupt Service Routine, or Interrupt Handler) process, it is important for
the systick interrupt to have an higher priority (numerically lower) than the
peripheral interrupt, otherwise the caller ISR process will be blocked. The
function is defined as __weak in order to be overwritten in case of other imple-
mentations. The 1 ms period is obtained by invoking the system tick interrupt
SysTick_IRQn every HAL_RCC_GetHCLKFreq/1000U clock cycles, where HAL_-
RCC_GetHCLKFreq returns the current cpu speed. This init function is called
every time the cpu speed is modified in order to keep the timer consistent.

Listing 3.1: The Systick Configuration

68 CHAPTER 3. TDSH

<< l ib ra ry>>
STM32F4-TDSH

Data

ADCReading

Core

STM32F4Ticker

STM32F4Manager

Tasks

USARTTask

ADCReadingTask

BlinkLedTask

Core

STM32F4Ticker

STM32F4Manager

Tasks

USARTTask

ADCReadingTask

BlinkLedTask

Tasks

USARTTask

ADCReadingTask

BlinkLedTask

STM32F4Manager

STM32F4TickerBlinkLedTask

Data

ADCReading
ADCReadingTask

USARTTask

ADCReading

Figure 3.33: The STM32F4-TDSH Library.

1
2 __weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
3 {
4 /*Configure the SysTick to have interrupt in 1 ms time basis

↪→ */
5 HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000U);
6
7 /*Configure the SysTick IRQ priority */
8 HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority ,0U);
9

10 /* Return function status */
11 return HAL_OK;
12 }

Once configured the systick timer, there are two ways to exploit its function-
alities. The first one is to use its interrupt handler to invoke the tick operation
on the ticker, but there are some issues to this approach. As mentioned the
interrupt handler needs to have a very high priority, which means that it could
be called while the engine is still executing the performers interrupting them
and starting a new iteration, not only not being able to recognise the issue of a
missed deadline, but also potentially leaving the framework in an inconsistent
state.

The approach that has been followed instead is to let the counter related to
the systick timer be incremented by the interrupt handler and then checking
its values between different runs of the ticker. This solution, shown in Listing
3.2 is more robust in terms of general consistency: a framework run is always
terminated (watchdogs can be configured to detects infinite loops and stuck
components), moreover in case of a missed deadline, the amount of delay can be
obtained. In case of Listing 3.2 a single delay put the entire board in an error
state, but more complex behaviours can be modelled.

Listing 3.2: The Ticker run operation

3.5. IMPLEMENTATION 69

1
2 void run()
3 {
4 uint32_t tickstart = 0U;
5 while(true){
6 /*Get the current value of the Systick timer*/
7 tickstart = HAL_GetTick();
8 /*Start the framework iteration*/
9 tick();

10 while((HAL_GetTick() - tickstart) < frequency){
11 /*Wait after the end of a tick iteration
12 before starting the next one*/
13 }
14 if ((HAL_GetTick()- tickstart) > frequency){
15 /*Enter a permanent error state with error led

↪→ blinking*/
16 while(true){
17 BSP_LED_Toggle(LED5);
18 HAL_Delay(100);
19 }
20 }
21 }

The Driver Library

As mentioned, the STM32F4Ticker class is hardware dependent and relies on
hardware specific components such as internal cpu timers. In order to access
such resources, microcontrollers are usually provided by their makers with low
level libraries and functions.

When developing for a STM32 microcontroller there is currently a dispute
about which library should be used as there are in fact, at least three choices
that one could consider.

CMSIS CMSIS stands for Cortex Microcontroller Software Interface Stan-
dard. CMSIS is an hardware abstraction layer for Cortex-M devices like the
one in use. This means that among different devices equipped with Cortex-M
cpus there should be no issue about compatibility. However, communicating to
peripherals such as SPI (Serial Peripheral Interface) can be cumbersome as CM-
SIS is very limited and most peripherals are excluded. Moreover communication
with peripherals requires a direct registry manipulation, which means that is
a very error-prone approach. It however enables to write the most efficient
software.

SPL The Standard Peripheral Library is a set of libraries created by ST with
the aim of simplifying programming for their units. However learning the use

70 CHAPTER 3. TDSH

of the library is not straightforward as the company published a lot of exam-
ples on which programmers can learn but a very scarce and not well organised
documentation. Moreover in order to understand it and use it in practice some
knowledge about the architecture of ST microcontrollers is needed.

Finally it is known to have quite a number of bugs that are not likely to
be fixed (is being discontinued) and there are some complex situations (such as
more peripherals depending on each other) that are not considered and need to
be handled manually operating directly on the registers, which can be done, but
removes the only true advantage of the SPL library that is code portability.

HAL Compared to SPL, the Hardware Abstraction Layer has more features.
It was rebuild from the ground up and is completed with a tool for automatic
code generation: the STM32CubeMX (Windows only). HAL delivers the pos-
sibility of reuse the same code across different chip families based on Cortex-M
core from ST: the is a set of libraries, one for each chip family, which have
(almost) identical API. This allows to run the same code on a different micro
controller just by switching to the new library.

There are of course limitations, but it makes HAL quite versatile and reli-
able. As an addition with respect to SPL, HAL is not only a set of libraries
for the internal peripherals: it allows to configure FreeRTOS (a real-time Op-
erating System) and FatFS (File System) and SD card support along with it.
Finally there are additional libraries built on HAL that contain sets of drivers
for external devices like LCDs, sensors and more.

LL While HAL is currently receiving great support and bug-fixing from ST,
there is a recent introduced third option: Low Layer. LL can be used in con-
junction with HAL and STM32CubeMX should allow the choice between the
two for each peripheral in use. LL uses less resources but the resulting code is
less portable and it is not currently supported through out all STM microcon-
trollers families. LL is itself divided into three levels of APIs: low level, middle
level, and high level.

Low level is for direct register operations, while middle level is used for tasks
such as setting flags in peripherals registers such as ADCs or timers. The high
level of LL is similar to HAL, it is responsible for configuration and initialisation
of peripherals.

The bottomline is that LL is more tailor-made in comparison to HAL, which
means that is less portable, but it has a very high optimisation level.

TDSH uses the HAL library as SPL was being discontinued and LL was not yet
available. Figure 3.34 shows how the STM32F4-TDSH library is built upon the
core TDSHLib and how it uses STM32F4-HAL-LIB, which is the implementation
of the HAL library for the STM32F4 family of boards.

3.5. IMPLEMENTATION 71

<< l ib ra ry>>
STM32F4-TDSH

<< l ib ra ry>>
TDSHLib

Core

Tasks

STM32F4Manag...

STM32F4TickerBlinkLedTask

Data

ADCReadingTask

USARTTask

ADCReading

Data

ReadingData

Command

Alarm

TDSH Core

CircularBuffer

TimerGroundTimer

Clock

Engine

Performer

PerformerTask

<<Inter face>>
TDSHInterface

Manager

Ticker

<< l ib ra ry>>
STM32F4-HAL-LIB

T : Data
1

1

1

1

1 *

*

referenceTimer

*

1

1

reference

1 *

Ground Clock
1

1

1

1

<<use>>

<<use>>

<<use>>

<<use>>

Figure 3.34: The TDSH set of libraries.

3.5.3 The System Overhead
The Overhead introduced by the TDSH framework is due to the additional
computation needed to update timers and to go through all performers to ex-
ecute. The operation that mainly constitutes such computation is the tick of
the ground timer (and the ones of the descendant timers) and the execute of
the engine called by it.

Listing 3.3: The GroundTimer tick
1 void GroundTimer::tick(){
2 if (_status != RUNNING)
3 return;
4 _groundClock ->tick();
5 Timer::tick();
6 _engine->execute();

72 CHAPTER 3. TDSH

7 }

The tick of the ground timer pictured in Listing 3.3 is computationally
equivalent to the general timer tick shown in Listing 3.4 as apart from the
execute its differences from the general operation are constant in complexity.

Listing 3.4: The Timer tick
1 void Timer::tick(){
2 if (_status != RUNNING)
3 return;
4 _internalCounter++;
5 if((_internalCounter % _period)==0){
6 _internalCounter = 0;
7 emit_event();
8 }
9 }

10
11 void Timer::emit_event(){
12
13 for(int i=0;i<timers.size();i++){
14 timers[i]->tick();
15 }
16
17 for(int i=0;i<performers.size();i++){
18 performers[i]->setToRun();
19 }
20
21 }

as shown in Listing 3.4, the complexity of the tick is due to the emit_event,
which loops between the direct descendants and call their tick. Similarly there
is one setToRun invocation for each performer of the timer. The worst case is
represented by the situation in which at every run all the timers and performers
are ticked and executed, which means that both operations are called at worst
once for each timer at each run of the ticker. Since the cost of the setToRun
is constant, the final complexity of the tick for the ground timer is linear and
equals to O(T +P), where T and P respectively represent the number of timers
and performers present in the system.

Listing 3.5: The Engine execute tick
1 void Engine::execute(){
2 for (auto iterator : _performersMap){
3 if (iterator.second->hasToRun()){
4 if (iterator.second->isRunning()){
5 //DEADLINE MISSED FOR THE PERFORMER
6 } else{
7 iterator.second->perform();
8 }
9 }

3.5. IMPLEMENTATION 73

10 }
11 epilogue();
12 }
13
14 void Engine::epilogue(){
15 for (auto iterator : _performersMap){
16 if (!iterator.second->isRunning()){
17 iterator.second->expose();
18 }
19 }
20 }

By not considering the actual perform complexity, which depends on the
task implemented and is not part of the overhead, the execute operation in 3.5
is, again, linear with respect of the number of performers of the system that
have to be executed. The worst case is then O(2P). In this analysis the cost of
the expose operation has been assumed constant as no matter how many data
there are to be exposed, memory to memory data transmission can be achieved
using Direct Memory Access and thus not consuming cpu power.

With the given assumptions, the global overhead of the framework is then
linear in the specific form of O(T + 3P) and is split part (H in Figure 3.35)
before the execution of performers (Ep) and part after (H ′) and after.

Figure 3.35: Execution time example.

Performers Durations Constraints

As mentioned in Section 3.3.1, the current implementation shows a restriction
in terms of computational time for the performers execution. Specifically, the
sum of the execution time of all the performers plus the overhead added by the
framework, must be smaller than the duration chosen for the most fine time grain
present in the system, which is equal to the period of ticker events. The reason
is quite straightforward: the deployment platform is equipped with a Cortex-
M4, a single core ARM processor and the environment is single threaded, which
means that every run of the framework must take less than what is defined as
a grain of the ground timer from the ticker.

As an example, Figure 3.35 showed the general structure of the execution
time division between among the framework. Defined as t and t′ two consequent
ticks from the ticker, it is clear how every performer execution time must be
negligible with respect to the time interval t → t′. Particularly, in Figure 3.35,
the portion of overhead related to the tick of every timer in the framework and
the check of the performers that are to be executed is denoted as H, the sum

74 CHAPTER 3. TDSH

of the execution time of every activated performer is marked as Ep and H ′

represents the overhead related to the expose of newly produced information
within the framework.

As mentioned Ep represents the exact sum of the execution time of perform-
ers, as while from a framework point of view their execution is simultaneous
(in terms of frameworks ticks), the underlaying hardware and software does not
allow any kind of true parallelism, making every performer being fully executed
in a serial way.

Given how performers are executed and how the framework burden is struc-
tured and spread at runtime, it is now clear how the sum of every performer
and the introduced overhead must be less than t → t′.

3.6 Acquisition Case Study
As mentioned in Section 2.2.1 the validation for the TDSH component uses the
case of fall detection as application domain. Figure 3.36 shows the structure of
the case study. The final deploy is composed by three distinct modules:

Figure 3.36: Case Study Structure.

1. The wearable node, which hosts an instance of TDSH configured to acquire
accelerometric data from a physical accelerometer mounted onboard the
STM32F4-Discovery board.

2. An environmental node, which also hosts an instance of TDSH config-
ured to read from a linear microphonic array composed by two electret
microphones.

3. A central node, which hosts the data fusion component and the fall de-
tection component.

3.6. ACQUISITION CASE STUDY 75

3.6.1 Wearable Accelerometer readings
The sensor

The STM32F4-Discovery board features an embedded accelerometer, which has
been used for the purpose. It is a LIS302DL ST MEMS 3-axis accelerometer:
it features dynamically user selectable full scales of ±2/± 8 and it is capable of
measuring acceleration with an output rate of 100 Hz to 400 Hz.

Acquisition Sampling rates

The chosen sampling rate is 50 Hz, such value has been chosen in order to be
consistent with the literature [23]. Lower speeds are possible, but rapid changes
in acceleration may be missed leading to classification mistakes. As an example,
Figure 3.37 pictures a simulated fall acquired at ∼ 50 Hz.

00:00 00:01 00:02 00:03 00:04 00:05
Time

0.5

1

1.5

2

g

Before and after the fall
Fall

Figure 3.37: Magnitude of a simulated fall at 50 Hz.

Sampling Sizes and Data Transmission

Table 3.3 reports the dimensions of an accelerometric packet that contains the
three dimensions of acceleration plus a timestamp. Using directly the magnitude
in the form of

√
x2 + y2 + z2 would reduce the size of the data produced to

∼ 1
3 , however by keeping the original signal for data collection may allow the

computation of different feature vectors.
Data transmission happens by means of an USART (Universal Synchronous-

Asynchronous Receiver-Transmitter) interface. Standard transmission rates for
this kind of communication are around 115.2 Kbps. However, in order to free
the user from a wired connection from the wearable device to the central node,

76 CHAPTER 3. TDSH

Table 3.3: Accelerometer data sample

Value Dimension Unit
TimeStamp 16 bit
Acc_X 16 bit
Acc_Y 16 bit
Acc_Z 16 bit

Table 3.4: TDSH timers settings for the wearable node

TimerID ReferenceID Period Period (ms)
GT - 1 10
VT1 GT 2 20
VT2 GT 50 500

a wireless transmission medium should be used. The standard speeds for ad hoc
wireless transmission interfaces are lower than standard USART, in the range
of 57600 Kbps, which is nonetheless enough for the purpose, being the data
production rate of (16+16+16+16) ∗ 50 = 3.1Kbps. As transmission protocol
Bluetooth has been chosen over Zigbee as now available in a number of devices,
included smartphones, thus making it possible to receive data from a standard
smartphone for future developments.

The RN42 is a small form factor, low power, Class 2 Bluetooth radio. It
can deliver up to 3 Mbps data rate for distances up to 20 meters. It supports
a number of protocols, USART included, which means that once configured it
can be physically linked to the pins of the board and a serial connection can be
established from the central node as if it was wired.

The TDSH structure

Figure 3.38 shows the TDSH configuration for the accelerometer based wearable
node. The timing relations between the timers are described in Table 3.4. There
are two performers as follows:

• P1 is the acquisition performer, it is in charge to read the samples from
the physical sensor and it places them into its output buffer B1, which is
shared with P2. It is activated by V T1 every 20ms, resulting in a 50 Hz
sampling rate.

• P2 is a communication performer, it exploits a serial communication in-
terface and streams packets from B1 outside the board through a DMA
transmission of type Memory-to-Peripheral. It is activated by timer V T2

every 500 ms.

3.6. ACQUISITION CASE STUDY 77

Figure 3.38: The TDSH structure for the Accelerometer node.

3.6.2 Environmental Microphonic Array
Here the deploy structure of the acoustic localisation module is presented. The
TDSH framework is deployed on a STM32F4-Discovery Board and has a linear
microphonic array attached to it composed by two electret microphones.

The microphonic array structure

The two microphones are placed at a predetermined distance between them
along the vertical axe. The distance proposed is ∼ 1m, which is consistent
with the literature of reference [76]. By knowing the relative position of the
microphones, and the absolute position of the array in the environment, it is
feasible to infer information about the direction of the source of sound events.

Specifically, the linear microphonic array is composed of two Keyes KY-038
modules, as the one pictured in Figure 3.39.

The outputs of the module are as follow:

D0 Is the Digital output, its value is 0 if the audio intensity is below a specific
threshold, 1 otherwise. The threshold can be regulated by the onboard
potentiometer.

A0 Is the Analog output, the intensity of the output is influenced by the
potentiometer (gain).

Acquisition sampling rates

The sampling rates achievable depends on the quality of the Analog to Digital
Converter available. In this specific case, three ADC converters are available, bit

78 CHAPTER 3. TDSH

Figure 3.39: The microphone unit used.

Table 3.5: Sampling rates and relatives frequencies

Sampling Rate (KHz) Maximum Frequency (KHz)
08.000 03.6
11.025 05.0
22.050 10.0
32.000 14.5
44.100 20.0
48.000 21.8
64.000 29.1
88.200 40.0
96.000 43.6

resolution is equal to 12 bit in normal use situations. The conversion frequency
can be tuned by acting on a pre-scaler embedded within the board firmware.
ADCs on the STM32F4-Discovery can achieve ∼ 2.4 MSPS (Mega Sample Per
Second) and by interleaving all three ADCs and timing the acquisition it is
possible to obtain 7.2 MSPS. At such high sampling rates, memory and speed
issues arise, but such high speeds are not always required.

The frequencies obtainable from the microphones are directly dependent
from the sampling rate: higher frequencies requires higher sampling rates (see
Table 3.5).

44.1 KHz and 48 KHZ are the sampling rates that are usually used when
acquiring audio destined to be listened by humans as they allow to cover the
frequencies within the human audible spectrum. However, it should be not take
as granted that the same frequencies are the ones that give the most significant
data when coming to software systems. In fact, the sampling rates commonly
used in the literature for audio analysis and events classification based on audio
traces are between 8 and 16 KHz [57, 76, 77], which is why the sampling rate
fixed for this experiment is 10 KHz.

3.6. ACQUISITION CASE STUDY 79

10 KHz is a low sampling rate if compared to the max speed achievable
by the ADC itself, however such rate raises a timing issue within the current
implementation of the TDSH framework. As mentioned in Section 3.5.2 the
accuracy produced by the framework is 1 millisecond. This means that for
each activation of the framework there should be a performer able to acquire
10 values, one each 100 microseconds before its next run. But doing this would
violate the assumption that performers work under the timing constraints and
scales offered by the framework, so a different solution has been adopted: using
the Direct Memory Access (DMA) option along with the ADC triggered by an
hardware timer only dependent on the board clock. By adopting a pre-scaler,
a timer has been configured in order to trigger at 10 KHz and DMA allows the
ADC to write the values directly on an array, that can then be read in chunks
by the performer that handles the ADC.

The ADC is therefore autonomous within each sequence of conversions. Such
sequences could be manually triggered by the performer but a number of down-
sides have ben identified with this approach, namely: there could be a timing
delay between the end of an acquisition sequence and the next one, as the
frameworks ensure executions at a precision lower than the one of acquisition
the conversions could end a number of microseconds before the performer start,
causing a discontinuity within the data stream; moreover such discontinuity
could easily be variable and not predictable.

For this reason a different approach was adopted: the ADC performs con-
versions in a continuous mode and stores the values in a buffer, which is double
the size of the chunks read by each performer execution, as shown in Figure
3.40

Figure 3.40: The continuous ADC setting adopted.

80 CHAPTER 3. TDSH

Using this configuration the ADC is fully autonomous and it is only started
and halted manually. Discontinuities have also been eliminated as the ADC
never stops between sequences of conversion, it starts populating one half of the
buffer while the performer reads the other half.

Sampling Sizes and Data Transmission

Table 3.6 shows the sizes of a microphonic array sample. It is noteworthy that
while the stated precision of an ADC sample is 12 bit, this value must be stored
in a 16 bits variable (as the smaller alternative would be only 8 bits).

Table 3.6: Microphonic array data sample

Value Dimension Unit
TimeStamp 16 bit
Mic1 16 bit
Mic2 16 bit

As from the TDSH specifications, each sample has its own timestamp. Con-
sidering the sampling rate of 10 KHz, the size of data generated for each second
S is as follow:

S = (TimeStamp+Mic1 +Mic2) ∗ 10.000
= (16 + 16 + 16) ∗ 10.000
= (48) ∗ 10.000
= 480.000 b s ≃ 468 Kb s

(3.1)

In this example the data overhead introduced by timestamps represents 1
3 of

the data produced (∼ 33%). It is however easy to reduce it to less than 1% of
the data. By packing data into windows of 0.1 s and relaxing the constraint of
having a timestamp on each value the resulted amount of data produced each
second (S′) becomes:

S′ = ((Mic1 +Mic2) ∗ 1.000 + TimeStamp) ∗ 10
= ((16 + 16) ∗ 1.000 + 16) ∗ 10
= ((32) ∗ 1.000) + 16) ∗ 10
= 320160 b s ≃ 312 Kb s

(3.2)

S′ is calculated by providing an explicit timestamp only once per packet,
specific timestamps for samples within packets can be easily calculated since
the sampling rate is fixed and known.

Being able to actually analyse and transmit this amount of information rep-
resents different issues. As for data transmission, being the node environmental,

3.6. ACQUISITION CASE STUDY 81

Table 3.7: TDSH Timers settings for the environmental node

TimerID ReferenceID Period Period (ms)
GT - 1 1
VT1 GT 10 10
VT2 VT1 10 10
VT3 VT1 10 10
VT4 VT1 10 100
VT5 VT1 10 100

a wired connection is allowed and exploited. As mentioned, standard transmis-
sion rates for serial communication go up to 115.2 Kbps, which is notably less
than the 312 kbps previously calculated. Modern interfaces however support
higher transmission rates, so the serial communication speed has been set at
460.8 Kbps that allows to avoid a bottleneck inside the board at runtime.

The TDSH structure

Figure 3.41 shows the chosen configuration of the TDSH framework in order to
deploy the microphonic array node.

Figure 3.41: The TDSH structure for the microphone array.

Table 3.7 also shows the configuration of the module, along with the timings
for each performer:

• P1 and P2 are the performers in charge to read the ADCs. Their activation
timers are V T2 and V T3 respectively, they are sub-timers of V T1 to be
able to change both activation times just by acting on their reference

82 CHAPTER 3. TDSH

timer. The values they read are placed in buffer B1 and B2 for P1 and P2

respectively.

• P3 produces the combined packets, with timestamps and readings from
both microphones, effectively creating the objects as described in Equation
3.2. It has B1 and B2 as input buffers and put its outputs in B3.

• Finally, P4 represents the transmission performer: it features a serial con-
nection and sends the packets of data outside the board through DMA
transmissions of type Memory-to-Peripheral.

3.6.3 Fall Detector
The application node is developed in a desktop environment and it is not built
on TDSH. Specifically, it is a quite straightforward software component built
in Processing6. The choice of the language is due to the embedded and direct
support to hardware communication interfaces such as USART. Since they are
not a crucial part of the setup the detection algorithms are basic and should be
swapped with more complex counterparts in a real system.

Figure 3.42: The fall detection algorithm.

Figure 3.42 reports the working behaviour of the fall detection algorithm:

• The component checks the accelerometric data for possible falls.

• If any activity over the predefined threshold is detected the microphonic
information is checked. The threshold is set to 1.5g as in [23].

6https://processing.org

3.6. ACQUISITION CASE STUDY 83

• The microphonic values are checked in a window of 0.5 seconds centred
in the time of maximum acceleration, if a loud sound is detected then the
origin of the sound is evaluated. The threshold for the loudness has been
empirically determined. In case no loud sound has been recorded in the
same time window of the acceleration data the fall is flagged as a false
positive.

• Finally, if the origin of the sound is labelled as low the fall is reported
to the user, otherwise it is labelled as false positive. The origin of the
audio event has been simplified and just keeps track of the higher mean
intensity: if the lower microphone detected an higher mean intensity the
event is labelled as low, high otherwise.

3.6.4 Discussion
The presented scenario was built in order to test the TDSH approach and its
implementation. The wearable node presents a basic configuration, with a small
number of performers and works at low speeds (10 ms). Deploying the commu-
nication performer presented some issues related to the use of DMA for trans-
mitting the data. The usage of the structure pointed out some bugs and memory
leaks within the implementation of the circular buffer, which lead to a rethink
of the memory management mentioned in Section 3.3.2. Moreover the working
principle of the ADC in continuos mode with DMA support initially produced
gaps in the acquired data, due to the reading activity of the ADC inner buffer
from the performer before it could fill it with new conversions. Usually these
kinds of delays are negligible, but the high speed of the ADC readings forced
the used of the double buffer solution, pictured in Figure 3.40.

The implementation of the microphonic component however exposed the
limits of the implementation. The high speed required by the sensor (10 KHz)
meant some optimisations in the acquisition process were needed: they are
treated in Section 3.6.2.

The central node highlighted another issue: time synchronisation between
different nodes. In the test application the wearable and environmental nodes
were activated in sequence. Sequential activation however introduces a system-
atic difference between the two nodes time references. In this context, the delay
was estimated and approximated as the time of execution of each transmission
instruction, nonetheless a more careful analysis of this issue could be performed
as a future development.

The experiment was run just for testing purposes, no real falls were per-
formed and no data collection has been stored for further use. A more consistent
trial could be performed in future works in the field of fall detection.

CHAPTER 4

Subjective sPaces Architecture for Contextualising
hEterogeneous Sources

This Chapter describes the Subjective sPaces Architecture for Contextualising
hEterogeneous Sources (SPACES). As mentioned in Chapter 2 the identifica-
tion of a suitable set of architectural abstractions, able to represent sensor mea-
surements independently from the hardware characteristics of the source, could
improve reusability, openness, and modularity of software systems.

4.1 SPACES - The Underlaying Concepts
This section presents the general concepts of the SPACES model. SPACES is a
set of architectural abstractions that removes the dependency from the sensor
by contextualising (sensor) measurements in a spatio-temporal frame. In detail,
measurements have a time-stamp and are localised in both a measurement and
a positioning space. Such spaces are subjective to the software components that
manage them.

For example, a sensor component that is in charge of acquiring temperature
expressed in a Celsius measurement unit, will localise the sensed data in a Celsius
measurement space and in a Cartesian 2D space that is local to the sensor.

Mapping functions allow to project localisations from what are defined as
source spaces into target spaces (possibly different) that are in turns subjective
to the software component interested in managing the sensed data in those
target spaces.

Suppose in the previous example, that the system includes also another
component that operates in terms of Fahrenheit degrees and that is in charge of
controlling the fan coolers that are present in a room according to the tempera-

85

86 CHAPTER 4. SPACES

ture measured near the fan coolers. To exploit the acquired data, a conversion is
required. Thus, a mapping function could be defined in order to map the sensor
component data from Celsius to Fahrenheit for the measurement and from the
local 2D Cartesian space of the sensor to a global 3D Cartesian representing the
room.

The general concept is that any space can be considered as a source with
respect to a target space. A mapping function is in charge of mapping a couple
of spaces (measurement and positioning spaces) that acts as source in a couple
of corresponding spaces that acts as target spaces. The pattern defined by the
abstractions can be replicated many times, at different abstraction layer.

When acquired, the data is localised in the subjective space of the acquisition
component, then, the data can be subjected to several incremental transforma-
tions according to the typology of spaces (both measurement and physical)
known by the component that gradually have to manipulate the data.

The main benefit is that applications no longer need to know neither the type
nor the numbers of deployed sensors. Upon the occurrence of an event of inter-
est, applications can decide to access all the other events that are related both
spatially and temporally. At this level of abstraction, the distribution, usage,
and eventual storage of data are out of scope, as the focus is on the definition of
the architectural abstractions that could solve the sensors heterogeneity issue,
thus facilitating the handling of those activities.

The remainder of this Section will cover the concepts underlying SPACES
with the following simplified case of study. Consider a smart building composed
by different rooms; in each room different sensors are located. In this example,
a single room (room1) is instrumented as follows: in the top corner there is a
camera (cam1) facing the centre of the room. Hanged on the wall there is also
a thermometer (therm1). Moreover, a person in the room owns a smartphone
with the accelerometer acc1. In this kind of contexts, smartphones are usually
considered as extensions of the user, which means that their position is the same.
Several applications can rely on the above listed sensors: a tracking application
could try to follow the user (either a specific one or any user) and could make
the position available to the system; an application could exploit the locations
of the users to control the temperature in the rooms accordingly, based on their
needs or preferences. These are just a few examples that can benefit from the
proposed approach.

4.2 Spatial Model

Spatial contextualisation derives from the concepts presented in [91]. Those
concepts have been revisited and enriched in order to capture and represent the
spaces as required so that a measurement can be fully described via spaces.

4.2. SPATIAL MODEL 87

4.2.1 Core Concepts
A Space is defined as a set of potential locations, that are all the locations
that could be theoretically considered in that space. In a graph, the potential
locations are all the nodes and the edges. On the other hand, if a Cartesian
space is used to localise entities within a room, then the potential locations are
every point in R2 of the area delimited by the room perimeter. Applications,
when dealing with a space, explicitly manage effective locations, which are a
subset of a space potential locations. For example, an application that calculates
the trajectory of a mobile entity will only explicitly consider a finite number of
locations in the Cartesian space, that is, the locations belonging to the trajectory
(the effective locations). Each space defines at least a premetric. The premetric
defines the distance between two locations as a positive, non-zero number if the
two locations are distinct, and zero if the locations are the same. These concepts
are presented in Figure 4.1.

<<me ta>>
LocationType

<<me ta>>
SpatialModel

<<me ta>>
PremetricSpecification

Location Space Premetric

allowable
1

effective
1

1..*

used
1..*

<<instant iate>><<instant iate>><<instant iate>>

Figure 4.1: Core concepts, meta representations and corresponding instances.

Spaces and (effective) locations are respectively created from Space Model
and Location Type as depicted in Figure 4.1: a space model thus specifies the
type of allowable locations and at least one premetric that can be applied to a
pair of locations.

4.2.2 The Concept of Dimension
The main extension to the original model consists in defining spaces as an aggre-
gation of Dimensions as pictured in Figure 4.2. A Dimension literally represents
a dimension in a space, where a space location is considered as an aggregation
of dimension values. For example a location in a 3 dimensional Cartesian space,
would be represented as an aggregation of 3 values, one for each dimension of
such space. Since a space is defined as an aggregation of dimensions, a space
model will be composed by at least one Dimension Model that exhaustively
describes a dimension and all its components. Space models, location types,
and premetric specifications are meta-level concepts that define the base-level
concepts (spaces, locations and premetrics) applications deal with.

Moreover a Dimension is also characterised by a UnitOfMeasure, a Precision
related to its values, and a set of Boundaries related to the values that each

88 CHAPTER 4. SPACES

<<me ta>>
LocationType

<<me ta>>
SpatialModel

Location

Space

<<me ta>>
DimensionModel

Dimension

<<me ta>>
ValueType

Value

allowable

1

1
1..*

effective

1

1..*

<<instant iate>><<instant iate>><<instant iate>>

<<instant iate>>

Figure 4.2: The concept of Dimension.

dimension can assume. The complete model of a dimension is pictured in Figure
4.3.

<<me ta>>
DimensionModel

Dimension

<<me ta>>
ValueType

Value

<<me ta>>
PrecisionModel

<<me ta>>
BoundariesModel

<<me ta>>
UnitOfMeasureModel

Precision

Boundaries

UnitOfMeasure

1

1

1 1..*

1..*

0..1

1 1

<<instant iate>>

<<instant iate>>

<<instant iate>>

<<instant iate>> <<instant iate>>

Figure 4.3: The Dimension elements.

Considering the example scenario introduced in Section 4.1, room1 is repre-
sented by a 3D Cartesian Space (a positioning space). Suitable locations for this
kind of space are 3D points. For example, Figure 4.4a pictures the three dimen-
sional Cartesian space in which therm1 may position its samples, composed by
three dimensions (x, y and z). Each dimension has its own unit of measure and
precision. Boundaries are expressed as values, each dimension has a min and
a max admissible value. Similarly, Figure 4.4b sketches a measurement space
example: it represents the colour space and the allowable type of values of the
possible locations for cam1, which are the pixels of the images.

4.2. SPATIAL MODEL 89

xDimension:
precision = 0.1
unit = centimeter
min = 0
max = 0

yDimension:
precision = 0.1
unit = centimeter
min = 0
max = 0

zDimension:
precision = 0.1
unit = centimeter
min = 0
max = 0

therm1
Positioning

Space

(a) 3D Cartesian positioning space example.

G-Dimension:
min = 0
max = 255

R-Dimension:
min = 0
max = 255

B-Dimension:
min = 0
max = 255

Cam1
Measurement

Space:

type = sRGB
illuminant= D65

(b) RGB measurement space example.

Figure 4.4: Examples of spaces.

4.2.3 Zone and Membership Function
The concept of Zone has also been introduced. A zone ZS is a subset of poten-
tial locations of a space S. It is defined by a set of effective locations termed
Characteristic Locations in S and by a Membership Function that states if a
given location of S belongs to the zone. Essentially, the membership function is
a boolean function that is true when a location falls within the zone. According
to the membership function used, different kinds of zones can been identified,
such as: enumerative, premetric declarative, polygonal, and pure functional.
Figure 4.5 represents the relationship between the concepts of zone, space, and
location.

A zone characterised by an enumerative membership function (also defined
as an enumerative zone) has a non-empty set of characteristic locations: the
membership function is based on the standard belonging relationship defined in
set theory and all the locations belonging to the zone are identified through the
enumeration of the set of characteristic locations. As an example, a specific area
of a grid space can be represented with an enumerative zone by listing all the cells
included in such area. On the other hand, a polygonal membership function is
related to a polygonal zone in which the characteristic locations are the vertexes
of a polygon, and indicates the inclusion of a location in such polygon. As an
example, the zone representing a specific room within a two dimension space
that depicts a floor of a building can be obtained by a polygonal membership
function with the vertexes of the polygon as the zone characteristics locations.

A premetric declarative zone, which is a zone that has a premetric mem-

90 CHAPTER 4. SPACES

Location Space

Zone
+belongsTo(Location) : boolean

MembershipFunction

effective
1

characteristic

1

0..*

1

defined On

Figure 4.5: Space, Location, and Zone.

bership function, only features a single characteristic location. Its membership
function thus includes all and only the locations situated at a given distance
from the characteristic locations. A clear example of this kind of zone can be
the representation of the detection area of a RFID reader in a Cartesian space.

Finally, a pure functional zone has a functional membership function that
uses mathematical expressions defined in terms of the space coordinate system.
An example can be the following one: for each pair of locations (x, y) in a space
S and for any given location (x0, y0) and (x1, y1),

f(x) =

{
true, if x0 < x < x1andy0 < y < y1

false, otherwise

This example defines a rectangular zone, in which all locations between
(x0, y0) and (x1, y1) are included.

Figure 4.5 also pictures that a zone can be seen as an aggregation of other
zones. This allows to create a zone that contains sub-zones, which can be useful
in many cases, as an example, when dealing with continuous spaces and locations
defined by real values, a simple enumeration can be an issue: it is impossible
to get a positive response when using an enumeration of numbers with infinite
precision. Using the concept of sub-zones, the enumeration of real numbers can
be expressed as an enumeration of zones, where each zone features a premetric
declarative membership function with each real value as characteristic location
and a distance ϵ as small as needed that defines the precision of acceptance.

As pictured in Figure 4.6, zones and membership functions are build respec-
tively from the meta level descriptors ZoneModel and MembershipFunctionModel
as the rest of the spatial models.

4.2.4 The Stimulus
Usually, data coming from physical or software sensors, is strictly related to the
sensor itself. This means that without the knowledge of the characteristic of
the source it is difficult, if not impossible, to understand and manipulate such

4.2. SPATIAL MODEL 91

Zone
+belongsTo(Location) : boolean

MembershipFunction

<<me ta>>
ZoneModel

MembershipFunctionModel

1

<<instant iate>> <<instant iate>>

Figure 4.6: The Zone Model.

data. One of the main contribution of this work deals with the representation
of data from sensors that have been completely dissociated from the sensing
devices exploiting the concepts of spaces, zones, and locations introduced in
Section 4.2.1. Figure 4.7 represents the general structure of a Stimulus.

Space

MeasurementSpace Pos it ioningSpace

-begin : Grain
-end : Grain

TimeInterval

Stimulus PositionZoneMeasureZone

Zone

<<redef ine>>
Defined On

<<redef ine>>
Defined On

Figure 4.7: The Stimulus.

A stimulus is defined as any information related to a physical event and it
is composed by three main information:

• Time Interval, the acquisition time as defined in Chapter 3.

• Measure Zone, the reading payload.

92 CHAPTER 4. SPACES

• Position Zone, the reading location.

Measure Zone

As pictured in Figure 4.7, the measure zone is a specialisation of zone and it
is referred to a Measurement Space, which is a specific kind of space devoted
to represent all the possible values that an information source can produce.
Within the measurement space are represented all the characteristics of the
allowable locations. As an example, Figure 4.8 pictures the details of a possible
representation of the Temperature Space subjective to the thermometer therm1.
In this example, the space features a single dimension, which is the dimension
of temperature values, the precision is referred to the precision that values are
expressible with and their unit of measure is Celsius. The dimension also has
its boundaries specified as two temperature values, −10 and 40 that represents
respectively the lowest and highest temperatures sensible by the sensor. From
this example it is clear that all the information from sensor therm1 that is
related to the values it can provide, are embedded within the specification of its
measurement space.

temperatureDimension:
precision = 0.1
unit = Celsius
min = -10
max = 40

therm1
Measurement

Space

temperatureZone:

location = -5
distance = 0.2

Figure 4.8: Therm1 Temperature space and zone example.

The definition of a zone on a measurement space can be seen as express-
ing the payload of a single reading. At first, the use of a zone instead of a
single location in order to represent the payload of a stimulus may seem an
over-complication, but after a more careful examination this choice allows the
representation of more meaningful information. As an example, a simple tem-
perature probe such as the one in the thermometer defined in the example
scenario can be considered. It is composed by a metal component that is phys-
ically designed to output a voltage signal that is linearly proportional to the
local temperature. The most intuitive approach would be to use a temperature
value representing the conversion from the voltage signal to the corresponding
Celsius value. However, the precision of sensors may differ with respect of the
values read. As an example, the data sheet of therm1 could reasonably state
something like:

4.2. SPATIAL MODEL 93

Accuracy =

±0.2◦ C, from − 10◦ C to 0◦C

±0.1◦ C, from 0◦ C to 30◦C

±0.2◦ C, from 30◦ C to 40◦C

Using a location to represent the current reading, such information would be
needed at any level, in order to correctly interpret and use the temperature value.
On the other hand, by using a premetric declarative zone, the accuracy of each
reading could be embedded within the measure itself: so for a value between
−10◦ C and 0◦ C, the value of the ϵ parameter would be 0.2 as it is in the
example in Figure 4.8. Similarly in the context of cam1, the measurement zone
would be an enumeration of triplets, defined by one value for each dimension R,
G, and B pictured in Figure 4.4b.

Position Zone

The position zone represents where the measure zone is placed. A simple ther-
mometer like therm1, does not provide (or know) any information about where
its readings are positioned: in this scenario, the position zone, would be ir-
relevant and usually corresponds to the origins of the position space. A more
interesting scenario, is the one where the sensor is a different kind of ther-
mometer, like an infrared thermometer, which infers the temperature from the
thermal radiation emitted by the object toward it is pointed at. In this case,

(a) Cone representation (b) Cone model

Figure 4.9: The cone model and representation.

94 CHAPTER 4. SPACES

the position zone is represented by a cone as in Figure 4.9. Similarly, a measure
zone for cam1 would be represented by an enumeration of locations (pixels) that
belongs to its measurement space and represents the acquired image.

Figure 4.9b pictures a cone in a three dimension Cartesian space, the apex
of the cone is placed on the origin of the axes and it opens toward the positive Z
axis. The opening angle α determines the radius r at the height zp. In sensors
it is usually expressed as a ratio between height of the cone section and depth of
the base, also known as distance to spot ratio. Infrared thermometers usually
do not provide distance measures, which is why the model in Figure 4.9b does
not includes the point P : the cone is supposed to extend itself indefinitely, but
it consider the apex of the cone in (0, 0, 0) and the direction represented by the
vector (0, 0, 1) (it opens toward the positive Z axis).

Similarly, the information produced by cam1 should be positioned in the area
of a space that falls in field of view of the camera, as sketched in picture Figure
4.10.

Figure 4.10: Camera positioning space.

It is worth noting that the distinction between positioning and measurement
concepts is purely conceptual: they are all spaces and zones, as defined in Section
4.2.1.

4.2.5 The Source
As mentioned in Section 1.3, one of the main issue of currently available pro-
posals is the fact that the knowledge of low level physical devices is spread at
each level of the system, up to the applications. In this work the more general
concept of Source is introduced. A source is intended as a role, instead of a
physical object. For example, when considering the thermometer therm1, it

4.2. SPATIAL MODEL 95

acts as a source with respect to the component that manages the temperature
in room room1 (room1Temp); at the same time, room1Temp could act as a source
to another component that regulates the temperature in the floor.

<<me ta>>
MeasurementSpaceModel

<<me ta>>
PositioningSpaceModel

<<me ta>>
MeasureZoneModel

<<me ta>>
PositionZoneModel

<<me ta>>
SourceModel

1
1

1..*
1..*

Figure 4.11: The Source Model.

As pictured in Figure 4.11 a SourceModel, from which a source is instantiated
can be fully defined by:

• A MeasurementSpaceModel, which defines the characteristics of the mea-
surements that the source provides.

• One or more MeasureZoneModel, which states how the measurements be-
longing to the measurement space are expressed.

• A PositioningSpaceModel, representing the positioning space in which
those measurements are contextualised.

• One or more PositionZoneModel, which expresses how measurements are
positioned inside the positioning space.

A source can feature more than one measure and position zone model, this
allows for more complex sources that could represent their data in different
manners.

4.2.6 The Mapping Function
Given two different spaces, the concept of Mapping relates one zone defined on
one space with another zone defined on the other one. Starting from [91] three
kind of mappings can be defined:

• Explicit Mappings.

• Projective Mapping.

• Implicit Mappings.

An explicit mapping is an ordered pair of zones defined of different spaces,
possibly build from different models: given the spaces S1 and S2, with S1 ̸= S2,
the ordered pair (ZS1 , ZS2) is an explicit mapping between the zones (ZS1) ⊆ S1

(the source) and (ZS2) ⊆ S2 (the target). It is important to note that the target

96 CHAPTER 4. SPACES

zone may be defined independently from the source zone. If, on the other hand,
the target zone is the result of the application of a projection to the source zone,
the mapping is a projective mapping, and it is described by the types of the
involved spaces and the types of the respective zones. Finally, defined SM the
set of all the defined mappings and Za and Zb defined as two zones referred to
different spaces, an implicit mapping (Za, Zb) is derived if there exist n zones
Z1, ..., Zn such that (Za, Z1), (Z1, Z2), ..., (Zn, Zb) ∈ SM for n ≥ 1.

<<me ta>>
ZoneModel

<<me ta>>
SpatialModel

Space
-begin : Grain
-end : Grain

TimeInterval

+map(Zone, Pose) : Zone
MappingFunction

Pose

reference
1

reference

1
reference

source
1

source

source

Valid In

<<use>> <<instant iate>>

Figure 4.12: The Mapping Function.

As mentioned, an explicit mapping is used to relate zones that are indepen-
dent, projective mappings functions (mapping functions from now on) are thus
the best choice, because the zones they produce can be seen as the representation
of the source zone in the target space. In this work, mapping functions are used
as connecting components between abstraction layers: for example, they can be
used to abstract stimuli coming from physical sensors that are contextualised in
subjective spaces, into other stimuli, referred to spaces that are subjective with
respect to the software component interested in the readings. This pattern can
be repeated many times as required by the abstractions needed.

For example, the stimuli produced by the simple thermometer therm1 rep-
resents the temperature in a specific position of the sensor subjective space. By
applying a projection mapping to the position zone of the therm1 it is possi-
ble to obtain a new position, that represents the same information within the
position space of room1.

With the aim of using a mapping function in order to position a stimuli (for
example, from a sensor subjective space, to a space representing a room), the
real position of the sensor itself inside the room comes in place. Since the aim
of this work is to move from physical devices toward the concept of spaces, the
position of a generic source with respect to a destination space is expressed as
the Pose of the source position space with respect to its reference (target) space.
For example Figure 4.13 gives a graphical representation of the concept of pose
for therm1 positioning space within the room1 positioning space, it also gives a
glimpse of how the conical zone defined in Figure 4.9a needs to be represented
with respect of the room1 perspective. The pose of a space with respect to
another space is strictly dependent on the types of the two spaces: for example,
when dealing with Cartesian spaces, the most common information needed to
define a pose are:

4.2. SPATIAL MODEL 97

Figure 4.13: The Pose of the therm1 space.

• a rotation and translation matrix

• a set of multipliers, in order to address the differences in scales between
the two spaces. It may be one for each dimension, or a single one for all
of them.

Figure 4.14 shows the mapping of the cone zone from the subjective space
of therm1 to the equivalent zone in the room1 space. The conversion of the
apex location its base on the roto-translation matrixes (they are not reported
here, but can be calculated by different tools already available). The ratio
of the destination zone depends on a interpolation of the scale values and the
direction, finally, the destination direction vector is calculated applying to it the
same rotation matrixes. What could also be included in the room perspective
is the point P as showed in Figure 4.13 as it is reasonable to delimit the cone
to the boundaries of the room, nonetheless this could need a different and more
complex polyhedric representation if the cone intersects the corners of the space.

While it is more common to think about the concepts of pose and mapping
with positioning spaces, the same paradigm can be applied to measurement
spaces. Referring to the temperature measurements considered until now, it is
possible to define, as an example, the mapping between the measure contex-
tualised in the subjective space of therm1, in a measure contextualised in a
different temperature space, like the one referred to room1. Considering that
therm1’s temperature space is expressed in Celsius degrees, while the room1’s
is in Fahrenheit degrees, the mapping function can be seen as the conversion
function, while the pose are the parameters that align the Celsius scale with
respect to the Fahrenheit scale.

98 CHAPTER 4. SPACES

Figure 4.14: The mapping of a cone.

By putting together both a positioning and a measurement mapping func-
tion, it is then possible to completely contextualise a stimulus in a different
space. Figure 4.15 shows how abstraction of information works under the pre-
sented paradigm.

Figure 4.15: The stimulus mapping chain.

4.3 SPACES Concrete Architecture
This Section covers some of the details of the concrete design of the SPACES
concepts. The model is based on a Desktop environment where information can

4.3. SPACES CONCRETE ARCHITECTURE 99

be received from sensors (be they concrete or emulations). The possibility to
exploit virtual sensors allow simulations with unavailable sensors and the ability
to reproduce the feeding of data from data acquired offline.

4.3.1 Space and Location
The Space and Location classes as defined are pictured in Figure 4.16. As
pictured, a space is characterised by the type of locations that can relate to
it. The concept of premetric is not considered in this implementation, but
the definition MembershipFunction previously introduced for zones, has been
applied also to spaces.

<<Property>> -name : String
<<Property>> -effectiveLocations : List<T>
<<Property>> #dimensions : Dimension
<<Property>> #membershipFunction : MembershipFun...
#createLocation(locationDetails : E) : T
+allowable(locationDetails : E) : boolean
+getLocation(locationDetails : E) : T
+Space(name : String, membershipFunctionName : String)
+contains(location : T) : boolean

Space
<<Property>> #name : String
+LocationDetails(name : String)
+toString() : String

LocationDetails

<<Property>> -name : String
+Location(name : String)

Location

<<Property>> -parameters : Parameters<T>
+satisfiesFunction(location : T) : boolean
+MembershipFunction(parameters : Parameters<T>)
+MembershipFunction()

MembershipFunction

<<Property>> -ID : String
<<Property>> -unitOfMeasure : Unit<? extends Quantity, ? extends Quantity>
<<Property>> -min : T
<<Property>> -max : T
+Dimension(iD : String, unitOfMeasure : Unit<? extends Quantity, ? extends Quantity>, min : T, max : T)
+allowable(value : T) : boolean
+createValue(value : T) : Value<T, T>

Dimension

T : Location
E : LocationDetails

T : Location

T : Comparable<T>
T : Comparable<T>

#membershipFunction

1..* #dimensions

Figure 4.16: The Space and Location classes.

For consistency purposes, spaces are in charge of creating locations following
the factory method pattern; the LocationDetails class has been introduced as
container of information needed in order to produce a location in a space. Finally
it is also noteworthy the allowable method that checks if the details used to
create a location are consistent with the space type. A number of spaces have
been defined as examples and for testing purposes, they are pictured in Figure
4.17.

• NamesSpace represents a simple spaces composed by a single dimension of
string values, it can be used, as an example, for representing an enumer-
ation of names.

100 CHAPTER 4. SPACES

+TemperatureSpace(name : String, membershipFunction...
TemperatureSpace

+NamesSpace(name : String, membershipFunctionName ...
+setEffectiveLocations(locations : List<NameLocation>) ...
#createLocation(locationDetails : NameLocationDetails) : ...
+allowable(locationDetails : NameLocationDetails) : boole...
+toString() : String

NamesSpace

+Grid2DSpace(name : String, membershipFunctionName ...
-getXDimension() : Dimension<Long>
-getYDimension() : Dimension<Long>
+contains(location : Cell2DLocation) : boolean
#createLocation(locationDetails : Cell2DLocationDetails) :...
+allowable(locationDetails : Cell2DLocationDetails) : bool...
+toString() : String

Grid2DSpace
+Cartesian3DSpace(name : String, membershipFunction...
#createLocation(locationDetails : Cartesian3DLocationDe...
-getXDimension() : Dimension<Double>
-getYDimension() : Dimension<Double>
-getZDimension() : Dimension<Double>
+allowable(locationDe tails : Cartesian3DLocationDe tails) ...

Cartesian3DSpace

+Cartesian2DSpace(name : String, membershipFunction... -
getXDimension() : Dimension<Double>
-getYDimension() : Dimension<Double>
+allowable(locationDe tails : Cartesian2DLocationDe tails) ...
#createLocation(locationDetails : Cartesian2DLocationDe...

Cartesian2DSpace

+AccelerometricSpace(name : String, membershipFuncti...
AccelerometricSpace

<<Property>> -name : String
<<Property>> -effectiveLocations : List<T>
<<Property>> #dimensions : List<Dimension<?>>
#membershipFunction : MembershipFunction<T>
#createLocation(locationDetails : E) : T
+allowable(locationDeta ils : E) : boolean
+getLocation(locationDetails : E) : T
+Space(name : String, membershipFunctionName : String)
+contains(location : T) : boolean

Space

+Cartesian1DSpace(name : String, membershipFunction... -
getDimension() : Dimension<Double> +contains(location :
Cartesian1DLocation) : boolean
#createLocation(locationDetails : Cartesian1DLocationDe...
+allowable(locationDe tails : Cartesian1DLocationDe tails) ...

Cartesian1DSpace

T : Location
E : LocationDetails

Figure 4.17: The implemented Space specialisations.

• Grid2DSpace is two dimensional discrete space, it can be used for specific
kind of measurements or for simple 2D positions.

• Cartesian1DSpace, Cartesian2DSpace, and Cartesian3DSpace are the
most versatile spaces, they are respectively composed by one, two, or
three dimensions of double values and can be used both for contextualise
measures and positions.

• TemperatureSpace and AccelerometricSpace are examples of specific
cartesian spaces, with one and three dimensions respectively. They have
been used during the testing of the framework.

In a consistent way, locations have been specialised too, Figure 4.18 shows
the implemented localisations.

The NameLocation class contains a string value and represents a specific
version of the OneValueLocation that is able to be instantiated with a generic
Value type T. The TemperatureLocation, as another example, constraints T
to be a double value, making it suitable to represent temperature readings.
Similar locations with two and three values have been defined as the TwoVal-
uesLocation and ThreeValuesLocation classes, which parametrisation allow
to obtain specific cartesian locations such as the Cartesian3DLocation class or
the Cell2DLocation for two dimensional grids spaces. It is noteworthy how,
being spaces parametrised with location types, it is easily possible to build, as

4.3. SPACES CONCRETE ARCHITECTURE 101

<<Property>> -name : String
+Location(name : String)

Location

<<Property>> -value2 : Value<E>
+TwoValuesLocation(name : String, va...

TwoValuesLocation

<<Property>> -value3 : Value<O>
+ThreeValuesLocation(name : String, ...

ThreeValuesLocation

+TemperatureLocation(name : String, ...
TemperatureLocation

<<Property>> -value : Value<T>
+OneValueLocation(name : String, val...

OneValueLocation

+NameLocation(value : Value<String>)
+equals(obj : Object) : boolean
+toString() : String

NameLocation

+Cell2DLocation(name : String, x : Val...
+getX() : Value<Long>
+getY() : Value<Long>

Cell2DLocation

+Cartesian3DLocation(name : String, ...
+getX() : Value<Double>
+getY() : Value<Double>
+getZ() : Value<Double>

Cartesian3DLocation

+Cartesian2DLocation(name : String, ...
+getX() : Value<Double>
+getY() : Value<Double>

Cartesian2DLocation

+Cartesian1DLocation(name : String, t...
+getTemperatureValue() : Value<Dou...

Cartesian1DLocation

T
E

T
E
O

T

Figure 4.18: The Location specialisations.

an example, a two dimensional cartesian space that produces only locations of
the type Cartesian2DLocation in order to guarantee type consistency.

4.3.2 Dimension and Value
In Figure 4.16 the dimensions parameter for the space class is presented. Figure
4.19 pictures the Dimension and Value classes as introduced in Section 4.2.2.
A dimension is characterised by its boundaries expressed as min and max and
a unitOfMeasure. Similarly to locations and spaces, Values are created by
the dimension class that acts as factory and an allowable method is used
for consistency. The type of values a dimension can create is bounded to the
dimension parametrisation. A value is specific to a single dimension and retains
its ID.

<<Property>> -ID : String
<<Property>> -unitOfMeasure : Unit<? extend...
<<Property>> -min : T
<<Property>> -max : T
+Dimension(iD : String, unitOfMeasure : Unit<? ...
+allowable(value : T) : boolean
+createValue(value : T) : Value<T>

Dimension

<<Property>> -dimensionID : String
<<Property>> -value : T
+Value(dimensionID : String, value : T)

Value

T : Comparable<T>

T

Figure 4.19: The Dimension class.

Being parametric, nor specific dimensions or values had to be defined.

4.3.3 Zone
The Zone class is shown in Figure 4.20. Every zone is characterised by a reference
space and a set of parameters that depends on the zone type, characteristic

102 CHAPTER 4. SPACES

locations of a zone falls within the parameters. As definition every zone employs
a MembershipFunction, in order to offer the contains operation and determine
if a given location belongs to the zone.

<<Property>> -name : String
<<Property>> -space : Space<T, ?>
<<Property>> -membershipFunction : MembershipFunction<T>
<<Property>> -parameters : Parameters<T>
+Zone(name : String, space : Space<T, ?>, membershipFunctionName ...
+contains(l : T) : boolean
+intersect(z : Zone<T>) : boolean
+belongsSameSpace(z : Zone<T>) : boolean
+toString() : String

Zone

<<Property>> -name : String
<<Property>> -effectiveLocations : List<T>
<<Property>> #dimensions : List<Dimension<?>>
#membershipFunction : MembershipFunction<T>
#createLocation(locationDetails : E) : T
+allowable(locationDetails : E) : boolean
+getLocation(locationDetails : E) : T
+Space(name : String, membershipFunctionName : String)
+contains(location : T) : boolean

Space

<<Property>> -parameters : Parameters<T>
+satisfiesFunction(location : T) : boolean
+MembershipFunction(parameters : Parameters<T>)
+MembershipFunction()

MembershipFunction

<<Property>> -characteristicLocations : List<T>
+Parameters(characteristicLoca tions : List<T>)
+toString() : String

Parameters T : Location

T : Location
E : LocationDetails

T : Location

T : Location

-parameters

-space

-membershipFunction

Figure 4.20: The Zone and MembershipFunction classes.

Being a zone fully described by its membership function, specifications of
the latter are enough in order to obtain differentiated versions of the former.
Figure 4.21 pictures some of the developed functions.

• EnumerationMembershipFunction is the simplest form of function de-
fined: it checks whether or not a given location is part of the collection of
characteristics locations.

• OneDimensionMembershipFunction is defined to check if a given one di-
mension location value falls within a single distance distanceValue. it
can be used as an example to define a zone represented by a single real
number and a small threshold of tolerance, as mentioned in 4.2.3.

• SingleDistance and TwoDimensionDistance functions are related to two
dimensional spaces and zones. TwoDimensionDistance allows to define a
distance for each of the two dimensions of the space and thus obtain an
ellipse of acceptance. The single distance variation, while not actually a
specialisation can be seen as a specific instance of the two distance case
with equal values: the result is a circle of acceptance around the centre
value, which is the characteristic location of the zone.

• PoligonalMembershipFunction builds a polygon of an arbitrary number
of edges defined by the characteristics locations of the zone that act as
vertexes. The Polygon.contains function is then used to check if the
location passed to the satisfiesFunction function are part of the defined
polygon or not.

4.3. SPACES CONCRETE ARCHITECTURE 103

<<Property>> -parameters : Parameters<T>
+satisfiesFunction(location : T) : boolean
+MembershipFunction(parameters : Parameters<T>)
+MembershipFunction()

MembershipFunction

-ellipse : Double
+TwoDimensionDistanceMembershipFunction(para...
+satisfiesFunction(location : TwoValuesLocation<T...

TwoDimensionDistanceMembershipFunction

-ellipse : Double
+SingleDistanceMembershipFunction(param : Param...
+satisfiesFunction(location : T) : boolean
+toString() : String

SingleDistanceMembershipFunction

-polygon : Polygon
+satisfiesFunction(location : Cell2DLocation) : boole...
+setParameters(parameters : Parameters<Cell2DLo...
+PoligonalMembershipFunction(parameters : Param...
-getCoordinatesForIndex(index : int) : int []
+toString() : String

PoligonalMembershipFunc tion

-distanceValue : Double
-center : OneValueLocation<Double>
+OneDimensionMembershipFunction(param : Param...
+satisfiesFunction(location : OneValueLocation<Do...

OneDimensionMembershipFunction

<<Property>> -locations : List<? extends Location>
+EnumerationMembershipFunction(parameters : Par...
+EnumerationMembershipFunction()
+satisfiesFunction(location : Location) : boolean
+toString() : String

EnumerationMembershipFunction

T : Location

T : Number

T : Location

T : Location

Figure 4.21: The MembershipFunction specialisations.

4.3.4 Stimulus and Measure
SPACES is aimed at normalising and contextualising sensor information into
stimuli, as introduced in Section 4.2.4. however in order to do so a number of
different steps have been considered.

Figure 4.22 pictures the Stimulus class and how it is composed. The general
Measure class is defined by a measure zone that holds the information payload
and a TimeInterval of validity, defined following the principles of TAM and
the TDSH. The concept of SensorMeasure associates a Sensor to the measure
and can be used to represent normal sensors data before adding the spatial
contextualisation characteristics to the SPACES approach instead of the phys-
ical source reference. Finally the Stimulus adds to the measure the positioning
information by enclosing a second zone for space contextualisation.

Figure 4.23 shows the mentioned Sensor class. It is characterised by a zone
that, if available, represents the actual position of the sensor inside the reference
positioning space. It also holds a reference to the measurement space that it
uses to produce sensor measures from raw data. The more general Source class
has both a positioning space and a measurement space and is able act as a
factory to produce stimuli, instead of measures.

In order to better understand how raw data is abstracted into measures and
stimuli, Figure 4.24 shows the pipeline of a stimulus. The physical sensor pro-
duces the raw data, which is only composed by the data itself and a timestamp
of acquisition. The SPACES representation of Sensor uses this data in order to
contextualise the data within a measure zone and thus outputs a sensor measure,

104 CHAPTER 4. SPACES

<<Property>> -sensor : Sensor<M, Space<...
+SensorMeasure(measure : Zone<M>, senso...

SensorMeasure

-serialVersionUID : long = 1L
<<Property>> -position : Zone<P>
+Stimulus(measure : Zone<M>, timeInterval ...

Stimulus

<<Property>> -measure : Zone<M>
-serialVersionUID : long = 1L
<<Property>> -t imeInterval : T imeInterval
+Measure(measure : Zone<M>, timeInterval :...

Measure

<<Property>> -name : String
<<Property>> -space : Space<T, ?>
<<Property>> -membershipFunction : Mem...
<<Property>> -parameters : Parameters<T>
+Zone(name : String, space : Space<T, ?>, m...
+contains(l : T) : boolean
+intersect(z : Zone<T>) : boolean
+belongsSameSpace(z : Zone<T>) : boolean
+toString() : String

Zone

-begin : Grain
-end : Grain

TimeInterval

M : Location

M : Location
P : Location

M : Location

T : Location

-posit ion

-timeInterval

-measure

Figure 4.22: The Stimulus, Measure, and SensorMeasure classes.

<<Property>> -positioningSpace : ...
<<Property>> -measurementSpac...
+createStimulus() : Stimulus<M, P>
+Source(positioningSpace : Space<...

Source

<<Property>> -sensorPosition : Z...
<<Property>> -measurementSpac...
+createMeasure(location : M, timeIn...

Sensor

<<Property>> -name : Str ing
<<Property>> -effectiveLocations : List<...
<<Property>> #dimensions : Dimension
<<Property>> #membershipFunction : M...
#createLocation(locationDetails : E) : T
+allowable(locationDetails : E) : boolean
+getLocation(locationDetails : E) : T
+Space(name : String, membershipFunctio...
+contains(location : T) : boolean

Space

M : Location
P : Location

M : Location
T : Location
E : LocationDetails-measurementSpace

-positioningSpace

-measurementSpace

Figure 4.23: The Sensor and Source classes.

which holds a reference to the sensor. Finally the figure of a source is intro-
duced in order to enrich the the sensor measure and produce a stimulus with a
physical position zone instead of the reference to the sensor. It is noteworthy
that the abstractions from raw data to stimuli have been proposed as a single
operation in Section 4.2.4 as they together represent the change of perspective,
from physical sensors, to abstracted and contextualised information, but have
been divided into two steps as the two spatial contextualisations are disjoint.

4.4. IMPLEMENTATION 105

Figure 4.24: The Stimulus Pipeline.

4.3.5 Mapping Function
The concrete design of the concept of MappingFunction is presented in Figure
4.25. The function is defined by the type of locations (and thus, spaces) that
can relate. For example, the map function is bound to take as input a zone
parametrised with the location type of its source space (S in the class diagram)
and it produces a zone characterised by the location type R, which is the type
of its reference space locations. It is noteworthy how only a reference to the
reference space its needed, as the source space is implicitly passed with the
sourceZone parameter of the map function.

<<Property>> -referenceSpace : Space<R, ?>
+MappingFunction(referenceSpace : Space<R, ?>)
+map(sourceZone : Zone<S>) : Zone<R>

MappingFunction

<<Property>> -name : String
<<Property>> -effectiveLocations : List<T>
#membershipFunction : MembershipFunction<T>
<<Property>> #dimensions : Dimension<?>
#createLocation(locationDetails : E) : T
+allowable(locationDetails : E) : boolean
+getLocation(locationDetails : E) : T
+Space(name : String, membershipFunctionNam...
+contains(location : T) : boolean

Space
R : Location
S : Location

T : Location
E : LocationDetails

-referenceSpace

Figure 4.25: The MappingFunction class.

4.4 Implementation
This section covers the implementation of the SPACES model. The library is
build using the Java language and the Eclipse IDE. The actual implementation
is generally consistent with the concrete model presented in Section 4.3 with
minor modifications made to fulfil practical aspects that did not appear in the
design phase.

For example, the concept of Orientation and OrientedZone have been
added to model those zones that may have a specific orientation within their

106 CHAPTER 4. SPACES

space. the Parameter class is used to define both the parameters needed to
instantiate a Zone and a MembershipFunction.

4.4.1 Implementation Choices
In the developing of the library, some external resources have been exploited.
For example, in order to model units of measures within the Dimension class,
the JScience1 library is exploited. JScience is a freely available library that
provides implementation of units of measurement services along with other
mathematical commodities. Another example are the SingleDistance and
TwoDimensionDistance membership functions presented in Section 4.3.3. Both
classes exploit the Ellipse class of the java.awt.geom package. Similarly the
PoligonalMembershipFunction makes use of the java.awt.Polygon package.

4.4.2 The SPACES Packages
The implementation of the SPACES model has been divided into three main
packages:

1. SpaceCore.

2. DataCore.

3. Library.

The spaceCore package is pictured in Figure 4.26 and contains the reifica-
tions of all the core concepts for spatial representation and spatial mappings.

Figure 4.27 pictures the dataCore package, where are implemented the con-
cepts related to stimuli and measures, as well as the Sensor and Source classes.

Finally, Figure 4.28 shows the library package. This package has been
added in order to give developers some basic instruments to deploy their soft-
ware components exploiting SPACES. The library package contains all the
specialisations of the core classes found in the spaceCore and dataCore pack-
ages.

1http://jscience.org

4.4. IMPLEMENTATION 107

spaceCore

zone

space

parameters

mappingFunction

dimension

membershipFunction

location

Zone

OrientedZone<<Interface>>
Oriented

Orientat ion

Space

ParametersOrientedParameters
MembershipFunction

MappingFunction

LocationDetails Location

Value

Dimension

Pose

T : Location

T : Location

T : Location
E : LocationDetails

T : Location-parametersT : Location

T : Location

R : Location
S : Location

T

T : Comparable<T>

-membershipFunction #membershipFunction

#dimensions
*

-space
-referenceSpace

-parameter s

-orientation

+orientation

Figure 4.26: The spaceCore package.

dataCore

lowLevel highLevel

SensorMeasure

Sensor

Stimulus

Source

Measure

M : Location

M : Location

M : Location
P : Location

M : Location
P : Location

M : Location

-sensor

Figure 4.27: The dataCore package.

108 CHAPTER 4. SPACES

l ibrary

spaces

parameters

sensors

membershipFunctions

orientations

locations

mappingFunctions

interfaces
data

rotationMatrix

TemperatureSpace

NamesSpace Grid2DSpace

Cartesian3DSpaceCartesian2DSpaceCartesian1DSpace

AccelerometricSpace

Accelerometer

TDDMFParameters SingleDistanceMFParametersODMFParameters

Cartesian3DOrientation

TwoDimensionDistanceMembershipFunction

SingleDistanceMembershipFunction

PoligonalMembershipFunction

OneDimensionMembershipFunctionEnumerationMembershipFunction

Cartesian3DRotationMatrixMappingFunction

TwoValuesLocation

ThreeValuesLocation

TemperatureLocation

OneValueLocation

NameLocation

Cell2DLocation

Cartesian3DLocationCartesian2DLocation

Cartesian1DLocation

<<Interface>>
hasUnitOfmeasureTimedSensorStimulusTimedNormalizedStimulu s

Rotat ionMatr ix

Cartesian3DRotationMatrix
T T : LocationT

T : Number

T : LocationT : Location

T
E

T
E
O

T

T : LocationT : Location

T : Location
E : LocationDetails

-center

Figure 4.28: The Library package.

4.4. IMPLEMENTATION 109

Sub-packages have been defined to contain the various concepts specialisa-
tions. For example the library.locations package contains all the various
locations needed to represent the locations of the corresponding spaces imple-
mented in the library.spaces package. As pictured in Figure 4.29, the final
specialisations removes the template parameters, forcing the various locations
to assume the right kind Values, such as String for the NameLocation class or
Long for Cell2DLocation.

<<Property>> -name : String
+Location(name : String)

Location

<<Property>> -value2 : Value
<<Property>> -attribute : Value
<<Property>> -attribute2 : Value<E>
+TwoValuesLocation(name : String, value : V...

TwoValuesLocation

<<Property>> -value3 : Value
<<Property>> -attribute : Value
<<Property>> -attribute2 : Value<O>
+ThreeValuesLocation(name : String, value :...

ThreeValuesLocation

+TemperatureLocation(name : String, value ...
TemperatureLocation

<<Property>> -value : Value
<<Property>> -attribute : Value
<<Property>> -attribute2 : Value<T>
+OneValueLocation(name : String, value : Va...

OneValueLocation

+equals(obj : Object) : boolean
+toString() : String
+NameLocation(value : Value<String>)

NameLocation

+getX() : Value<Long>
+getY() : Value<Long>
+Cell2DLocation(name : String, x : Value<Lo...

Cell2DLocation

+getX() : Value<Double>
+getY() : Value<Double>
+getZ() : Value<Double>
+Cartesian3DLocation(name : String, x : Val...

Cartesian3DLocation

+getX() : Value<Double>
+getY() : Value<Double>
+Cartesian2DLocation(name : String, x : Val...

Cartesian2DLocation

+getTemperatureValue() : Value<Double>
+Cartesian1DLocation(name : String, temper...

Cartesian1DLocation

T
E

T
E
O

T

Figure 4.29: The library.locations package.

Figure 4.30 shows the available mapping functions. Defining the correct
mapping function for specific zones in given spaces is a very hard and space-
dependent matter. The current implementation features some basic mappings
such as name to name from enumeration space to enumeration space and name
to zone for enumeration space to any other space. More interesting mapping
functions are mathematical based.

For example, Figure 4.30 pictures the Cartesian3DRotationMatrixMap-
pingFunction, which maps zones from a three dimensional cartesian space into
zones of another space of the same type. The map function is based on its
Cartesian3DRotationMatrix, that reifies the concept of pose of a space with
respect to another space introduced in 4.2.6. The result is a zone of the same
shape (proportions may change) and type of the original one, but contextualised
in the reference space.

110 CHAPTER 4. SPACES

-rotationCenter : T
+RotationMatrix(rotationCenter : T)
+getRotationCenter() : Location
+transform(location : T, center : T) : E
+transform(location : T) : E

RotationMatrix

-alpha : double
-beta : double
-gamma : double
~rm : float[]
+setAngle(rotA : double, rotB : double, rotC : double) : void
+Cartesian3DRotationMatrix(rotationCenter : Cartesian3DLocation)
+transform(rotpoint : Cartesian3DLocation, centerpoint : Cartesian3DLoca...
+toString() : String

Cartesian3DRotationMatrix

-rotationMatrix : Cartesian3DRotationMatrix
+Cartesian3DRotationMatrixMappingFunction(rotationCenter : Cartesian3...
+map(sourceZone : Zone<Cartesian3DLocation>) : Zone<Cartesian3DLo...

Cartesian3DRotationMatrixMapp i ngFunction
<<Property>> -referenceSpace : Space<R, ?>
+MappingFunction(referenceSpace : Space<R, ?>)
+map(sourceZone : Zone<S>) : Zone<R>

MappingFunction

Pose

T : Location
E : LocationDetails

-rotationMatrix

R : Location
S : Location

Figure 4.30: The library.mappingFunctions package.

4.5 Normalisation Case Study
In this section the case study presented in 2.2.2 is considered from the SPACES
perspective. In order to achieve a spatial representation of the data that is not
dependent on the physical source, it is necessary to:

1. Correctly identify how the data has to be represented from the point of
view of the sensor.

2. Define how the normalised data should be represented.

3. Identify the correct mappings between the two representations.

The rest of this section will cover this points both from a measurement and
positioning point of view, for each of the data type in use (accelerations and
audio).

4.5.1 The Concepts Needed
In order to represent accelerations and microphonic data exploiting the SPACES
approach, a number of concepts have to be defined. Specifically, each type of
data needs to be specified in terms of measurement space and positioning space.

Acceleration

Measurement To represent acceleration measures, the following concepts are
needed:

1. An acceleration measurement space related to the accelerometer. Such
space has to be able to represent the inner characteristics of the sensor
in use. For example its allowable values should be bounded to the mini-
mum and maximum values the sensor can sample (-8; +8) and its unit of
measure should be g, the gravity unit of measure, where 1g = 9.81m/s2.

4.5. NORMALISATION CASE STUDY 111

2. A corresponding measurement space to represent accelerations at room
level, which may not be completely consistent with the sensor related one.
As an example its unit of measure should follow the International System
of Units and be directly in m/s2.

3. A mapping function able to transform the stimuli contextualised in the
former space into corresponding stimuli contextualised in the latter. In
this case, it consists in a roto-translation of the values to compensate for
change of perspective and a transformation corresponding the change of
scale. As the acceleration is a directional data, the position and orien-
tation of the sensor within the room is used for the roto-translation, the
assumption of its availability is mentioned in 2.2.2.

Positioning Accelerometers do not provide any information about the posi-
tion of their readings, the positioning spaces are then as follows:

1. The sensor positioning space is irrelevant as no information about actual
positions is provided. For better consistency it is defined as a three dimen-
sional cartesian space. The position of the data is defined as the origin of
the space.

2. The room positioning space is a three dimensional cartesian space, in
which every information interpreted at room level is positioned.

3. The mapping function that relates the two spaces is in theory the same
roto-translation function defined for the acceleration measurements, but
is in fact more trivial: being the position of the sensor available in room
coordinates, and being every acceleration positioned contextually with the
sensor, it is sufficient to use the sensor position to contextualise accelera-
tions from the positioning perspective of the room.

Audio

In this context the linear microphonic array is composed by the two microphones
distinctively and their data is received disjoint.

Measurement The concepts required for representing the sound information
from the microphones are as follows:

1. An audio space, related to each microphone, with a single dimension re-
lated to the intensity of the sound (the signals used are not directly in
decibel, the standard audio unit of measure). Since the acquisition from
the microphones is performed in chunks (in accordance to 3.6.2), the lo-
cations of this space should not be single measures, but each chunk.

2. A corresponding space for measuring the audio from the room perspective.
Being the room equipped with two identical microphones, it is reasonable
to keep the same data representation at room level.

112 CHAPTER 4. SPACES

3. As no transformation of measurements is due, there is no need of an actual
measurement mapping function.

Positioning The positioning information of audio data is defined as follows:

1. A three dimensional cartesian space for positioning the audio chunks from
the sensor perspective. Microphones are characterised by an angle of ac-
quisition, moreover a maximum distance of perception can be empirically
defined in the given context. These information have a practical impact
on the positioning of audio information. Specifically, the zones in which
stimuli are to be contextualised will have to embed these intrinsic charac-
teristics of the sensors. The result zone is therefore similar to the conical
zone model presented in Section 4.2.4 and sketched in Figure 4.9.

2. The positioning space of the room in which audio is contextualised is in
fact the same cartesian space defined for positioning accelerations.

3. As the two spaces are again both three dimensional cartesian spaces, the
already defined mapping function is to be used. Specifically the rotation
is to be applied to the characteristics locations that define the conical zone
of the microphones.

4.5.2 Implemented Classes
Here the actual classes representing the concepts introduced in Section 4.5.1 are
presented.

Acceleration

Measurement The concrete measurement classes for representing accelera-
tions are the followings:

1. The sensor space AccelerationSpace is a Cartesian3DSpace, with the
three dimensions holding double values, with g as unitOfMeasure, and
their boundaries set to −8 (min) and +8.

2. The AccelerationSpace at room level is identical, except for the fact
that it holds values in m/s2.

3. The mapping function used to map sensor accelerations into room accel-
erations is a Cartesian3DRotationMatrixMappingFunction and its core
is represented by its map method shown in 4.1.

Listing 4.1: The Cartesian3DRotationMatrixMappingFunction map method.
1 @Override
2 public Zone<Cartesian3DLocation > map(Zone<Cartesian3DLocation >

↪→ sourceZone) {
3

4.5. NORMALISATION CASE STUDY 113

4 Cartesian3DOrientation c3o = (Cartesian3DOrientation) ((
↪→ OrientedZone <Cartesian3DLocation >) sourceZone).
↪→ getOrientation();

5 rotationMatrix.setAngle(c3o.getaAngle(), c3o.getbAngle
↪→ (), c3o.getcAngle());

6
7 Parameters <Cartesian3DLocation > parameters = new Parameters

↪→ <Cartesian3DLocation >(new ArrayList <
↪→ Cartesian3DLocation >());

8 for (Cartesian3DLocation location : sourceZone.
↪→ getParameters().getCharacteristicLocations()){

9 Cartesian3DLocationDetails locationDetails =
↪→ rotationMatrix.transform(location);

10 Cartesian3DLocation newLocation = ((Cartesian3DSpace)
↪→ getReferenceSpace()).getLocation(locationDetails)
↪→ ;

11 parameters.getCharacteristicLocations().add(newLocation
↪→);

12 }
13
14 Zone<Cartesian3DLocation > mappedZone = new Zone<

↪→ Cartesian3DLocation >("mapped" + sourceZone.getName(),
↪→ getReferenceSpace(), sourceZone.
↪→ getMembershipFunction().getClass().getCanonicalName()
↪→ , parameters);

15
16 return mappedZone;
17 }

As mentioned, acceleration needs to be represented by an oriented zone,
which explains the explicit cast at line 4 in 4.1. The rotationMatrix of the
function is then updated to take into consideration the updated orientation
of the source zone. Then, for each characteristic location of the source zone,
corresponding locations are created exploiting the transform function of the
rotationMatrix. Finally a new zone is created in the reference space, with the
same membership function type of the source zone (an EnumerationMember-
shipFunction in this example) and the newly obtained locations as parameters.

The transform function is shown in Listing 4.2. The new location values
newX, newY, and newZ are calculated by applying the rotation matrix rm and then
normalised to centerpoint, the point around which the rotation is carried out.
In this case the rotation happens around the origin of the axes (0, 0, 0) so the
normalisation has no effect.

Listing 4.2: The transform method.
1 @Override
2 public Cartesian3DLocationDetails transform(Cartesian3DLocation

↪→ rotpoint, Cartesian3DLocation centerpoint){
3 double px = rotpoint.getX().getValue() - centerpoint.

↪→ getX().getValue();

114 CHAPTER 4. SPACES

4 double py = rotpoint.getY().getValue() - centerpoint.
↪→ getY().getValue();

5 double pz = rotpoint.getZ().getValue() - centerpoint.
↪→ getZ().getValue();

6
7 double newX,newY,newZ;
8
9 newX = rm[0]*px + rm[1]*py + rm[2]*pz;

10 newY = rm[3]*px + rm[4]*py + rm[5]*pz;
11 newZ = rm[6]*px + rm[7]*py + rm[8]*pz;
12
13 newX += centerpoint.getX().getValue();
14 newY += centerpoint.getY().getValue();
15 newZ += centerpoint.getZ().getValue();
16
17 return new Cartesian3DLocationDetails(rotpoint.getName

↪→ (), newX, newY, newZ);
18 }

The rotation matrix rm is obtained as in Equation 4.1, where a, b, and g,
represent the α, β and γ parameters set with the setAngle function (Listing
4.1, line 5).

rm =

cos a ∗ cos b (cos a∗sin b∗sin g)−
(sin a∗cos g)

(cos a∗sin b∗cos g)+
(sin a∗sin g)

sin a ∗ cos b (sin a∗sin b∗sin g)+
(cos a∗cos g)

(sin a∗sin b∗cos g)−
(cos a∗sin g)

− sin b cos b ∗ sin g cos b ∗ cos g

 (4.1)

Positioning

1. At sensor level, as no information is produced about the positioning of the
accelerations, they are represented in a zone characterised by an enumer-
ative membership function that holds a single location, the origin of the
axes. An example of the accelerometer positioning space and the member-
ship function that represents acceleration positions is sketched in Figure
4.31. Here the Cartesian3DSpace is defined with its three Dimensions
that reify the characteristics of the sensor. The EnumerationMembership-
Function is characterised by the origin Location, that represents the
origin of the accelerationPositioning space.

2. At room level, positions are again represented by a Cartesian3DSpace and
the location of the accelerations can be derived from the known position
of the sensor.

Audio

Measurement

4.5. NORMALISATION CASE STUDY 115

dimensions = x, y, z

accelerationPositioning
: Cartesian3DSpace

ID = xDimension
max = 8
min = -8
unitOfMeasure = g

x : Dimension

ID = yDimension
max = 8
min = -8
unitOfMeasure = g

y : Dimension

ID = zDimension
max = 8
min = -8
unitOfMeasure = g

z : Dimension

locations = origin

accelerationPosition :
EnumerationMembershipFunction

value = xValue
value2 = yValue
value3 = zValue

origin : Cartesian3DLocation

dimensionID = xDimension
value = 0

xValue : Value

dimensionID = yDimension
value = 0

yValue : Value

dimensionID = zDimension
value = 0

zValue : Value

Figure 4.31: Instances representing the accelerometric positioning contextuali-
sation.

1. At sensor level, the classes pictured in Figure 4.32 have been defined:
the AudioSpace is the measurement space, it has a single dimension and
produces locations of type AudioChunkLocation by taking as input Au-
dioChunkDetails. The concept of audio Chunk has been modelled as an
ordered list of audio values.

2. The room measurement space for audio information is consistent with the
sensor level space.

Positioning

1. The microphone positioning space is a Cartesian3DSpace. Audio stimuli
are positioned in conical zones defined by the ConeMembershipFunction
type of membership function, pictured in Figure 4.33. As mentioned in
Section 4.2.4, the cone is characterised by:

• an apex, of type Cartesian3DLocation.

116 CHAPTER 4. SPACES

-serialVersionUID : long = 1L
<<Property>> -values : List
+Chunk(values : List)
+compareTo(o : Double) : int

Chunk
<<Property>> -chunk : Chunk
+AudioChunkDetails(name : String, chunk : Chunk)

AudioChunkDetai ls

+AudioChunkLocation(name : String, chunk : Value<Chunk>)
AudioChunkLocation

+AudioSpace(name : String, membershipFunctionName : String, chunks : Dimension<Double>)
#createLocation(locationDetails : AudioChunkDetails) : AudioChunkLocation
+allowable(locationDetails : AudioChunkDetails) : boolean

AudioSpace

-chunk

Figure 4.32: The classes for representing audio information.

• an aperture, defined as the ratio of which the cone opens, expressed
in radians.

• an infinite boolean flag, to determine if the cone is unlimited.
• a centerBasement, of type Cartesian3DLocation; it represent the

centre of the cone base if it is not infinite.

2. The room positioning space is the same space in which accelerations are
positioned and it has already been introduced.

3. The mapping function used to map the sensor cones into the room space is
the already introduced Cartesian3DRotationMatrixMappingFunction.
In this specific case it is applied to the characteristics locations of the
cone (namely apex and, if present, centerBasement) as these points are
sufficient to determine the new cone into the destination space.

-aperture : float
-infinite : boolean
-apex : Cartesian3DLocation
-centerBasement : Cartesian3DLocation
+satisfiesFunction(location : Cartesian3DLocation) : boolean
+dotProd(a : double [], b : double []) : double
+magn(a : double []) : double
-dif(a : Cartesian3DLocation, b : Cartesian3DLocation) : double []

ConeMembershipFunction

Figure 4.33: the ConeMembershipFunction class.

The most interesting piece of code about the positioning of audio informa-
tion is represented by the satisfiesFunction function of the ConeMember-
shipFunction class (Figure 4.33) shown in Listing 4.3. The method calculates
apexToLocVect that represents the vector pointing to location from apex, and
axisVect that is the vector from apex to centerBasement. The calculation of
these vectors is achieved by the dif method, listed in Listing 4.4.

4.5. NORMALISATION CASE STUDY 117

Listing 4.3: The satisfiesFunction method.
1 @Override
2 public boolean satisfiesFunction(Cartesian3DLocation location)

↪→ {
3
4 float halfAperture = aperture/2.f;
5 double[] apexToLocVect = dif(apex,location);
6 double[] axisVect = dif(apex,centerBasement);
7
8 boolean isInInfiniteCone = dotProd(apexToLocVect ,axisVect)
9 /magn(apexToLocVect)/magn(

↪→ axisVect)
10 >
11 Math.cos(halfAperture);
12
13 if(!isInInfiniteCone) return false;
14 if (this.infinite) return true;
15 boolean isUnderRoundCap = dotProd(apexToLocVect ,

↪→ axisVect)
16 /magn(axisVect)
17 <
18 magn(axisVect);
19 return isUnderRoundCap;
20 }

Listing 4.4: Supporting functions to for the satisfiesFunction method.
1 private double[] dif(Cartesian3DLocation a, Cartesian3DLocation

↪→ b){
2 return (new double[]{
3 a.getX().getValue() - b.getX().getValue(),
4 a.getY().getValue() - b.getY().getValue(),
5 a.getY().getValue() - b.getZ().getValue(),
6 });
7 }
8
9 private double dotProd(double[] a, double[] b){

10 return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];
11 }
12
13 private double magn(double[] a){
14 return (Math.sqrt(a[0]*a[0]+a[1]*a[1]+a[2]*a[2]));
15 }

The satisfiesFunction logic is that if location is lying within the cone if
it is lying in its infinite projection. If this condition is met, the function controls
the infinite parameter of the specific cone, in case the cone is configured as
finite, it proceeds to check if location falls within the finite section defined
by the base (represented by centerBasement). the location point is contained

118 CHAPTER 4. SPACES

only if the projection of apexToLocVectto the axis (axisVect) is shorter than
the axis itself. The dotProd function calculate the dot product between the two
locations, while magn calculates the magnitude of a point.

4.5.3 The Fall Detection Application
Once the data representation has been defined, the fall detection application
can be rethought, the behaviour is as follows:

The basic fall detection component logic remains unchanged: the analysis of
the acceleration data is used to infer possible falls. However the characteristics
of the sensed data, instead of being part of the application base of knowledge
are now fully represented within the acceleration space.

The availability of the spatial contextualisation of the sensed information,
enables to exploit the microphonic information only if the acceleration is sensed
within the range of the microphones and not consider it if the acceleration
happened outside the microphones field.

Furthermore, the application component can be modelled using the SPACES
approach: the fall detector can be considered as a source, while the falls it
detects as the stimuli it produces.

Figure 4.34 pictures FallDetector as a specialisation of Source and the
Fall it produces as a specialisation of Stimulus.

+FallDetector(positioningSpace : Space<Cartesian3DLocati...
+createStimulus() : Stimulus<NameLocation, Cartesian3DL...

FallDetector
-serialVersionUID : long = 1L
+Fall(measure : Zone<NameLocation>, timeInterval : Tim...
+setTimeInterval(interval : TimeInterval) : void
+compareTimeInterval(timed : Timed) : int

Fall

<<Property>> -positioningSpace : Space<P, LocationDet...
<<Property>> -measurementSpace : Space<M, Location...
+Source(positioningSpace : Space<P, LocationDetails>, m...
+createStimulus() : Stimulus<M, P>

Source
-serialVersionUID : long = 1L
<<Property>> -position : Zone<P>
+Stimulus(measure : Zone<M>, timeInterval : TimeInterva...

Stimulus

M : Location
P : Location

M : Location
P : Location

produce

Figure 4.34: The FallDetector and Fall classes.

The algorithm representing the updated version of the fall detection appli-
cation is sketched in Figure 4.35 and behave as follows:

• The accelerations produced by the AccelerationSource instance are anal-
ysed for possible falls.

• If any activity over the predefined threshold is detected the position of the
acceleration information, expressed in room coordinates, is considered.

• In case the supposed fall is within the conical zones that contextualise
the audio information then the intensity of the audio is checked as in the
TDSH case, otherwise the fall is reported directly by producing a Fall
stimulus. The increased confidence in accelerometric data whenever audio

4.5. NORMALISATION CASE STUDY 119

information is not available (e.g. the data is registered anywhere outside
the microphonic array positioning zones), is a conservative choice that
favours false positives toward false negatives. The reason for this choice
is that, as explained in Section 1.4.1, the consequences for a unreported
fall may be severe, while a false negative would presumably result in a
unnecessary check from caretakers.

• If the audio analysis does not report any suspicious activity, then the
supposed fall is flagged as a false positive, otherwise the fall is confirmed.

Figure 4.35: The updated application algorithm.

4.5.4 Discussion
The described scenario represents the same situation handled in Section 3.6,
but from the middleware perspective and with some hints at the application
perspective.

The implementation of the SPACES library highlighted the main challenges
related to the spatial representation approach, which are related to the defini-
tion of the correct mapping functions for each kind of transformation needed.
However these kind of functions are usually based on geometrical transforma-
tion and once defined they can be reused in different contexts. As an example
the mapping function exploited for contextualising accelerations at room level
is the same necessary for mapping the position of any data in a 3D cartesian
space, both for measures and positions.

Similarly membership functions may not be trivial to design and develop,
but may be re-used as well. As an example the definition of the cone used

120 CHAPTER 4. SPACES

for audio information may be exploited to represent the information of a laser
temperature probe, such as mentioned in Section 4.2.4.

The Acquisition components have been represented with the Source paradigm
and the intrinsic characteristics that may be useful to the domain applications
have been embedded within their spatial contextualisations. As an example the
operating field of microphones described by the conical membership functions.

The final result is that domain applications do not have to meddle with the
intrinsic characteristics of the physical devices used to produce the data they
rely on, thus making them more resilient in terms of modifications needed in
case of hardware change or addition.

Furthermore, the direct spatio-temporal contextualisation of data eases spa-
tial related reasoning in applications such as the conditional checking of audio
information presented in this section. Spatio-temporal reasoning represents one
of the key aspects in AAL systems, as mentioned in Section 1.2.2.

Finally the SPACES model proved to promote a correct horizontal parti-
tioning and data representation that increase the scalability, reusability, and
expandability of the system. As an example, just by instantiating a mapping
function that translate falls contextualised in room coordinates into a broaden
context, a further component that reasons at building level could deduce the
nearest path to the faller in need or what caretaker to notify based on the
respective positions of the the caretaker and the detected fall.

CHAPTER 5

Conclusions

This chapter summarises the contributions of this work, the related publications,
and the possible future developments.

5.1 Summary of Contribution
This thesis proposed two sets of architectural abstractions that respectively
model data acquisition and data presentation, which can be exploited in any
kind of system that deals with data from the filed, such as Ambient Assisted
Living systems.

Time driven Sensor Hub (TDSH) are the abstractions related to data acqui-
sition. TDSH accurately separates the mechanisms that realise the dynamics
from the configurations that specify the sensors and their acquisition frequen-
cies. Thus, TDSH proposes a model that strongly enforces both reusability and
configurability. This allows to easily realise acquisition layers by only selecting
by a catalogue the sensors needed, and to configure them in order to acquire
date at the desired frequency. If in the catalogue a sensor is not present, it
suffices only to program the software component that interface with it.

sPaces Architecture for Contextualising hEterogeneous Sources (SPACES)
are the abstractions related to data representation. SPACES decouples sensed
data from their sources. Sensed data is represented by means of spaces. This
allows to have different representation of the same data at different abstraction
levels using the notion of mapping. The model proposed allows applications to
be completely unaware of the physical sensors that acquired the data, and al-
lows different applications to reason on acquired data represented at the correct
abstraction level.

121

122 CHAPTER 5. CONCLUSIONS

5.1.1 Time Driven Sensor Hub
TDSH is a set of architectural abstraction for the design of the components
that drives the sensors acquisition. TDSH core concepts include timers, clocks,
time-driven activities, and timelines. Timers generate time related events, while
clocks keep track of the advances of time as defined by the timers; time-driven
activities are activities whose activation is driven by timers, and timelines are
data structures that constitute a static representation of time as a numbered
sequence of time grains.

A concrete TDSH implementation has been provided, tailored for embedded
systems without the support of any real-time Operating System. Moreover, an
hardware specific library has been implemented, in order to run TDSH on a
STM32F4-Discovery, exploiting the HAL driver library to offer features based
on the specific hardware, such as ADC converters and the DMA data transmis-
sion mode.

Finally, some TDSH practical examples have been produced to verify that
the key aspects of acquisition timing and inter-component data management
were consistent with the model. Moreover an actual demo application was
developed to test TDSH as a separated acquisition component.

5.1.2 Subjective sPaces Architecture for Contextualising
hEterogeneous Sources

SPACES is a set of architectural abstractions for standardise sensor measure-
ments representation. The abstractions rely on a spatial representation of sensor
data. Samples are termed stimuli and localised in terms of measurement spaces
and positioning spaces. Mapping functions allow to map stimuli into differ-
ent spaces enabling other entities to reason on the same data with different
representations and at different levels of abstraction.

The concrete implementation of the SPACES approach is tailored for desktop
applications and reduces the effort for data fusion and interpretation, while
enforcing the reuse of infrastructures. The initial test case for sensor data
acquisition has been rethought and expanded to take advantage of the SPACES
approach, demonstrating how it enables AAL applications to perform spatio-
temporal reasoning.

5.1.3 Publications
The result of this thesis have been published in the following papers:

Journals

• Daniela Micucci, Marco Mobilio, Paolo Napoletano and Francecso Tisato,
“Falls as anomalies: an experimental evaluation from smartphone ac-
celerometer data”. Journal of Ambient Intelligence and Humanized Com-
puting: Models and architectures for emergency management (JAIHC) -
2015.

5.2. FUTURE DEVELOPMENTS 123

• Daniela Micucci Marco Mobilio and Francesco Tisato, “SPACES: Sub-
jective sPaces Architecture for Contextualizing hEterogeneous Sources”.
Communications in Computer and Information Science (CCIS) - 2015.

Under revision:
• Micucci, Daniela, Marco Mobilio, and Paolo Napoletano. “UniMiB SHAR:

a new dataset for human activity recognition using acceleration data from
smartphones”. Submitted to IET Electronics Letters - 2016.

Proceedings of International Conferences and Workshops

• Daniela Micucci, Marco Mobilio, Paolo Napoletano and Francecso Tisato,
“On the robustness of detecting falls as anomalies from smartphone ac-
celerometer data”. Proactive Workshop - 2015.

• Alessio Fanelli, Daniela Micucci, Marco Mobilio, and Francecso Tisato,
“Spatio-Temporal Normalization of Data from Heterogeneous Sensors”.
International Conference on Software Engineering and Applications (ICSOFT-
EA) - 2015.

• Marco Mobilio, Toshi Kato, Hiroko Kudo, and Daniela Micucci, “Ambient
Assisted Living for an Ageing Society: a Technological Overview”. Second
Italian Workshop on Artificial Intelligence for Ambient Assisted Living
(AI*AAL) - 2016.

The following papers are under developing:
• Daniela Micucci, Marco Mobilio, and Francesco Tisato: “Time Driven

Sensor Hub: Time Awareness in Embedded Systems”.

• Daniela Micucci, Marco Mobilio, and Paolo Napoletano: “A Survey on
Publicly Available ADLs and Falls Datasets”.

5.2 Future Developments
For sensor data acquisition, future works may concern improvements in the
concrete design of the TDSH, such as the handling of finite-state performers, or
an interrupt-based approach to enable performers run to cross the duration of
a single tick. Moreover, the synchronisation with upper levels may be further
inquired.

Regarding the implementation, further sensors and functionalities could be
added to the current library. Moreover hardware specific libraries for different
boards may be implemented, to encourage usage.

For data normalisation, the SPACES library of spaces, mapping functions,
and membership functions could be expanded to be able to represent more
diversified data.

Finally in the field of AAL the fall detection application may be expanded to
cover more scenarios and sensors, thus becoming a more complete AAL system.

Bibliography

[1] Johns Hopkins EpiWatch: App and Research Study. http://www.
hopkinsmedicine.org/epiwatch. 00000.

[2] ISO 9241-11 Guidance on Usability. Technical report, International Or-
ganization for Standardization, 1998. 00002.

[3] AAliance2. Ambient Assisted Living Roadmap. Deliverable, AALIANCE2
- European Next Generation Ambient Assisted Living Innovation Alliance,
September 2014. 00000.

[4] Emile Aarts and José Encarnação, editors. True Visions. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006. 00006.

[5] Stefano Abbate, Marco Avvenuti, Paolo Corsini, Janet Light, and Alessio
Vecchio. Monitoring of Human Movements for Fall Detection and Ac-
tivities Recognition in Elderly Care Using Wireless Sensor Network: A
Survey. In Wireless Sensor Networks: Application-Centric Design. In-
Tech, December 2010. 00000.

[6] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a Better Understanding of Context and
Context-Awareness. In Hans-W. Gellersen, editor, Handheld and Ubiqui-
tous Computing, number 1707 in Lecture Notes in Computer Science,
pages 304–307. Springer Berlin Heidelberg, September 1999. 04686.

[7] Gregory D. Abowd and Elizabeth D. Mynatt. Designing for the Human
Experience in Smart Environments. In Diane J. Cook and Sajal K. Das,
editors, Smart Environments, pages 151–174. John Wiley & Sons, Inc.,
2004.

125

http://www.hopkinsmedicine.org/epiwatch
http://www.hopkinsmedicine.org/epiwatch

126 BIBLIOGRAPHY

[8] Giovanni Acampora, Diane J. Cook, Parisa Rashidi, and Athanasios V.
Vasilakos. A Survey on Ambient Intelligence in Healthcare. Proceedings
of the IEEE, 101(12):2470–2494, December 2013. 00132.

[9] Hamid Aghajan, Juan Carlos Augusto, and Ramon Lopez-Cozar Del-
gado. Human-Centric Interfaces for Ambient Intelligence. Academic Press,
September 2009. 00047.

[10] Roberto Alesii, Fabio Graziosi, Stefano Marchesani, Claudia Rinaldi,
Marco Santic, and Francesco Tarquini. Advanced Solutions to Support
Daily Life of People Affected by the Down Syndrome. In Ambient As-
sisted Living, pages 233–244. Springer, 2015. 00000.

[11] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, and G. Marrocco.
RFID Technology for IoT-Based Personal Healthcare in Smart Spaces.
IEEE Internet of Things Journal, 1(2):144–152, April 2014. 00042.

[12] W. L. Anderson and J. M. Wiener. The Impact of Assistive Technologies
on Formal and Informal Home Care. The Gerontologist, 55(3):422–433,
June 2015. 00006.

[13] Pablo Oliveira Antonino, Daniel Schneider, Cristian Hofmann, and
Elisa Yumi Nakagawa. Evaluation of AAL Platforms According to
Architecture-Based Quality Attributes. In David V. Keyson, Mary Lou
Maher, Norbert Streitz, Adrian Cheok, Juan Carlos Augusto, Reiner
Wichert, Gwenn Englebienne, Hamid Aghajan, and Ben J. A. Kröse, ed-
itors, Ambient Intelligence, Lecture Notes in Computer Science, pages
264–274. Springer Berlin Heidelberg, November 2011. 00018.

[14] Juan Carlos Augusto and Chris D. Nugent. The use of temporal reasoning
and management of complex events in smart homes. In ECAI, volume 16,
page 778. Citeseer, 2004. 00110.

[15] BackHome Partners. BackHome Project. 00000.

[16] R. Baheti and H. Gill. Cyber-physical systems. Impact Control Technolo-
gies, pages 1–6, 2011. 00233.

[17] Ling Bao and Stephen S. Intille. Activity Recognition from User-
Annotated Acceleration Data. In Alois Ferscha and Friedemann Mattern,
editors, Pervasive Computing, number 3001 in Lecture Notes in Computer
Science, pages 1–17. Springer Berlin Heidelberg, April 2004. 02041.

[18] Stephanie Blackman, Claudine Matlo, Charisse Bobrovitskiy, Ashley Wal-
doch, Mei Lan Fang, Piper Jackson, Alex Mihailidis, Louise Nygård, Ar-
lene Astell, and Andrew Sixsmith. Ambient Assisted Living Technolo-
gies for Aging Well: A Scoping Review. Journal of Intelligent Systems,
25(1):55–69, 2015. 00002.

BIBLIOGRAPHY 127

[19] Brian M. Bot, Christine Suver, Elias Chaibub Neto, Michael Kellen, Arno
Klein, Christopher Bare, Megan Doerr, Abhishek Pratap, John Wilbanks,
E. Ray Dorsey, Stephen H. Friend, and Andrew D. Trister. The mPower
study, Parkinson disease mobile data collected using ResearchKit. Scien-
tific Data, 3, March 2016. 00005.

[20] O. Brdiczka, J. L. Crowley, and P. Reignier. Learning Situation Models
in a Smart Home. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39(1):56–63, February 2009. 00097.

[21] Davide Calvaresi, Daniel Cesarini, Paolo Sernani, Mauro Marinoni,
Aldo Franco Dragoni, and Arnon Sturm. Exploring the ambient assisted
living domain: A systematic review. Journal of Ambient Intelligence and
Humanized Computing, May 2016.

[22] Fabien Cardinaux, Deepayan Bhowmik, Charith Abhayaratne, and
Mark S. Hawley. Video based technology for ambient assisted living:
A review of the literature. Journal of Ambient Intelligence and Smart
Environments, 3(3):253–269, 2011. 00067.

[23] Carlos Medrano, Raul Igual, Inmaculada Plaza, and Manuel Castro. De-
tecting Falls as Novelties in Acceleration Patterns Acquired with Smart-
phones. PLoS ONE, 9(4):e94811, April 2014. 00010.

[24] Amedeo Cesta, Gabriella Cortellessa, Riccardo Rasconi, Federico Pecora,
Massimiliano Scopelliti, and Lorenza Tiberio. Monitoring Elderly Peo-
ple with the Robocare Domestic Environment: Interaction Synthesis and
User Evaluation. Computational Intelligence, 27(1):60–82, February 2011.
00044.

[25] Jay Chen, Karric Kwong, Dennis Chang, Jerry Luk, and Ruzena Bajcsy.
Wearable sensors for reliable fall detection. In Engineering in Medicine
and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International
Conference of the, pages 3551–3554. IEEE, 2006. 00272.

[26] Pietro Ciciriello, Luca Mottola, and Gian Pietro Picco. Building Virtual
Sensors and Actuators over Logical Neighborhoods. In Proceedings of the
International Workshop on Middleware for Sensor Networks, MidSens ’06,
pages 19–24, New York, NY, USA, 2006. ACM. 00033.

[27] Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula. Ambient
intelligence: Technologies, applications, and opportunities. Pervasive and
Mobile Computing, 5(4):277–298, August 2009. 00540.

[28] Diane J. Cook, Aaron S. Crandall, Brian L. Thomas, and Narayanan C.
Krishnan. CASAS: A smart home in a box. Computer, 46(7), 2013. 00065.

[29] Cecile KM Crutzen. Invisibility and the meaning of ambient intelligence.
International Review of Information Ethics, 6(12):52–62, 2006. 00025.

128 BIBLIOGRAPHY

[30] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen, and Dong Xuan.
PerFallD: A pervasive fall detection system using mobile phones. In Perva-
sive Computing and Communications Workshops (PERCOM Workshops),
2010 8th IEEE International Conference on, pages 292–297. IEEE, 2010.
00117.

[31] Arnaldo D’Amico and Corrado Di Natale. Beyond Human Senses: Tech-
nologies, Strategies, Opportunities, and New Responsibilities. In Sensors,
pages 3–7. Springer, 2014. 00000.

[32] Ranjan Dasgupta and Shuvashis Dey. A comprehensive sensor taxonomy
and semantic knowledge representation: Energy meter use case. In Sensing
Technology (ICST), 2013 Seventh International Conference on, pages 791–
799. IEEE, 2013. 00009.

[33] Fred D. Davis. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly, 13(3):319–340,
1989. 28712.

[34] Ken Ducatel, Marc Bogdanowicz, Fabiana Scapolo, Jos Leijten, and Jean-
Claude Burgelman. Scenarios for Ambient Intelligence in 2010. Office for
official publications of the European Communities, 2001. 00681.

[35] October Duke University. Duke Launches Autism Research App. https:
//today.duke.edu/2015/10/autismbeyond, October 2015. 00000.

[36] Nicholas Farber, Public Policy Institute (AARP (Organization)), and Na-
tional Conference of State Legislatures. Aging in Place: A State Survey of
Livability Policies and Practices. AARP Public Policy Institute ; National
Conference of State Legislatures, Washington, D.C.; Denver, Colo., 2011.
00049.

[37] Francesco Fiamberti, Daniela Micucci, Alessandro Morniroli, and
Francesco Tisato. A Model for Time-Awareness. In SpringerLink, pages
70–84. Springer Berlin Heidelberg. 00001.

[38] A. Fleury, M. Vacher, and N. Noury. SVM-Based Multimodal Classi-
fication of Activities of Daily Living in Health Smart Homes: Sensors,
Algorithms, and First Experimental Results. IEEE Transactions on In-
formation Technology in Biomedicine, 14(2):274–283, March 2010. 00202.

[39] Giancarlo Fortino, Anna Rovella, Wilma Russo, and Claudio Savaglio.
On the Classification of Cyberphysical Smart Objects in the Internet of
Things. In UBICITEC, pages 86–94, 2014. 00005.

[40] Dov M Gabbay and John Alan Robinson. Handbook of Logic in Artifi-
cial Intelligence and Logic Programming: Volume 5: Logic Programming.
Clarendon Press, 1998. 00453.

https://today.duke.edu/2015/10/autismbeyond
https://today.duke.edu/2015/10/autismbeyond

BIBLIOGRAPHY 129

[41] Nuno M. Garcia and Joel Jose P. C. Rodrigues. Ambient Assisted Living.
CRC Press, June 2015. 00028.

[42] Jonathan Grant, Stijn Hoorens, Suja Sivadasan, Mirjam van het Loo, Julie
DaVanzo, Lauren Hale, Shawna Gibson, and William Butz. Low Fertil-
ity and Population Ageing. http://www.rand.org/pubs/monographs/
MG206.html, 2004. 00131.

[43] Trisha Greenhalgh, Sara Shaw, Joe Wherton, Gemma Hughes, Jenni
Lynch, Christine A’Court, Sue Hinder, Nick Fahy, Emma Byrne, Alexan-
der Finlayson, Tom Sorell, Rob Procter, and Rob Stones. SCALS: A
fourth-generation study of assisted living technologies in their organisa-
tional, social, political and policy context. BMJ Open, 6(2):e010208, Jan-
uary 2016. 00000.

[44] Levent Gurgen, Claudia Roncancio, Cyril Labbé, André Bottaro, and Vin-
cent Olive. SStreaMWare: A service oriented middleware for heteroge-
neous sensor data management. In Proceedings of the 5th International
Conference on Pervasive Services, pages 121–130. ACM, 2008. 00083.

[45] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch.
Giotto: A Time-Triggered Language for Embedded Programming. In
Thomas A. Henzinger and Christoph M. Kirsch, editors, Embedded Soft-
ware, number 2211 in Lecture Notes in Computer Science, pages 166–184.
Springer Berlin Heidelberg, October 2001. 00374.

[46] Brandon Ballinger Hsieh, Johnson. Can deep neural networks save
your neural network? artificial intelligence, sensors, and strokes:
Big data conference: Strata + Hadoop World, March 28 - 31,
2016, San Jose, CA. http://conferences.oreilly.com/strata/
hadoop-big-data-ca/public/schedule/detail/47144. 00000.

[47] V. Jeet, H. S. Dhillon, and S. Bhatia. Radio Frequency Home Appliance
Control Based on Head Tracking and Voice Control for Disabled Person.
In 2015 Fifth International Conference on Communication Systems and
Network Technologies (CSNT), pages 559–563, April 2015. 00000.

[48] Jie Yin, Qiang Yang, and J.J. Pan. Sensor-Based Abnormal Human-
Activity Detection. IEEE Transactions on Knowledge and Data Engi-
neering, 20(8):1082–1090, August 2008. 00146.

[49] Emil Jovanov, Aleksandar Milenkovic, Chris Otto, and Piet C De Groen.
A wireless body area network of intelligent motion sensors for computer
assisted physical rehabilitation. Journal of NeuroEngineering and reha-
bilitation, 2(1):6, 2005. 00847.

[50] Mayank Kaushik, Matthew Trinkle, Ahmad Hashemi-Sakhtsari, and Tim
Pattison. Three dimensional microphone and source position estimation

http://www.rand.org/pubs/monographs/MG206.html
http://www.rand.org/pubs/monographs/MG206.html
http://conferences.oreilly.com/strata/hadoop-big-data-ca/public/schedule/detail/47144
http://conferences.oreilly.com/strata/hadoop-big-data-ca/public/schedule/detail/47144

130 BIBLIOGRAPHY

using TDOA and TOF measurements. In Signal Processing, Communi-
cations and Computing (ICSPCC), 2011 IEEE International Conference
on, pages 1–6. IEEE, 2011. 00001.

[51] Kensaku Kawamoto, Caitlin A. Houlihan, E. Andrew Balas, and David F.
Lobach. Improving clinical practice using clinical decision support sys-
tems: A systematic review of trials to identify features critical to success.
BMJ, 330(7494):765, March 2005. 01555.

[52] Thomas Kleinberger, Martin Becker, Eric Ras, Andreas Holzinger, and
Paul Müller. Ambient intelligence in assisted living: Enable elderly peo-
ple to handle future interfaces. In Universal Access in Human-Computer
Interaction. Ambient Interaction, pages 103–112. Springer, 2007. 00232.

[53] J. Klenk, C. Becker, F. Lieken, S. Nicolai, W. Maetzler, W. Alt, W. Zijl-
stra, J. M. Hausdorff, R. C. van Lummel, L. Chiari, and U. Lindemann.
Comparison of acceleration signals of simulated and real-world backward
falls. Medical Engineering & Physics, 33(3):368–373, April 2011. 00066.

[54] E. A. Lee. Cyber Physical Systems: Design Challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 363–369, May 2008. 01523.

[55] Jay Lee, Behrad Bagheri, and Hung-An Kao. A Cyber-Physical Systems
architecture for Industry 4.0-based manufacturing systems. Manufactur-
ing Letters, 3:18–23, January 2015. 00111.

[56] Qiang Li, John A. Stankovic, Mark A. Hanson, Adam T. Barth, John
Lach, and Gang Zhou. Accurate, fast fall detection using gyroscopes and
accelerometer-derived posture information. In Wearable and Implantable
Body Sensor Networks, 2009. BSN 2009. Sixth International Workshop
on, pages 138–143. IEEE, 2009. 00297.

[57] Yun Li, K.C. Ho, and M. Popescu. A Microphone Array System for
Automatic Fall Detection. IEEE Transactions on Biomedical Engineering,
59(5):1291–1301, May 2012. 00083.

[58] Liming Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Zhiwen Yu. Sensor-
Based Activity Recognition. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(6):790–808, November
2012. 00158.

[59] Leili Lind, Gunnar Carlgren, and Daniel Karlsson. Old—and With Severe
Heart Failure: Telemonitoring by Using Digital Pen Technology in Spe-
cialized Homecare. CIN: Computers, Informatics, Nursing, page 1, May
2016. 00000.

[60] Yong Liu, David Hill, Alejandro Rodriguez, Luigi Marini, Rob Kooper,
James Myers, Xiaowen Wu, and Barbara Minsker. A new framework

BIBLIOGRAPHY 131

for on-demand virtualization, repurposing and fusion of heterogeneous
sensors. pages 54–63. IEEE, 2009. 00018.

[61] Inês P. Machado, A. Luísa Gomes, Hugo Gamboa, Vítor Paixão, and
Rui M. Costa. Human activity data discovery from triaxial accelerom-
eter sensor: Non-supervised learning sensitivity to feature extraction
parametrization. Information Processing & Management, 51(2):204–214,
March 2015. 00006.

[62] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher. Activity recog-
nition and monitoring using multiple sensors on different body positions.
In International Workshop on Wearable and Implantable Body Sensor Net-
works (BSN’06), pages 4 pp.–116, April 2006. 00419.

[63] Daniela Micucci, Marco Mobilio, Paolo Napoletano, and Francesco Ti-
sato. Falls as anomalies? An experimental evaluation using smartphone
accelerometer data. Journal of Ambient Intelligence and Humanized Com-
puting, pages 1–13, December 2015. 00000.

[64] Daniela Micucci, Marco Mobilio, and Francesco Tisato. SPACES: Subjec-
tive sPaces Architecture for Contextualizing hEterogeneous Sources. In
Pascal Lorenz, Jorge Cardoso, Leszek A. Maciaszek, and Marten van Sin-
deren, editors, Software Technologies, number 586 in Communications in
Computer and Information Science, pages 415–429. Springer International
Publishing, July 2015. 00000.

[65] Felip Miralles, Eloisa Vargiu, Stefan Dauwalder, Marc Sola, Juan Manuel
Fernández, Eloi Casals, and José Alejandro Cordero. Telemonitoring and
home support in backhome. Information Filtering and Retrieval, page 24,
2014. 00003.

[66] S. M. R. Moosavi and A. Sadeghi-Niaraki. A SURVEY OF SMART
ELECTRICAL BOARDS IN UBIQUITOUS SENSOR NETWORKS
FOR GEOMATICS APPLICATIONS. In ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, volume XL-1-W5, pages 503–507. Copernicus GmbH, December
2015. 00000.

[67] Giovanna Morgavi, Roberto Nerino, Lucia Marconi, Paola Cutugno, Clau-
dia Ferraris, Alessandra Cinini, and Mauro Morando. An Integrated Ap-
proach to the Well-Being of the Elderly People at Home. In Ambient
Assisted Living, pages 265–274. Springer, 2015. 00001.

[68] Muhammad Mubashir, Ling Shao, and Luke Seed. A survey on fall detec-
tion: Principles and approaches. Neurocomputing, 100:144–152, January
2013. 00202.

[69] Hans Inge Myrhaug. Towards life-long and personal context spaces. In
Workshop on User Modelling for Context-Aware Applications, 2001. 00009.

132 BIBLIOGRAPHY

[70] S. Nefti, U. Manzoor, and S. Manzoor. Cognitive agent based intelligent
warning system to monitor patients suffering from dementia using ambient
assisted living. In 2010 International Conference on Information Society
(I-Society), pages 92–97, June 2010. 00018.

[71] Gbenga Ogedegbe and Thomas Pickering. Principles and Techniques of
Blood Pressure Measurement. Cardiology Clinics, 28(4):571–586, Novem-
ber 2010. 00049.

[72] Smitha Paulose, E Sebastian, and B Paul. Acoustic source localization.
International Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, 2(2):933–9, 2013. 00005.

[73] Maria-Salome Perez and Enrique V. Carrera. Acoustic event localization
on an Arduino-based wireless sensor network. In Communications (LAT-
INCOM), 2014 IEEE Latin-America Conference on, pages 1–6. IEEE,
2014. 00002.

[74] Philips Electronics. Building Technology for People. http:
//www.newscenter.philips.com/pwc_nc/main/shared/assets/
Downloadablefile/CEBIT-Asia-Keynote-speech-Van-Splunter(1)
-3734-1440.pdf, February 2002. 00000.

[75] Gerald Pirkl, Daniele Munaretto, Carl Fischer, Chunlei An, Paul Lukow-
icz, Martin Klepal, Andreas Timm-Giel, Joerg Widmer, Dirk Pesch, Hans
Gellersen, and others. Virtual lifeline: Multimodal sensor data fusion
for robust navigation in unknown environments. Pervasive and Mobile
Computing, 8(3):388–401, 2012. 00012.

[76] M. Popescu, Yun Li, M. Skubic, and M. Rantz. An acoustic fall detec-
tor system that uses sound height information to reduce the false alarm
rate. In 30th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, 2008. EMBS 2008, pages 4628–4631,
August 2008. 00099.

[77] M. Popescu and A. Mahnot. Acoustic fall detection using one-class clas-
sifiers. In Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, 2009. EMBC 2009, pages 3505–3508,
September 2009. 00023.

[78] Proteus Digital Health. Proteus Digital Health Announces FDA
Clearance of Ingestible Sensor. http://proteusdigitalhealth.
com/proteus-digital-health-announces-fda-clearance-of-%
0020ingestible-sensor/, 2012. 00000.

[79] Jörg Rech and Klaus-Dieter Althoff. Artificial Intelligence and Software
Engineering: Status and Future Trends. Special Issue on Artificial Intel-
ligence and Software Engineering, KI, 3:5–11, 2004. 00032.

http://www.newscenter.philips.com/pwc_nc/main/shared/assets/Downloadablefile/CEBIT-Asia-Keynote-speech-Van-Splunter(1)-3734-1440.pdf
http://www.newscenter.philips.com/pwc_nc/main/shared/assets/Downloadablefile/CEBIT-Asia-Keynote-speech-Van-Splunter(1)-3734-1440.pdf
http://www.newscenter.philips.com/pwc_nc/main/shared/assets/Downloadablefile/CEBIT-Asia-Keynote-speech-Van-Splunter(1)-3734-1440.pdf
http://www.newscenter.philips.com/pwc_nc/main/shared/assets/Downloadablefile/CEBIT-Asia-Keynote-speech-Van-Splunter(1)-3734-1440.pdf
http://proteusdigitalhealth.com/proteus-digital-health-announces-fda-clearance-of-%0020ingestible-sensor/
http://proteusdigitalhealth.com/proteus-digital-health-announces-fda-clearance-of-%0020ingestible-sensor/
http://proteusdigitalhealth.com/proteus-digital-health-announces-fda-clearance-of-%0020ingestible-sensor/

BIBLIOGRAPHY 133

[80] Dori Rosenberg, Colin A. Depp, Ipsit V. Vahia, Jennifer Reichstadt, Bar-
ton W. Palmer, Jacqueline Kerr, Greg Norman, and Dilip V. Jeste. Ex-
ergames for Subsyndromal Depression in Older Adults: A Pilot Study
of a Novel Intervention. The American Journal of Geriatric Psychiatry,
18(3):221–226, March 2010. 00184.

[81] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau. Robust
Video Surveillance for Fall Detection Based on Human Shape Deforma-
tion. IEEE Transactions on Circuits and Systems for Video Technology,
21(5):611–622, May 2011. 00147.

[82] B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applica-
tions. In First Workshop on Mobile Computing Systems and Applications,
1994. WMCSA 1994, pages 85–90, December 1994. 04031.

[83] Albrecht Schmidt. Interactive context-aware systems interacting with am-
bient intelligence. Ambient intelligence, 159, 2005. 00154.

[84] AJ Sixsmith. An evaluation of an intelligent home monitoring system.
Journal of telemedicine and telecare, 6(2):63–72, 2000. 00156.

[85] Frank Sposaro and Gary Tyson. iFall: An Android application for fall
monitoring and response. In Engineering in Medicine and Biology Society,
2009. EMBC 2009. Annual International Conference of the IEEE, pages
6119–6122. IEEE, 2009. 00195.

[86] Alan N. Steinberg, Christopher L. Bowman, and Franklin E. White. Re-
visions to the JDL data fusion model. volume 3719, pages 430–441, 1999.
00802.

[87] Robert J. Stone. Haptic feedback: A brief history from telepresence to
virtual reality. In Stephen Brewster and Roderick Murray-Smith, editors,
Haptic Human-Computer Interaction, number 2058 in Lecture Notes in
Computer Science, pages 1–16. Springer Berlin Heidelberg, 2001. 00161.

[88] Ying Tan, Steve Goddard, and Lance C. Pérez. A Prototype Architecture
for Cyber-physical Systems. SIGBED Rev., 5(1):26:1–26:2, January 2008.
00113.

[89] Emmanuel Munguia Tapia, Stephen S. Intille, and Kent Larson. Activity
Recognition in the Home Using Simple and Ubiquitous Sensors. In Alois
Ferscha and Friedemann Mattern, editors, Pervasive Computing, num-
ber 3001 in Lecture Notes in Computer Science, pages 158–175. Springer
Berlin Heidelberg, April 2004. 01058.

[90] Mary E. Tinetti, Mark Speechley, and Sandra F. Ginter. Risk Factors
for Falls among Elderly Persons Living in the Community. New England
Journal of Medicine, 319(26):1701–1707, December 1988. 05378.

134 BIBLIOGRAPHY

[91] Francesco Tisato, Carla Simone, Diego Bernini, Marco P. Locatelli, and
Daniela Micucci. Grounding ecologies on multiple spaces. Pervasive and
Mobile Computing, 8(4):575–596, August 2012. 00010.

[92] UN. World Population Ageing 2013. Technical report, 2013. 00002.

[93] Rob van Ommering. Building Product Populations with Software Com-
ponents. In Proceedings of the 24th International Conference on Software
Engineering, ICSE ’02, pages 255–265, New York, NY, USA, 2002. ACM.
00223.

[94] Athanasios Vasilakos and Witold Pedrycz. Ambient Intelligence, Wireless
Networking, And Ubiquitous Computing. Artech House, Inc., Norwood,
MA, USA, 2006. 00074.

[95] Viswanath Venkatesh, Michael G. Morris, Gordon B. Davis, and Fred D.
Davis. User Acceptance of Information Technology: Toward a Unified
View. MIS Quarterly, 27(3):425–478, 2003. 13748.

[96] M. Weiser. Hot topics-ubiquitous computing. Computer, 26(10):71–72,
October 1993. 00749.

[97] Mark Weiser. The Computer for the 21st Century. Scientific American,
265(3):94–104, 1991. 13446.

[98] D. H. Wilson and C. Atkeson. Simultaneous Tracking and Activity Recog-
nition (STAR) Using Many Anonymous, Binary Sensors. In Hans-W.
Gellersen, Roy Want, and Albrecht Schmidt, editors, Pervasive Comput-
ing, number 3468 in Lecture Notes in Computer Science, pages 62–79.
Springer Berlin Heidelberg, May 2005. 00257.

[99] Niklaus Wirth. Toward a Discipline of Real-time Programming. Commun.
ACM, 20(8):577–583, August 1977. 00201.

[100] Carlos A. Zarate, Jr, Lisa Weinstock, Peter Cukor, Cassandra Morabito,
Linda Leahy, and Lee Baer. Applicability of Telemedicine for Assessing
Patients With Schizophrenia: Acceptance and Reliability. The Journal of
Clinical Psychiatry, 58(1):22–25, January 1997. 00167.

	Introduction
	Motivations
	Contributions
	Outline

	State of the Art
	Ambient Assisted Living Systems
	AAL Stakeholders

	Enabling Technologies of AAL Systems
	Sensing
	Reasoning
	Interacting
	Acting
	Communication

	Data Acquisition Systems
	Challenges of Data Acquisition Systems
	Available Systems and approaches

	AAL Systems and Platforms
	Evolution of AAL Technology
	Existing AAL Platforms

	Architectures for AAL Systems

	TANA - Timed Acquisition and Normalisation Architecture
	TANA Overview
	Acquistion
	Normalisation
	Putting Together

	Case Studies
	The Acquisition Case Study
	The Normalisation Case Study

	Time Driven Sensor Hub
	Time Awareness Machine
	Timer
	Clock
	Timeline
	Time Aware Entities

	Microcontrollers
	Anatomy of a microcontroller
	Available Microcontroller Boards
	Software Architectures and Embedded Systems
	Software Development for Embedded Systems

	TAM for Embedded Systems
	Performers and Durations
	Timelines, Timeds, and Buffers

	TDSH Concrete Architecture
	Timer
	Performer
	Engine
	Reflection and Configuration

	Implementation
	Implementation Choices
	The TDSH Components
	The System Overhead

	Acquisition Case Study
	Wearable Accelerometer readings
	Environmental Microphonic Array
	Fall Detector
	Discussion

	Subjective sPaces Architecture for Contextualising hEterogeneous Sources
	SPACES - The Underlaying Concepts
	Spatial Model
	Core Concepts
	The Concept of Dimension
	Zone and Membership Function
	The Stimulus
	The Source
	The Mapping Function

	SPACES Concrete Architecture
	Space and Location
	Dimension and Value
	Zone
	Stimulus and Measure
	Mapping Function

	Implementation
	Implementation Choices
	The SPACES Packages

	Normalisation Case Study
	The Concepts Needed
	Implemented Classes
	The Fall Detection Application
	Discussion

	Conclusions
	Summary of Contribution
	Time Driven Sensor Hub
	Subjective sPaces Architecture for Contextualising hEterogeneous Sources
	Publications

	Future Developments

