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Abstract

Recently, the increasing diffusion of Linked Data (LD) as a standard way to publish

and structure data on the Web has received a growing attention from researchers

and data publishers. LD adoption is reflected in different domains such as govern-

ment, media, life science, etc., building a powerful Web available to anyone.

Despite the high number of datasets published as LD, their usage is still not

exploited as they lack comprehensive metadeta. Data consumers need to obtain

information about datasets content in a fast and summarized form to decide if

they are useful for their use case at hand or not. Data profiling techniques offer

an efficient solution to this problem as they are used to generate metadata and

statistics that describe the content of the dataset. Existing profiling techniques

do no cover a wide range of use cases. Many challenges due to the heterogeneity

nature of Linked Data are still to overcome.

This thesis presents the doctoral research which tackles the problems related to

Profiling Linked Data. Even though the term of data profiling is the umbrella

term for diverse descriptive information that describes a dataset, in this thesis we

cover three aspects of profiling; topic-based, schema-based and linkage-based. The

profile provided in this thesis is fundamental for the decision-making process and

is the basic requirement towards the dataset understanding.

In this thesis we present an approach to automatically classify datasets in one of the

topical categories used in the LD cloud. Moreover, we investigate the problem of

multi-topic profiling. For the schema-based profiling we propose a schema-based

summarization approach, that provides an overview about the relations in the

data. Our summaries are concise and informative enough to summarize the whole

dataset. Moreover, they reveal quality issues and can help users in the query

formulation tasks. Many datasets in the LD cloud contain similar information

for the same entity. In order to fully exploit its potential LD should made this

information explicit. Linkage profiling provides information about the number of

equivalent entities between datasets and reveals possible errors.

The techniques of profiling developed during this work are automatic and can be

applied to different datasets independently of the domain.
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Chapter 1

Introduction

Data has become a main pillar in every research field and has turned into a signif-

icant resource for every business. With the advancement of the technology, e.g.,

network connection and storage capabilities, it has become very easy to enable

fast moving and sharing data despite geographical distance. This enables users

to access huge amount of data more easily. Making available and sharing large

datasets allows data consumers to realize transparency, repeatability and interop-

erability [20]. Despite the fact that organizations have access to more data than

ever before, their ability to extract meaningful knowledge is not balancing its ac-

cessibility. Most of the data publishers in the World Wide Web (WWW) are more

interested in publishing data rather than caring about the format of the data they

make available. Most of the data on the Web are published in CSV, XML, or

marked up as HTML tables. These formats hide a lot of semantics and structures

about the data. Because these formats are not expressive enough, the actual use

and consumption of data needs further refinement on many fronts.

Recently, Tim-Berners Lee [21] introduced the Linked Data (LD) paradigm. It

refers to a set of best practices for publishing and connecting structured data

on the Web. The adoption of such best practices assures that the structure and

the semantics of the data are made explicit which is also the main goal of the

Semantic Web. The datasets to be published as Linked Data need to adopt a

set of principles in a way that it would be simple for them to be searched and

queried [26]. These datasets should be published adopting W3C standards in

RDF1 format and made available via SPARQL2 endpoint queries. RDF provides

1https://www.w3.org/RDF/
2http://www.w3.org/TR/rdf-sparql-query/

1



Chapter 1. Introduction 2

Figure 1.1: Linked Data (LD) Cloud

a generic, graph-based data model which comprises; entities (such as Italy, Milan),

literals (such as “milan”, “1986”), classes (such as country, city, string and date)

and relations denoted as properties among them (such as totalPopulation) [96]. On

the other hand, Linked Data make use of vocabularies and ontologies to describe

the semantics of their data by defining classes and properties.

The adoption of Linked Data over the last few years has raised from 12 datasets

in 2007, to more than 1000 datasets as of April 2014 [124], a number that is

constantly increasing. These datasets3 cover different domains which is also shown

by the different colors in the LD cloud described in Fig. 1.1. In the LD cloud

there are about 900,129 documents describing 8,038,396 resources [124]. Although

publishing such vast amount of data adopting the principles of Linked Data has

many advantages, its consumption is still limited [93].

Even though the Linked Data is considered a gold mine, its consumption is lim-

ited as understanding a large and unfamiliar RDF dataset is still a key challenge.

3http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
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The data understanding and data exploration process is supported by descrip-

tive information or metadata that describe the dataset. As a result of a lack of

comprehensive descriptive information the exploitation of such data is limited.

Data profiling are techniques that support data consumption, understanding and

exploration with statistics and useful metadata about the content of the datasets

[98]. Metadata are data about the data. They provide important information

for any dataset regardless of the domain they belong to, e.g., geographic, mu-

sic, publications, movie, etc. For many use cases it is important to be aware of

the descriptive information and simple statistics about the data such as dataset

size, relations in the data, the topics of the dataset, etc. Although data pro-

filing comprises a broad range of descriptive information, throughout this thesis

we will focus on three aspects of profiling; topic-based profiling, schema-based

profiling and linkage-based profiling. The descriptive information given by these

three aspects of profiling is fundamental for dataset understanding and decision-

making. Topic-based profiling gives an overview about the subject or the theme

that a dataset or parts of a dataset belong to. As a prerequisite for being able

to understand and consume a dataset, it is necessary to know its topics. The

schema-based profiling gives an ontology-driven summarization of the dataset

focusing on the relation between classes used in the dataset. As datasets published

as Linked Data are large, data consumers will go under time-consuming activity

if they decide to check manually each dataset to find in which one, for example

the classes are described with richer set of properties, considered as the number

of properties describing a class. Still, schema-based profiling will help users not

only for the decision-making process but also in other use cases as in 5. Finally,

linkage-based profiling provides information about equivalent entities. Entities

can be explicitly stated as equivalent when they refer to the same real world object.

Linkage-based profiling is able to provide the list of equivalent entities among two

or more datasets and the total number of links connecting these entities. Different

datasets in the LD cloud contain similar or different information for the same en-

tity. Thus, before deciding which dataset to use, data consumers need to know the

overlap between datasets, so they are able to collect all the available information

for the given entity.

The profiling approaches provided by this thesis in the context of Linked Data is

important not only for the dataset understanding and exploration problem but is

also very important for different use cases such as:



Chapter 1. Introduction 4

Landscape view. Most of the datasets published do not provide descriptive in-

formation, thus it is difficult to understand their content. Data profiling

techniques can help to identify some core knowledge patterns (KP) which

reveal a piece of knowledge in a domain of interest [113]. The analysis of

the usage of the core classes and properties used in a dataset can help in

understanding its content [150]. The summarization of an ontology by ex-

tracting the most relevant RDF classes according to a re-ranking strategy is

proposed in [149]. The usage of relevant RDF classes is assessed in terms of

their centrality to the ontology. The three aspects of profiling considered in

this thesis provide a landscape view of the dataset.

Ontology / Dataset integration. Ontologies published on the Web, even for

datasets in similar domains can have differences. The basic activity in ontol-

ogy integration is the creation of mappings between classes and properties

among two ontologies [67]. Data profiling techniques can help to understand

the overlap between ontologies and help in the process of ontology integra-

tion.

To perform a dataset integration process, one should consider ontology map-

ping, the process of discovering relationships between ontologies. A proposed

methodology to derive ontology mapping using examples that are a finite set

of negative and positive examples could be found in [130]. Profiling tech-

niques can reveal mappings between classes and properties. For example

following the links provided by the linkage-based profiling, can help in the

process of class matching. Moreover, these links can serve as input for the

process of property matching, as equivalent entities share equivalent proper-

ties.

Identification of quality issues. Many data producers produce Linked Data

datasets that are of a high quality. However, there are also many datasets,

which were extracted from unstructured or semi-structured information be-

ing vulnerable for quality issues [78]. Data profiling tools allow the inspection

of large datasets for detecting quality issues, by identifying cases that do not

follow business rules, outliers detection or residuals [98]. Data profiling helps

to identify quality rules and requirements that will support a more thorough

data quality assessment in a later step [145]. Schema-based profiling sup-

ports the data quality assessment by identifying incongruences in the data

such as counterintuitive relations between entities belonging to the same
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class, usage of properties that do not conform to the constraint defined by

the ontology, etc. Also the linkage-based profiling can help in the process of

quality assessment by identifying wrong equivalent links among datasets.

Data visualization for summarization. The main goal of data visualization

is to communicate information clearly and efficiently using graphics. Visu-

alizing Linked Data is challenging because the datasets in the LD cloud are

large. Thus, the amount of data to be visualized is overwhelming and data

consumers do not have enough time to visually inspect datasets. Profiling

techniques can support data visualization tools to visualize large multidi-

mensional datasets by displaying only a small and concise summary of the

most relevant and important features. This will enhance the comprehension

of the user by allowing him to dig into the data by zooming in or out of the

provided summary. An example of such use case is Schemr [39], an ontology

visualization search engine algorithm based on a combination of text search

and ontology matching techniques that allows a user to visualize ontologies

by keyword search. Another example is ZoomRDF [147] which allows more

resources to display while zooming to a single class, and still maintaining

the overview structure of the data. Schema-profiling provided in this thesis

help users visualize and navigate summaries for large datasets by dispalying

only the most specific relations among classes.

Query optimization. Traditional systems assume that users have good knowl-

edge about the meaning and the content of the dataset when querying the

system and are certain that a particular query is the one they wanted to

pose [68]. Often users have to execute many explorative queries until they

find the information they were looking for because they have no knowledge

how the information is represented in the dataset. Data profiling can help

users in optimizing query completion or formulation by providing a summary

of the content of the dataset [98]. Schema-based profiling constructs sum-

maries that provide information about relations in the data, thus helping

users in query formulation tasks. Suppose a user is interested in quering

all instances that belong to the class Actor who are married with instances

of the class Model. In this case the user can easily see how this relation is

modeled in the summary so she can easily write the query. Moreover, data

profiling techniques produce statistics about the size of the dataset, number

of entities (instances), classes, properties, etc. This information can be used
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to estimate the cost of a query plan and help to determine the most effective

way to pose the right query in order to extract efficiently the information we

want.

Schema discovery. Schema complexity leads to difficulties to understand and

access datasets. Even though schema or ontologies are used to define classes

and properties used in a dataset, often can be very hard to understand.

Schema understanding has the challenge of understanding the complexity of

the structure defined by the ontology as well as the semantics of the labels

used to describe classes and relations [54]. Schema summaries provide users

a concise overview of the entire schema despite its complexity. By providing

a summary of the relations between types (such as classes), our schema-based

profiling can help users understanding large and very complex schemas.

Entity summarization. The summarization of particular entities can play a

central role for semantic search engines and semantic recommender systems

[131]. This field of research addresses the problem of ranking features ac-

cording to their importance for the task of identifying a particular entity.

Finding features that best represent the topic/s of a given dataset can not

only help the topical classification of the dataset but also understanding

the semantics of the information found in the data. RELIN [41] which is

an entity summarization framework aims at finding the central topics in a

given dataset considering relatedness and informativeness of the description

of data elements based on linguistic and information theory concepts. Our

topic-based profiling can help with the process of topical classification of LD

datasets. The occurrences of the relations in our summaries produced by

schema-based profiling can support the summarization of particular entities

in the dataset.

Data Analytics. Data analytics is the process of examining data in order to

draw conclusions and insights about the particular business the data belong

to. Before analyzing such data, data analyst needs profiling results in order

to understand what kind of data they are going to analyze so they can

appropriately configure analytical tools [98].

Consuming Linked Data is not straightforward, because it is hard to decide which

dataset to use as we miss a profile about the content of the data. Thus, to con-

sume Linked Data we have to deal with the challenge of developing techniques
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or approaches that provide metadata or descriptive information about the dataset

content, so users can exploit them in real use cases. Traditional data profiling tools

and techniques can not be applied in Linked Data because of their heterogeneous

nature [98] and the adoption of the existing profiling approaches is not straightfor-

ward. The topic of profiling Linked Data has not yet received sufficient attention

from the Linked Data community and it poses a number of unique challenges.

• Linked Data comes from different autonomous sources and are continuously

evolving. The descriptive information or the metadata may depend on the

data publishers’ will. Often publishers are more interested in publishing their

data in RDF format without taking care very much about the metadata.

Moreover, data publishers find difficulties in using appropriate terms for the

data to be described. Apart from a well-known group of vocabularies, it

is hard to find vocabularies for most of the domains that would be a good

candidate for the dataset at hand [151]. For the above reasons, profiling

techniques must deal with the evolving nature of Linked Data.

• The number of datasets published as LD is constantly growing and in-

cludes different topical domains making the LD a heterogeneous environ-

ment. Thus, this variety of data implies the development of profiling ap-

proaches that will be applicable cross-wise domain.

• In LD cloud there are published billions of triples that poses very high per-

formance and scalability demands. Managing large and rapidly increasing

volume of data is a challenge for developing profiling techniques that scale

well with the volume of data in the LD cloud.

• In the Linked Data cloud there is a high volume of data. For this reason

data consumers need also automatic profiling approaches that allow dataset

understanding and exploration.

• Due to the evolving nature of the datasets in the LD cloud there is also

a need of developing profiling techniques that use previous profiling results

to profile only the changed data, which is referred to as incremental data

profiling [98].

• Profiling techniques should deal with the structural, semantic and schema

heterogeneity of the LD datasets, thus should be able to deal with different
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degrees of heterogeneity in different datasets (especially for the use cases of

ontology and data integration).

• Searching through or browsing LD cloud is hard, because the metadata are

often not structured and not in a machine-readable format. A machine-

readable format is a standard computer language that can be read automat-

ically by a computer. For example if a data consumer wants to select all

datasets that belong to the media category, she faces the challenge of having

the metadata describing topic not in a machine-readable format. The topic

of the datasets in LD cloud was manually assigned and it is not represented

in a machine-readable format. Profiling techniques should provide results in

a machine readable format so that they can be used in further analysis by

computers.

• Lack of unified dimensions, metric and benchmarks makes it difficult to

evaluate different methods and architectures for different profiling tasks.

It is very important to identify adequate techniques for profiling Linked Data. De-

spite the need of having descriptive information and metadata for the exploration

process of LD cloud, few efforts are taken for the development of such techniques

and tools. Data profiling in the field of Linked Data is relatively new, and be-

cause of all the challenges mentioned above, traditional profiling tools can not be

applied. When browsing a dataset in the cloud, users are usually fed with its

metadata, in case a dataset provide this information, but lack for an insight into

its content, thereby having difficulties in determining its relevance.

The profiling results developed during this thesis are fundamental and will support

users and data consumers with the decision-making and help them understand and

explore Linked Data. The dataset profile can be used not only to detect if the

dataset is useful or not, but also to provide useful information for data quality

assessment and integration phases. In order to make the profiling process smooth

for any user, requiring minimal effort, and be able to apply it for any dataset, we

have to consider three fundamental criteria: (i) it should consider different features

that describe a dataset, (ii) it should be generated independently of the domain,

thus it can be applicable to any dataset regardless of the domain it belongs to,

and (iii) it should be generated automatically.
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1.1 User Scenario

Ms. Eamla, is an app developer passionate about music who wants to create a

new music app MusicBeats. She also wants to stay up-to-date with news coming

from Twitter account of music artists. She is looking for datasets that contain rich

information about the music domain. Ms. Eamla knows that Linked Data cloud is

a gold mine because it provides many datasets covering different topical domains.

She also knows that datasets published as Linked Data are represented in RDF, a

language which is expressive enough. Looking at the Fig. 1.1, she understands that

there are more than 1000 datasets covering different topical domains represented

by the different colors of the cloud.

She finds that the number of datasets under the media domain is 21. But she

realizes that there are also datasets under the cross-domain or user-generated

content which might also include media data. Because the LD cloud provides only

one topic, the most relevant one, for Ms. Eamla is also important a multi-topic

classification of LD datasets. She also found other datasets in the Web, but she

does not know their topic/s. In this situation she has two choices; (1) to manually

check the content of the dataset and assign it a topic or (2) to give up the topic

assignment process and consider all the available datasets for her use case. The

first option is very time-consuming, while considering the second option she risks

overloading her app with irrelevant data. Thus, these options are not suitable for

her goal. To assign the topic of the dataset she needs automatic approaches which

given an RDF dataset as input, be able to produce one or a set of topics, that

describe the dataset content.

Once she finds the topic of the dataset, she needs to know more about its struc-

ture. For example, she found that two datasets LinkedBrianz 4 and DBpedia5 have

at least media as one of their topics. Even though knowing the topic of these

datasets can reduce the searching space, still the app creator has difficulties in

knowing the semantics and structure of the two datasets and their coverage in

terms of instances. Thus, this decision-making raises many questions such as: (1)

How are music artists/ groups/ songs described in these two datasets? (2) How

many instances are covered? (3) Is there any incongruence in the data? She can

answer these questions by looking at the ontology. But ontologies might be large

4http://linkedbrainz.org/
5http://dbpedia.org
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and underspecified. Thus, by only looking at the ontology, our music app cre-

ator is not able to answer the above questions. These answers can be collected

with explorative queries, but at the price of a significant server overload for data

publishers and high response time for data consumers.

After looking at the relation inside the two datasets, she finds that there are some

entities of a given class in LinkedBrianz dataset that are described with richer

set of properties. Rather, in DBpedia instances belonging to the same class are

not described with a rich set of properties. For her, it is very important to have

complete information describing an instance, thus she needs to find equivalent

instances in different datasets in order to enrich her database for the app. As

above, she also has two options; (1) to manually check if instances of different

datasets are equivalent or not, and (2) to apply techniques for instance matching.

If she considers the first option she will go under a very time-consuming process

as checking 8 million resources is an unbearable process, while if she considers the

second option she has to deal with also some manual work in setting up the actual

approaches for instance matching as we will show in this thesis.

Due to these challenges Ms. Eamla might collect wrong datasets for her app,

leading to a non successful app, despite the significant time she spent on building

it.

1.2 Problem statement

At the beginning of the Linked Data era, the main focus of the community was on

publishing datasets following the five star scale (see section 2.6) while nowadays

they are more focused on publishing RDF data with the focus of publishing meta-

data and good quality data, which allows the reliability and usability of datasets

in real use cases [4]. Therefore, the metadata creation, that describes the content

of the dataset is crucial for data providers. On the other hand, metadata are also

important for data consumers or applications that will rely their work on these

metadata and help in decision-making problem. Data publishers want to publish

the dataset profile, which contain metadata such that the dataset could be found

and aggregated by search engines application. Search engine applications by them-

selves want to discover detailed but not redundant descriptive information about
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the datasets they find. This information can be provided using VOID6 vocabulary.

In the actual state of the LD cloud, Fig. 1.1, only 14,69% of the datasets provide

VOID metadata [124]. 90,4% of the datasets that provide descriptive informa-

tion or metadata are limited in providing only the most basic information about

the dataset such as name, license, publisher, creator or data dump but they do

not provide any information about the content of the dataset, information such as

what is its topic, how are the relationships between types described in the dataset,

how many equivalent entities are among datasets, etc.

As we will describe in the following of this thesis, ontologies and vocabularies play

a crucial role in understanding the dataset. In order to ease the interpretation of

the data one of the best practices for publishing Linked Data indicates the use

of existing vocabularies and ontologies. The top five vocabularies used by the

datasets of LD cloud are: RDF (98,22%), RDFS7 (72,58%), FOAF8 (69,13%),

DCTerms9 (56,01%) and OWL10 (36,49%) [124]. From these statistics we can de-

duce that these vocabularies are used by different datasets regardless of their topic.

Linked Open Vocabularies11 (LOV) is an observatory of the semantic vocabularies’

ecosystem [140] with the aim to promote the reuse of well documented vocabularies

by making available descriptive information about them such as interconnection,

versioning history, etc. The analysis of the vocabularies by their creation date

indicates a peak in 2011, while from 2011 the number of created vocabularies has

decreased because the focus of the data publishers moved from publishing new

vocabularies in adopting best practices, thus using existing vocabularies.

Despite the effort done so far by the Semantic Web community [149, 85, 58, 6, 143,

112] still exploring the dataset content by looking only at the ontology is not suffi-

cient. Ontologies are of different size containing many classes and properties such

as DBpedia ontology12 or OBO (Ontology for Biomedical Investigations)13 or very

small, containing just a few classes or properties such as bibo (The Bibliographic

6https://www.w3.org/TR/void/
7https://www.w3.org/TR/rdf-schema/
8http://xmlns.com/foaf/spec/
9http://dublincore.org/documents/dcmi-terms/

10https://www.w3.org/TR/owl-guide/
11http://lov.okfn.org
12http://dbpedia.org/ontology/
13http://lov.okfn.org/dataset/lov/vocabs/obo
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Ontology)14 and oad (Ontology for Archival Description)15. For example, the DB-

pedia ontology has 775 classes and 2861 properties thus it is not straightforward

to understand the semantics of some entities found in the data. Also, ontologies

might be underspecified, for example for some properties we do not have any re-

striction about their use [134]. The underspecification might occur as a result of

the use of general purpose vocabularies such as DCTerms or intentionally left by

the data modeling experts to not restrict the use of such property. The ontology

of the L3S DBLP Linked Data16 does not have a property that connects the co-

authors directly, a property that occurs very often in this domain. In spite of the

fact that there are connections inside this dataset to represent this relationship, it

is not trivial to discover them because this information is encoded in the data [5].

Moreover, to understand better a dataset a user faces the problem of implicit infor-

mation in the ontology. OWL makes this information explicit by defining inference.

Some datasets materialize inference results in a database so that SPARQL queries

can be executed efficiently, thus supporting users in the exploration process. For

example, the DBpedia dataset makes use of materialized inference thus allowing

efficient extraction of specific data subsets. In contrast to DBpedia, LinkedBrainz,

does not make use of materialized inference thus it is more difficult to extract

specific subsets of the data. Most of the dataset in the LD cloud do not make

use of materialized inference, thus the exploration is not efficient, resulting in a

time-consuming activity.

In order to allow applications to understand as much data as possible, relations

between classes and properties among different vocabularies should be defined.

These relations may define restrictions or equivalences. The top ten properties

used to link classes between more vocabularies belong to the RDFS and OWL

ontology [124]. In LD the most used property to link to other vocabularies is the

rdfs:range used by 9,8% of vocabularies [124]. We can observe also in LOV that

there are around 1235 links from other vocabularies to RDFS. 1,6% of vocabularies

in LD, use owl:equivalentClass to relate two equivalent classes belonging to

two different vocabularies or ontologies. Dataset owners usually use various and

different ontologies to describe their dataset. Therefore, to understand a dataset,

data consumers face the problem of knowing the semantics of different ontologies

and their mappings.

14http://lov.okfn.org/dataset/lov/vocabs/bibo
15http://lov.okfn.org/dataset/lov/vocabs/oad
16http://dblp.l3s.de/d2r/
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The other best practice of Linked Data promotes the idea of improving interop-

erability and aggregation between datasets in the Web [25]. Data linking is the

task of finding entities that refer to the same real-world object by measuring the

degree of similarity to their entity descriptors. However, since datasets generally

use different identifiers for an entity, their information can not be easily collected.

This is an important task nowadays because by following links, a data consumer

can easily find and retrieve more data. The interlinking of diverse datasets in the

“Web of Data” enables users to navigate from one dataset to the other in the

same way users currently navigate from one webpage to another in the “Web of

Documents” [70].

While Linked Data accounts for more than a thousand dataset, publishing the

number of links between them is several orders of magnitude smaller and by far

more difficult to maintain [9]. Fig. 1.1 gives an overview about the linking infor-

mation in the LD cloud. Interlinking information in the LD cloud is too shallow

to realize much of the benefits promised by Linked Data. The central part of the

cloud is heavily interlinked with DBpedia, GeoNames17 and Foaf profiles18 being

the central datasets for linking entities. Moreover, we could find that the instance

describing Gaillimh belonging to GeoNames is not linked with the instance of

Gaillimh in LinkedGeoData19 although they refer to the same real-world object.

Also, there are cases when entities belonging to different real world objects are

linked together. Because of these limitations the LD cloud will suffer from the

same kind of problems as the “Web of Documents”, consequently the vision of

the Semantic Web will fall short [70]. Data interlinking is a well studied problem

in the Semantic Web area [55, 79, 28, 62, 51] and two survey papers [116, 122]

summarize the effort done in the area of data linking.

However, there are many issues still to be resolved. As Linked Data are huge

data, there is a need for developing techniques and tools that can find equivalent

entities automatically without any knowledge about the content of the dataset

they belong to. Most of the tools developed so far are semi-automated such as

Silk [142] or LIMES [103] and need a configuration file to be set up. Although

these tools achieve a high performance they require skilled human data publishers

going through error prone and time-consuming process for manually creating rules

mapping between entities of two datasets. Often datasets make use of different

17http://www.geonames.org/
18https://datahub.io/dataset/personal-homepages
19http://linkedgeodata.org/About
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RDF vocabularies and OWL ontologies, while the existing techniques and tools

assume data to have only one schema or ontology. As Linked Data are evolving,

also links and mappings should evolve, imposing the need of scalable and easy to

maintain tools.

To decide if a dataset is useful for our use case at hand or not, we have to access

the descriptive information provided by data publishers. To make such a decision

we have to face several challenges, described in our user scenario example:

Availability of datasets profile. The process of finding the right dataset for

our use case at hand can be supported by the dataset profile along with the

dataset. Some datasets may provide accurate and up to date metadata, but

most of the datasets in the LD cloud provide metadata that are incomplete,

inaccurate or not up to date. Thus, the decision-making is not straightfor-

ward because datasets profiles are not always available or of good quality.

Diversity of dataset descriptors. Data publishers use different data formats

and modeling languages, e.g., different vocabularies, to represent their data.

Moreover, even though datasets use similar vocabularies, they differ in the

semantics of the terminology they describe. This is due to the autonomous

nature of data publishing activity in Linked Data and the fact that these

datasets are created by different people with different objectives.

Extraction of dataset profile. The problem of dataset understanding can be

supported by tools and techniques that extract descriptive information about

the dataset, in cases when this information is not available or validates the

profiles that come along with the data. Users that need to use some data

might not be aware of different tools and techniques that exist in this field.

Most of the existing tools and techniques solve a specific task such as for

example topic extraction, but can not support building a complete profile

of the current dataset. Last but not least, the process of dataset profile

extraction should be automatic, with less supervision by the user.

The lack of the dataset profiles that provide some descriptive information about

the data, is an important challenge and obstacle in dataset consumption.

The goal of this thesis is to develop automatic techniques, which enable dataset

consumers to profile datasets and improve the descriptive information of Linked

Data cloud. The main research question solved during the course of this thesis is:



Chapter 1. Introduction 15

Given a heterogeneous Linked Data corpus, data profiling can be pro-

vided in a domain independent and in an automatic manner through

techniques that:

• Could support topical information extraction and classification

• Provide a dataset summary

• Reveal quality issues in the data

• Extract the number of links among equivalent entities between datasets with-

out prior knowledge about the content of the dataset

1.3 Main contributions

To solve the main research question during the course of this thesis we make the

following contributions:

Detailed literature review. Linked Data is a relatively new field and profiling

Linked Data techniques and tools developed so far are flat and therefore lack

the required richness. We conducted a detailed literature review following

the proposed review procedure as in [75]. First, we provide a survey of the

existing tools used to cover different profiling tasks based on six criteria. This

survey provides a broader context of profiling Linked Data which can serve

as a starting point for researchers working on similar area. Furthermore,

we conducted a detailed review of the most important approaches, tools

and techniques to perform topic-based profiling, schema-based profiling and

linkage-based profiling of Linked Data. Finally, for each of them we provide

a summary of the remarks and open issues (Chapter 3).

Automatic topic classification of LD datasets. As a main contribution of

this thesis, we investigated the problem of the automatic topical classifica-

tion of LD datasets. Up till now, topical categories were manually assigned

either by the publishers of the datasets themselves or by the authors of LD

cloud. We provide an approach, which takes as input different features that

characterize a dataset and assigns a topic. Furthermore, we investigated the

problem of assigning more than one topic, as many datasets can have more

than one topic (Chapter 4).
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Building the gold standard for multi-topic classification of LD datasets.

As part of the single-topic classification of LD datasets, we considered as gold

standard the information that currently exist in the LD cloud, while for the

multi-topic classification we build a gold standard which we make available

for further research in this area (Chapter 4).

Evaluation of schema-based summarization of LD datasets. ABSTAT is an

ontology-driven Linked Data summarization approach developed internally

at our department, to help users understand datasets at hand. It extracts a

summary that represents the relations between types in the dataset. Through-

out this thesis the experimental part was developed, which provides scientific

evaluation that this tool helps users to understand the datasets using query

completion tasks. Altogether with the summary, ABSTAT provides statis-

tics that allow users to better explore and understand Linked Data. The

summary produced by ABSTAT can help to detect quality issues in the

data (Chapter 5).

Automatic similar linkage discovery framework. During this thesis we ex-

ploited the actual use of the most known property ( owl:sameAs to link

equivalent entities on the LD cloud and investigate to which extent can we

automatically find equivalent entities belonging to different datasets without

prior knowledge about their content. For this goal we developed a frame-

work which identifies ambiguities and suggest possible inconsistencies and

incompleteness among links that exist in the LD diagram (Chapter 6).

1.4 Thesis outline

The remainder of the thesis is structured in seven chapters which are described in

the following:

• Chapter 2 introduces the core concepts that provide the basic scientific

background required for the reader to understand the thesis. It gives an

introduction of the Semantic Web standards such as RDF data model, dif-

ferent syntaxes for RDF (RDF serialization formats), ontologies and different

languages used to develop them and finally we introduce SPARQL query lan-

guage used to query RDF. At the end, we provide the description of Linked

Data, data published and linked in the Web using RDF.
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• Chapter 3 provides an overview of the state-of-the-art in three areas that

are part of this thesis. First we describe the challenges why techniques

that profile relational data can not be applied in Linked Data. Afterwards

we provide a qualitative comparison of nine tools used to profile Linked

Data based on six different criteria: availability, automation, scalability,

licensing, usability and maintenance. Finally, we provide a description of

the most known approaches used for topic profiling, schema-based profiling

and linkage profiling. We provide details on the cases when to apply each

approach, what is the input and the output along with the challenges to

adapt each of them.

• Topic profiling is described in Chapter 4. This chapter is divided in two

parts. In the first part we describe the problem of single-topic classification

of LD datasets while in the second part we describe the problem of multi-

topic profiling. Firstly, we introduce the reader to the importance of topic

profiling together with the challenges still presented in this area. Secondly,

we describe the data model used for this purpose. Thirdly, we provide details

about the approach and different techniques used for the topical classification

of LD datasets. Therefore, we present the experiments and results and finally

discuss different aspects of the results achieved for the topic profiling.

• In Chapter 5 we introduce ABSTAT an ontology-driven Linked Data sum-

marization approach, used to mitigate the problem of dataset understanding.

We provide a description of the summarization model and the summary ex-

traction pipeline together with the algorithm used in ABSTAT. After, we

describe the three user interfaces ABSTAT has at the moment of writing

this thesis. Finally, we present different experimental evaluation used to

evaluate our summaries. We measure the compactness and the informa-

tiveness of the summaries. The compactness is measured by the reduction

rate while informativeness is measured by the means of a user study and a

quantitative evaluation.

• Chapter 6 provides details about the problem of finding similar objects

among heterogeneous data sources. We first introduce the importance and

the challenges still present in the area of linking equivalent entities. Sec-

ondly, we describe the proposed approach, giving details for each of the four

processes of the linkage pipeline. Thirdly, we provide two metrics used for
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string similarity and numeric similarity. Finally, we describe our experi-

ments to measure the performance of the proposed approach together with

the discussion of the results.

• In Chapter 7 we summarize the results and compare them to the motivation

presented in this chapter. At the end we outline the expected future work

and impact of this research topic.



Chapter 2

Foundations and Technical

Background

In the following chapter we give an overview of the foundations and the technical

background for the users to understand the work presented in this thesis. In sec-

tion 2.1 we introduce the reader with the basic concepts of Semantic Web. Section

2.2 gives an overview of RDF data model and its components. We introduce vo-

cabularies and ontologies in section 2.3 and describe the two most know languages

for building ontologies; RDFS and OWL. While SPARQL query language is in-

troduced in section 2.4, triplestores in section 2.5 and principles of Linked Data

conclude this chapter in section 2.6.

2.1 Web and Semantic Web

2.1.1 World Wide Web

The World Wide Web (WWW) [22] is a global information space consisting of

information shared from numerous sources. Since its first implementation, known

also as Web 1.0, the Web has evolved rapidly. In the Web 1.0 users could only

search and read documents, while in the Web 2.0 users are seen to interact with

each other or contribute to the content. The Web 3.0 enables data to be connected

from different sources and to be understood by computers so that they can perform

increasingly, complex and sophisticated tasks for our benefit. The Web 3.0 is

19
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also referred to as the Semantic Web. Web pages are formatted and annotated

with Hypertext Markup Language (HTML). Uniform Resource Identifiers (URI)

identify uniquely Web documents which can be accessed through specific protocols

such as Hypertext Transfer Protocol (HTTP) [57]. Hyperlinks allow users to

navigate and access different documents through Web browsers. Usually, data

published on the Web are made available in raw dumps in different formats such

as CSV, XML or marked up as (HTML) tables [26]. The data in this format are

not in a machine-readable format, thus they can not be processed by computer,

making it hard for the user to get the answer if they make any query. Also,

documents published on the Web are of non expressive format, i.e (HTML), thus

entities described in these documents can not be connected by typed links1 to

related entities in other documents [26]. Since its creation, the Web has evolved

from an information space of linked documents to one where both documents and

data are linked. These data are published adopting a set of best practices for

publishing and connecting structured data on the Web know as Linked Data [26].

The data published in Linked Data should be published adopting W3C stan-

dards in Resource Description Framework (RDF) format and made available for

SPARQL endpoint queries. The adoption of Linked Data best practices has led

in an extension of the Web, where the data are interlinked with each other using

typed links. These documents contain more machine-oriented semantic informa-

tion known as the Semantic Web [23].

2.1.2 Semantic Web

Sematic Web Stack in Fig. 2.1, represents the capsulated architecture of the Se-

mantic Web [24]. The main purpose of the Semantic Web is to convert the “Web of

Documents” into the “Web of Data”. It shows how technologies that are standard-

ized for Semantic Web are organized to make the Semantic Web possible. It also

shows how Semantic Web is an extension (not replacement) of classical hypertext

Web. The technologies from the bottom of the stack up to OWL are currently

recommended by W3C and accepted to build Semantic Web applications. The

bottom layers of the stack are well-known for the hypertext Web and are reported

without any change for the Semantic Web. The top layers, contain technologies

1The most known use of a link is to retrieve another Web resource, however links can express
other types of relationships between resources and have one or more link types specified in their
source anchor.
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Figure 2.1: Semantic Web Stack

which are not standardized yet, while in this thesis the middle layers, RDF, RDFS,

OWL and SPARQL will be discussed in the following.

To empower applications to process information on the Web, data should be ex-

pressed in a standard format. The Resource Description Framework (RDF), is a

framework for representing information in the Web [76]. RDF stands for Resource

pages, documents, people, everything that is identified by a URI, Description at-

tributes, description or relations, and Framework model, languages or description

for resources. This mechanism for describing resources is a major component in

the W3C’s Semantic Web activity: an evolutionary stage of the World Wide Web

in which automated software can store, exchange, and use machine-readable infor-

mation distributed throughout the Web, in turn enabling users to deal with the

information with greater efficiency and certainty [100]. In the following we will

describe in more details the representative languages of Semantic Web, part of

middle layer, RDF, RDFS, OWL and SPARQL.
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2.2 Resource Description Framework: Data Model

and Syntax

2.2.1 Data Model

RDF has a simple data model which allows applications to easily process and

manipulate it. Having a simple data model and the ability to model disparate,

abstract concepts additionally contributed to an expansion of its use in knowledge

management applications unrelated to Semantic Web activity.

Figure 2.2: RDF triple example

The basic construct in RDF is an RDF statement. Every statement is represented

by a triple which consists of three terms in the form of subject-predicate-object.

The subject, identifies the object of the triple that is being described. The predi-

cate (property) describes the relationship between subject and object and describes

some aspects of the subject, while the object is the target or the value of the RDF

triple. Every triple represents a single property of the subject. Triples can be

visualized as node and arc diagrams as in Fig. 2.2. The subject and the object are

denoted as nodes, while the property is denoted as labeled arc. In the Fig. 2.2, the

subject belonging to “Blerina Spahiu”<http://www.disco.unimib.it/go/45827/>

has the property <http://dbpedia.org/ontology/author/> whose value is a

paper <http://ceur-ws.org/Vol-1605/paper3.pdf>. Often, instead of us-

ing the whole URI, we use a short format for writing them. These short for-

mats are called prefixes or namespaces. For instance for the example above

we can use disco instead of http://www.disco.unimib.it/ or dbo instead of

http://dbpedia.org/ontology/, etc.

In the Semantic Web we refer to things in the world that are described by an

RDF term as a resource. A resource can be any real world entity such as a

person, a city, a restaurant, a web page, etc., and abstract concepts such as terms,
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classes or property types. These resources are identified uniquely by the URI.

A blank node is a node in RDF which does not have an identifier and it can

not be referenced from outside. In cases when a blank node is found by an RDF

parser, the latter generates an internal unique identifier to assign to the blank

node. As blank node identifiers are often only unique within the scope of the

dataset in which they occur, it is possible that distinct blank nodes in different

datasets use the same blank node identifier. Thus, when RDF graphs are merged

within implementations, it might be necessary to rename blank nodes in order

to avoid collisions [76]. In summary, blank nodes should be avoided unless they

are structurally necessary. Literals are used to represent property values such as

texts, numbers, and dates and are of two types; plain and typed literals. The

plain literal is a string associated with a language tag [12]. A language tag (e.g.

”Athens”@en or ”Atene”@it) indicates a language such as English or Italian. The

typed literal is a string associated with a datatype URI. A datatype URI is defined

by the XML schema and indicates dates, integers and floating-point numbers, e.g.

“1986-10-09”∧∧xsd:date.

• the subject is an RDF URI reference or a blank node

• the predicateis an RDF URI reference

• the object is an RDF URI reference, a literal or a blank node

Definition 2.1. (RDF Triple). Given an infinite set URI of URIs, an infinite set

BN of blank nodes, an infinite set PL of plain literals, and an infinite set of T L
of typed literals, a triple (s, p, o) ∈ (URI ∪ BN ) × URI × (URI ∪ BN ∪ PL
∪ T L) is called an RDF triple where s, p, o represents the subject, predicate and

object of the triple.

RDF triples are of two types depending on the type of the object:

• Object type triple, where the object of a triple is a URI. Furthermore, object

type triples can be distinguished in internal, where the link connecting two

resources belong to the same dataset and external, where the link connects

two resources that belong to different datasets. An example of the object

type triples is the following:

<http://www.disco.unimib.it/go/45827/>
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<http://dbpedia.org/ontology/affiliation>

<http://www.disco.unimib.it/>

As the subject and the object are of the same dataset, this is an internal

object type triple. An example of external object type triple is the following:

<http://www.disco.unimib.it/go/45827/>

<http://dbpedia.org/ontology/author/>

<http://ceur-ws.org/Vol-1605/paper3.pdf>.

In case there exists a triple where its subject to dataset A and its object be-

longs to dataset B, for dataset A the link is outgoing while for dataset B the

link is incoming. In the example above for<http://www.disco.unimib.it/>

the link is outgoing while for <http://ceur-ws.org/> the link is incoming.

• Data type triple, is an RDF triple where the object is of type literal. An

example of data type triple is shown in Fig. 2.3:

<http://www.disco.unimib.it/go/45827/>

<http://dbpedia.org/ontology/birthDate>

“1986-10-09”<http://www.w3.org/2001/XMLSchema#date>

Definition 2.2. (RDF Graph.) RDF Graph G is a finite set of RDF triples (URI
∪ BN ) × URI × (URI ∪ BN ∪ PL ∪ T L).

Figure 2.3: RDF Graph example

The RDF graph itself represents a resource, which is located at a certain location

on the Web and thus has an associated IRI, the graph IRI.

Definition 2.3. (RDF named Graph). An RDF named graph UG is an RDF

graph which is identified by a URI.
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There are a number of synonyms being used for RDF graphs, all meaning es-

sentially the same but stressing different aspects of an RDF graph. The RDF

document is used when we refer to an RDF graph from a file perspective, knowl-

edge base (KB) when we refer to a collection of facts, vocabulary when we refer

to a shared terminology, and ontology when we refer to a shared logical conceptu-

alization [10].

Throughout this thesis we refer to a dataset as a set of RDF triples. In chapter 5

we will give a more formal definition about a dataset.

2.2.2 RDF serialization formats

In the following is presented a family of alternative text-based RDF serializations

whose members have the same origin, but balance differently between readability

for humans and machines. Since different platforms work better with different

data formats, RDF serialization is an important aspect.

N-triples

N-Triples is a line-based, plain text serialisation format for RDF [18]. Each RDF

triple is written as a separate line, where each URI is written between angle brack-

ets (< and >) and terminated by a period (.). Typically, files with N-Triples have

the .nt extension. In Fig. 2.4, is given an example of the N-Triples format.

RDF/XML

One of the formats for representing RDF triples is RDF/XML. The RDF/XML

Syntax Specification defines a normative syntax for serializing RDF graphs as XML

documents [17]. Nodes and predicates in RDF have to be represented in XML

terms; element names, attribute names, element contents and attribute values

[76]. Fig. 2.5 shows an example of the RDF/XML format.

N3

N3 has been developed as a language for expressing data and rules. It extends

RDF with features such as variables, universal and existential quantification. N3

is much more compact and readable than XML/RDF notation [18].

Turtle
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Figure 2.4: RDF/N-triples example format

Figure 2.5: RDF/XML example format

Figure 2.6: RDF/N3 example format

The Turtle [17] syntax for RDF is a text-based serialization format. It is a subset

of N3 format.
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2.3 Vocabularies and ontologies

In the context of Semantic Web, vocabularies are used to define terms (classes

and properties) that are used to describe a particular domain. Vocabularies can

be very simple, describing only a few classes having few relations among them,

or very complex, containing thousands of classes having many relations among

them. An ontology consists of a set of axioms which place constraints on sets of

individuals and the types of relationships between them [42]. Ontologies are used

to classify the terms that can be used in a particular application, characterize

possible relationships, and define possible constraints on using those terms [19].

The terms vocabulary or ontology are used with no clear division. The term

ontology is used to refer to a formal collection of terms, while vocabulary is used

when no strict formalization is required. Ontologies are called pillars of Semantic

Web and are crucial in the data integration activities as ambiguities may exist on

the terms used in the different datasets, or when a bit of extra knowledge may

lead to the discovery of new relationships. All terms in an ontology should have an

unambiguous and non-redundant definition. The relationship among these terms

are often expressed as a hierarchy. At the root of the hierarchy are expressed the

most general purpose classes while all the other classes are connected between each

other using the subtype property. Property terms describe different attributes for

classes. They can also be used to associate different classes together.

Figure 2.7: Ontology example

In Fig. 2.7 is given an ontology example. The class or concept Person is the root of

the hierarchy with other classes such as Artist and Sportist being its subtypes. The

class Actor, and Singer are the subtypes of Artist, while Sportist is the supertype
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of BasketballPlayer and SoccerPlayer. As from the figure, the classes Sportist and

Team are connected with other properties rather than subtype property, which in

this example is plays for. Properties determine the constraints that specify the

relationship between the subject and the object using a formal language. In the

following sections we will introduce two languages for building ontologies: RDFS

and OWL.

2.3.1 RDF Schema

RDF Schema (RDFS) provides a data-modelling vocabulary for RDF data [34].

RDF Schema provides description of groups of related resources and the relation-

ships between these resources. It describes properties in terms of the classes of

resource to which they apply by using domain and range restrictions. In this thesis

we will use rdf: as the namespace for<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

and rdfs: the namespace for <http://www.w3.org/2000/01/rdf-schema#>. A

resource belonging to a class is given by using the predicate rdf:type.

The basic classes within RDF Schema are:

• rdfs:Class. This is the class of resources that are RDF classes

• rdfs:Property. This is the class of RDF properties.

• rdfs:subClassOf. This is used to state that a class is a subclass of another,

which means that all instances of the first class are instances of the second

class. In a triple this predicate means that the subject is a subtype of the

object. For example the class Artist is subclass of Person. All instances of

class Artist are instances of class Person but not vice versa.

• rdfs:subPropertyOf. This is used to state that a property is subproperty

of another property, which means that all the resources related by the first

property are also related by the second property. In a triple this predicate

means that the subject is a subproperty of the object. For example, if we have

that two instances are related with each other by the property hasSibling,

and hasSibling is a subproperty of hasRelative, from this we can deduce that

the two instances are also related to each other by the hasRelative property.
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• rdfs:domain. This is used to state that any resource that has a given

property is an instance of one class. In a triple where the subject is a

property and the object is the class, this is the domain of this property.

• rdfs:range. This is used to state that the values of a property are instances

of one class. In a triple where the subject is a property and the object is the

class, this is the range of this property.

Figure 2.8: An RDF Schema example

In Fig. 2.8 is given an example of an RDF Schema. The class Book is a subclass of

the class Publication. The property author is an instance of rdf:Property, while

the two classes Publication and Person are instances of the class rdfs:Class. The

property author has the domain Book and range Person.

By using RDFS vocabulary, we can infer additional information. As from the

graph, suppose we have a triple describing an instance of the class Book, which

has the property author and as object an instance of the class Person. As the class

Book is a subclass of the class Publication then we can infer that the instance of

our triple is also of type Publication.

2.3.2 Web Ontology Language

The Web Ontology Language (OWL), similarly to RDFS is used to define web

ontologies [16]. OWL extends RDFS in enabling to work efficiently with queries

and automatic reasoners, and it provides useful annotations for bringing the data
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models into the real world. OWL is used to express more complex relationship and

to describe more detailed characteristics of properties. While RDFS is used to de-

fine the structure of the data, OWL describes the semantic relationships between

resources. In contrast to RDFS, OWL adds more vocabulary for describing prop-

erties or classes such as relationships between classes (e.g., owl:disjointWith,

equality (e.g., owl:sameAs), richer properties (e.g., owl:SymmetricProperty), and

class property restriction (e.g., owl:allValuesFrom). For instance, one can use

owl:disjointWith to state that Dessert is disjoint from Seafood or Meat, and it

does not assert that also Seafood and Meat are disjoint. One can use owl:sameAs

to state that two entities belonging to two different datasets are equivalent. It

also makes use of symmetric properties such as friendOf or hasSpose and inverse

properties such as motherOf and hasMother. Moreover, it also describes prop-

erty restrictions by value constraints and cardinality constrains. For example, an

owl:allValuesFrom property constraints all individuals described by the prop-

erty hasParent to have values of class Humans. Unlike RDFS, in OWL it is not

allowed to say that something can be both an instance and a class. Also in OWL

inferences are allowed.

Consider the following example in Fig. 2.8. If we know that Pride and Prejudice

is of type Book, and Book is a subclass of Publications, in OWL we can infer that

Pride and Prejudice is of type Publications. OWL is part of the W3C ’s Semantic

Web technology stack and is recognized by W3C Recommandation since 2008. The

current version referred to as OWL2 is also recognized as W3C Recommendation

since 2012.

OWL semantics is based in Description Logic. Description Logic (DL) is a family of

logic-based knowledge representation formalisms designed to represent and reason

about the knowledge of an application domain in a structured way [11]. This

language provides a set of constructors to build classes and property descriptors.

In this chapter we will not introduce a specific formalism to refer to schemas or

ontologies as this is necessary only in chapter 5 where we will define the basic

concepts of DL.
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2.4 Query Language for RDF

Several query languages have been developed for the RDF data model. In this

thesis we will describe the most familiar query language that is SPARQL. A com-

parison of different query languages for RDF data can be found in [110]. W3C Data

Access Working Group developed SPARQL (SPARQL Protocol And RDF Query

Language) as a standard query language and protocol in 2008 [43]. SPARQL can

be used to express queries across RDF datasets. In SPARQL, queries are expressed

as a set of triple patterns with each of the three elements of the triple being a vari-

able. SPARQL queries are similar with SQL queries [48] if we consider RDF as

SQL relational database, where triples are seen as placed in a table with three

different columns; subject, predicate and object. Using SPARQL, users can write

queries that consist of triple patterns. SPARQL provides a set of analytical queries

operations such as, JOIN, SORT and AGGREGATE. A SPARQL endpoint is an

HTTP server (identified by a given URL) which receives requests from SPARQL

clients. SPARQL language specifies four different query variations:

• SELECT query This is used to extract raw data from a SPARQL endpoint.

• CONSTRUCT query This is used to extract information from the SPARQL

endpoint and transform the results into valid RDF.

• ASK query This is used to provide a simple True/False result for a query on

a SPARQL endpoint

• DESCRIBE query This is used to extract an RDF graph from the SPARQL

endpoint, the content of which is left to the endpoint to decide based on

what the maintainer deems as useful information.

Each of these query forms takes a WHERE block to restrict the query, although,

in the case of the DESCRIBE query, the WHERE is optional.

Consider we want to know all books that have Haruki Murakami as author in

DBpedia dataset. In Fig. 2.9 is given the query we have to execute to obtain the

list of books that Haruki Murakami wrote.

The query begins with PREFIX statements that define the abbreviation for the

namespace. In Fig. 2.9 we used three different namespaces lines from 01-03. In
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Figure 2.9: An SPARQL query example

line 04, the query begins with a SELECT, which contains a variable starting with a

“?”. Sometimes in SPARQL, variables can also start with a “$”. In this example

the variable is given by the name ?uri. Line 06 opens the WHERE clause, and in this

case it contains two triple patterns. Line 07 specifies that we need those resources

that are of type Book, while line 08 states that we are looking for those resources

for which the author is Haruki Murakami.

Once we execute this query we will get the results in Fig. 2.10

2.5 Triplestore

In order to execute SPARQL queries, RDF data should be stored in triplestores.

Triplestores are databases for RDF triple storage. RDF data are also indexed in

triplestores which allows users to execute queries more easily and efficiently. At

the time of writing this thesis the most knows triplestores are Virtuoso [53] and

Sesame [35].

2.6 Linked (Open) Data

Linking data distributed across the Web requires a standard mechanism for spec-

ifying the existence and meaning of connections between items described in the

data. This mechanism is provided by RDF that provides a flexible way to describe

things in the world. As detailed above, RDF can be used to describe people, restau-

rants, locations, as well as abstract concepts. These statements of relationships
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Figure 2.10: An SPARQL query result example

between things are, in essence, links connecting things in the world. Data pub-

lished and linked on the Web using RDF, are more usable and more discoverable.

The term of Linked Data is referred to a set of best practices for publishing and

interlinking structured data on the Web [26].

• Use URIs as names for things

• Use HTTP URIs so that people can look up those names

• Provide useful information about what a name identifies when it is looked

up, using open standards such as RDF, SPARQL, etc

• Refer to other things using their HTTP URI-based names when publishing

data on the Web

The first Linked Data principle imposes the use of URI references to identify not

only Web documents and their content but also real world object.
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On the Web the protocol which allows accessing documents is HTTP. The second

Linked Data principle imposes the use of HTTP URIs to identify objects, in order

to allow them to be dereferenced over HTTP into a description of that object.

Data should be published in a standardized format in order to allow Web appli-

cations to process their content. The third principle of Linked Data imposes the

use of RDF format and data should be available for SPARQL queries.

The fourth Linked Data principle imposes the use of hyperlinks to connect any

type of thing. In the classic Web, hyperlinks are used to link resources but usually

they are untyped links, while in Linked Data, links have types which describe the

relation among things. These links are called RDF links. Given such connections,

one can easily follow links to discover further interesting information for the entities

under consideration. Note that this implies that data should not be isolated

anymore but rather connected.

Open Data, are the data that can be freely used, reused and redistributed to

everyone. Linked Open Data (LOD) project started publishing data adopting

Linked Data principles under an open license. Tim Berners-Lee proposed a five-

star rating system2 which allows users to evaluate their dataset by using this rating

system.

• (?) Available on the web (whatever format) but with an open licence, to be

Open Data

• (? ?) Available as machine-readable structured data (e.g. EXCEL instead of

image scan of a table)

• (? ? ?) data is available as machine-readable but in a non-proprietary format

(e.g., CSV rather than EXCEL)

• (? ? ? ?) data is available according to all the above, plus the use of open

standards from the W3C (RDF and SPARQL) to identify things, so that

people can link to it.

• (? ? ? ? ?) data is available according to all the above, plus outgoing links

to other peoples data to provide context.

2https://www.w3.org/DesignIssues/LinkedData.html



Chapter 2. Foundations and Technical Background 35

This rating scale promotes the potential reusability of Linked Data.

Even though Fig. 1.1 refers to Linked Data datasets that are published under an

open license (LOD), the techniques developed during this work can be applied to

all Linked Data datasets, regardless of the fact that there are open or not. For

this reason, throughout this thesis we refer to the Linked Open Data (LOD) cloud

as Linked Data cloud (LD).





Chapter 3

State of the art

This chapter gives an overview of state-of-the art approaches, techniques and tools

in profiling Linked Data. At the beginning of this chapter we introduce the im-

portance of profiling Linked Data, as well as describing the main challenges and a

brief summary of profiling relational vs. non-relational data in section 3.1. Next,

in section 3.2 we provide a survey of general purpose profiling tools available at the

moment of writing this thesis. As three aspects of profiling; topic-based profiling,

schema-based profiling and linkage-based profiling are the focus of this thesis, for

each of them in the following sections we provide a more detailed overview of the

existing approaches and provide a summary of the open issues.

The main focus of this thesis is how to perform profiling in order to help users un-

derstand and explore the data. The goal of profiling Linked Data is serendipitous

re-use; while looking for the data we need, we can find easily the data that fulfill

our request. We could make a quick decision if the data is useful for our use case

at hand or not if we could know some characteristics of the data.

Challenges in exploring Linked Data are numerous: use of similar classes, incom-

plete ontological information, error links at instance level, makes it hard for users

to understand the overall content of a dataset, as well as understand and find the

particular part of the data that might be of interest. Such challenges can often

eclipse the benefits of interacting over Linked Data. Now that a huge amount

of data is available in the Linked Data cloud, providing techniques for effective

Linked Data searching, exploration, and visualization is becoming crucial [64].

37
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Many others have tackled the problems related to profiling Linked Data as we will

see in the following of this chapter.

Before introducing the most relevant approaches for each profiling aspect consid-

ered in this thesis, we give a brief overview of differences and challenges between

profiling relational vs. non-relational data.

3.1 Profiling Relational vs. Non-Relational Data

Many existing profiling methods used to profile relational data, can not be applied

in Linked Data, because these methods neither do scale well, nor can handle this

kind of data [98]. On the other hand, the relation data-schema in Linked Data

is not as strong as in the relational data. In relational data, schemas pre-exist to

data and control methods implemented by database management systems enforce

only data that comply to the schema. In contrast, Linked Data schemas are not

required to pre-exist to data and the enforcement of the compliance of data to

the schema is weaker. In this case data are associated to a schema by means of

annotations. Moreover, in relational data any statement that is not known to be

true is false, while in Linked Data any statement that is not known can not be

asserted as neither true nor false [14]. Even though the schema of Linked Data

is defined by vocabularies there is no mechanism to enforce data to be compliant

to the schema. Vocabularies such as RDFS are not expressive enough to detect

inconsistencies, and most important you can use the information in the schema

to deduce new knowledge. In Linked Data, a relation between two instances can

hold even if the schema does not model such relation between the classes that

the instances belong to. Beside these problems, often Linked Data have weakly

specified ontologies. As described in section 2.3.2 in RDFS vocabulary classes

disjointness and cardinality restrictions can not be modeled. Due to the above

reasons, a schema-based profiling for Linked Data is very important. Another

challenge is due to the flexibility of Web linking (anybody can link to anything else)

and the dynamic nature of the web environment thus requiring also a provenance

profiling. Linked Data does not have a well-defined schema and the ontological

heterogeneity represents an obstacle, thus it is also necessary to profile its schema

before profiling the data itself. Moreover, Linked Data come in different formats,

different encoding schemes, they use similar classes, or different vocabularies for

the same class, etc. Thus data consumers have to deal with the challenge of
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putting much effort in adapting profiling techniques for relational data to the non-

relational data, or otherwise to develop new techniques and algorithms that work

for non-relational data. The survey [1] summarizes the profiling techniques and

tools in the field of relational data. As describing profiling techniques for relational

data is out of the scope of this thesis we invite the reader to refer to the survey in

[1] for more details.

3.2 Models and Tools for Data Profiling

In this section, we provide an overview of the existing models and data profiling

tools used for different profiling tasks. As mentioned in chapters 1 and 2 ontologies

and vocabularies are used to describe the semantics of the data found in a dataset,

thus can be considered as profiles. These profiles are stored in data catalogues.

DCAT1 is an RDF vocabulary designed with the aim of helping data publishers

increase discoverability and enable applications to consume metadata from mul-

tiple catalogs easily. When DCAT is applied, the catalogue records (but not the

data files themselves) are prepared for publication as Linked Open Data and thus

are stored in a machine-readable format. DCAT is a W3C recommendation since

2013. Up till now the creation of data catalogues is done manually, thus being

prone to errors.

With the many efforts done by the Semantic Web community, there exist some

tools which automatically extract descriptive information and statistics about the

data. Statistics and summaries can help to describe and understand large RDF

data. As it will be discussed, most of the existing techniques to profile Linked

Data are limited to few statistics thus being able to cover only one profiling task.

Roomba2 [7] is a framework to automatically validate and generate descriptive

dataset profiles. The extracted metadata are grouped into four categories (gen-

eral, access, ownership or provenance) depending on the information they hold.

After metadata extraction some validation and enrichment steps are performed.

Metadata validation process identifies missing information and automatically cor-

rects them when it is possible. As an outcome of the validation process, a report

is produced which can be automatically sent to the dataset maintainer.

1https://www.w3.org/TR/vocab-dcat/
2https://github.com/ahmadassaf/opendata-checker



Chapter 3. State of the art 40

The ExpLOD [74] tool is used to summarize a dataset based on a mechanism that

combines text labels and bisimulation contractions. It considers four RDF usages

that describe interactions between data and metadata, such as class and predicate

instantiating, class and predicate usage on which it creates RDF graphs. It also

provides statistics about the number of equivalent entities connected using the

owl:sameAs predicate to describe the interlinking between datasets. The ExpLOD

summaries are extracted using SPARQL queries or algorithms such as partition

refinement.

RDFStats3 [82] generates statistics for datasets behind SPARQL endpoint and

RDF documents. It is built on Jena Semantic Framework and can be executed as

a stand-alone process, important to optimize SPARQL queries. These statistics

include the number of anonymous subjects and different types of histograms; URI-

Histogram for URI subject and histograms for each property and the associated

range(s). It also uses methods to fetch the total number of instances for a given

class, or a set of classes and methods to obtain the URIs of instances.

LODStats [8] is a profiling tool which can be used to obtain 32 different statistical

criteria for datasets from Data Hub4. These statistics describe the dataset and its

schema and include statistics about number of triples, triples with blank nodes,

labeled subjects, number of owl:sameAs links, class and property usage, class

hierarchy depth, cardinalities etc. These statistics are then represented using

Vocabulary of Interlinked Datasets (VOID) and Data Cube Vocabulary5.

LODOP6 [59] is a framework for executing, optimizing and benchmarking profil-

ing tasks in Linked Data. 56 profiling tasks are implemented as an Apache Pig

script and are available online7. These tasks include: number of triples, average

number of triples per resources/ per object URI, number of properties, average

number of property values, inverse properties, etc. This tool performs profiling

tasks in a runtime of up to hours and implements three techniques to improve the

performance optimizing the logical plans of Apache Pig scripts.

ProLOD [32] is a web based tool which analyzes the object values of RDF triples

and generates statistics upon them such as datatype and patterns distribution.

3https://sourceforge.net/projects/rdfstats/
4https://datahub.io/
5http://www.w3.org/TR/vocab-data-cube/
6https://github.com/bforchhammer/lodop
7https://github.com/bforchhammer/lodop
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In ProLOD the type detection is performed using regular expression rules and

normalized patterns are used to visualize huge numbers of different patterns. Pro-

LOD also generates statistics on literal values and external links. ProLOD++8

which is an extension of ProLOD is also a browser based tool which implements

several algorithms with the aim to compute different profiling, mining or cleansing

tasks. In the profiling task, processes are included to find frequencies and dis-

tribution of distinct subjects, predicates and objects, range of the predicates etc.

ProLOD++ can also identify predicates combinations that contain only unique

values as key candidates to distinctly identify entities. The implementation of

mining tasks cover processes such as synonym and inverse predicate discovering,

association rules on subjects, predicates and objects, etc. It also performs some

cleansing tasks such as auto completions of new facts for a given dataset, ontology

alignment in identifying predicates which are synonym or identifying cases where

the pattern usage is over specified or underspecified.

Loupe [92] is a framework used to summarize and inspect Linked Datasets. Loupe

extracts types, properties and namespaces, along with a rich set of statistics. It

offers a triple inspection functionality, which provides information about triple

patterns that appear in the data set and their frequency. Triple patterns have the

form <subjectType, property, objectType>.

Aether9 [91] is a web application used to generate, view and compare extended

VOID statistical descriptions of RDF datasets. Users can use Aether to make

sense of the dataset content and can help to identify changes between different

versions of a dataset, as well as, detecting outliers and errors in the dataset.

Statistics produced by Aether include entities, triples and statistics that explicitly

relate triples and entities. It takes as input a SPARQL endpoint and can generate

an extended VOID description containing a wide variety of statistical spreads

describing the dataset.

The Semantic Sitemap10 approach [47] generates an XML file that informs search

engine crawlers about URLs on a website. The Sitemap protocol extends these

documents with information about the location of RDF data and about alterna-

tive means to access this data e.g. data dumps and SPARQL endpoints. Using

8https://www.hpi.uni-potsdam.de/naumann/sites/prolod++/#/graphstatistics/dailymed
9http://demo.seco.tkk.fi/aether/#/

10http://sw.deri.org/2007/07/sitemapextension/SemanticSitemap-1.2.zip
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Table 3.1: Data Profiling Tools.

Roomba Loupe ProLOD++ ExpLOD LODStats

Availability code in Github X X - X
Automation X X - - semi-automated
Scalability X - - - X
Licensing - - - -
Usability 4 4 2 1 3

Maintenance 2016 2016 2016 2010 2012

Semantic Sitemaps, we can obtain individual resource descriptions from a large

dump.

Profiling as the activity of providing insights about the data, is not only about

providing statistics about value distribution, null values, etc., but also is referred

as the process of finding and extracting information patterns in the data.

In the area of schema summarization, Knowledge Patterns (KP) can be defined as

a template to organize meaningful knowledge [60]. The approach in [113] identifies

an abstraction named dataset knowledge architecture that highlights how a dataset

is organized and which are the core knowledge patterns we can retrieve from that

dataset. These KPs summarize the key features of one or more datasets, revealing

a piece of knowledge in a certain domain of interest.

Encyclopedic Knowledge Patterns (EKP) [104] are knowledge patterns introduced

to extract core knowledge for entities of a certain type from Wikipedia page links.

EKPs are extracted from the most representative classes describing an entity and

containing abstraction of properties. The use of EKPs that supports exploratory

search is shown in Aemoo11 to enrich query results with relevant knowledge coming

from different data sources in the Web [105].

In order to understand complex datasets, [29] introduces Statistical Knowledge

Pattern (SKP) to summarize key information about an ontology class considering

synonymity between two properties of a given class. An SKP is stored as an OWL

ontology and contains information about axioms derived or not expressed in a

reference ontology but can be promoted applying some statistical measures.

In the following we compare nine tools used for Linked Data Profiling using six

different criteria, as in Table 3.1 and 3.2.

11http://wit.istc.cnr.it/aemoo/
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Table 3.2: Data Profiling Tools

LODOP RDFStats Aether Semantic Sitemap

Availability code in Github code in Github X X
Automation X semi-automated - -
Scalability X - - X
Licensing - Apache Licensing MIT License -
Usability 1 1 3 1

Maintenance 2014 2009 2014 2008

Availability is the degree to which a system or a product is available online as a

demo, as a tool, only the code available, as a screencast or not available at all.

From the nine tools available at the moment of writing this thesis, only Loupe,

LODstats and Aether are available as demo or web application which a user can

use online. The code in Github is available for Roomba, LODOP and RDFSstats

while ProLOD++ is available as a screecast. For ExpLOD we did not find any

available information for the availability while for Semantic Sitemap only the code

file is available.

Automation is the degree to which a machine and technology make processes run

on their own without manpower. For this criterion we used two metrics; tools

that are fully automated and semi-automated. Only three of the profiling tools,

Roomba, Loupe and LODOP perform the profiling automatically, while LODStats

and RDFStats are semi-automatic. There is no automatization information for

ProLOD++, ExpLOD, Aether and Semantic Sitemap.

Scalability is the degree to which a system, model or function can cope and perform

under an increased or expanding workload. For this criterion we used two metrics;

tools that are scalable and perform well with respect to the size of the dataset

and tools that are not scalable (they are not projected to handle datasets of a

big size). Roomba, LODStats and LODOP consider scalability issues, dealing

with huge amount of data, while for the other tools there is no information about

scalability.

Licensing is the degree to which a system provides formal permission from a

governmental or other constituted authority to do something, to use, make, or

modify the original and the restrictions with which they can be redistributed.

Different licensing information come with the application or the tool, such as: All

rights reserved, MIT License, Apache Licensing, Apache Version 2.0, etc. Only



Chapter 3. State of the art 44

two out of nine tools provide licensing information, RDFStats and Aether, which

have respectively Apache Licensing and MIT License.

Usability is the degree to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context

of use. The two metrics for usability used to evaluate profiling tools are un-

derstandability and learnability. As for the understandabilty the purpose of the

system should be easily understandable while learnability is referred to the com-

pleteness of user documentation and explanation how to achieve common tasks.

This is directly connected with user satisfaction on using this tool. To evaluate

usability we used the Likert Scale [3], from 1 to 5, where 1 is Very Dissatisfied

and 5 means Very Satisfied. Based on the documents and manuals how to install

and use profiling tools, we assigned a value to measure their usability. Loupe and

Roomba were the only tools that provide full documentation and tutorial on how

to install and use them. LODStats and Aether provide some documentation but

they are not complete, while ProLOD++ provide an insuficient documentation.

We are completely missing documentation for ExpLOD, LODOP, RDFStats, and

Semantic Sitemap.

Maintenance is related to the latest update of the tool. Roomba, Loupe and

ProLOD++ are tools which were recently released and updated, while other tools

such as Semantic Sitemap, RDFStats, Aether and ExpLOD are outdated and not

maintained anymore.

Remarks for models and data profiling tools

• Most of the existing profiling tools are limited in reporting some basic statis-

tics like the number of classes, properties, etc.

• Some of the existing tools do not provide any information about the avail-

ability and only a few of them are completely automatic.

• There exist some tools that do not provide any documented information in

order to understand and be able to implement it if it is of our interest.

• Most of the tools are outdated and are not maintained anymore.
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3.3 Topic-Based Profiling

Topical profiling has been studied in data mining [111], database [87], and informa-

tion retrieval communities [73]. These methods find application in domains such

as documents classification, contextual search, content management and review

analysis [2, 97, 13, 125, 127]. Although topical profiling has been studied in other

settings before, only a few methods exist for profiling LD datasets. These methods

can be categorized based on the general learning approach that is employed into

the categories unsupervised and supervised, where the first category does not rely

on labeled input data, the latter is only applicable for labeled data.

The authors in [50] define the profile of datasets using semantic and statistical

characteristics. They use statistics about vocabulary, property, and datatype us-

age, as well as statistics on property values, such as average strings length, for

characterizing the topic of the datasets. For classification, they propose a fea-

ture/characteristic generation process, starting from the top discovered types of a

dataset and generating property/value pairs. In order to integrate the property/-

value pairs they consider the problem of vocabulary heterogeneity of the datasets

by defining correspondences between terms in different vocabularies. This can be

done by using ontology matching techniques. The authors intended to align only

popular vocabularies. They have pointed out that it is essential to automate the

feature generations and proposed the framework to do so, but do not evaluate

their approach on real-world datasets. Also, considering only the most popular

vocabularies, makes this framework not applicable to any dataset or belonging any

kind of domain.

The authors in [37] propose the application of aggregation techniques to identify

clusters of semantically related Linked Data given a target. Aggregation and

abstraction techniques are applied to transform a basic flat view of Linked Data

into a high-level thematic view of the same data. Linked Data aggregation is

performed in two main steps; similarity evaluation and thematic clustering. This

mechanism is the backbone of inCloud framework [38]. As an input, the system

takes a keyword-based specification of a topic of interest, namely a real-world

object/person, an event, a situation, or any similar subject that can be of interest

for the user and returns a part of the graph related to the keyword in input.

The authors claim that they evaluated the inCloud system by measuring user
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satisfaction and system evaluation in terms of accuracy and scalability but do not

provide any experimental data.

An approach to detect latent topics in entity-relationship graphs is introduced

by [31]. This approach works in two phases: (1) A number of subgraphs having

strong relations between classes are discovered from the whole graph, and (2) the

subgraphs are combined to generate a larger subgraph, called summary, which

is assumed to represent a latent topic. Topics are extracted from vertices and

edges for elaborating the summary. This approach is evaluated using the DBpedia

dataset. Their approach explicitly omits any kind of features based on textual

representations and solely relies on the exploitation of the underlying graph. Thus,

for datasets that do not have a rich graph, but with instances that are described

with many literal values, this approach cannot be applied.

In [56], the authors propose an approach for creating dataset profiles represented

by a weighted dataset-topic graph which is generated using the category graph

and instances from DBpedia. In order to create such profiles, a processing pipeline

that combines tailored techniques for dataset sampling, topic extraction from ref-

erence datasets, and relevance ranking is used. Topics are extracted using named-

entity-recognition techniques, where the ranking of the topics is based on their

normalized relevance score for a dataset. These profiles are represented in RDF

using VOID vocabulary and Vocabulary of Links12. The accuracy for the dataset

profiles is measured using normalized discounted cumulative gain which compares

the ranking of the topics with the ideal ranking indicated by the ground truth.

Automatic identification of topic domains of the datasets utilizing the hierarchy

within the Freebase dataset is presented in [81]. This hierarchy provides back-

ground knowledge and vocabulary for the topic labels. This approach is based on

assigning Freebase types and domains to the instances in an input LD dataset.

The main challenge in this approach is that it fails to identify the prominent topic

domains if in Freebase there are no instances that match entities in the dataset.

Some approaches propose to model the documents as a mixture of topics, where

each topic is treated as a probability distribution over words such as Latent Dirich-

let Allocation (LDA) [27], Pachinko Allocation [86] or Probabilistic Latent Seman-

tic Analysis (pLSA) [66]. As in [119], the authors present TAPIOCA13, a Linked

12http://data.linkededucation.org/vol/
13http://aksw.org/Projects/Tapioca.html
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Data search engine for determining the topical similarity between datasets. TAPI-

OCA takes as input the description of a dataset and searches for datasets with

similar topic which are assumed to be good candidate for linking. Latent Dirichlet

Allocation (LDA) is used to identify the topic or topics of RDF datasets. For the

probabilistic topic-modelling based approach two types of information are used;

instances and the structure of RDF datasets. The metadata comprises classes and

properties used in the dataset, removing the classes and properties of most known

vocabularies such as RDF, RDFS, OWL, SKOS and VOID because they do not

provide any information about the topic. By extracting this structural metadata

from a dataset, TAPIOCA transforms it into a description of the topical content

of the dataset. In this work, the authors build a gold standard and make it avail-

able, but it is difficult to use it as the information is encoded. As described by the

authors, the challenge is to search for a good number of topics and how to handle

classes and properties in other languages rather than English. Thus, picking a

good number of topics has a high influence on the models performance. Moreover,

approaches that use LDA are very challenging to adapt in cases when a dataset

has many topics. These approaches are very hard to be applied in LD datasets

because of the lack of the description in natural language of the content of the

dataset as will be described in chapter 4.

Remarks for topic-based profiling

• There is no existence of a gold standard for the multi-topic classification of

LD datasets so the developed approaches can be comparable.

• Some approaches do not provide any experimental data, thus making it

challenging to replicate the results.

• Many approaches for the topic classification are using only classes and prop-

erties in English language thus limiting their application for datasets with

other language rather than English.

• Topics can be represented by relevant classes where the relevant classes are

mined by considering mappings between classes of the most known vocab-

ularies thus making this approach inapplicable for datasets using other vo-

cabularies rather than the most known.

• Some approaches consider only textual representation thus making this in-

applicable for datasets that do not have a graph rich of labels.
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• One approach uses categories in the Freebase dataset as topic, by assigning

its types and domains to the instances of the dataset for which we want to

assign the topic, failing in the case where there are no instances that match

entities in the dataset.

• Using probability distribution leads to the challenge of finding the good num-

ber of topics as this influences directly to the performance of the approach.

3.4 Schema-Based Profiling

Different approaches have been proposed for schema and data summarization.

Most of them identify pieces of knowledge that are more relevant to the user,

while the others do not represent the relations among instances but are limited in

presenting the co-occurence of the most frequent types and properties. Here we

will describe approaches that are explicitly proposed to summarize Linked Data

and ontologies and to extract statistics about the data.

A first body of work has focused on summarization models aimed at identifying

subsets of datasets or ontologies that are considered to be more relevant. The

authors in [149] rank the axioms of an ontology based on their relevance to present

to the user a view about the ontology. The evaluation of such approach is done

using three small ontologies, containing few classes and properties. Rather, it is

not known how this approach will perform for large ontologies such as DBpedia.

Also, the authors do not have the intention to support further exploration of the

ontology once user gets interested. RDF Digest [135] identifies the most relevant

subset of a knowledge base (KB) including the distribution of instances in order

to efficiently create summaries. This approach is tested only on RDFS ontologies

and only on small ones. Both approaches are evaluated comparing the results of

the summary with a gold standard summary, and in none of them the summary

is evaluated in an application scenario.

As described in section 3.2, Loupe [92] is a tool used to inspect Linked Data by

providing an overview of datasets content by means of patterns. Patterns describe

relations between types and are used to construct summaries. For a big dataset

the summary extracted by Loupe is also big as all types or relations are included.

Moreover as we will discuss in chapter 5 it is not easy to navigate and explore such

summaries.
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In [61], the authors propose a graph-based approach called ELIS for visualizing

and exploring induced schema for Linked Open Data. ELIS extracts patterns,

called schema-level patterns as a combination between a set of subject types and

a set of object types. These subject sets and object sets can be seen as nodes

connected by a property. Using ELIS users are capable to visualize the induced

schema. No evaluation of the induced schema is provided and there is no compar-

ison between other induced schema approaches. Similarly, the approach in [141]

induces a schema from data and their axioms represent stronger patterns to mine

stronger constraints.

The approach called HEIDS is proposed in [40]. This approach summarizes dataset

content and generates a hierarchical grouping of entities connected by relations.

For the summarization, HEIDS considers coverage of dataset, height of hierarchy,

cohesion within groups, overlap between groups, and homogeneity of groups. Two

datasets are used to evaluate this approach and the authors measured empirically

the quality of the provided summary compared to a baseline method and report

the run time. For datasets whose instances do not share many property-value pairs

it is difficult to create hierarchical summaries, resulting in a flat and big summary.

In [36], the authors consider vocabulary usage in the summarization process of an

RDF graph and use information similar to knowledge patterns. A similar approach

is also used in MashQL [71], a system proposed to query graph-based data (e.g.,

RDF) without prior knowledge about the structure of a data set. Knowledge

pattern extraction from RDF data is also discussed in [113], but in the context of

domain specific experiments and not with the purpose of defining a general Linked

Data summarization framework.

SchemeEx extracts interesting theoretic measures for large datasets, by considering

the co-occurrence of types and properties [77]. A data analysis approach on RDF

data based on a warehouse-style analytic is proposed in [45]. This approach focuses

on the efficiency of processing analytical queries which poses additional challenges

due to their special characteristics such as complexity, evaluated on typically very

large data sets, and long runtime. However, this approach requires the design

of a data warehouse specially for a graph-structured RDF data. Linked Open

Vocabularies, RDFStats [83] and LODStats [8] provide several statistics about

the usage of vocabularies, types and properties but they do not represent the

connections between types.
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Remarks for schema-based profiling

• Some approaches for schema-based profiling are tested on ontologies or dataset

that contain only few classes, properties or instances.

• Usually approaches that provide a summary of the content of the dataset

include only the most relevant features thus giving a non complete view of

the dataset.

• In none of the proposed approach the summary is evaluated in a user scenario

application.

• The consideration of all relation between types, or generating summaries for

datasets in which instances do not share many property/ value pairs result

in including in the summary redundant information.

• There is a need in summarizing datasets considering the information in the

dataset and its ontology as considering only one of those is not enough.

• Some summarization approaches work on specific domains thus can not be

applied to all datasets.

• There exist some tools that require a dataset SPARQL endpoint to be able to

extract the summary but not all datasets in the LD cloud provide one. More-

over, even for the datasets that have a SPARQL endpoint these approaches

pose the challenge of efficiency.

3.5 Linkage-Based Profiling

As we mentioned in chapter 1, we focus on data linking at instance level and thus in

the related work we present only those tools or techniques. The surveys [102] and

[63] summarize the effort done by the community in the field of instance matching

(the process of finding equivalent instances among different datasets). Similarity

is usually performed on string bases. Often semi-automated approaches, which

must be pre configured by the user may select from a wide range of similarity

functions those suitable for the task at hand such as Silk [142]. The Silk system

assumes a supervised matching scenario where the user specifies entities to link

in a configuration file and selects an aggregation approach (weighted average,
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max(min), Euclidean distance, or weighted product) for her task. Similar to Silk,

the LIMES system [103] is a semi-automated approach that needs a configuration

file to be set up.

The LiQuate framework [120] combines Bayesian Networks and rule-based systems

to analyze the quality of data and links in the LD cloud. The Bayesian Networks

model dependencies among resources, while queries among these models, repre-

sent the probability that different resources have redundant labels or that a link

between two resources is missing while a probabilistic rule-based system is used to

infer new links that associate equivalent resources. The LiQuate framework can

be used to suggest ambiguities or possible incompleteness in the data or links and

to resolve the ambiguities and incompleteness identified during the exploration of

the Bayesian Network. The LiQuate framework deals with two incompleteness

problems; link incompleteness and ambiguities between labels of resources and be-

tween sets of links. This is a semi-automated approach for which the last update

was in 2013.

LINDA [30] is a system used to compute the similarity between two entities based

on their neighbors. Two kinds of similarities are computed; apriori similarity and

contextual similarity. Apriori similarity is based on literals and constraints and

contextual similarity is computed on each iteration and considers the current state

of similarity matrix. LINDA assumes each dataset to be already disambiguated

addressing a narrow application.

A statistical and qualitative analysis of instance level equivalence in the LD cloud

to automatically compute alignments at the classes level could be found in [46].

Adopting classical Jaccard methods to the ontology alignment task allow to im-

prove the level of integration between datasets as this will help to resolve semantic

heterogeneity. The authors used the Jaccard coefficient to measure the similar-

ity between two classes when interpreted as sets of instances. They considered

DBpedia as the source dataset and 6 target datasets, and extracted the sameAs

links (RDF links that connect equivalent entities). Also, the authors extracted

the classes’ hierarchy where the behavior of classical Jaccard similarity measure

was analyzed by studying the influence of hierarchical information in producing

the alignments.

The authors in [106], introduced an approach to automatically detect redundant

identifiers solely by matching the URIs of information resources. They used two
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techniques to match URIs. The first is to tokenize the URI in all special characters

and calculate the cosine similarity of all TF-IDF vectors [72] and the second tech-

nique is to use exact string matching techniques after dividing the URI into prefix,

infix and suffix to detect duplicates. Their approach is limited only for string sim-

ilarity and do not cover cases when the URI contains numerical information and

blank nodes.

PARIS [129] is a probabilistic approach for the automatic alignment of ontologies.

It aligns instances, relations and classes by measuring degrees of matching based

on probability estimates. The PARIS system characterizes a standardized score

between pairs of instances that represent how likely they are to be matched, and

that relies on the matching scores of their compatible neighbors. The final scores

are obtained by first initializing (and fixing) the scores on pairs of literals, and then

propagating the updates through the relationship graph using a fixed point itera-

tion. PARIS does not deal with structural heterogeneity and it assumes ontologies

to be the same level of granularity. As demonstrated by [80], the implementation

of PARIS is not easy.

SiGMa [80] is a framework used to automatically identifying corresponding en-

tities among datasets and interlinking them. It works in two stages: first starts

with a small seed matching assumed to be of good quality and after the algorithm

incrementally augments the matching. The matching is done by using both struc-

tural information and properties of entities such as their string representation to

define a modular score function. The experiments results are satisfactory and can

be applied in large scale. As in the first step it assumes a small seed matching

assumed to be of a good quality it is prone for errors and it does not allow cor-

recting previous mistakes. It also needs parameter tuning for the learning to rank

model and can not handle alignments other than 1-1.

Remarks for linkage-based profiling

• Most of the approaches in linkage-based profiling are semi-automatic needing

the user intervention for setting up a configuration file

• Usually linkage frameworks use the classical similarity metrics that are ap-

plied on literal values but also structural information should be taken into

consideration
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• For those approaches that consider also structural heterogeneity, they assume

that ontologies are of the same level of granularity while in practice ontologies

can be of different granularity levels

• Frameworks that adopts ranking functions are difficult to implement and

they need parameter tuning

• Some approaches consider the information of the local name in the URI of

a resource for the similarity measures, but these approaches are limited and

can be applied in only decoded string URIs

3.6 Summary

In this chapter we discussed the state-of-the-art approaches and tools in profiling

Linked Data. As reflected in this chapter although there are huge achievements

by the approaches and tools developed by the community, there are still some

open issues. Most of the existing profiling tools generate basic statistics about a

dataset thus covering only a specific task. The three aspects of profiling considered

in this thesis have not been studied in a systematic way, thus there exist many

open issues.

Because of the importance of the solutions for each open issue, profiling Linked

Data is a hot topic. Although in this thesis we can not address all the above issues

we resolve some of them as it will be described in the following chapters.





Chapter 4

Topic-Based Profiling

In this chapter we address the problem of automatic topic profiling to support

users in classifying their data into one of the topical categories of the LD cloud by

training machine learning classifiers with different features vectors. We provide

an approach for classifying datasets at two levels of granularity; single-topic and

multi-topic classification.

The chapter is structured as follows. Section 4.2 discusses the data model used

to train our machine learning classifiers. We also provide a description for each

topic and introduce some examples for datasets that belonge to each of them. In

section 4.3 we introduce the approach; describing first the features we consider as

input for our purpose. Then, we introduce the reader to three classification algo-

rithms,kNN, Naive Bayes and J48 that we considered for our experiments. More-

over, because of the imbalance of the datasets belonging to each topical category

we also describe different techniques for sampling. We considered two normaliza-

tion technique for the features used by each dataset with the aim of reducing the

influence of features that occur more often in the dataset. Results of the single-

topic classification are provided in section 4.4.1 while the results of the experiments

for the multi-topic classification are provided in section 4.4.2. We conclude this

chapter with the discussion of the results achieved by our experiments in sections

4.4.1.3 and 4.4.2.3 .

55
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4.1 Overview

The Web nowadays offers millions of datasets containing information on almost

every area that might be interesting to someone. Often a user requires retrieving

very fast all the available and useful information about a target, such as people,

events, places, situations, etc. This information is important in order to take

decisions, organize business work and plan future actions. The process of exploring

Linked Data for a given target is long and not intuitive. Especially when the

dataset do not provide information about its topic/s a lot of exploration steps

are required in order to understand if the information contained in the dataset is

useful or not. The decision of using such dataset is done through accessing the

metadata that describe its content.

Data publishers should provide metadata that describe the characteristics of the

datasets, for instance their topics, and more detailed information about their con-

tent as well as statistics [65]. These metadata are represented using the VOID

vocabulary. Dataset-level metadata are also represented using Semantic Sitemaps.

In the state of LD 20111, 63,05% (186 out of 295 data sources) do not provide ei-

ther a VOID description or a Semantic Sitemap. Since the first proposal of Linked

Data as a data publishing standard, the Linked Data cloud has grown to more

than 1 000 datasets as of April 2014 [124]. The number of datasets that provide a

VOID description from 2011 to 2014 has decreased from 32.20% to 14.69%. This is

an important shortcoming of the current LD cloud. The datasets in the LD cloud

2014 belong to different domains, with social media, government data, and publi-

cations data being the most prominent areas [124]. For some dataset published as

LD such as Linked Movie Database2, or GeoNames, the metadata are completely

missing, while for some others e.g., DBpedia3, the topics it covers are not explicitly

described. The covered topics might be easy to guess in cases where the dataset is

well-known, but for relatively small and unknown datasets it is difficult to know

its topic, e.g., what is the topic of http://sadiframework.org/services/ dataset?

For many purposes, it is useful to have a classification of datasets according to their

topical domain. Agents navigating through the Web of Linked Data should know

the topic of a dataset discovered by following links in order to judge whether it is

useful for the use case at hand or not. Furthermore, as shown in [124], it is often

1http://lod-cloud.net/state/#data-set-level-metadata
2http://www.linkedmdb.org/
3http://www.dbpedia.org
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interesting to analyze characteristics of datasets clustered by topical domains, so

that trends and best practices that exist only in a particular topical domain can

be identified. Link discovery also can be supported by knowing the topic of the

dataset. Usually datasets that share the same topic, probably share equivalent

instances. Topical classification is also important for categorizing of the Linked

Data cloud as in Fig. 1.1, which marks datasets according to their topical domain.

Up till now, topical categories were manually assigned to LD datasets either by

the publishers of the datasets themselves via the datahub.io dataset catalog or

by the authors of the LD cloud.

The topic of a dataset can be understood as the dataset’s subject, i.e. the subject

or theme of a discourse or of one of its parts. As the LD cloud was manually

created, for every dataset in the cloud the topic was assigned by either verifying

its content or by accessing the metadata assigned by the publisher. Recalling the

user scenario in section 1.1, the first criteria for our app developer to select the right

datasets is to know their topics. Because the topic of the datasets was manually

assigned, she needs an automatic approach to assign the topic to other datasets

she finds on the Web. To support this problem, in this chapter, we investigate

to which extent can we automatically classify datasets into the topical categories

used within the LD cloud. We use the most recent LD cloud data collection [124]

to train different classifiers for determining the topic of a dataset.

4.2 Data Model

The last crawl of Linked Data was performed in April 2014 by [124]. Authors used

the LD-Spider crawler originally designed by [69], which follows dataset interlinks

to crawl LD. The crawler seeds originate from three resources:

(1) Datasets from the lod-cloud group in datahub.io datasets catalog, as well

as other datasets marked with Linked Data related tags within the same

catalog.

(2) A sample from the Billion Triple Challenge 2012 dataset4.

(3) Datasets advertised on the public-lodw3.org mailing list since 2011.

4http://km.aifb.kit.edu/projects/btc-2012/

http://km.aifb.kit.edu/projects/btc-2012/
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The crawled data contained 900 129 documents describing 8 038 396 resources with

altogether 188 million RDF triples. To group all the resources in datasets, it was

assumed that all the data originating by one pay-level domain (PLD) belong to

a single dataset. The gathered data originates from 1024 different datasets from

the Web and is publicly available5. Fig. 4.1 shows the distribution of the number

of resources and documents per dataset contained in the crawl.

Figure 4.1: Distribution of the number of resources (—) and documents (- -
-) (log scale) per dataset contained in the crawl

For creating the diagram, the datasets were manually annotated with one of the

following topical categories: media, government, publications, life sciences, geo-

graphic, cross-domain, user generated content, and social networking [124].

Media category contains datasets providing information about films, music, TV

and radio programmes, as well as printed media. Some datasets in this

category are the dbtune.org music dataset, the New York Times dataset,

and the BBC radio and television program datasets.

Government category contains Linked Data published by federal or local gov-

ernments, including a lot of statistical datasets. Examples of the datasets

in this category include the data.gov.uk and opendatacommunities.org

dataset.

Publications category holds information library datasets, information about sci-

entific publications and conferences, reading lists from universities, and cita-

tion database. Prominent datasets in this category include German National

Library dataset, the L3S DBLP dataset and the Open Library dataset.

5http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/

http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/
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Geographic category contains datasets like geonames.org and linkedgeodata.org

comprising information about geographic entities, geopolitical divisions and

points of interest.

Life science category comprises biological and biochemical information, drug-

related data, and information about species and their habitats. Examples

of datasets that belong to this category are Drugbank FU-Berlin, Geospecies

and Biomodels RDF.

Cross-domain category includes general knowledge bases such as DBpedia or

UMBEL, linguistic resources such as WordNet or Lexvo, as well as product

data.

User-generated content category contains data from portals that collect con-

tent generated by larger user communities. Examples include metadata

about blogposts published as Linked Data by wordpress.com, data about

open source software projects published by apache.org, scientific workflows

published by myexperiment.org, and reviews published by goodreads.com

or revyu.com.

Social networking category contains people profile as well as data describing

the social ties among people. In this category individual FOAF profiles

are included, as well as data about the interconnections among users of the

distributed microblogging platform StatusNet.

The authors of the LD cloud make a distinction between the categories user-

generated content and social networking. Datasets in the former category focus on

the actual content while datasets in the later category focus on user profiles and

social ties. Fig. 4.2 shows the distribution of categories over the dataset within

the LD cloud.

As we can see from Fig. 4.2, the cloud is dominated by datasets from the social

networking category, followed by government datasets. Only less than 25 datasets

are included in the cloud for each of the domains media and geographic. The

topical category is manually assigned to each dataset in the LD cloud thus we

consider as a gold standard for our experiments. The imbalance needs to be taken

into account for the later model learning, as some classification algorithms tend

to predict better for stronger represented classes.
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Figure 4.2: Topics Distribution within LD Cloud Datasets

Given a large RDF dataset with heterogeneous content, we want to derive the

topic or topics that can be understood as the subject/s of the dataset by using

different feature vectors that describe the characteristics of the data.

Definition 4.1. (Topical category) Given a set of RDF triples (s, p, o), a topic T

is a set of labels { l1, l2, ...lk } that describes the content of the dataset relating it

with a specific area of the real world.

Definition 4.2. (Single-topic classification) Given a set { D1, D2, ...DN } of

datasets, where each Di is associated with a feature vector xi= (xi1, xi2, ... xiM),

the process of assigning only a single label lj from the set of labels { l1, l2, ...lp }
to Di, is called single-topic classification.

Definition 4.3. (Multi-topic classification) Given a set { D1, D2, ...DN } of

datasets, where each Di is associated with a feature vector xi= (xi1, xi2, ... xiM),

the process of assigning a subset of labels lk ⊆ L to Di, where L = { lk : k = 1..p

} is the set of p possible labels, is called multi-topic classification.

In the LD cloud 2014 the datasets have only one topic, which was manually as-

signed. Throughout this thesis, we investigate the problem of assigning to LD

datasets a single or multi topics. At the beginning we investigate to which extent

can we automatically assign a single topic to each dataset. Considering the results

of the first experiments about single-topic classification we investigate the problem

of multi-topic classification of LD datasets.
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4.3 Approach

For the topical extraction or classification of LD datasets several approaches have

been proposed as in section 3.3. These approaches consider schema-level [50,

31, 81] or data-level information [37, 56] as input for the classification task. In

[66] the topic extraction of RDF datasets is done through the use of schema and

data level information. Similarly as in the cited works, we also investigated if

schema or data-level information are good indicators for the topical assignment.

We extracted different feature vector, for all datasets in the LD cloud and train

different classification algorithms on top of them. In our work, we draw from

the ideas of [50] of using schema-usage characteristics as features for the topical

classification, but focus on LD datasets. [37] takes a keyword-based specification

of a topic of interest and returns a part of the graph related to the keyword

given as input through matching techniques, while in our approach we do not

imply any matching algorithm, but use schema-based information to assign the

topic. Differently from [31] which omits any kind of features based on textual

representations and solely relies on the exploitation of the underlying graph, in our

approach we extract all schema-level data. In this approach only strong relations

between classes are discovered from the whole graph, while in our approach we do

not consider the relation between classes but extract all classes and all properties

used in the dataset. [56] extracts topics using named-entity-recognition techniques,

the category graph and instances from DBpedia. In our approach we do not use any

entity-recognition techniques but rather use schema-level information and different

algorithms for the topic classification of LD datasets. The approach proposed by

[66] uses LDA for the topical extraction of RDF datasets. For the probabilistic

topic-modelling two types of information are used; instances and the structure

of RDF datasets. This is a very challenging approach to adapt especially when

the dataset belongs to many topics or the description of the dataset is in other

languages rather than in English.

4.3.1 Feature Vectors

For each of the datasets contained in our collection, we created ten different feature

vectors, which capture different aspects of the dataset. We made this information
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available6.

Vocabulary Usage (VOC): As vocabularies mostly describe a set of classes for

a particular domain, e.g. foaf for describing persons, or bibo for bibli-

ographic information, we assume that the vocabularies used by a dataset

form a helpful indicator for determining the topical category of the dataset.

We extract the predicates and classes which represent the set of terms of the

vocabularies used by the dataset. We determine the vocabularies by aggre-

gating the namespaces of these terms. We then summed up the number of

occurrences resulting in a total of 1 453 vocabularies.

Class URIs (CUri): As a more fine-grained feature, the rdfs:classes and

owl:classes which are used to describe entities within a dataset might

provide useful information to determine the topical category of the dataset.

Thus, we extracted all used classes of the datasets in the cloud and generated

914 attributes.

Property URIs (PUri): Beside the class information of an entity, another fea-

ture which will help is to have a look at the properties which are used to

describe it. For example it might make a difference, if people in a dataset

are annotated with foaf:knows statements or if her professional affiliation is

provided. To leverage this information, we collected all the properties which

are used within one dataset from the crawled data. This feature vector

consists of 2 333 attributes.

Local Class Names (LCN): Different vocabularies might contain synonymous

(or at least closely related) terms as described in section 1.2 that share the

same local name and only differ in their namespaces, e.g. foaf:Person and

dbpedia:Person. Creating correspondences between similar classes from

different vocabularies reduces the diversity of features, but on the other side

might increase the number of attributes which are used by more than one

dataset. As we lack correspondences between all the vocabularies, we bypass

this by using only the local names of the classes, meaning vocab1:Country

and vocab2:Country are mapped to the same attribute. We used a simple

regular expression to determine the local class name checking for #, : and

/ within the class URI. By focusing only on the local part of a class name,

we increase the number of classes that are used by more than one dataset in

6https://github.com/Blespa/TopicalProfiling
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comparison to CUri and thus generate 1 041 attributes for the LCN feature

vector.

Local Property Names (LPN): Using the same assumption as for the LCN

feature vector, we also extracted the local name of each property that is

used by a dataset. This results in treating vocab1:name to vocab2:name as

a single property. We used the same heuristic for the extraction as for the

LCN feature vector and generated 2 073 different local property names which

are used by more than one dataset, resulting in an increase of the number

of attributes in comparison to the PUri feature vector.

Text from rdfs:label (LAB): Beside the vocabulary-level features, the names

of the described entities might also indicate the topical domain of a dataset.

We thus extracted objects (values) of rdfs:label properties, lower-cased

them, and tokenized the values at space characters. We further excluded

tokens shorter than three and longer than 25 characters. Afterward, we

calculated the TF-IDF [72] value for each token while excluding tokens that

appeared in less than 10 and in maximal 200 datasets, in order to reduce

the influence of noise. This resulted in a feature vector consisting of 1 440

attributes. For LAB, we could only gather data for 455 datasets, as the

remaining did not make use of the rdfs:label property.

Text from rdfs:comment (COM): We also extracted the values describing en-

tities using the rdfs:comment property. We extracted all values of the com-

ment property, and proceed in the same way as with the LAB feature. We

lower-case all values and tokenize them at space characters and filtered out

all values shorter than 3 characters and longer that 25 characters. This

property is used by only 252 datasets, and not by the whole datasets in the

cloud. For this feature we got 1 231 attributes. In difference from the LAB

feature vector, we did not filter out tokens that were used by less than 10

datasets or more than 200 datasets. This was because the number of the

datasets that were using the rdfs:comment was only 252 in whole LD cloud.

Vocabulary Description from LOV (VOCDES): LOV provides metadata about

the vocabularies found in the LD cloud are provided. Among different meta-

data, it is also given the description in natural language for each vocabulary.

From this description we can understand for which domain or topic we could
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use this vocabulary. In the LOV website, there exist 5817 different vocabu-

laries. While in LD as described in the VOC feature vector there are 1453

different vocabularies. From 1438 vocabularies in LD, only 119 have a de-

scription in LOV, thus for 1319 vocabularies used in LD we do not have a

description.

Top-Level Domains (TLD): Another feature which might help to assign datasets

to topical categories is the top level domain of the dataset. For instance,

government data is often hosted under the .gov top-level domain, whereas

library data might be found more likely on .edu or .org top-level domains8.

In & Outdegree (DEG): In addition to vocabulary-based and textual features,

the number of outgoing RDF links to other datasets and incoming RDF

links from other datasets could provide useful information for classifying the

datasets. This feature could give a hint about the density of the linkage of

a dataset, as well as the way the dataset is interconnected within the whole

LD cloud ecosystem.

We extracted all the described features separately from the crawled data. We were

able to gather all features (except for LAB and COM) for 1001 datasets.

4.3.2 Classification Approaches

Classification problem has been widely studied in the database [87], data mining

[111], and information retrieval communities [73], and aims at finding regularities

in patterns of empirical data (training data). The problem of classification is de-

fined as follows: given a set of training records D= {X1, X2,...Xn}every record

should be labeled with a class value drawn from a set of l different discrete val-

ues indexed by {1, 2,...l}. We choose to test different classification approaches,

kNN, Naive Bayse and J48. Although there are tons of alternative classification

algorithms available, we selected the ones for which the need for tuning is not

too large, as for example the support vector machines because we do not want to

overfit our learners by parameter tuning. The overfitting occurs when a model,

does not fit the training data, thus is not reliable in making predictions.

7Numbers here refer to the version of LOV at the time when experiments for the topic
classification were running in 2015.

8We restrict ourselves to top-level domains, and not public suffixes
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k-Nearest Neighbour: kNN is one of the oldest non-parametric classification

algorithms [15]. The training examples are vectors described by n dimen-

sional numeric attributes. In kNN classification an object is classified by a

majority vote of its neighbours, with the object being assigned to the class

most common among its k nearest neighbours measured by a distance func-

tion. Choosing the right k value is done by inspecting the dataset first. In

our experiments, based on the preliminary experiments on a comparable but

disjunct set of data, we found that a k equal to 5 performs best. Euclidean

measure is a good distance measure to use if data used as input are of simi-

lar type, e.g., all data are measured by the same metric such as heights and

widths. While Jaccard distance is a good measure when the data in input

are of different types, e.g., data are measured by different metrics such as age,

weights, gender, etc. For this reason we used Euclidean-similarity for the

binary term vectors and Jaccard-similarity for the relative term occurrence

vectors as it will be described in 4.3.4.

J48 Decision Tree: Decision Trees are a powerful classification algorithms that

run a hierarchical division of the underlying data. The most known algo-

rithms for building decision trees are Classification and Regression Trees [33]

and ID3 and C4.5 [115]. The decision tree is a tree with decision nodes which

has two or more branches and leaf nodes that represents a classification or

a decision. The splitting is based on the feature that gives the maximum

information gain or uses entropy to calculate the homogeneity of a sample.

The leaf node reached is considered the class label for that example. We use

the Weka implementation of the C4.5 decision tree [114] called J48. Many

algorithms try to prune their results. The idea behind pruning is that apart

from producing fewer and more interpreted results, you reduce the risk of

overfitting to the training data. We build a pruned tree, using the default

settings of J48 with a confidence threshold of 0.25 with a minimum of 2

instances per leaf.

Naive Bayes: As a last classification algorithm, we use Naive Bayes. A Naive

Bayesian [118] model is easy to build, with no complicated iterative param-

eter estimation which makes it particularly useful for very large datasets. It

is based on Bayes theorem with independence assumptions between predic-

tors. It considers each feature to contribute independently to the probability

that this example is categorized as one of the labels. Naive Bayes classifier
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assumes that the effect of the value of a predictor (x) on a given class (c)

is independent to the values of other predictors. This assumption is called

class conditional independence. Although this classifier is based on the as-

sumption that all features are independent, which is mostly a rather poor

assumption, Naive Bayes in practice has shown to be a well-performing ap-

proach for classification [146].

4.3.3 Sampling techniques

The training data is used to build a classification model, which relates the elements

of a dataset that we want to classify to one of the categories. In order to measure

the performance of the classification model built on the selected set of features

we use cross-validation. Cross-validation is used to assess how the results of the

classification algorithm will generalize to an independent dataset. The goal of using

cross-validation is to define a dataset to test the model learnt by the classifier in the

training phase, in order to avoid overfitting. In our experiments we used a 10-fold

cross-validation, meaning that the sample is randomly partitioned into 10 equal

sized subsamples. Nine of the 10 subsamples are used as training data, while one is

used as validation data. The cross-validation process is then repeated 10 times (ten

folds), with each of the 10 subsamples used exactly once as the validation data.

The 10 results from the folds can after be averaged in order to produce a single

estimation. As we described in section 4.1 the number of datasets per category is

not balanced and over half of them are assigned to the social networking category.

For this reason we explore the effect of balancing the training data. Even though

there are different sampling techniques, as in [44], we explored only three of them:

Down sampling: We down sample the number of datasets used for training until

each category is represented by the same number of datasets; this number is

equal to the number of datasets within the smallest category. The smallest

category is geographic with 21 datasets.

Up sampling: We up sample the datasets for each category until each category

is at least represented by the number of datasets equal to the number of

datasets of the largest category. The largest category is social networking

with 520 datasets.
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No sampling: We do not sample the datasets, thus we apply our approach in

the data where each category is represented by the number of datasets as in

the distribution of LD in Fig. 4.2.

The first sampling technique, reduces the chance to overfit a model into the direc-

tion of the larger represented classes, but it might also remove valuable informa-

tion from the training set, as examples are removed and not taken into account

for learning the model. The second sampling technique, ensures that all possible

examples are taken into account and no information is lost for training, but by

creating the same entity many times can result in emphasizing those particular

data.

4.3.4 Normalization techniques

As the total number of occurrences of vocabularies and terms is heavily influenced

by the distribution of entities within the crawl for each dataset, we apply two

different normalization strategies to the values of the vocabulary-level features

VOC, CUri, PUri, LCN, and LPN:

Binary version (bin): In this normalization technique the feature vectors of

each feature vector consist of 0 and 1 indicating the presence and the absence

of the vocabulary or term.

Relative Term Occurrence (rto): In this normalization technique the feature

vectors of each feature vector captures the fraction of the vocabulary or term

usage for each dataset.

In Table 4.1 shows an example on how we create the binary (bin) and relative

term occurrence (rto) given the term occurence for a feature vector.

Table 4.1: Example of bin and rto normalization

Feature Vectors Version
Feature Vector (fv)
fv1 fv2 fv3 fv4

Term Occurrence 10 0 2 6
Binary (bin) 1 0 1 1
Relative Term Occurrence 0,5 0 0,1 0,4
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4.4 Results

In this section we first report the results of our experiments using different feature

vectors for single topic in 4.4.1. Afterward, we apply our classification algorithms

with the goal of the multi-topic classification and report the results in section

4.4.2.

4.4.1 Single-topic classification

In this section we report the results for the experiments for single topic classi-

fication of LD datasets. We first report the results of our experiments training

different feature vectors in separation 4.4.1.1. Afterward, we combine all feature

vectors for both normalization techniques and again train our classification algo-

rithms considering the three sampling techniques and report the results in section

4.4.1.2.

4.4.1.1 Results of Experiments on Single Feature Vectors

For the first experiment we learn a model to classify LD datasets in one of the

eight categories described in 4.1. In this experiment we considered VOC, LCN,

LPN, CUri, PUri, DEG, TLD and LAB feature vectors applying the approach

described in section 4.3. For the above feature vectors, we trained the different

classification techniques as in 4.3.2 with different sampling techniques as in 4.3.3

and different normalization techniques as in 4.3.4.

In order to evaluate the performance of the three classification techniques, we use

10-fold cross-validation and report the average accuracy. Table 4.2 reports the

accuracy that is reached using the three different classification algorithms with

and without sampling the training data. Majority Class is the performance of a

default baseline classifier always predicting the largest category: social networking.

As a general observation, the schema based feature vectors (VOC, LCN, LPN,

CUri, PUri) perform on a similar level, LAB, TLD and DEG show a relatively

low performance and in some cases are not at all able to beat the trivial baseline.

Classification models based on the attributes of the LAB feature vector perform on

average (without sampling) around 20% above the majority baseline, but predict

still in half of all cases the wrong category. Algorithm-wise, the best results
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are achieved using the decision tree (J48) without balancing (maximal accuracy

80.59% for LCNrto) and the k -NN algorithm, also without balancing for the PUribin

and LPNbin feature vectors. Comparing the two balancing approaches, we see

better results using the up sampling approach for almost all feature vectors (except

VOCrto and DEG). In most cases, the category-specific accuracy of the smaller

categories is higher when using up sampling. Using down sampling the learnt

models make more errors for predicting the larger categories. Furthermore, when

comparing the results of the models trained on data without applying any sampling

approach, with the best model trained on sampled data, the models applied on

non sampled data are more accurate except for the VOCbin feature vectors. We

see that the balanced approaches are in general making more errors when trying to

predict datasets for the larger categories, like social networking and government.
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Table 4.2: Single-topic classification results on single feature vectors

Accuracy in %
Classification VOC CUri PUri LCN LPN
Approach bin rto bin rto bin rto bin rto bin rto LAB TLD DEG

Majority Class 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85

k-NN (no sampling) 77.92 76.33 76.83 74.08 79.81 75.30 76.73 74.38 79.80 76.10 53.62 58.44 49.25
k-NN (downsampling) 64.74 66.33 68.49 60.67 71.80 62.70 68.39 65.35 73.10 62.80 19.57 30.77 29.88
k-NN (upsampling) 71.83 72.53 64.98 67.08 75.60 71.89 68.87 69.82 76.64 70.23 43.67 10.74 11.89
J48 (no sampling) 78.83 79.72 78.86 76.93 77.50 76.40 80.59 76.83 78.70 77.20 63.40 67.14 54.45
J48 (down sampling) 57.65 66.63 65.35 65.24 63.90 63.00 64.02 63.20 64.90 60.40 25.96 34.76 24.78
J-48 (up sampling) 76.53 77.63 74.13 76.60 75.29 75.19 77.50 75.92 75.91 74.46 52.64 45.35 29.47
Naive Bayes (no sampling) 34.97 44.26 75.61 57.93 78.90 75.70 77.74 60.77 78.70 76.30 40.00 11.99 22.88
Naive Bayes (down sampling) 64.63 69.14 64.73 62.39 68.10 66.60 70.33 61.58 68.50 69.10 33.62 20.88 15.99
Naive Bayes (up sampling) 77.53 44.26 74.98 55.94 77.78 76.12 76.02 58.67 76.54 75.71 37.82 45.66 14.19

Average (no sampling) 63.91 66.77 77.10 69.65 78.73 75.80 78.35 70.66 79.07 76.53 52.34 45.86 42.19
Average (down sampling) 62.34 67.34 66.19 62.77 67.93 64.10 67.58 63.38 68.83 64.10 26.38 28.80 23.55
Average (up sampling) 75.30 64.81 71.36 66.54 76.22 74.40 74.13 68.14 76.36 73.47 44.81 33.92 18.52
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4.4.1.2 Results on Experiments of Combined Feature Vectors

In the second experiment, we combine all the feature vectors that we used in the

first experiment and again train our classification models.

As before, we generate a binary and relative term occurrence version of the vocabulary-

based features. In addition, we create a second set (binary and relative term occur-

rence), where we omit the attributes from the LAB feature vector, as we wanted

to measure the influence of this particular feature, which is only available for less

than half of the datasets. Furthermore, we create a combined set of feature vectors

consisting of the three best performing feature vectors from the previous section.

Table 4.3 reports the results for the five different combined feature vectors:

ALLrto: Combination of the attributes from all eight feature vectors, using the

rto version of the vocabulary-based features (This feature vector is generated

for 455 datasets).

ALLbin: Combination of the attributes from all eight feature vectors, using the

bin version of the vocabulary-based features (This feature vector is generated

for 455 datasets).

NoLabrto: Combination of the attributes from all feature, without the attributes

of the LAB feature vectors, using the rto version.

NoLabbin: Combination of the attributes from all feature, without the attributes

of the LAB feature vectors, using the bin version.

Best3: Includes the attributes from the three best performing feature vectors

from the previous section based on their average accuracy: PUribin, LCNbin,

and LPNbin

We can observe that when selecting a larger set of feature vectors, our model is

able to reach a slightly higher accuracy of 81.62% than using just the attributes

from one feature vector (80.59%, LCNbin). Still the trained model is unsure for

certain decisions and has a stronger bias towards the categories publications and

social networking.



Chapter 4. Topic-Based Profiling 72

Table 4.3: Single-topic classification results on combined feature vectors

Classification Accuracy in %
Approach ALLrto ALLbin NoLabrto NoLabbin Best3

k-NN (no sampling) 74.93 71.73 76.93 72.63 75.23
k-NN (down sampling) 52.76 46.85 65.14 52.05 64.44
k-NN (up sampling) 74.23 67.03 71.03 68.13 73.14
J-48 (no sampling) 80.02 77.92 79.32 79.01 75.12
J-48 (down sampling) 63.24 63.74 65.34 65.43 65.03
J-48 (up sampling) 79.12 78.12 79.23 78.12 75.72
Naive Bayes (no sampling) 21.37 71.03 80.32 77.22 76.12
Naive Bayes (down sampling) 50.99 57.84 70.33 68.13 67.63
Naive Bayes (up sampling) 21.98 71.03 81.62 77.62 76.32

4.4.1.3 Discussion

In the following, we discuss the results achieved by our experiments and analyze

the most frequent errors of the best performing approach for the single topic clas-

sification of LD datasets. The best performing approach is achieved by applying

Naive Bayes trained on the attributes of the NoLabbin feature vector using up

sampling. This approach achieved an accuracy of 81.62%. We take a closer look

at the confusion matrix of the second experiment described in Table 4.4, where on

the left side we list the predictions by the learnt model, while the heading names

the actual topical category of the dataset. As observed in the table, there are

three kinds of errors which occur more frequently than 10 times.

Table 4.4: Confusion Matrix for the NoLABbin feature vector, with Naive
Bayes classification algorithm, on up sampling.
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social networking 489 4 5 10 2 4 11 1
cross-domain 1 10 3 1 1 0 1 1
publication 8 10 54 9 4 4 2 2
government 3 4 14 151 1 2 0 2
life science 5 3 12 0 72 2 5 5
media 6 3 4 1 1 7 2 0
user-generated content 6 1 1 2 0 2 26 0
geographic 1 5 1 5 1 0 0 8

The most common confusion occurs for the publication domain, where a larger

number of datasets are predicted to belong to the government domain. A rea-

son for this is that government datasets often contain metadata about govern-

ment statistics which are represented using the same vocabularies and terms (e.g.



Chapter 4. Topic-Based Profiling 73

skos:Concept) that are also used in the publication domain. This makes it chal-

lenging for a vocabulary-based classifier to distinguish those two categories apart.

In addition, for example the http://mcu.es/ dataset the Ministry of Culture in

Spain was manually labeled as publication within the LD cloud, whereas the model

predicts government which turns out to be a borderline case in the gold standard

(information on the LD cloud). A similar frequent problem is the prediction of

life science for datasets in the publication category. This can be observed, e.g.,

for the http://ns.nature.com/publications/, which describe the publications

in Nature. Those publications, however, are often in the life sciences field, which

makes the labeling in the gold standard a borderline case.

The third most common confusion occurs between the user-generated content and

the social networking domain. Here, the problem is in the shared use of similar

vocabularies, such as foaf. At the same time, labeling a dataset as either one of

the two is often not so simple. In [124], it has been defined that social networking

datasets should focus on the presentation of people and their inter-relations, while

user-generated content should have a stronger focus on the content. Datasets from

personal blogs, such as www.wordpress.com however, can convey both aspects.

Due to the labeling rule, these datasets are labeled as user-generated content, but

our approach frequently classifies them as social networking.

In summary, while we observe some true classification errors, many of the mistakes

made by our approach actually point at datasets which are difficult to classify,

and which are rather borderline cases between two categories. For this reason

as it will be described in section 4.4.2, we investigate the problem of multi-topic

classification of LD datasets.

4.4.2 Multi-topic classification

In this section we report the results from the experiments for multi-topic classi-

fication of LD datasets. We first report the results of using the different feature

vectors separately as for the single-topic classification in section 4.4.2.1. After-

ward, we report the results of experiments combining attributes from multiple

feature vectors in section 4.4.2.2.

http://mcu.es/
http://ns.nature.com/publications/
www.wordpress.com
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4.4.2.1 Results of Experiments on Single Feature Vectors

In this section we report the results for classifying LD datasets in more than one

topical category described in 4.1, that we define as multi-topic classification of LD

datasets.

The objective of multi-label classification is to build models able to relate ob-

jects with a subset of labels, unlike single-label classification that predicts only a

single label. Multi-label classification has two major challenges with respect to

the single-label classification. The first challenge is related to the computational

complexity of algorithms especially when the number of labels is large, then these

approaches are not applicable in practice. While the second challenge is related to

the independence of the labels and also some datasets might belong to an infinite

number of labels. One of the biggest challenge in the community is to design new

methods and algorithms that detect and exploit dependencies among labels [89].

[136] gives an overview of different algorithms used in the multi-label classification

problem. The most straightforward approach for the multi-label classification is

the Binary Relevance (BR) [137]. BR reduces the problem of multi-label classifi-

cation to multiple binary classification problems. Its strategy involves training a

single classifier per each label, with the objects of that label as positive examples

and all other objects as negatives. The most important disadvantage of the BR,

is the fact that it assumes labels to be independent. Although BR have many

disadvantages, it is quite simple and intuitive. It is not computationally complex

compared to other methods and is highly resistant to overfitting label combina-

tions, since it does not expect examples to be associated with previously-observed

combinations of labels [117]. For this reason it can handle irregular labeling and

labels can be added or removed without affecting the rest of the model.

Also, for the multi-label classification problem one challenge is the lack of bench-

mark datasets. Since for the datasets in LD we lack the presence of a gold stan-

dard, we build one and make available for further research in this topic9. Also, the

work presented in [119], built a gold standard for the multi classification of RDF

datasets, but this work was done before the presentation of TAPIOCA framework.

As discussed in section 4.4.1.3 from the results of the first experiments, when we

classify datasets into one topical category, we learnt that one of the problems of

9https://github.com/Blespa/TopicalProfiling
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misclassification of LD datasets is that some categories or topics overlap between

each other. For example, it is not clear what datasets should go into social net-

working and which ones into user-generated content. User-generated content can

cover different topical domains thus to avoid misclassification of datasets we re-

move this category from the list of topical categories for LD datasets. We face the

same problem classifying datasets into the cross-domain category and any other

category. Because under the cross-domain category, also datasets in life science

domain, or media domain can be categorized, we removed this category from the

list of topics that we used for the multi-topic classification of LD datasets. From

eight categories in the single topic experiments, in the multi-topic classification

we have only six categories life science, government, media, publications, social

networking and geographic.

For the problem of multi-topic classification of LD datasets we first build the gold

standard. Two researchers independently classified datasets in the LD, into more

than one category. We randomly select 200 datasets from the whole LD cloud.

To assign more than one topical category to each dataset the researchers could

access the descriptive metadata published into Mannheim Linked Data Catalog10

which represents the metadata in the form of tags. Also, they had the possibility

to take a deeper look inside the data itself. From the results, the researchers had

an inter-rater agreement of 95.64%. Cases for which the assigned topics differ

between the two researchers were further discussed with two professors.

Table 4.5: Distribution of number datasets per number of topics

Number of topics 1 2 3 4 5
Number of datasets 85 87 22 4 2

Table 4.5 shows the distribution of the number of datasets by the number of topics.

As we can see, in our gold standard for the multi-topic classification, most of the

datasets have one or two topics, while less than 3% of the datasets have more than

four topics.

Multi-label classifiers can be evaluated from different points of view. Measures of

evaluating the performance of the classifier can be grouped into two main groups:

example-based or label-based [138]. The example-based measures compute the av-

erage differences of the actual and the predicted sets of labels over all examples.

While the label-based measures decompose the evaluation with respect to each

10http://linkeddatacatalog.dws.informatik.uni-mannheim.de/
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Table 4.6: Multi-topic classification results on single feature vectors

Micro -averaged measure
Classification CUri LCN
Approach bin rto bin rto
Approach P R F P R F P R F P R F

k-NN (no sampling) 0.66 0.20 0.31 0.65 0.18 0.29 0.68 0.21 0.32 0.34 0.25 0.29
k-NN (downsampling) 0.58 0.21 0.31 0.55 0.02 0.28 0.53 0.22 0.31 0.68 0.19 0.30
k-NN (upsampling) 0.47 0.31 0.38 0.44 0.30 0.36 0.46 0.29 0.36 0.45 0.28 0.34
J48 (no sampling) 0.54 0.16 0.25 0.57 0.15 0.23 0.58 0.17 0.27 0.59 0.15 0.23
J48 (down sampling) 0.46 0.19 0.27 0.35 0.22 0.27 0.47 0.21 0.29 0.34 0.22 0.27
J-48 (up sampling) 0.50 0.20 0.28 0.51 0.18 0.26 0.50 0.21 0.29 0.52 0.18 0.27
Naive Bayes (no sampling) 0.41 0.53 0.46 0.45 0.41 0.43 0.41 0.56 0.47 0.45 0.40 0.42
Naive Bayes (down sampling) 0.35 0.46 0.39 0.41 0.41 0.41 0.38 0.42 0.40 0.39 0.41 0.40
Naive Bayes (up sampling) 0.41 0.53 0.46 0.45 0.41 0.43 0.41 0.56 0.47 0.45 0.40 0.42

Average (no sampling) 0.54 0.30 0.34 0.56 0.25 0.32 0.56 0.31 0.35 0.46 0.27 0.31
Average (down sampling) 0.46 0.29 0.32 0.44 0.22 0.32 0.46 0.28 0.33 0.47 0.27 0.32
Average (up sampling) 0.46 0.34 0.37 0.47 0.30 0.35 0.46 0.35 0.37 0.47 0.29 0.34

label. For label-based measures we can use two metrics; macro-average and micro-

average. The macro-average averages the measures label-wise, while micro-average

merges all label predictions and computes a single value over all of them. Macro-

average measures give equal weight to each label, and are often dominated by the

performance on rare labels. In contrast, micro-average metrics gives more weight

to frequent labels. These two ways of measuring performance are complementary

to each other, and both are informative [89]. For this experiment we will report

the micro-average measure for precision (P), recall (R) and the harmonic mean

between them, the f-measure (F).

Similarly, as for the single topic experiments, we also applied our classification

algorithms on different feature vectors, taking into account also the different sam-

pling and normalization techniques described in section 4.3.3 and 4.3.4. Also for

the multi-topic classification of LD datasets we use a 10-fold cross-validation. For

our first experiment we consider the LCN, LPN, CUri and PUri feature vectors as

from the results of the experiments on the single topic classification they performed

better with respect to the other feature vectors.

Table 4.6 and 4.7 show the micro-accuracy in terms of precision, recall and f-

measure achieved by our classification algorithms. Algorithm-wise, the best results

precision-wise are achieved using k -NN, without sampling with a P = 0.68, R

= 0.21 and F = 0.32 trained on LCN binary, while for the best results for the

harmonic mean between precision and recall are achieved for the same feature
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Table 4.7: Multi-topic classification results on single feature vectors

Micro -averaged measure
Classification PUri LPN
Approach bin rto bin rto
Approach P R F P R F P R F P R F

k-NN (no sampling) 0.61 0.21 0.31 0.64 0.19 0.29 0.61 0.20 0.30 0.60 0.19 0.29
k-NN (downsampling) 0.52 0.22 0.31 0.58 0.19 0.29 0.55 0.22 0.32 0.56 0.21 0.30
k-NN (upsampling) 0.47 0.29 0.36 0.46 0.26 0.33 0.49 0.27 0.35 0.48 0.26 0.34
J48 (no sampling) 0.58 0.24 0.34 0.59 0.24 0.34 0.57 0.24 0.34 0.59 0.24 0.34
J48 (down sampling) 0.36 0.40 0.38 0.45 0.26 0.33 0.46 0.29 0.36 0.39 0.29 0.33
J-48 (up sampling) 0.53 0.27 0.35 0.55 0.27 0.36 0.56 0.29 0.39 0.54 0.27 0.36
Naive Bayes (no sampling) 0.61 0.21 0.31 0.64 0.19 0.29 0.61 0.20 0.30 0.60 0.19 0.29
Naive Bayes (down sampling) 0.52 0.22 0.31 0.58 0.19 0.29 0.55 0.22 0.32 0.56 0.21 0.30
Naive Bayes (up sampling) 0.47 0.29 0.36 0.46 0.26 0.33 0.49 0.27 0.35 0.48 0.26 0.34

Average (no sampling) 0.60 0.22 0.32 0,62 0,21 0,31 0,60 0,21 0,31 0.60 0,21 0,31
Average (down sampling) 0.47 0.28 0.33 0.54 0.21 0.30 0.52 0.24 0.33 0.50 0.24 0.31
Average (up sampling) 0.49 0.28 0.36 0.49 0.26 0.34 0.51 0.28 0.36 0.5 0.26 0.35

vector (LCN) training Naive Bayes on binary normalization technique. For the

same feature vector and classification algorithm, the results achieved are in similar

level for both sampling techniques; no sampling and up sampling; P=0.41, R=0.56

and F=0.47. Sampling-wise, the results achieved by the down-sampling are lower

than the two other techniques. Also, normalization-wise there is a mixture in

the results depending on the classification algorithm and the feature vector in the

input.

4.4.2.2 Results of Experiments for Combined Feature Vectors

In the second experiment for the multi-topic classification of LD datasets we com-

bine the feature vectors that we used in the first experiment and again train our

classification algorithms. Table 4.8 shows the results of ALL feature vector and

the combination of CUri, PUri, LCN and LPN.

From the results we can observe that when selecting a larger set of attributes, our

model is not able to reach a higher performance than using only the attributes from

one feature vector (P=0.68, R=0.21, F=0.32). Our model is precision-oriented and

reach a satisfying precision but the recall is very low, which means that our model

is not able to retrieve the right topic for the LD datasets. The highest perfor-

mance for the experiments taking as input a combination of features is achieved
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by training LCN and LPN binary vector as input for Naive Bayes on no sampling

data P=0.42, R=0.48 and F=0.45.
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Table 4.8: Multi-topic classification results on combined feature vectors

Micro -averaged measure
Classification PUri & CUri LPN & LCN ALL
Approach bin rto bin rto bin rto
Approach P R F P R F P R F P R F P R F P R F

k-NN (no sampling) 0.66 0.19 0.29 0.60 0.13 0.22 0.65 0.18 0.29 0.58 0.15 0.23 0.44 0.07 0.12 0.54 0.13 0.21
k-NN (downsampling) 0.53 0.23 0.32 0.56 0.16 0.25 0.53 0.23 0.32 0.51 0.19 0.28 0.42 0.08 0.13 0.51 0.14 0.22
k-NN (upsampling) 0.47 0.27 0.34 0.42 0.21 0.28 0.49 0.26 0.34 0.46 0.21 0.29 0.43 0.12 0.18 0.48 0.18 0.26
J48 (no sampling) 0.58 0.23 0.33 0.58 0.23 0.33 0.57 0.01 0.02 0.56 0.21 0.31 0.58 0.25 0.35 0.57 0.23 0.33
J48 (down sampling) 0.36 0.38 0.37 0.33 0.24 0.28 0.45 0.29 0.35 0.35 0.29 0.32 0.44 0.31 0.37 0.44 0.33 0.38
J-48 (up sampling) 0.54 0.27 0.36 0.55 0.27 0.36 0.53 0.27 0.35 0.52 0.24 0.33 0.58 0.25 0.35 0.51 0.25 0.34
Naive Bayes (no sampling) 0.51 0.39 0.44 0.50 0.34 0.41 0.42 0.48 0.45 0.54 0.34 0.41 0.54 0.34 0.42 0.52 0.31 0.39
Naive Bayes (down sampling) 0.42 0.43 0.43 0.38 0.40 0.39 0.40 0.40 0.40 0.37 0.42 0.40 0.41 0.42 0.41 0.38 0.41 0.39
Naive Bayes (up sampling) 0.51 0.39 0.44 0.50 0.34 0.41 0.53 0.36 0.43 0.54 0.34 0.41 0.55 0.32 0.40 0.52 0.31 0.39

Average (no sampling) 0.58 0.27 0,35 0.56 0.23 0.32 0.55 0.22 0.25 0.56 0.23 0.32 0.52 0.22 0.30 0.54 0.22 0.31
Average (down sampling) 0.44 0.35 0.37 0.42 0.27 0.31 0.46 0.31 0.36 0.41 0.30 0.33 0.42 0.27 0.30 0.44 0.29 0.33
Average (up sampling) 0.51 0.31 0.38 0.49 0.27 0.35 0.52 0.30 0.37 0.51 0.26 0.34 0.52 0.23 0.31 0.50 0.25 0.33
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4.4.2.3 Discussion

In the following, we discuss the results achieved by our experiments on the multi-

topic classification of LD datasets and analyse the most frequent errors of the best

performing approach. As from the results in section 4.4.2.1 and section 4.4.2.2

for the multi-topic classification of LD datasets the best performing approach in

terms of harmonic mean is achieved training the LCN using Naive Bayes on no

sampling data with a performance of P=0.41, R=0.56 and F=0.47. Consider

the problem of classifying the datasets with two topics, e.g., media and social

networking. A representative example is the bbc.co.uk/music dataset, which in

our gold standard is labeled with both topics. Our classifier predicts it as belonging

to only media category. This dataset except of including music data, contains also

other social networking data as a result of the possibility to sign up and create a

profile, follow other people or comment in different music posts. For this reason we

classify this dataset in our gold standard also as belonging to the social networking

category. The classifier failed to classify the second topic because the vocabularies

and classes used in this dataset belong mostly to the bbc vocabulary which is used

only in datasets belonging to bbc.co.uk domain. Since the classifier learnt that the

datasets from the social networking category make no use of such vocabulary, it

is difficult for it to classify also the bbc.co.uk/music into the social networking

category.

Consider the problem of classifying the datasets with three labels, e.g., govern-

ment, publication and geographic. One of the datasets belonging to these topics

is europa.eu. Our model classifies it as belonging to publication and government.

The model was not able to predict geographic as the third topic. Even though

this dataset contains some geographical data for all countries in the European

Union, for example http://europa.eu/european-union/about-eu/countries/

member-countries/italy_en the amount of geographic data with respect to the

government and publication data is smaller. In this small amount of geographical

data, the classifier could not find similar attributes as those used for training,

considering them to be noise and not assigning a topic.

For the datasets that have more than three topics, it is even harder for the classifier

to predict all labels, if there are few examples (instances) belonging to each topic

and they use similar vocabularies to define also instances that belong to other

topics.

bbc.co.uk/music
bbc.co.uk/music
europa.eu
http://europa.eu/european-union/about-eu/countries/member-countries/italy_en
http://europa.eu/european-union/about-eu/countries/member-countries/italy_en
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Because of the results discussed above indicate that only schema-level data are

not a good input to the classifiers, we also exploited the text information in these

datasets. For this reason we extracted the LAB and COM feature vectors. Then we

manually checked the text from LAB and COM feature vectors for the datasets

in the gold standard to understand if this information could be a good input.

We were able to find significant text only for 15 datasets (out of 200 in the gold

standard) while for all the others, the text was not in English, or rather it contained

acronyms, or was encoded. Because the number of datasets containing significant

text is very low, we did not further continue testing LAB and COM feature vectors

as input for the classifier for the multi-topic classification of LD datasets. Some

examples for the LAB feature set: Name According To, hgnc:10916, Comment

1, Blog2RSS, 010A, etc. Besides the LAB and COM, also the VOCDES feature

vector was not considered in our experiments. From 1438 vocabularies that are

used in LD, only 119 have a description in LOV. From 119 vocabularies with a

description, 90 of them are used in less than 10 datasets, while 5 of them are

used in more than 200 datasets. For this reason we did not use the description of

vocabularies in LOV as a feature vector for our classifiers.

4.5 Summary

In this chapter we discussed the problem of topic profiling. With the aim to

automatically classify datasets in the LD cloud in one of the topical categories, we

extracted different feature vectors and trained different classifiers. Furthermore,

we investigated three sampling techniques and two normalization strategies. We

exploited the problem of assigning a single-topic or more than one topic to LD

dataset. For the single-topic we achieved an accuracy of around 82%. We did

not achieve an accuracy of 100% because some datasets turn out to be borderlines

between two labels. The performance of the classification model for the multi-topic

classification showed that our approach is precision-oriented. The error analysis of

the misclassified cases showed that this is a more difficult task than the single topic

classification, because dataset use same or very similar feature vector to describe

entities. Moreover, the distribution of the datasets for each topical category highly

influences the classifier. The distribution of instances belonging to different topics

within a dataset is highly influencing the classifier. If the dataset contains only a

few instances belonging to a topic, our classifier consider this information as noise.





Chapter 5

Schema-Based Profiling

In this chapter we describe schema - based profiling by introducing an approach

for dataset summarization. We propose ABSTAT, which is a framework used

to summarize datasets by describing relations between types. The structure of

this chapter is organized as follows: section 6.1 gives a general overview of the

problem of summarizing dataset and why is schema-based profiling important.

The summarization model is presented in section 5.2. The implementation of

the model and the algorithm for the summarization are given in section 5.3. We

evaluate ABSTAT’s summaries from different perspectives and the experimental

results are presented in section 5.4 while conclusions end this chapter in section

5.5.

5.1 Overview

The fundamental objective of the Semantic Web is the production of a common

framework that allows information to be shared and reused across applications.

As we show in chapter 4 the number of datasets published as Linked Data has

increased up to 1014 as of April 2014 and continues increasing each day. Be-

cause of this increasing amount of information stored each day into databases or

triple stores, users can no longer explore the data by mere visual inspection. Even

knowing the topical category that a dataset belongs to, it does not give a complete

understanding of what is inside these data, thus further exploration steps should

be taken. A dataset might belong to the media category but this information does

not tell how resources are described. The lack of having an overview or a summary

83
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about the data that we want to investigate leads to inconspicuous relations in the

data and therefore contributes to an absence of comprehension of the space being

explored. The first step toward the data analysis and data exploration is data

summarization. The main goal of dataset summarization is the semantic compres-

sion of the characteristics of a dataset [121]. The problem of data summarization

has been studied by different communities such as database [121, 144], text sum-

marization [52, 101], graph summarization [133, 99] and ontology summarization

[149, 85]. In this chapter we present an ontology-driven dataset summarization

approach. In section 3.4 we presented the state-of-the-art techniques and tools

that deal with problems related to dataset summarization. As described in state

of the art, for big and complex datasets, a user may find it difficult to understand

to what extent a dataset covers a domain of interest and structures its content

[92, 149, 135, 109, 74]. Exploration systems should be able to allow users to inves-

tigate the data by choosing the attributes and relationships that are of interest,

and then make use of these features to produce small and informative summaries.

Given a LD dataset, users should be able to answer to questions such as: What

types of resources are described in the dataset? What properties are used to

describe the resources? What types of resources are linked and by means of what

properties? How many resources have a certain type and how frequent is the use

of a given property? Remarkably, difficulties in answering those questions have

several consequences for data consumption, resulting in low adoption of many

valuable but unknown datasets [124].

As described in section 2.3 Linked Data make use of ontologies to describe the

semantics of their data. They are used to classify classes, describe possible re-

lationships and define constraints on using them. However, answering the above

questions by only looking at ontologies is not easy.

Recall the user scenario example in section 1.1. Mrs. Eamla could reduce the

searching space for her purpose by applying topic-based profiling proposed in 4.

By applying this approach, she could find that two datasets LinkedBrianz and

DBpedia have at least media as one of their topics, thus these two datasets can

be good candidate for building the app. She wants to further understand the

semantics and the structure of the data in these datasets, thus she starts exploring

the ontology, as ontologies describe the semantics of the data.
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At the time of writing, DBpedia uses 685 (local) classes and 2795 properties. On-

tologies used to model a large amount of diverse data in a flexible way are often

underspecified. The domain is not specified for 259 properties of the DBpedia

Ontology, while the range is not specified for 187 properties, e.g., the property

dbo:authority does not have a domain or range defined in the ontology. In rel-

atively expressive ontologies like the Music Ontology, some connections between

classes may be specified by means of OWL axioms, e.g., qualified range restric-

tions, which may be difficult to understand for many data practitioners. For

LinkedBrianz dataset the domain is underspecified for 13 (out of 34 properties)

while the range is underspecified for 15 properties. Finally, the ontology does not

tell how frequently a certain modelling patterns occurs in the dataset. Thus, by

only looking at the ontology, Mrs. Eamla is not able to understand the semantics

of the data found in both datasets.

ABSTAT is an ontology-driven linked data summarization model proposed to mit-

igate the dataset understanding problem. In our view, a summary is aimed at

providing a compact but complete representation of a dataset. With complete

representation we refer to the fact that every relation between types that is not

in the summary can be inferred. One distinguishing feature of ABSTAT is that

it adopts a minimalization mechanism based on minimal type patterns. A mini-

mal type pattern is a triple (C,P,D) that represents the occurrences of assertions

<a,P,b> in RDF data, such that C is a minimal type of the subject a and D

is a minimal type of the object b. Minimalization is based on a subtype graph

introduced to represent the data ontology. By considering patterns that are based

on minimal types we are able to exclude several redundant patterns from the

summary and to specify several formal characteristics of the summaries. As a

consequence, summaries based on our model are rich enough to represent ade-

quately the whole dataset, and small enough to avoid redundant information. The

ABSTAT1 framework supports users to query (via SPARQL), to search and to

navigate the summaries through web interfaces. Other related work on data or

ontology summarization have focused on complementary aspects of the summa-

rization, such as the identification of salient subsets of knowledge bases (KB using

different criteria [149, 74, 135, 109], e.g., connectivity. Other approaches do not

represent connections between types as our model does [77, 8, 83].

1http://abstat.disco.unimib.it

http://abstat.disco.unimib.it


Chapter 5. Schema-Based Profiling 86

5.2 Summarization Model

As we show in section 2.3, ontologies (or vocabularies) are used to specify the

semantics of data modelled in RDF. Ontologies, which are usually represented

in languages such as RDFS and OWL, specify the meanings of the elements of

the ontology, e.g., classes, datatypes, properties, individuals, by means of logical

axioms [128]. Although we do not focus on a specific ontological language, in this

chapter we borrow the definition of a dataset from the definition of Knowledge Base

(KB) in Description Logics (DL). In a Knowledge Base there are two components:

a terminology definining the vocabulary of an application domain called TBox,

and a set of assertions describing RDF resources in terms of this vocabulary called

ABox [11].

Definition 5.1. (Dataset) A dataset is a couple ∆ = (T ,A), where T is a set of

terminological axioms, and A is a set of assertions.

The vocabulary of a dataset contains a set NC of types, where with type we refer

to either a class or a datatype, a set NP of properties, a set of named individuals

(resource identifiers) NI and a set of literals L. We use symbols like C, C ′, ..., and

D, D′, ..., to denote types, symbols P , Q to denote properties, and symbols a,b

to denote named individuals or literals. Types and properties are defined in the

terminology and occur in assertions.

Observe that different datasets adopt different policies with respect to the in-

clusion of entailed assertions in the published assertions: for example, DBpedia

explicitly includes the transitive closure of type inference in the published asser-

tion set, while other datasets do not follow the same policy, e.g., LinkedBrainz.

Our summarization model has to handle datasets that may have been published

following different inference publication policies. However, we will briefly discuss

the impact of different inference publication policies on the summarisation model

in section 5.3.

Assertions in A are of two kinds: typing assertions of form C(a), and relational

assertions of form P (a, b), where a is a named individual and b is either a named

individual or a literal. We denote the sets of typing and relational assertions by AC

and AP respectively. Assertions can be extracted directly from RDF data (even

in absence of an input terminology). Typing assertions occur in a dataset as RDF

triples (x, rdf:type, C) where x and C are URIs, or can be derived from triples
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(x, P, yˆˆC) where y is a literal (in this case y is a typed literal), with C being

its datatype. Without loss of generality, we say that x is an instance of a type

C, denoted by C(x), either x is a named individual or x is a typed literal. Every

resource identifier that has no type is considered to be of type owl:Thing and

every literal that has no type is considered to be of type rdfs:Literal. Observe

that a literal occurring in a triple can have at most one type and at most one

type assertion can be extracted for each triple. In contrast, an instance can be the

subject of several typing assertions. A relational assertion P (x, y) is any triple

(x, P, y) such that P 6= Q∗, where Q∗ is either rdf:type, or one of the properties

used to model a terminology (e.g. rdfs:subClassOf).

Abstract Knowledge Patterns (AKPs) are abstract representations of Knowledge

Patterns, i.e., constraints over a piece of domain knowledge defined by axioms of

a logical language, in the vein of Ontology Design Patterns [128].

Definition 5.2. (Abstract Knowledge Pattern (AKP)) An AKP is a triple (C,P,D)

such that C and D are types and P is a property.

Intuitively, an AKP states that there are instances of type C that are linked to

instances of a type D by a property P . For sake of clarity, we will use the term

pattern to refer to an AKP in the rest of this thesis. In ABSTAT we represent a

set of AKPs occurring in the dataset, which profiles the usage of the terminology.

However, instead of representing every AKP occurring in the dataset, ABSTAT

summaries include only a base of minimal type patterns, i.e., a subset of the

patterns such that every other pattern can be derived using a subtype graph. In

the following we better define these concepts and the ABSTAT principles.

Definition 5.3. (Pattern Occurrence) A pattern (C,P,D) occurs in a set of asser-

tions A iff there exist some instances x and y such that {C(x), D(y), P (x, y)} ⊆ A.

Patterns will also be denoted by the symbol π.

For datasets that publish the transitive closure of type inference (e.g., DBpedia),

the set of all patterns occurring in an assertion set may be very large and include

several redundant patterns. To reduce the number of patterns we use the obser-

vation that many patterns can be derived from other patterns if we use a Subtype

Graph that represents types and their subtypes.
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Definition 5.4. (Subtype Graph) A subtype graph is a graph G = (NC ,�), where

NC is a set of type names (either class or datatype names) and � is a relation over

NC .

We always include two type names in NC , namely owl:Thing and rdfs:Literal,

such that every class is subtype of owl:Thing and every datatype is subtype of

rdfs:Literal. One type can be subtype of none, one or more than one type.

Definition 5.5. (Minimal Type Pattern) A pattern (C,P,D) is a minimal type

pattern for a relational assertion P (a, b) ∈ A and a terminology graph G iff

(C,P,D) occurs in A and there does not exist a type C ′ such that C ′(a) ∈ A
and C ′ ≺G C or a type D′ such that D′(b) ∈ A and D′ ≺G D.

Definition 5.6. (Minimal Type Pattern Base) A minimal type pattern base for a

set of assertions A under a subtype graph G is a set of patterns Π̂A,G such that

π ∈ Π̂A,G iff π is a minimal type pattern for some relation assertion in A.

Observe that different minimal type patterns (C,P,D) can be defined for an as-

sertion P (a, b) if a and/or b have more than one minimal type. The minimal type

pattern base excludes many patterns that can be inferred following the subtype re-

lations and that are not minimal type for any assertion. In the graph represented in

Figure 5.1 considering the assertion setA = {P (a, b), C(a), A(a), F (b), D(b), A(b)},
there are six patterns occurring in A, i.e., (C,P,D), (C,P, F ), (C,P,A), (A,P,D),

(A,P, F ), (A,P,A). The minimal type pattern base for the dataset includes the

patterns (E,Q,D), (E,R, T ), (C,Q,D), (C,R, T ) and (C,P,D) since E and C

are minimal types of the instance c, while excluding patterns like (B,Q,D) or

even (A,Q,A) since not B nor A are minimal types of any instance.

Definition 5.7. (Data Summary) A summary of a dataset ∆ = (A, T ) is a triple

ΣA,T = (G,Π, S) such that: G is Subtype Graph, Π̂A,G is a Minimal Type Pattern

Base for A under G, and S is a set of statistics about the elements of G and Π.

Statistics describe the occurrences of types, properties and patterns. They show

how many instances have C as minimal type, how many relational assertions use

a property P and how many instances that have C as minimal type are linked to

instances that have D as minimal type by a property P .

The abstract representation provided by patterns has the practical advantage of

characterizing the connections from/to instances of a given type. Moreover, the set
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Figure 5.1: A small graph representing a dataset and the corresponding pat-
terns.

of patterns containing a property describe the types of instances that they connect.

The choice of using patterns as main components of a summary is motivated by

the very goal of summarization: to represent the content of a dataset, that is, the

set of its assertions.

5.3 Summary Extraction

Our summarization process, depicted in Fig. 5.2, takes in input an assertion set A
and a terminology T and produces a summary ΣA,T . First, the typing assertion

set AC is isolated from the relational assertion set AP , while the subtype graph G

is extracted from T . Then, AC is processed and the set of minimal types for each

named individual is computed. Finally, AP is processed in order to compute the

minimal type patterns that will form the minimal pattern base Π̂A,G. During each

phase we keep track of the occurrence of types, properties and patterns, which will

be included as statistics in the summary.

Subtype graph extraction. The subtype graph GC is extracted by traversing

all the subtype relations in T . The subtype graph will be further enriched with

types from external ontologies asserted in AC while we compute minimal types

of named individuals (i.e., external types). The subtype graph does not include

equivalence relations.



Chapter 5. Schema-Based Profiling 90

Figure 5.2: The summarization workflow.

For particular equivalence relations, it is possible to convert them in subtype

relations, still preserving the partial ordering of the asserted type. We do not follow

such approach because this can lead to counterintuitive or undesired inferences.

For example, the Village, PopulatedPlace and Place types from the well known

DBpedia ontology are equivalent to the type Wikidata:Q532 (i.e., village). By

including those equivalence relations in GC , a correct but undesired inference could

be that every Place is also a Village or that Village, PopulatedPlace and Place

are equivalent. This real world example highlights an issue related to equivalence

relations. Equivalence relations are often used to map named classes from different

ontologies (e.g., by leveraging ontology alignment techniques) [55]. The existence

of mappings leading to counterintuitive entailments can be explained by precise

data management strategies. In the above mentioned equivalence relation, they

may have been added to the ontology in order to map Village to Wikidata:Q532

(i.e., villages with villages). Actually in ABSTAT we do not consider equivalence

relations in the extraction of G. As a result, the extracted subtype graph G is

complete not with respect to the whole terminology T , but with respect to T
without the equivalence relations.
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Algorithm 1: Computation of the minimal types set for an instance x.
Input: AC

x type assertions about the entity x, GC subtype graph
Output: the set Mx the minimal types of x

1 Mx = {owl:Thing};
2 for C(x) ∈ AC

x do
3 if C 6∈ GC then
4 GC = GC ∪ C

5 Sup = findSuperTypes(C,M,GC);
6 if Sup 6= ∅ then
7 Mx = Mx \ Sup;
8 Mx = Mx ∪ {C}

9 Sub = findSubTypes(C,M,GC);
10 if Sub = ∅ then
11 Mx = Mx ∪ {C}

12 return Mx;

Minimal types computation. For each instance x, we compute the set Mx

of minimal types with respect to the subtype graph GC . Given x we select all

typing assertions C(x) ∈ AC and form the set AC
x of typing assertions about

x. Algorithm 1 presents the pseudocode for computing Mx. We first initialize

Mx with the type owl:Thing (line 1), then we iteratively process all the type

assertions. At each iteration we select a type C and remove from Mx all the

supertypes of C according to GC (lines 6-10). Then, if Mx does not contain any

subtype of C according to GC we can add C to Mx (lines 11-14). Notice that

one preliminary step of the algorithm is to include C in GC if it was not included

during the subtype graph extraction phase (lines 3-5). Consequently, if a type C

is not defined in the input terminology, is automatically considered as a minimal

type for all the instances x. This approach allows us to handle instances of types

from ontologies not included in the input terminology. At the moment, we do not

retrieve such ontologies, but the minimal type pattern base with respect to the

terminology graph G ensures that once they are added to the T , the size of the

summary will not increase.

Minimal type pattern base computation. For each relational assertion P (x, y) ∈
AP , we get the minimal types sets Mx and My. For all C,D ∈ Mx,My we add

a pattern (C,P,D) to the minimal types pattern base. If y is a literal value we

consider its explicit type if present, rdfs:Literal otherwise. In this phase the

subproperty graph is enriched with properties that are not defined by the termi-

nology, but still occur in at least one pattern (i.e., external properties).

Summary storing and presentation. Once extracted, a summary ΣA,T is
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stored, indexed and made accessible through two user interfaces, i.e., ABSTAT-

Browse and ABSTATSearch, and a SPARQL endpoint. The ABSTAT2 homepage

is shown in Fig. 5.3.

Figure 5.3: ABSTAT homepage

ABSTATBrowse3 supports the interactive visualization of the summaries as shown

in Fig. 5.4.

Figure 5.4: ABSTAT browse

2http://abstat.disco.unimib.it
3http://abstat.disco.unimib.it/browse

http://abstat.disco.unimib.it
http://abstat.disco.unimib.it/browse
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Figure 5.5: ABSTAT search

ABSTATSearch4 implements a full-text search functionality over a set of sum-

maries and is shown in Fig. 5.5. Types, properties and patterns are represented

by means of their local names (e.g., Person, birthPlace or Person birthPlace

Country) and conveniently tokenized, stemmed and indexed to support full text

queries. Since the patterns are represented as triples, the study of principled and

specialized matching and ranking techniques is an interesting extension that we

leave for future work.

ABSTAT also provides a SPARQL endpoint5 to query the summaries.

Recalling the user scenario, in the following we will describe how ABSTAT would

support our app developer, Mrs. Eamla to understand the datsets for her need.

She would access the ABSTAT homepage and select the ABSTATBrowse. Af-

ter selecting the dataset, e.g., LinkedBrainz, she visualizes the AKPs and their

occurrence. She can either navigate the summary or filter out the AKPs by

subject and/or object types, and/or by property and look at their occurrence.

In the filtering area ABSTAT enables a self filling feature to support her in

identifying the types of interest (e.g., mo:SoloMusicArtist, mo:MusicArtist,

dbo:MusicalArtist or dbo:Band).

4http://abstat.disco.unimib.it/search
5http://abstat.disco.unimib.it/sparql

http://abstat.disco.unimib.it/search
http://abstat.disco.unimib.it/sparql
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She finds that LinkedBrianz contains 237 464 mo:MusicArtist while in DBpedia

2014 there are 45 089 dbo:MusicalArtist, i.e., 80% less than in LinkedBrianz.

On the other hand musical aritist are described in DBpedia with a richer and

more diverse set of properties than in LinkedBrianz. Looking at these summaries

is also possible to find errors in the datasets. There is only one occurrence of

the AKP ( mo:MusicArtist, mo:member of, mo:MusicArtist ) in LinkedBri-

anz which may depend on a mistyped instance. Several counterintuitive AKPs,

such as ( dbo:Band, dbo:genre, dbo:Band ) and ( dbo:Band, dbo:instrument,

dbo:Band ) which may reveal incorrect data, occur quite frequently also in DB-

pedia. In order to gain a comparable level of understanding of the two datasets

without the help of ABSTAT, she would have had to (1) manually inspected the

two ontologies and understood their semantics, and (2) written many SPARQL

queries to get the statistics about their number of instances. Finally, she would

have hardly spotted the incongruences highlighted by ABSTAT, with the risk of

developing unreliable service for her app.

A summarization can be represented in different output formats. In the context of

LD, it seems to be reasonable to use LD standards for modelling and storing the

summarization as well. Thus, the output of our approach uses RDF for represent-

ing and serializing the summarization. This allows to write the summarization to

a RDF file or directly to a triple store. One of the principles of LD is to reuse

existing terms and vocabularies instead of inventing new ones. Because of this, we

reuse SKOS6 taxonomy.

To represent summaries in RDF we designed the Linked Data Summaries (LDS)

ontology in OWL. The idea behind LDS is to provide a core vocabulary, which

can be easily extended with additional summarization concepts or properties and

further statistics about the summarization of the dataset.

5.4 Experimental Evaluation

The state-of-the-art of data exploration applications reveals the little attention

accorded to the final users exploratory needs and capabilities when it comes to de-

signing, developing and evaluating the applications. Studies in usability are scant

and lacking in depth, reducing the work to a mere evaluation of technical aspects.

6https://www.w3.org/2004/02/skos/
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Table 5.1: Datasets and summaries statistics.

Relational Typing Assertions Types
(Ext.)

Properties
(Ext.)

Patterns

db2014-core ∼ 40.5M ∼ 29.7M ∼ 70.1M 869 (85) 1439 (15) 171340
db3.9-infobx ∼ 96.3M ∼ 19.7M ∼ 116.4M 821 (58) 62572 (14) 732418
lb ∼ 180.1M ∼ 39.6M ∼ 221.7M 21 (9) 33 (0) 161

In particular, the approaches based on minimalization still lack the evaluation

from a cognitive perspective able to validate the proposed solutions.

We evaluate our summaries from different, orthogonal perspectives. We measure

the compactness of ABSTAT summaries and compare the number of their pat-

terns to the number of patterns extracted by Loupe [92], an approach similar to

ours that does not use minimalization. The informativeness of our summaries are

evaluated with two experiments. In the first experiment we show that our sum-

maries provide useful insights about the semantics of properties, based on their

usage within a dataset. In the second experiment, we conduct a preliminary user

study to evaluate if the exploration of the summaries can help users in query com-

pletion tasks. In our evaluation we use the summaries extracted from three linked

datasets: DBpedia Core 2014 (db2014-core)7, DBpedia 3.9 (db3.9-infobox.)8

and LinkedBrainz (lb). db2014-core and db3.9-infobox data sets are based on

the DBpedia ontology while the lb dataset is based on the Music ontology. DBpedia

and LinkedBrainz have complementary features and contain real and large data.

For this reason they have been used, for example, in the evaluation of Question

and Answering systems [88].

5.4.1 Compactness

Table 5.1 provides a quantitative overview of datasets and their summaries. To

evaluate the compactness of a summary we measure the reduction rate, defined

as the ratio between the number of patterns in a summary and the number of

assertions from which the summary has been extracted.

Our model achieves a reduction rate of ∼0.002 for db2014-core, ∼0.006 for

db3.9-infobox, and ∼6.72 ×10−7 for lb. Comparing the reduction rate obtained

by our model with the one obtained by Loupe (∼0.01 for db2014-core and ∼7.1

7The DBpedia 2014 version with mapping based property only.
8The DBpedia Core 3.9 version plus automatically extracted properties.
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Figure 5.6: AKPs extraction

×10−7 for LinkedBrainz )9 we observe that the summaries computed by our model

are more compact, as we only include minimal type patterns. Loupe instead, does

not apply any minimalization technique thus its summaries are less compact. The

effect of minimalization is more observable on DBpedia datasets, since the DBpe-

dia terminology specifies a richer subtype graph and has more typing assertions.

We observe also that 85 external types were added to the db2014-core subtype

graph and 58 to the db3.9-infobox subtype graph during the minimal types

computation phase as they were not part of the original terminology, and thus are

considered by default as minimal types. While for LinkedBrainz the number of

external types which are considered by default as minimal type is 9.

Fig. 5.6 shows how patterns are extracted by ABSTAT and Loupe. The summary

extracted by ABSTAT is more compact with respect to the summary produced by

Loupe, 3 and 8 patterns respectively.

9We do not provide the reduction rate for db3.9-infobox as this dataset is not summarized in
Loupe
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Table 5.2: Total number of properties with unspecified domain and range in
each dataset.

Domain (%) Range (%) Domain-Range (%)

db2014-core 259 (∼18%) 187 (∼13%) 48 (∼3.3%)
db3.9-infobox 61368 (∼98%) 61309 (∼98%) 61161 (∼97%)
lb 13 (∼39%) 15 (∼45%) 13 (∼39%)

5.4.2 Informativeness

Insights about the semantics of the properties. Our summaries convey

valuable information on the semantics of properties for which the terminology does

not provide any domain and/or range restrictions. Table 5.2 provides an overview

of the total number of unspecified properties from the datasets. For example,

around 18% of properties from db2014-core dataset have no domain restrictions

while 13% have no range restrictions. Observe that this dataset is the most curated

subset of DBpedia as it includes only triples generated by user validated mappings

to Wikipedia templates. In contrast for db3.9-infobox dataset which includes also

triples generated by information extraction algorithms, most of the properties (i.e.,

the ones from the dbpepdia.org/property namespace) are not specified within

the terminology.

In general, underspecification may be the result of precise modelling choices, e.g.,

the property dc:date from the lb dataset. This property is intentionally not spec-

ified in order to favor its reuse, being the Dublin Core Elements (i.e., dc) a general

purpose vocabulary. Another example is the dbo:timeInSpace property from the

db2014-core dataset, whose domain is not specified in the corresponding termi-

nology. However, this property is used in a specific way as demonstrated by pat-

terns (dbo:Astronaut, dbo:timeInSpace, xsd:double) and (dbo:SpaceShuttle

dbo:timeInSpace, xsd:double). Gaining such understanding of the semantics of

the dbo:timeInSpace property by looking only at the terminology axioms is not

possible.

We can push our analysis further to a more fine grained level. Fig. 5.7 provides an

overview of the number of different minimal types that constitute the domain and

range of unspecified properties extracted from the summary of the db2014-core

dataset. The left part of the plot shows those properties whose semantics is less

“clear”, in the sense that their domain and range cover a higher number of differ-

ent minimal types e.g., the dbo:type property. Surprisingly, the dbo:religion

property is among them: its semantics is not as clear as one might think, as its
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Figure 5.7: Distribution of the number of minimal types from the domain and
range extracted for not specified properties of the db2014-core dataset.

range covers 54 disparate minimal types, such as dbo:Organization, dbo:Sport

or dbo:EthnicGroup. Conversely, the property dbo:variantOf, whose semantics

is intuitively harder to guess, is used within the dataset with a very specific mean-

ing, as its domain and range covers only two minimal types: dbo:Automobile and

dbo:Colour.

Small-scale user study. Formulating SPARQL queries is a task that requires

prior knowledge about the dataset. ABSTAT could support users that lack such

knowledge by providing valuable information about the content of the dataset.

We designed a user study based on the assignment of cognitive tasks related to

query completion. We selected a set of queries from the Questions and Answer-

ing in Linked Open Data benchmark10 [139] for the db3.9-infobox dataset. The

selected queries were taken from logs of the PowerAqua QA system and are be-

lieved to be representative of realistic information needs [88], although we cannot

guarantee that they cover every possible information needed. We provided the

participants the query in natural language and a “template” of the corresponding

SPARQL query, with spaces intentionally left blank for properties and/or classes.

For example, given the natural language specification Give me all people that were

born in Vienna and died in Berlin, we asked participants to fill in the blank spaces.

In Fig. 5.8 shows a screeshot of this query.

10http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/

http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
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Figure 5.8: Example of the query for the user study

We selected five queries of increasing length, defined in terms of the number of

triple patterns within the WHERE clause; one query of length one, two of length two

and two of length three. Intuitively, the higher the query length, the more difficult

it is to be completed.

We could use a limited number of queries because the tasks are time-consuming

and fatigue-bias should be reduced [108]. The time needed to perform the 5 tasks

are: min=18.4m, max=59.2m, avg=38.6m, + task description and training=20m.

However, using 5 tasks is coherent with related work (“Typical experiments would

have 20-60 participants, who are given 10-30 minutes of training, followed by all

participants doing the same 2-20 tasks during a 1-3 hour session [108]). Overall

20 participants with no prior knowledge about the ABSTAT framework were se-

lected. The number of users involved in our experiment is equal to or higher than

the number of users used in related work in the Semantic Web Community (20 in

[132], and 13 in [123]). Before queries completion task we profiled all the partic-

ipants in terms of knowledge about SPARQL, data modelling, DBpedia dataset

and ontology, so as to create two homogeneous groups: abstat and control. We

trained only the participants from the first group for about 20 minutes on how to

use ABSTAT.
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Table 5.3: Results of the user study.

Group Avg. Completion Time (s) Accuracy

query 1 - How many employees does Google have? - length 1

abstat 358.9 0.9
control 380.6 0.8

query 2 - Give me all people that were born in Vienna and died in Berlin - length 2

abstat 356.3 1
control 346.9 0.8

query 3 - Which professional surfers were born in Australia? - length 2

abstat 476.6 0.6
control 234.24 0.7

query 4 - In which films directed by Gary Marshall was Julia Roberts starring? - length 3

abstat 333.4 0.9
control 445.6 0.9

query 5 - Give me all books by William Goldman with more than 300 pages - length 3

abstat 233.4 1
control 569.8 0.7

Both groups executed SPARQL queries against the db3.9-infobox dataset through

the same interface (ABSTATQuery11) and were asked to submit the results they

considered correct for each query. We measured the time spent to complete each

query and the correcteness of the answers. The correcteness of the answers is

calculated as the ratio between the number of correct answers to the given query

agains the total number of answers. Table 5.3 provides the results of the perfor-

mance of the users on the query completion task12. The time needed to perform

the 5 queries from all partecipiants in average is 38.6m, while the minimum and the

maximum time is 18.4m and 59.2m respectively. The independent t-test, showed

that the time needed to correctly answer Q5, the most difficult query, was sta-

tistically significant for two groups. There was a significant effect between two

groups, t(16) = 10.32, p < .005, with mean time for answering correctly to Q5

being significantly higher (+336s) for the control group than for abstat group.

Observe that the two used strategies to answer the queries by participants from

the control group were: to directly access the public web page describing the

DBpedia named individuals mentioned in the query and very few of them submit-

ted explorative SPARQL queries to the endpoint. Most of the users searched on

Google for some entity in the query, then consulted DBpedia web pages to find the

correct answer. DBpedia is arguably the best searchable dataset, which is why this

explorative approach was successful for relatively simple queries. However, this

11http://abstat.disco.unimib.it/search
12The raw data can be found at http://abstat.disco.unimib.it/downloads/user-study

http://abstat.disco.unimib.it/search
http://abstat.disco.unimib.it/downloads/user-study
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explorative approach does not work with other non-indexed datasets (e.g., Linked-

Brainz ) and for complex queries. Instead, participants of the abstat group took

advantage of the summary, obtaining huge benefits in terms of average completion

time, accuracy, or both. Moreover, they achieved increasing accuracy over queries

at increasing difficulty, still performing the tasks faster. We interpret the latter

trend as a classical cognitive pattern, as the participants became more familiar

with ABSTATBrowse and ABSTATSearch web interfaces.

The noticeable exception is query 3. In particular, participants from the abstat

group completed the query in about twice the time of participants from control

group. This is due to the fact that the individual Surfing (which is used as object

of the property dbo:occupation) is classified with no type other than owl:Thing.

As a consequence, participants from the abstat group went trough a more time

consuming trial and error process in order to guess the right type and property.

Participants from the abstat group finally came to the right answer, but after a

longer time. This issue might be solved by applying state-of-the-art approaches

for type inference on source RDF data [107] and suggest possible improvements of

ABSTAT for example including values for classes that are defined by closed and

relatively small instance sets.

5.5 Summary

Getting an understanding of the shape and nature of the data from large Linked

Datasets is a complex and a challenging task. In this chapter, we presented AB-

STAT a minimalization-based summarization model to support dataset under-

standing. Based on the results of our experiments we show that our summariza-

tion framework is able to provide both compact and informative summaries for a

given dataset. We showed that using ABSTAT framework the summaries are more

compact than the ones generated from other models and they also help the user to

gain insights about the semantics of underspecified properties in the ontology. The

results of our preliminary experiment showed that exploring ABSTAT’ summaries

help users formulating SPARQL queries both in terms of time and accuracy.





Chapter 6

Linkage-Based Profiling

In this chapter we investigate the problem of finding equivalent instances among

different datasets automatically as called in this thesis linkage-profiling. The rest

of this chapter is structured as follows: section 6.1 gives a general overview of the

problem with examples to support the motivation behind this work. The approach

is presented in section 6.2 where we describe each phase of the pipeline for linkage-

profiling. To evaluate the framework we conducted two experiments as presented

in section 6.3 while conclusions end this chapter in section 6.4.

6.1 Overview

The idea behind Linked Data (LD) is that datasets should be linked in order to

promote interoperability and integration among large data collections on the Web

[25]. In chapter 4 we presented the approach to identify automatically the topical

category for RDF datasets, while in chapter 5 we introduced ABSTAT a tool

which helps users understand the content of big RDF datasets. Data interlinking

focuses on identifying equivalent instances by determining the similarity between

their instance descriptions to represent the fact that they refer to the same real

world object in a given domain.

In the previous two chapters we supported our app developer in selecting the data

that are of her request. After assigning the topic to datasets she could reduce her

searching space. While using ABSTAT she could select only some of the datasets

that share the same topic, the ones for which the resources were described with a

103
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richer set of properties. In her final selection, she found that there are equivalent

instances describing music artists in DBpedia and LinkedBrianz. Even though

these datasets describe same instances the information they provide is not the

same. For her purpose, Mrs. Eamla wants to collect all the available information

for each music artists. She can collect this information by applying some instance

matching techniques that measure the similarity between instances descriptors.

This equivalence between two instances often is represented by using the stan-

dard owl:sameAs property. According to OWL semantics, if two instances are

connected by the sameAs property, every statement including one instance can

be rewritten by replacing one with the other instance [16], because in OWL the

semantic of this property is: an owl:sameAs statement indicates that two URI

references actually refer to the same thing. This means that according to W3C

definition1 these two instance share the same properties. Although there are dif-

ferent properties that link equivalent instances we analyze only the most used

property owl:sameAs within the LD cloud [124].

Figure 6.1: Example of the use of owl:sameAs property between three
datasets

Definition 6.1. (owl:sameAs statement) An owl:sameAs statement is an RDF

triple which connects two RDF resources by means of an owl:sameAs property.

In Fig. 6.1 it is shown an example of a piece of RDF graph which connects

via the owl:sameAs property three instances belonging to DBpedia, GeoNames

and OrdnanceSurvey dataset. Using this information, one can answer queries

that join geographical data from DBpedia with other data in the GeoNames or

OrdnanceSurvey dataset. Obviously, this form of linking instances from different

dataset at Web-scale has enormous potential.

1http://www.w3.org/TR/owl-ref/

http://www.w3.org/TR/owl-ref/
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In the context of LD 2014 [124], we count 1 532 323 owl:sameAs statements. In

the dump of LD, DBpedia is the dataset with the highest number of owl:sameAs

triples (792 268) followed by rdfize.com (215 716), ontologycentral.com (166 020)

and linked-statistics.org (144 543). A huge number of links exist between DBpedia

and other datasets, but however, these links are trivial as DBpedia is build upon

Wikipedia which by itself contain articles by collaborative authoring of its users

[95]. From this first analysis we may deduce that datasets in the LD cloud are

sparsely connected due to the fact that, usually, data publishers are not aware

about the content of the datasets and thus the task of linking equivalent instances

is not straightforward since it requires previous knowledge about the content of

the datasets. For instance, in LD cloud the resource nyt:88184832497785382991 2

from the NYTimes dataset is linked through the owl:sameAs property with db-

pedia:Senegal3. The first resource describes Woods Hole, a place in the town

of Falmouth in Barnstable County, Massachusetts, US, while the second describes

Senegal, a country in Africa. These two resources have wrong sameAs links because

they do not represent the same entity in the real world, thus can not be considered

to be equivalent. Also in the current LD cloud gn:2964180/gaillimh.html4 belong-

ing to GeoNames dataset and the resource in LinkedGeoData lgdo:node582043319 5

are not linked with the owl:sameAs property even though they refer to the same

city in Ireland, Galway. In order to make use of Linked Data, data consumers

require them to be of a high quality and built on top applications that explore

and produce trustworthy results.

The problem of finding equivalent instances among heterogeneous data sources is

a well studied problem in the Semantic Web Community. This task is performed

on the basis of the evaluation of the degree of similarity among descriptions of

instances. Two survey papers review and summarize the approaches on data in-

terlinking [122, 116]. The problem of discovering equivalent instances in different

datasets is quite well known in record linkage [62] and ontology matching commu-

nity [55, 90]. The record linkage problem tries to find all equivalent records among

different databases for the same domain. [51] describes the problem of record link-

age for de-dublication, data scrubbing or other forms of data scrubbing. However

these techniques can not be applied for RDF data for several reasons. First of

all, LD is a large source of data in difference from record linkage data warehouse

2ny - http://data.nytimes.com/
3dbpedia - http://dbpedia.org/resource/
4gn - http://geonames.org
5lgdo - http://linkegeodata.org/tiplify/
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scenario. Secondly, record linkage techniques work best in domain specific settings

where similarities measure can be easily customized, thus can not be applied in

LD due to their heterogeneous nature. Finally, because of the loose-schema of

RDF datasets it is much harder to find appropriate similarity functions.

The work presented in this chapter attempts to exploit the actual state of owl:sameAs

links in the cloud and investigate to which extent we can automatically find other

equivalent instances in the datasets without prior knowledge about their content.

This will help applications built on top of LD datasets to discover more links for

the same instance, thus enriching its information with other properties or informa-

tion found in other datasets. To achieve this goal, we developed a framework to

identify ambiguities and suggest possible inconsistencies and incompleteness. The

framework implements two similarity metrics one for string similarity and one for

numeric similarity, to analyze the quality of existing links and propose new ones

to resolve the identified ambiguities. First, we extract all properties for instances

which have an owl:sameAs property between two datasets in the cloud and trans-

form them into tables. Secondly, we calculate a similarity score comparing each

row between tables of datasets that we want to find equivalent instances. We

consider a similarity threshold greater than 0.9 for the instances to be categorised

as equivalent and test our framework on GeoNames which is linked with 13 other

datasets in the LD cloud.

6.2 Approach

In the “Web of Data” an increasing number of owl:sameAs statements have been

published to support merging distributed descriptions of equivalent RDF resources.

Although these statements are just binary relations, when all of these owl:sameAs

statements are taken together, they form a very large directed graph connecting

RDF resources to each other [49]. As described in section 6.1 there are many cases

where owl:sameAs statements are wrong or they are missing.

Although much effort is done during the recent years as shown in section 3.5,

still not all challenges described in section 6.1 have been addressed. In contrast

to [142, 103, 120], our approach implements an automated workflow which can

be applied to a wide range of domains and is considered totally unsupervised.

Our approach that is considered complementary to Silk and LIMES, take as input
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Figure 6.2: Pipeline for finding equivalent instances in LD

not only two datasets but one against all datasets in the LD cloud. LINDA [30]

assumes each dataset to be already disambiguated while in our approach we do

not make such an assumption thus addressing a more widely application. While

the approach proposed in [106] is limited only for string similarity and do not

cover cases when the URI contains numerical information and blank nodes, our

approach covers both cases.

In this chapter we propose an approach to automatically find equivalent instances

among datasets in the LD cloud as shown in Fig. 6.2.

Our approach consists of four phases: i) Data Collection; ii) Data Preparation;

iii) Similarity Model; and iv) Linkage Discovery. In the following we describe each

phase in detail.
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6.2.1 Data Collection

As a first step toward the evaluation of existing owl:sameAs statements we collect

triples for datasets from the LD cloud 2014. While the subject is considered to

be internal to the dataset for which we want to find owl:sameAs statements, the

object may be internal or external to this dataset. For each RDF triple belonging

to a dataset that we want to find equivalent instances, we check if the object is a

resource or not. In case of a resource, the description of that resource occurring

at the subject position is also collected. This is done in order to have the com-

plete information describing both resources respectively in the subject and object

position linked through an owl:sameAs property.

6.2.2 Data Preparation

As our aim is to automate the process of finding equivalent instances among

datasets it is more easy to work with tables rather than with triples. Similar-

ity between instances can be seen as a problem of finding similar rows between

different tables of different datasets. The idea of ”DBpedia as Tables”6 inspired us

to analogously transform RDF triple to tables for each dataset. Then the problem

of finding equivalent instances is transformed into the problem of finding similar

rows between tables, or the so-called table matching. We create one table for each

class found in the dataset. Fig. 6.3 shows how to transform RDF to table. As

an example, consider two instances of the class State from GeoNames dataset,

named Salvador and Norway having many properties (illustrated by arrows) and

their corresponding values (illustrated by squares). We transpose this informa-

tion into tables where in the first row, the local name of the properties is placed,

while the first column contains the URIs of the instances and the remaining cells

contain the values for each property for the corresponding instance. We consider

some criteria to favor an instance as a potential candidate for sameAs linkage:

Number of properties Once we built the tables we check if instances have more

than four properties. If not, they are removed from the tables.

LabelLike group We create the LabelLike group which comprises the following

properties: label, name, title, text, comment, subject and abstract. For each

6http://wiki.dbpedia.org/services-resources/downloads/dbpedia-tables
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Figure 6.3: Linked Data as Tables

instance, we check if it has at least one property belonging to the Label-

Like group. If instances do not have one of those properties, they are not

considered as good candiate for sameAs linkage.

We considered these two criteria because it is very difficult even for humans to

find equivalent instances if they do not share at least one text value for one of the

properties in LabelLike group and if the number of properties used to describe

them is very low.

6.2.3 Similarity Model

All string property values are tokenized at special characters such as: /, , :, ;, #

and at capital letters. We use two formulas to calculate the similarity for properties

value: String Similarity and Numeric Similarity.

6.2.3.1 String Similarity

Different similarity measures are proposed in literature [90, 126]. To find the

similarity between two instaces we calculate the similarity score.
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Definition 6.2. (Similarity score) Similarity score S denotes the similarity be-

tween two instances I1 and l2 and it is a value between 0 and 1.

The Edit distance formulated by Levenshtein [84] is a well-established method for

finding the difference between two strings. It measures the minimum number of

token insertions, deletions, and substitutions required to transform one string into

another. Based on this metric we propose a lexical similarity measure. For each

cell containing a string value we calculate the similarity score using the formula

6.1.

Sstring(s, l) =

∑|s|
i=1 Max{Edit(s[i], l[1..|l|])}

|s|+ |l| −
∑|s|

i=1Max{Edit(s[i], l[1..|l|])}
(6.1)

where s and l are string sets, with s referring to the smallest set and l refering

to the largest set. S(s, l) gives the similarity score between sets s and l, having

string value. Edit(s[i], l[1..|l|]) calculates the similarity between s[i], where i=0,...n

and n is the number of strings in the set s to all elements in l by using Leven-

shtein distance metrics. Remember that one property can have more than one

value. Max{Edit(s[i], l[1..|l|])} has a value from [0,1]. In Fig. 6.4, the property

geo:alternateName has two values. In cases when a property has more than one

value the string similarity score is calculated for each of them. In this example

two values of the property alternateName, from GeoNames dataset are, Salvador

de Bahia | Sao Salvador. In LinkedGeo dataset the value of the property label is

Salvador. In the above formula the smallest set s(i) is Salvador equal to 1, while

the largest set l(l) is Salvador de Bahia | Sao Salvador equal to 2 (note that this

property has two values). The arrows in Fig. 6.4 show the flow of the matching

process.

We use Levenshtein distance (Edit(s[i], l[1..|l|])) to measure the similarity score

between the values Salvador de Bahia and Sao Salvador from GeoNames and

Salvador from LinkedGeoData, respectively 0.3 and 0.67. In the numerator part

of the formula we select the maximum value between them, which in our example

is 0.67. The denominator is equal to 2.23 (as s=2, l=1 and Max Edit = 0.67 ).

The similarity score between the values for the property alternateName and label

is 0.3 (0.67/2.23). In the same way, we iterate through all the values of the cells.

Note that we do not make an aligment between the headers of the tables when we

calculate the similarity score.
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6.2.3.2 Numeric Similarity

For each property having a numeric value we used the following formula to measure

the similarity score:

Snumeric(n1, n2) =


0, if |n1 − n2| > Min{RanOf(n1), RanOf(n2)}

1− |n1 − n2|
Min{RanOf(n1), RanOf(n2)}

,

where n1 is the numerical value of the property in one table, and n2 is the numerical

value of the property in the other table. The RanOf gives the value range of the

numerical values in the column containing the property value for which we want

to find the similarity score. This formula helps us to compare different numerical

values ranges. As we are not aware about the properties that are being compared,

sometimes the comparison is not straightforward. For instance, comparing only

numerical values can be ambiguous, e.g. the coordinates with population. Suppose

to find in a table a cell with the value 34.6458201 and a cell in the other table

containing the value 346,458,201. Using the formula 6.2.3.2 for numeric similarity

we can deduce that the similarity is 0 because n1 - n2 is 346458166,3541799 which is

greater than the minimum value range of both columns. Therefore, these two cells

can not be compared. The similarity score between –12.97111111 from GeoNames

and –12.9816356E1 from LinkedGeoData using formula 6.2.3.2, is 0.998.

6.2.3.3 Aggregation

To calculate the similarity score between two instances (two different rows in

tables), we consider only property values, for which the similarity score is greater

than 0.9. Thus, in the example above to calculate the similarity score between the

first instance of the GeoNames dataset and the first instance of the LinkedGeoData

dataset, we consider only the cells with the values Salvador, –12.9816356E1 and

–3.8482077100000005E1. Respectively for these values, the similarity score is, 1,

0.998, 0.999. To calculate the similarity score for these two instances we aggregate

the similarity score of each cell weighting all values using the geometric progression

of 75% increase. We use this aggregation model to reward the properties for which

the similarity value is grater than 0.9. If only one cell has the similarity score
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Figure 6.4: Instance Similarity Finding

greater than 0.9 then for the aggregation, this score is multiplied by 0.75. If two

cells have similarity score greater than 0.9, then their score is multiplied by (0.75

+ 0.75*0.25)/2. If three columns have similarity score greater than 0.9 their score

is multiplied by (0.75 + 0.75*0.25 + 0.75*0.0625)/3. The similarity score of the

first instance of the GeoNames dataset and the first instance of the LinkedGeoData

dataset is equal to ((1+0.998+0.999)/3)*0.9843 = 0.9833. Note that the number

of properties value with similarity score greater than 0.9 and the aggreegated score

are tunnable parameters. The more properties with similarity score greater than

0.9 can contribute to the aggregated score, the more confident we are to categorise

these instances as equivalent. Also, the greater the threshold for cell similarity,

the more confident we are to categorise these two instance as equivalent.

6.2.4 Linkage Discovery

After calculating the similarity score for each instance, we consider as sameAs

instances, those for which the aggregated similarity score is greater than 0.9. We

trained different values for this threshold as shown in Fig. 6.5 and we can observe

that for a threshold equal to 0.9 our approach reaches the best performance, where
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Figure 6.5: Framework performance tunning similarity threshold

precision has the highest value with respect to recall and f-measure. Our frame-

work is precision oriented. In this phase of the approach, we discover sameAs

statements, filtering only those instances with aggregated similarity score greater

than 0.9.

6.3 Experimental Evaluation

In this section we will describe the experimental evaluation of our approach for

finding equivalent instances among datasets without prior knowledge about their

content.

6.3.1 Dataset and Gold Standard

Dataset. To evaluate our framework we used the datasets and the data inter-

linking information in LD cloud 2014. To evaluate our approach we consider

GeoNames from the geographic domain as the dataset for which we want to find

similar instances. The number of outdegree links (number of outgoing links (see

section 2.2.1) aggregated for dataset) from this dataset to other datasets is 20,

while the number of indegree links (number of incoming links (see section 2.2.1)

aggregated for dataset) from all the other datasets to GeoNames is 134 [124]. In

the LD cloud, GeoNames has 7135 owl:sameAs links (incoming and outgoing).
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Gold Standard. We consider as Gold Standard (GS) the owl:sameAs links

between GeoNames and other datasets that already exist in LD cloud7. As the

LD cloud was manually built we can consider its information as a gold standard.

The first column of the Table 6.1 shows the distribution of owl:sameAs links for

the experimental datasets in the current state of the LD cloud.

6.3.2 Results

As described in Section 6.2, we initially extract 5,890 triples having an owl:sameAs

property, where the subject is from GeoNames dataset and the object belongs to

other datasets. For each triple we check if the object is a resource or not. In case

it is a resource, we also extract the information for that resource appearing in the

subject position of any triple in the cloud. We extracted this information because

we want to asure that we have all the information describing the resources that we

want to find the similarity score. During the Data collection phase of our approach

we collected 587,985 triples. The second step is the Data preparation phase in

which we check for each instance in our experimental data the number of properties

it has. We do not consider those instances for which the number of properties is

smaller than four and do not have a property from the LabelLike group. After

applying these criteria in our experimental data we have 1,798 owl:sameAs that

link to 610 distinct instances from GeoNames and 1,798 instances belonging to the

target datasets. Triples are then transposed into tables as described in 6.2.2. For

the GeoNames dataset we could have 4 tables (meaning that all sameAs links that

exist in the GS (LD dump) from this dataset belong to only four classes) and for all

the other datasets we could generate 133 tables (meaning that all sameAs links that

exist in the others datasets belong to 133 classes). We conducted two experiments

to evaluate our framework. In the first experiment we consider as target only those

datasets which GeoNames has at least one owl:sameAs statement, while in the

second experiment we randomly select and add in the experimental data triples

from the target datasets, such that there are no owl:sameAs statements between

them and GeoNames.

7nytimes.com, europa.eu, geovocab.org, linkedmdb.org, didactalia.net, linkedgeodata.org,
lexvo.org, dbpedia.org, 270a.info, lenka.no
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GeoNames with other datasets where at least one owl:sameAs state-

ment exist In the first experiment we evaluate the framework for finding equiv-

alent instances between GeoNames and all the other datasets where at least one

owl:sameAs statement exists. In the Gold Standard there are 1,798 owl:sameAs

instances between these datasets. Our framework generates 1,333 links as True

Positive, 127 links as False Positive and 465 links as False Negative. In terms

of precision, recall and f- measure the framework returns the following results:

Precision (P) = 0.91, Recall (R) = 0.74 and f-measure (F) = 0.82.

GeoNames with other datasets where at least one or no owl:sameAs

statement exists In the second experiment we evaluate the framework for find-

ing equivalent instances between GeoNames with all the others datasets adding

some noise in the experimental data. The noise consist of triples from 13 differ-

ent datasets. We added triples from the datasets from the first experiment and

also triples from three other datasets (ordnancesurvey.co.uk; fao.org and ucd.ie),

where no owl:sameAs statemets exist in the Gold Standard. We add these triples

to evaluate if our framework would be able to find equivalent instances between

GeoNames dataset and the triples considered to be noise. Our framework gener-

ate 1,333 links as True Positive and 277 as False Positive. Table 6.1 shows the

distribution of the links generated by the framework for each dataset. In terms of

precision, recall and f- measure the framework returns the following results: Pre-

cision (P) = 0.81, Recall (R) = 0.74 and f-measure (F) = 0.77. As an observation,

in the second experiment the performance of our framework decreases as a result

of an increasing number of False Positive.

6.3.3 Discussion

In the following we will analyse in more detail the results from our framework, fo-

cusing in the False Positive. In order to evaluate the performance of our approach

we manually check if the links generated as False Positive were correct or not. As a

checking result, from 127 as False Positive from the first experiment, 99 were cor-

rect and 28 were incorrect mappings, meaning that the total number of True Pos-

itive is 1,432 and the number of False Positive is 28. Manually checking from 277

False Positive mappings from the second experiment, 206 links were correct so the

number of real True Positive found by the framework is 1,539, while the number of

real False Positive is 71. From this verification we prove that our framework could
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Table 6.1: Distribution of sameAs links in Gold Standard and framework
results

Dataset GS TP FP TP* FP*
nytimes.com 497 460 4 462 2
europa.eu 719 679 97 770 6
geovocab.org 16 0 91 65 25
linkedmdb.org 11 9 0 9 0
didactalia.net 10 0 0 0 0
linkedgeodata.org 45 31 18 46 3
lexvo.org 97 18 1 19 0
dbpedia.org 227 127 23 131 19
270a.info 175 9 0 9 0
lenka.no 1 0 1 1 0
ordnancesurvey.co.uk 0 0 30 14 16
fao.org 0 0 10 10 0
ucd.ie 0 0 2 2 0
Total 1798 1264 277 1538 71
Gold Standard (GS), True Positive (TP), False Positive (FP), Verified True
Positive (TP*), Verified False Positive (FP*).

find 14 similar links between GeoNames and ordnancesurvey.co.uk, among which

there are no links in the LD cloud, thus improving the linkage information. We

found that the resource e.g gn:2110425/nauru.html should be linked to gv:0–170 8

as both refer to the island of Nauru and gn:2652355/cornwall.html should be

linked to ords:7000000000043750 9 as both refer to the county of Cornwell in Eng-

land. This information currently is missing in the LD cloud. While if we check for

two resources classified as equivalent gn:6324733/st john s.html from GeoNames

dataset and ords:7000000000019514 from OrdnanceSurvey we see that these two

recources refer to different places eventhough they share the same name. In the

information that we have in the cloud, these two resources share three properties

for the name (LabelLike group) and one of the coordinates is similar as well. These

four properties contribute to the similarity score categorising these two resources as

equivalent. Another misclassification is between gn:2618425/copenhagen.html and

dbpedia:Copenhagen Municipality. Because these resources share many properties

our framework classifies them as equivalent. While we observe some true classifica-

tion errors, many of the mistakes made by our framework point to fact that many

resources are described with similar properties so it is difficult also for humans

without prior knowledge to classify them as equivalent. Our framework can be

used also to check the quality of URIs in a dataset. In the dataset OrdnanceSurvey,

the resource Isle of Wight is described with two URIs, ords:7000000000025469 and

ords:7000000000025195. Also in LinkedGeoData we find that the resource for the

8gv : http://gadm.geovocab.org/id/
9http://data.ordnancesurvey.co.uk/doc/
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city of Vienna has two different URIs, lgdo:node240034347 and lgdo:node17328659.

We were able to find this information from the report of our approach where the

same instance of a dataset were categorized as equivalent with two other instances,

both belonging to the same dataset. This information can be used to check the

overall quality of the URIs defined in a dataset.

6.4 Summary

In this chapter we discussed the problem of finding similar instances among datasets

without a prior knowledge about their content. To do so we proposed a frame-

work which can automatically find equivalent instances in the LD cloud without a

prior knowledge about the class they belong to and the properties they share. The

results show that this framework is very useful to find equivalent pairs between

datasets not only in the same category but also with other datasets despite the

category they belong to.

The analysis of the limitations of our framework, i.e., the cases where the equiv-

alent instances found were wrong, point to the current information in LD, where

usually instances even though describing different things, their property values are

similar.





Chapter 7

Conclusions

As the interconnectivity of information systems increases and more and more

information becomes available on the Web, the problem of understanding which to

select is gaining a huge importance. Despite this fact, the ability of data consumers

to select the right dataset for their need is not adjusting its accessibility.

With the adoption of Linked Data best practices, datasets assure that the structure

and the semantics of the data are made explicit. Even though the adoption of

Linked Data best practices has many advantages, the consumption is still limited

as they lack descriptive metadata published along with the dataset.

Data profiling techniques extract descriptive metadata supporting users in under-

standing the content of a dataset. Throughout this thesis we analyzed the problem

of profiling Linked Data in terms of topic-based, schema-based summarization and

linkage-base profiling. The profile generated by the techniques described in this

thesis is fundamental not only for data understanding problem and decision mak-

ing but also for other use cases such as; ontology integration, identification of

quality issues, query optimization, schema discovery, data visualization, data an-

alytics and entity summarization. Moreover, our profiles can be applied by any

user requiring minimal effort, because they can be executed in automatic for every

dataset despite the domain they belong to.

We conclude this thesis by summing up the contributions and provide an outlook

on further research directions for future work.

119
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7.1 Summary of Contributions

In this section, we revisit each contribution in the field of profiling Linked Data and

summarize the solution for the problems and challenges identified at the begining

of this thesis.

Detailed literature review. We addressed the issue of providing a compre-

hensive and systematic literature review about tools and techniques used to

profile Linked Data. First, we considered the challenges that LD poses with

respect to previous works on profiling, in particular techniques used to pro-

file relational datasets. The aim of this study was to create a crystallization

point of the state of profiling tools and techniques that are available at the

moment of writing this thesis. Even though as shown in chapter 3 there are

some attempts in developing profiling frameworks that can cover different

profiling tasks, the number of profiling tools is less than 10 and they cover

specific profiling tasks. Additionally, we provide a comparison of these tools

considering six criteria such as; availability, automation, scalability, licens-

ing, usability and maintenance. Because there are only few tools and the

techniques in this field covering a specific task, we can not consider profiling

Linked Data a mature enough research field. One of the reasons for this

could be the infancy of the research area. This study provides a broader

context of topical, schema and linkage based profiling that will be beneficial

to a wide range of applications and data consumers in order to identify which

tool to use for her use case.

Automatic topic classification of LD datasets. As part of this thesis we have

introduced an automatic, supervised method for classifying LD datasets. We

employ supervised learning techniques as we want to exploit the existing

topical annotation of the datasets in the cloud. We investigated the problem

of single-topic classification and multi-topic classification. The results of

our experiments indicate that features derived from the vocabularies used

in a dataset are the best indicators for its single-topic classification of LD

datasets, yielding an accuracy of around 82%.

The analysis of the limitations of our approach, i.e., the cases where the

automatic classification deviates from the manually labeled one, points to a

problem with the current LD cloud data collection: all datasets are labeled
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with exactly one topical domain, although sometimes two or more categories

would be equally appropriate. One such example are datasets which hold

information for publications in the life science domain, which can be equally

labeled as publications and life sciences. Thus, the LD dataset classification

problem might be more suitably formulated as a multi-label classification

problem [136]. The experiments for the multi-topic classification have shown

that features derived from the vocabularies used in a dataset are the best

indicators, yielding a performance with an f-measure of F = 0.47. A par-

ticular challenge for the classification is the heavy imbalance of the dataset,

with roughly half of the data belonging to the social networking domain.

Moreover, some datasets belonging to a specific topic such as bbc.co.uk be-

longing to the media category, make use of specific vocabularies such as bbc

vocabulary. Because our learning classifier learn the model on specific vo-

cabularies, it fails to assign the same topical category also to other datasets

beloning to the same category but not using such vocabulary.

Building the gold standard for multi-topic classification of LD datasets.

In chapter 4, we investigate the problem of single-topic classification and

multi-topic classification. For the single-topic classification we considered

as gold standard the information that we found in the cloud. We remind

the reader that the topic of these datasets was manually assigned either

by the data publishers or by the creator of the LD cloud. For the multi-

topic classification, we lack a gold standard so that we could evaluate our

approach. For this reason we build the gold standard for the multi-topic

classification and made available for further research in this field.

Evaluation of schema-based summarization for LD datasets. Under-

standing the data from large datasets in the Linked Data cloud is a complex

and a challenging task. We propose a minimalization-based summarization

model to support dataset understanding and exploration. Experimental eval-

uation showed that our summarization framework is able to provide both

compact and informative summaries for a given dataset. We showed that

using ABSTAT framework the summaries are more compact than the ones

generated from other models in the state-of-the-art. Moreover, the sum-

maries provided by ABSTAT are informative becuase they not only support

users gaining insights about the semantics of the underspecified properties

in the ontology, but also to verify if the restrictions in the ontology are hold
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in the data. The results of our preliminary user study showed that ABSTAT

could support users formulating SPARQL queries both in terms of time and

accuracy.

Automatic similar linkage discovery framework. For the linkage-based

profiling we propose a framework which can automatically find equivalent

instances in the LD cloud without a prior knowledge about the type they

belong to and the properties they share. The results from the experiments

show that this framework is very useful to find equivalent instances between

datasets not only in the same category but also with other datasets despite

the category they belong to. Moreover, this framework is also useful to

identify quality issues by identifing wrong links among datasets and by iden-

tifying cases when same instances are modeled with different URIs within

the same dataset. The performance of this framework returned the following

results: P= 0.91, R= 0.74 and F= 0.82.

The analysis of the limitations of our framework, i.e., the cases where the

equivalent instances found were wrong, point to the current information in

LD, where usually instances even though describing different things, their

property values are similar.

7.2 Future Directions

The work presented in this thesis opens up several directions for future research

as it will be described in this section.

One profiling tool for several profiling tasks. We plan to implement the

work presented in this thesis to ABSTAT tool, in order to make it available

as a profiling tool which can cover different tasks.

Profiling survey. We introduced in this thesis a detailed review about the three

aspects of profiling: topic, schema-based dataset summarization and linkage

profiling. As profiling is the umbrella term for the process of generating

descriptive metadata and statistics, then the survey should be extended in

covering all profiling tasks. This will help data publishers and consumer to

select the profiling tools and techniques that are relevant for their profiling

task. We plan to extend the survey in order to cover all aspects of profiling
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and make a comparison between different profiling tools in a user scenario

application.

Topic-based profiling. In this thesis we investigated the problem of topic

classification of LD datasets. The single-topic classification did not reach

an accuracy of 100% because the classification is influenced by the heavy

imbalance of the dataset, with roughly half of the data belonging to the

social networking category. We plan to apply a two-stage classifier, which

first tries to separate the larger category from the rest, while the second

classifier then try to make a prediction for the remaining categories.

The results of the single-topic classification are satisfactory, but in most

cases a dataset belong to more than one topic. For this we investigated the

problem of multi-topic classification. The results of multi-topic showed that

the performance was not as good as for the single-topic. When regarding

the problem as a multi-label problem, the corresponding approach would

be a classifier chains, which make a prediction for one category after the

other, taking the prediction for the first category into account as features

for the remaining classifications [148]. Another direction is the application

of stacking, nested stacking or dependent binary methods [94].

Schema-based profiling. In this thesis we introduced ABSTAT, an ontology-

based dataset summarization tool which help data consumers to understand

the dataset at hand. Several are the future directions. We plan to run the

user study in large scale, including more users with different background

characteristics in order to analyse in details which is the target group of

users for which ABSTAT is more useful. At the time of writing this thesis

we are conducting the experiment in large scale, including more users from

the Semantic Web community, by inviting them to take part of this survey

through means of public mailing lists and social groups1.

We plan to complement our coverage-oriented approach with relevance-oriented

summarization methods based on connectivity analysis. Another interest-

ing direction was highlighted by our user study, that is the inference of

specific types for untyped instances found in the data set. We are also plan-

ning to consider the inheritance of properties to produce even more compact

summaries. Finally, we envision a complete analysis of the most important

dataset available in the LD cloud.

1https://lists.w3.org/Archives/Public/public-lod/2016Dec/0003.html
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Linkage-based profiling. We presented an approach for identifying in auto-

matic equivalent instances among dataset without a prior knowledge about

their content. As a future work we plan to run the framework in the whole

LD cloud, considering not only the instances connected by the owl:sameAs

property but all the instances. We also plan to verify the True Negative links

generated by the approach in order to identify quality problems between the

instances already connected with the owl:sameAs property in the cloud. Be-

cause our approach compare the descriptors of all instances among them, in

the current settings our approach does not scale well. For this reason, we

plan to apply some blocking and filtering mechanisms to select potentially

candidates for linking.
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[82] Langegger, A., and Wöß, W. Rdfstats - an extensible RDF statis-

tics generator and library. In Database and Expert Systems Applications,

DEXA, International Workshops, Linz, Austria, August 31-September 4,

2009 (2009), pp. 79–83.



BIBLIOGRAPHY 137
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[91] Mäkelä, E. Aether–generating and viewing extended void statistical de-

scriptions of rdf datasets. In European Semantic Web Conference (2014),

Springer, pp. 429–433.

[92] Mihindukulasooriya, N., Poveda Villalon, M., Garcia-Castro,

R., and Gomez-Perez, A. Loupe - An Online Tool for Inspecting Datasets

in the Linked Data Cloud. In ISWC Posters & Demonstrations (2015).

[93] Millard, I. C., Glaser, H., Salvadores, M., and Shadbolt, N.

Consuming multiple linked data sources: Challenges and experiences. In

Proceedings of the First International Conference on Consuming Linked

Data-Volume 665 (2010), CEUR-WS. org, pp. 37–48.



BIBLIOGRAPHY 138
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Coz, J. J., and Hüllermeier, E. Dependent binary relevance models

for multi-label classification. Pattern Recognition 47, 3 (2014), 1494–1508.

[95] Morsey, M., Lehmann, J., Auer, S., Stadler, C., and Hellmann,

S. Dbpedia and the live extraction of structured data from wikipedia. Pro-

gram 46, 2 (2012), 157–181.

[96] Motik, B., Patel-Schneider, P. F., Parsia, B., Bock, C., Fokoue,

A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sat-

tler, U., et al. Owl 2 web ontology language: Structural specification

and functional-style syntax. W3C recommendation 27, 65 (2009), 159.
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