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Abstract How can a decision-maker assess the potential of environmental policies when a
group of experts provides divergent estimates on their effectiveness? To address this question,
we propose and analyze a variant of the well-studied α-maxmin model in decision theory.
In our framework, and consistent to the paper’s empirical focus on renewable-energy R&D
investment, experts’ subjective probability distributions are allowed to be action-dependent.
In addition, the decision maker constrains the sets of priors to be considered via a parsi-
monious measure of their distance to a benchmark “average” distribution that grants equal
weight to all experts. While our model is formally rooted in the decision-theoretic framework
of Olszewski (Rev Econ Stud 74:567–595, 2007), it may also be viewed as a structured form
of sensitivity analysis. We apply our framework to original data from a recent expert elicita-
tion survey on solar energy. The analysis suggests that more aggressive investment in solar
energy R&D is likely to yield significant dividends even, or rather especially, after taking
expert ambiguity into account.
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1 Introduction

Environmental policy makers must often come to grips with considerable uncertainty. The
inherent complexity of many environmental problems, combined with a lack of reliable data,
impose significant challenges for the analysis of different policy options. In such situations,
guidance can be sought by directly consulting a group of knowledgeable experts.

The field of structured expert judgment (also known as “expert elicitation”) has been devel-
oped to add scientific rigor to the process of expert consultation. Expert elicitation derives
probabilistic input for decision problems through the quantification of experts’ subjective
uncertainties (Morgan and Henrion 1990; Cooke 1991; O’Hagan et al. 2006). Subjective
probability distributions are derived via transparent protocols and treated as scientific data
(Cooke 1991). The employed techniques involve recognizing and removing, as much as
possible, known psychological biases in judgment (Tversky and Kahneman 1974, 1983).
Consistency checks are incorporated throughout, and questionnaires are designed to elicit
clear, unequivocal answers. Recognizing the value-added that it brings to the decision making
process, expert elicitation is used in a wide variety of settings and the interested reader may
consult (Morgan and Henrion 1990; Cooke 1991; O’Hagan et al. 2006; U.S. Epa 2011) for
a comprehensive account.

Expert elicitation studies are being increasingly pursued in the assessment of environmen-
tal policy. In the United States, they have become part of the government’s analytic toolkit
(U.S. Epa 2011) in the development of environmental regulation. Their acceptance by pol-
icy makers no doubt reflects their growing popularity in academic circles. In the academic
literature on climate change policy, numerous expert elicitations have been performed to
provide estimates of critical climate-model parameters (e.g., climate sensitivity) as well as
climate-related impacts (Nordhaus 1994; Morgan et al. 2001, 2006; Vaughan and Spouge
2002; Zickfeld et al. 2007, 2010). Furthermore, and related to the empirical focus of the
present paper, a number of recent studies have applied expert elicitation techniques to assess
the potential of investment in renewable-energy R&D. Baker et al. (2009a, b), Baker and
Keisler (2011), Curtright et al. (2008), Bosetti et al. (2012) and Fiorese et al. (2013) collected
and interpreted expert opinions to investigate the uncertain effects of R&D investments on
the prospect of success of carbon capture and storage, hybrid electric vehicles, cellulosic
biofuels, and solar PV technologies.

Despite its compelling features, expert elicitation often generates divergent opinions
across experts, resulting in ambiguous recommendations. To address this inconclusiveness,
researchers typically aggregate over expert estimates in some fashion and consider the result-
ing weighted average in their subsequent assessment. Indeed, there is a rich, primarily
management-science, literature that studies the many different ways such aggregations may
be performed (Clemen and Winkler 1999, 2007).

Yet, we can imagine settings in which the quest for a unique probability distribution
summarizing expert opinion is either infeasible or undesirable. This is particularly true when
the issue on which expert opinion is sought is unprecedented and/or exceedingly complex,
implying an extremely wide range of estimates. In such instances, aggregating over experts
and making decisions based on the resulting average probability distribution may lead to
suboptimal policy. In environmental applications, this point has been forcefully made with
regard to climate change (Knutti et al. 2010; Millner et al. 2013; Woodward and Bishop
1997) and ecosystem management (Ludwig et al. 1993; Vardas and Xepapadeas 2010).
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In such cases, the decision maker may arguably be better off simultaneously exploring the
consequences of many different weighting schemes in a systematic fashion.

A modeling framework for addressing such situations can be found in the literature on
decision making under ambiguity.1 In contrast to the traditional Bayesian setting, in which
probabilities are assigned to events via a unique Bayesian prior, decision-theoretic models
of ambiguity are designed to address situations in which a decision maker is unable to assign
precise probabilistic structure to the problem she is trying to address. In such situations,
the traditional expected utility paradigm (based on a unique prior summarizing all problem
uncertainty) fails on both normative and descriptive grounds (Gilboa and Marinacci 2012).
On normative grounds it clashes with appealing axioms of rational choice, while from a
descriptive standpoint it is often in conflict with observed patterns of behavior.2 Given the
complexity of many environmental phenomena, it is unsurprising that models of ambiguity
aversion are increasingly being employed to address policy under conflicting expert opinion
(Woodward and Bishop 1997; Millner et al. 2013; Asano 2010; Athanassoglou and Xepa-
padeas 2012).3

1.1 Our Contribution

In this paper we further the literature on environmental decision-making under conflicting
expert opinion. To fix ideas and prepare the ground for the paper’s empirical exercise, let us
suppose that a decision maker elicits the judgment of a set of experts on the effect of R&D
investment on the future cost of a promising green technology.4 Levels of R&D investment
affect the decision maker’s problem in two ways: (a) they alter experts’ subjective probability
distributions on the technology’s future cost and (b) they are arguments of a utility function
that measures the investment’s cost-effectiveness as a function of R&D expenditure and the
resulting technological improvement.

As experts will frequently provide divergent estimates on the potential of green R&D,
the decision maker wishes to systematically explore the implications of many different ways
of weighting their estimates. We propose a parsimonious parametric framework to facilitate
this process. As an initial benchmark, our model posits equal-weight linear aggregation over
experts’ divergent probability distributions. Subsequently, it considers enlargements of the
set of possible linear aggregation schemes by parameterizing over their maximum distance,
measured via the Euclidean norm, with respect to the benchmark equal-weight aggregation.
This distance is referred to asaggregation ambiguity and can be naturally interpreted as setting
a bound on the total weight that can be assigned to any group of experts. Guaranteeing a
bound of this sort may be a normative or operational desideratum, in the sense that it provides
a check on the influence of any single group of experts, and guards against outlier opinions.

1 See Gilboa and Marinacci (2012) for a comprehensive recent survey.
2 Indeed, there seems to be experimental evidence suggesting that lab subjects actually reason in a way that
is consistent to models of ambiguity aversion when confronted with inconclusive expert judgments (Baillon
et al. 2012).
3 An important additional concern that some authors have raised is that probabilistic estimates elicited from
experts may not always represent probabilities in the actuarial sense [see, e.g., Millner et al. (2013); Kriegler
et al. (2009)]. This concern seems to apply to the empirical application of this paper as well, at least in part
(see “Appendix”). The decision-theoretic literature has begun to address such imprecise probabilities [see,
e.g., Gajdos et al. (2008) and Gajdos and Vergnaud (2013)] in the context of decision making under ambiguity.
Extending our framework to account for expert imprecision would be a very interesting avenue of future
research.
4 Note, however, that our formal model generalizes to many alternative contexts of decision making under
uncertainty.
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Next, our model computes the best-and worst-case expected outcomes of a given level of
R&D investment, subject to the feasible set of distributions that is implied by assigned levels
of aggregation ambiguity. Finally, the decision maker’s preferences are captured by a convex
combination of the best and worst-case expected outcomes. The weights placed on the worst
and best cases reflect her ambiguity attitude.

The above framework is a variation of the α-maxmin model that has been studied exten-
sively in the economic-theory literature beginning with Arrow and Hurwicz (1972). Later
contributions by Gilboa and Schmeidler (1989) (whose seminal paper dealt with the pure
maxmin model), Ghirardato et al. (2004), and Eichberger et al. (2011) provided axiomatic
treatments of similar models. The model we adopt in this paper is not a strict application of
this framework. This is because its decision variables enter the value function as arguments
of both (a) a utility function measuring the technology’s payoff as well as (b) the set of priors
that the decision-maker is taking into account when performing her best- and worst-case
analysis. This latter element of action-dependent subjective beliefs is non-standard in the
formal decision-theoretic literature going back to the work of Savage (1954).5 Jaffray (1989)
had first introduced a similar notion with an α-maxmin model based on non-additive belief
functions, while later Ghirardato (2001) analyzed a model in which acts map from states to
sets of consequences.

Recently, Olszewski (2007) studied the α-maxmin model in a setting in which decision
makers are called to choose between sets of lotteries, i.e., probability distributions over
outcomes. This is the α-maxmin framework that most fits our context, since levels of R&D
directly affect experts’ probability distributions –and thus can be seen as defining sets of
lotteries over the technology’s future payoff. Olszewski showed that when choosing between
sets of lotteries the α-maxmin rule uniquely satisfies a set of axioms that generalize their
counterparts in settings of single probability distributions.

Our paper aims to operationalize the model axiomatized by Olszewski in an applied setting
of expert elicitation. Indeed, our work is an outgrowth of the need to develop a tractable theo-
retical framework to accommodate expert opinions gathered by a recent elicitation (Bosetti et
al. 2012). Still, it is important to note that our framework is open to legitimate criticism. First,
not everyone may agree with our consideration of aggregation ambiguity via the Euclidean
norm. Second, the axiomatic underpinnings of the Olszewski α-maxmin model, though clear,
will not, in general, be universally accepted as a means of characterizing the “right” deci-
sion maker preferences under ambiguity. Thus, even for researchers who espouse models of
ambiguity aversion, our framework may not be entirely satisfactory.

On a more general level, a number of scholars are skeptical of using models of ambi-
guity aversion as a foundation for rational decision making. The application area of expert
elicitation only serves to heighten these concerns, as specialized researchers have developed
a variety of methods in order to arrive to a unique distribution representing expert beliefs
(as discussed in the extensive survey papers by Clemen and Winkler). We do not take a
strong stand on this issue, not least because we ourselves are not philosophers of science,
nor specialists in expert elicitation. Still, what we can constructively say is that for scholars
who are unconvinced by models of ambiguity aversion, our framework may be interpreted
as a kind of structured sensitivity analysis. The logic would run along the following lines:6 It
is resource-intensive and perhaps politically sensitive to determine an optimal weighting of
the experts. Thus, it is preferable to assume equal weights and then apply the machinery of
the proposed model to test the robustness of the resulting recommendations. If we see that

5 Note, however, that endogenous probabilities are common in Decision Analysis and dynamic programming.
6 We thank an anonymous referee for suggesting this alternative interpretation of our work.
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optimal R&D levels are highly sensitive to small changes in the model parameters, then we
can conclude that assigning equal weights to experts may lead to non-robust policy and that
more careful deliberation regarding expert weighting is called for.

The paper’s empirical section applies our model to original data from the ICARUS project
(Bosetti et al. 2012), a recent expert elicitation on the potential of European Union R&D
investment in renewable energy technologies (for more information see www.icarus-project.
org). As an initial step, we used the collected data of the ICARUS survey to construct experts’
subjective probability distributions on the future cost of solar energy conditional on R&D
investment. Subsequently, we employed an integrated assessment model (Bosetti et al. 2006)
to calculate the benefits of R&D investment (via the future solar-electricity costs that R&D
may bring about). The application of our theoretical model to these data suggested that expert
ambiguity plays an important role in assessing the potential of solar technology. Our analysis
allowed us to (cautiously) draw two policy implications: (1) that a 100 % increase of EU
investment in solar technology R&D is likely to yield significant rewards, even after taking
expert ambiguity into account, (2) that a 50 % increase in investment will likely always be
less preferred to either a 100 % increase, or maintaining the status quo.

1.2 Related Work

There is a long and growing literature of applications of models of ambiguity aversion to
environmental economics [see Vardas and Xepapadeas (2010), Asano (2010), Treich (2010),
Athanassoglou and Xepapadeas (2012), Millner et al. (2013) among others]. Most of these
papers deal with different, dynamic models of ambiguity aversion, which do not have action-
dependent subjective probabilities. Moreover, with the exception of Millner et al. (2013),
these papers do not engage directly with the issue of expert aggregation. Perhaps the closest
parallel to our work can be found in Woodward and Bishop (1997). There, the authors applied
a much simplified version of our α-maxmin framework to William Nordhaus’ DICE inte-
grated assessment model (Nordhaus 2008). There were two stylized “experts” in the analysis,
reflecting different views on the model’s damage function parameters.7 The first expert held
that damages will be relatively moderate (in line with Nordhaus’ “base-case scenario”), while
the second was much more pessimistic (in line with Nordhaus’ “catastrophic” scenario). In
this binary setting, the authors argued that a rational decision maker would seek to maximize
the worst-case payoff, in the Gilboa and Schmeidler (1989) sense, and adopt an emissions
trajectory that is optimal under the catastrophic scenario. This finding was reinforced by the
possibility of learning the true damage parameters at a later stage. While the analysis was
quite simplified, the main policy implication was that it pays to follow a policy of aggres-
sive abatement from the outset, even if the future is not quite as catastrophic as one might
fear.

1.3 Paper Outline

The structure of the paper is as follows. Section 2 discusses an example of our setting to
motivate the introduction of the formal model, which follows in Sect. 3. Section 4 applies
the theoretical model to original data from the ICARUS expert elicitation survey on solar
technology and discusses possible policy implications. Section 5 provides brief concluding
remarks and directions for future research.

7 In contrast to the more general setting of our paper, these uncertain parameters were exogenous to the choice
of policy.
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2 Model Description

Consider a set N of experts indexed by n = 1, 2, . . . , N . R&D investment is denoted by
a variable r ∈ R and the technology’s cost by c ∈ C, where R and C are subsets of real
numbers. To make our framework completely consistent with the model of Olszewski (2007)
we assume the sets R and C are finite. An expert n’s probability distribution of the future
cost of technology given investment r is captured by a random variable having a probability
distribution function (pdf)

πn(c|r). (1)

How do we make sense of divergence in the pdfs (π1(·|r), π2(·|r), ..., πN (·|r)) when studying
optimal R&D investment? In the absence of data that could lend greater credibility to one
expert over another, one straightforward way would be to simply aggregate over all pdfs πn

as given by Eq. (1), so that we obtain an “aggregate” pdf π̄ , where

π̄(·|r) =
N∑

n=1

1

N
πn(·|r). (2)

This approach inherently assumes that each and every expert is equally likely to represent
reality, and makes use of simple linear aggregation. However, this way of aggregating expert
pdfs may not always result in robust recommendations.

We thus move beyond simple averaging. In our framework each expert n’s pdf πn(c|r) is
weighted by the decision maker through a second-order probability pn . The set of admissible
second-order distributions p depends on the amount of ambiguity the decision maker is
willing to take into account when aggregating across experts, and in particular on how “far”
she is prepared to stray from equal-weight aggregation. Specifically, we consider the set of
second-order distributions P(b) over a set of N experts, parametrized by b ∈ [

0, N−1
N

]
where

P(b) =

⎧
⎪⎨

⎪⎩
p ∈ �N : p ≥ 0,

N∑

n=1

pn = 1,

[
N∑

n=1

(
pn − 1

N

)2
] 1

2

≤ b

⎫
⎪⎬

⎪⎭
. (3)

Here, the set P(b) captures the ambiguity of the decision-maker’s aggregation scheme in a
parsimonious parametric manner; as such, we refer to parameter b as aggregation ambiguity.8

It can be naturally interpreted as setting a bound on the total weight that can be assigned to
any group of experts (see following discussion on page 10). Guaranteeing a bound of this
sort may be a normative or operational desideratum, in the sense that it provides a check on
the influence of any single group of experts, and guards against outlier opinions. Letting eN
denote a unit vector of dimension N , we see that distributions p belonging to P(b) satisfy∣∣|p− eN

N

∣∣|2 ≤ b, where || · ||2 denotes the Euclidean norm. Setting b = 0 implies the unique

consideration of equal second-order probabilities, while b =
√

N−1
N consideration of the

entire simplex �N−1 =
{
p ∈ �N : p ≥ 0,

∑N
n=1 pn = 1

}
.9

8 Note that, despite the term “ambiguity”, the parameterb does not characterize a state or amount of knowledge.
Knowledge, as represented by the set of experts’ pdfs, remains fixed.
9 The latter statement holds in light of the fact that values of b >

√
N−1
N cannot enlarge the feasible set.

This is because the maximizers of

[∑N
n=1

(
pn − 1

N

)2
] 1

2
over the set of probability vectors concentrate all
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Fixing a level of R&D r and weighting the expert pdfs (1) under all linear aggregation
schemes belonging in P(b) induces the following set of probability distributions

�(b, r) =
{

N∑

n=1

pnπn(·|r) : p ∈ P(b)

}
, (4)

governing the future cost of the technology, conditional on R&D investment r . Thus, the set
of distributions �(b, r) is identical to the set of mixtures of {π1(·|r), π2(·|r), ..., πN (·|r)},
where the weights of the mixture distributions are constrained to lie in set P(b). Consequently,
holding r fixed, an increase in b implies an expansion of the set of priors a decision maker is
willing to consider.10

Now, define the real-valued function

u (c, r) : C × R �→ �,

as representing the utility of R&D investment r , under cost realization c. Given choices for
r and b, we can calculate the best- and worst-case expected utilities associated with r , given
the set of induced prior distributions �(b, r). This provides a measure of the spread between
the worst- and best-cases, given a “willingness” to stray from the benchmark equal-weight
distribution (2) that is constrained by an aggregation ambiguity of b. More formally, we
consider the functions

Vmin(r |b) = min
π∈�(b,r)

∫

C
u (c, r) dπ(c) (5)

Vmax (r |b) = max
π∈�(b,r)

∫

C
u (c, r) dπ(c). (6)

Plotting functions (5) and (6) over b ∈ [0,
√

(N − 1)/N ] gives decision makers a compre-
hensive picture of the expected payoff of R&D investment r .

Thus, given a level of aggregation ambiguity b, the functions (5)–(6) focus on the worst-
and best-case expected utility associated with an investment r . As such they capture extreme
attitudes towards uncertainty in expert aggregation. To express more nuanced decision-maker
preferences we consider the following value function

V (r |b, α) = α · Vmin(r |b) + (1 − α) · Vmax (r |b) α ∈ [0, 1], (7)

representing a convex combination of the worst- and best-case expected utility. The parameter
α above captures the decision maker’sambiguity attitude. It measures her degree of pessimism

Footnote 9 continued

probability mass on one expert, leading to an aggregation ambiguity of

[(
1 − 1

N

)2 + (N − 1) ·
(

1
N

)2
] 1

2 =
√

N−1
N .

10 It is important to note that the parameterization (4) may, in some cases, obscure important information. For
instance, suppose one wishes to make a decision on the basis of a water container’s temperature. There are two
experts, one of which provides a pdf suggesting that the water is freezing and the other that it is boiling hot.
Suppose, further, that we know that one of the two experts must be correct. Then it is clear that if we consider
the set of pdfs (4) for some small value of b, we will be taking into account a whole set of pdfs implying that
the water is tepid and none that it is either freezing or boiling. Clearly, in such cases, our framework will likely

lead to suboptimal decisions. To avoid this from happening, we should either (a) set b ≈
√

1
2 that allows for

the unmixed consideration of both expert pdfs, or (b) consider a different parametric framework altogether.
We thank an anonymous referee for bringing this issue to our attention.
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given aggregation ambiguity b: the greater (smaller) α is, the more (less) weight is placed on
the worst-case scenario. In Sect. 3, we explain more formally the sense in which parameter
α captures the decision maker’s attitude towards ambiguity.

As mentioned in the introduction, Eq. (7) is a variation of the well-studied α-maxmin
model in decision theory. Given values for b and α, Eq. (7) operates as an objective function
when searching for optimal R&D investment r .

What do different choices of b imply? We offer some brief remarks on the interpretation
of different levels of aggregation ambiguity b. Consider the benchmark equal-weight aggre-
gation 1

N eN . Now take any subset of experts N̂ of cardinality N̂ and begin increasing the
collective second-order probability attached to their pdfs. The convex structure of the feasi-
ble set P(b) enables us to provide a tight upper bound on the maximum total second-order
probability that can be placed on this set of experts, as a function of b and N̂ (we denote∣∣N̂

∣∣ = N̂ ):

max
p∈P(b)

∑

n∈N̂
pn = min

⎧
⎨

⎩
N̂

N
+ bN̂

√
N − N̂

N̂ N
, 1

⎫
⎬

⎭. (8)

Extending this logic to any subset of experts, we have the following holding:

p ∈ P(b) ⇔
⎧
⎨

⎩p ≥ 0,
N∑

n=1

pn = 1,
∑

n∈N̂
pn

≤ min

⎧
⎨

⎩
N̂

N
+ bN̂

√
N − N̂

N̂ N
, 1

⎫
⎬

⎭ , for all N̂ ⊆ N
⎫
⎬

⎭. (9)

Figure 1 provides a graphical visualization of the above algebraic arguments for the case of
N = 3 experts. Consider two levels of aggregation ambiguity b1 and b2. Assume that b1 is

such that 2
3 + b1 ∗ 2

√
3−2
2∗3 < 1 ⇔ b1 <

√
1
6 . In this case, by Eq. (8) we know that no pair

of experts can be assigned weight of 1, implying that all experts must be assigned positive
weight. Hence, the set P(b1) is just a circle of radius b1 that is embedded in the simplex �2 and
centered at the equal-weight benchmark (1/3,1/3,1/3). This circle does not touch the simplex’s

boundary. Conversely, when b = b2 such that b2 >

√
1
6 and 1

3 + b2

√
3−1
1∗3 < 1 ⇔ b2 <

√
2
3 ,

the decision maker (a) allows for a weight of 1 to be placed on sets of pairs of experts (and

thus 0 for sets of single experts), while (b) setting an upper bound of 1
3 + b2

√
2
3 < 1 on the

weight than a single expert can receive. In this case, the set P(b2) has a triangular oval-like

shape, with parts of it intersecting the boundary of �2. Moreover, the closer b2 is to
√

2
3 , the

closer the curved segments of P(b2) are to becoming two intersecting straight lines. When

b =
√

2
3 , this transformation is complete and we have P(b) = �2.

On a final note we recognize that, when applying the framework of Eq. (7), there may
not be one single objectively “correct” value for b and α. Thus, we believe it is preferable to
examine Eq. (7) over a reasonable range of b (guided by the insights of Eq. (9)) and α, that
is deemed appropriate for the context at hand. Such an investigation will allow the decision
maker to explore the implications of different (b, α)-combinations in a systematic fashion,
and ultimately arrive at a choice of r that she considers justified.11

11 The empirical example of Sect. 4 (especially Fig. 4) suggests the logic of such an exercise.
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Fig. 1 The set P(b) for N = 3
and two levels of aggregation
ambiguity

b1 <

√
1
6 < b2 <

√
2
3 . P(b1) is

the inner circle of radius b1,
while P(b2) is the oval-shaped
triangular figure subsuming P(b1)

b1

b2

(1/3,1/3,1/3)

(1,0,0)

(0,0,1)

(0,1,0)

p1

p2

p3

P(b1)

P(b2)

3 Decision-Theoretic Foundations

In this section we provide an exposition of the axiomatic underpinnings of the decision-
theoretic model we adopt in Eq. (7). In doing so, we use the analytic framework of Olszewski
(2007), which is the most appropriate for our context. Olszewski axiomatized a version of
the α-maxmin model in a setting in which decision makers are called to choose between sets
of lotteries, i.e., probability distributions over outcomes. This fits our R&D setting since, in
our model, levels of R&D directly affect experts’ probability distributions, as per Eq. (1),
and thus can be seen as defining a set of lotteries over the technology’s future payoff.

Readers familiar with models of ambiguity aversion may wonder why we do not draw on
Ghirardato et al. (2004) to discuss the axiomatic foundations of our α-maxmin model. More
broadly, they might also ask why we do not adopt different models of ambiguity aversion
such as the smooth ambiguity model of Klibanoff et al. (2005). The short answer to these
questions is that the endogeneity of expert probabilities of Eq. (1) distinguishes our framework
from the decision-theoretic setting of Savage (1954), on which the previous contributions
are grounded. In particular, the preferences analyzed in Ghirardato et al. (2004), Klibanoff
et al. (2005) operate in settings where ambiguous probabilistic information is independent
of a decision maker’s actions, and are thus not directly applicable to our context.12

To further highlight the above point, it is instructive to compare our setting to that of
Millner et al. (2013). The starting point of Millner et al.’s analysis is that different climate
models (representing different “expert” groups of climate scientists) provide widely divergent
estimates of the probability distribution of climate sensitivity, a key physical parameter linking
greenhouse gases and temperature increase (see Malte et al. 2009). The scientific community
has not reached an agreement on how best to aggregate these divergent estimates and arrive
to a single pdf of climate sensitivity. Acknowledging this lack of scientific consensus on
the “correct” pdf of climate sensitivity, Millner et al. (2013) adopted the smooth ambiguity

12 On a related note, the theoretical machinery of the Savage framework (involving state spaces, consequence
spaces, and acts) seems overwrought for our context (to this effect, see also the discussion in the introduction
of Ahn (2008)).
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model of Klibanoff et al. (2005) to study optimal abatement policy. However, a key aspect
of their modeling framework is that nothing a decision maker does can alter ambiguous
scientific information; no decision on abatement can affect scientists’ probabilistic estimates
of climate sensitivity. Climate sensitivity is a physical quantity that is simply unaffected by
human action. This is clearly in contrast to the setting of the present paper in which decisions
on R&D investment do affect experts’ probabilistic estimates on the future cost of the green
technology via Eq. (1).

In what follows, we adopt the notational conventions of Olszewski (2007). Suppose X =
{x1, x2, ..., xn} is a finite set of outcomes, and let � = �(X) be the set of all lotteries (i.e.,
probability distributions) on X . Moreover, let A denote the set of all closed and non-empty
subsets of �. Given a utility function u : X �→ � and a lottery l = (q1, q2, ..., qn), where qi
denotes the probability of outcome xi , let

U (l) =
n∑

i=1

qiu(xi )

denote the expected utility of the lottery l. Consider now a complete and transitive preference
relation 
 over A. For the rest of this chapter the following assumption is assumed to hold.

Assumption 1 The preferences 
 restricted to single lotteries admit an expected utility
representation. That is, there exists a utility function u : X �→ � such that for any two
lotteries l1, l2 ∈ �, l1 
 l2 ⇔ U (l1) ≤ U (l2).

As usual, the utility function u captures the decision maker’s attitude towards risk in an
expected utility framework. Now, consider the α-maxmin rule

Hu,α(A) = α

(
min
l∈A

U (l)

)
+ (1 − α)

(
max
l∈A

U (l)

)
, (10)

where α ∈ [0, 1], and define the corresponding preferences 
Hu,α on A, whereby

A1 
Hu,α A2 ⇔ Hu,α(A1) ≤ Hu,α(A2).

Evidently, the value function we consider in Eq. (7) reduces to a special case of the
preferences defined in Eq. (10). We briefly explain how. In the setting of Sect. 2, the relevant
outcome space equals the cross product of the cost and R&D domains, i.e. C×R. For an expert
n, a choice of r can be viewed as defining a pdf πn on C × R, such that πn(·, r) ≡ πn(·|r)
(where the latter is given by Eq. 1) and πn(·, r̃) ≡ 0 for all r̃ �= r .13 Consequently, given a
(fixed) value of aggregation ambiguity b, choosing a value of r is equivalent to choosing a
set of lotteries �(b, r) ∈ A, over which the minimum and maximum expected utilities will
be computed.

Olszewski’s article performed a rigorous and comprehensive theoretical analysis of pref-
erences 
Hu,α . In what follows we selectively present what is necessary for our purposes. We
are primarily interested in shedding light on two main issues: (i) the axiomatic foundations
of rule Hu,α(A), and (ii) the interpretation of comparative attitudes towards ambiguity.

Axiom 1 (Set S-Solvability). For all triplets of sets A, A1, A2 such that one of the sets A1, A2

is a singleton, if A1 
 A 
 A2, then there exists a p ∈ [0, 1] such that A ∼ pA1 +(1− p)A2.

13 Note that the presence of r as an argument of utility function u compels us to consider this broader
outcome space (instead of just C) and somewhat awkward reframing of pdfs πn , even though there is no direct
randomness associated with r (once the decision maker chooses it, it is fixed).
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As we can see, Set S-Solvability operates as an analog of the intermediate value theorem of
calculus on preferences over sets of lotteries. As such, it imposes a sort of continuity property
on preferences so that no “jumps” are allowed.

A stronger, and more mathematically involved, version of preference continuity is given
by the following axiom.

Axiom 2 (Set Continuity). For every set of lotteries A1, sets {A2 : A2 ≺ A1} and {A2 : A1 ≺
A2} are open in the space of all closed subsets of � equipped with the Hausdorff distance.14

Set Continuity implies Set S-Solvability, and generalizes the traditional notion of continuity
to sets of lotteries. Among its consequences is the fact that a decision-maker will be indifferent
between a set of lotteries A and A ∪ l, where l /∈ A is a “middle-of-the-line” lottery that we
know will never be among the argmins or the argmaxs in Eq. (10). This is a strong, and not
uncontroversial, axiom. See Chapter 4 in Olszewski (2007) for more information on how Set
Continuity may, in some cases, be violated by decision makers.

Axiom 3 (Set S-Independence). If A1 
 A2 and l is a single lottery, then pA1 + (1 − p)l 

pA2 + (1 − p)l for all p ∈ [0, 1].
Set S-Independence generalizes the traditional notion of weak independence for single lot-
teries. Essentially, what it says is that the decision maker’s preferences over two sets A1 and
A2 cannot be reversed by randomizing over these sets and a single lottery l.

Axiom 4 (Disjoint Set Betweeness (DSB))

(a) For any disjoint sets A1 and A2, if A1 
 A2, then A1 
 A1 ∪ A2 
 A2.
(b) If l1 ≺ l2 for all l1 ∈ A1 and l2 ∈ A2, then A1 ≺ A1 ∪ A2 ≺ A2.

Part (a) of DSB captures what seems like an intuitive property: if two sets of lotteries A1

and A2 are disjoint and A2 is preferred to A1, then their union, in terms of the decision
maker’s preferences, will lie somewhere inbetween A1 and A2. That is, one cannot gain
by incorporating the “bad” lotteries of A1 to A2, in the same way as one cannot lose by
incorporating the “good” lotteries of A2 to A1. Part (b) restates (a) for the case of disjoint
sets of lotteries in which the lotteries of one set uniformly dominate the lotteries of the other.

Theorem 1 (Olszewski (2007)) A preference 
 defined on A satisfies Set Continuity, Set
S-Independence, and DSB if and only if there exists a unique α ∈ (0, 1) such that


 = 
Hu,α .

The parameter α is unaltered under positive affine transformations of u. As a corollary,
preferences 
Hu,α satisfy Set S-Solvability, Set S-Independence, and DSB for any α ∈ (0, 1).

Having presented the characterization result of Theorem 1, we now discuss comparative
attitudes towards ambiguity. Given preferences 
1 and 
2, let B be a set of lotteries such
that 
1 and 
2 coincide on single lotteries from the set B. Then B is called congruent with
respect to preferences 
1 and 
2. More formally, B is congruent with respect to 
1 and 
2

if for all l1, l2 ∈ B, l1 
1 l2 ⇔ l1 
2 l2.

14 Skipping some of the formal details, the Hausdorff distance of two lotteries A and B is given by

dH (A, B) = max

{
max
a∈A

min
b∈B d(a, b), max

b∈B min
a∈A

d(a, b)

}
.
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Definition 1 Consider two preferences 
1 and 
2. If, for any congruent set B,

B 
2 A ⇒ B 
1 A and B ≺2 A ⇒ B ≺1 A,

for all A ⊂ B, then a decision maker with preferences 
1 is more ambiguity averse than one
with 
2.

The intuition behind the above definition is the following. Preferences 
1 are more ambi-
guity averse than 
2 if, given any congruent set B, whenever 
2 prefers a set of lotteries
A to its bigger superset B ⊃ A, then so does 
1 (while the other side of the relation may
not always be true). This definition of relative ambiguity aversion is reminiscent of similar
concepts in the literature of risk aversion (see, e.g., Yaari 1969). It leads to the following
corollary, which identifies α as a measure of comparative ambiguity aversion.

Corollary 1 Suppose that
1 and
2 definedonA satisfy SetContinuity, Set S-Independence,
and DSB. Then preferences 
1 are more ambiguity averse than 
2 if and only if α1 ≥ α2.

In closing this Section, we wish to note that Olszewski proved a variant of Theorem 1
and Corollary 1 for the restricted domain of convex polyhedral lotteries. This alternative
characterization uses a different set of axioms (e.g., replacing Set Continuity), which may
be useful for future analyses focusing on convex-polyhedral sets of lotteries.

4 Empirical Application to Solar-Technology R&D

We base the empirical application of our model on original data collected by the ICARUS
survey, an expert elicitation on the potential of solar technologies. During the course of
2010-2011, the ICARUS survey collected expert judgments on future costs and technological
barriers of different Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies.15

Sixteen leading European experts from academia, the private sector, and international insti-
tutions took part in the survey. The elicitation collected probabilistic information on (1) the
year-2030 expected cost of the technologies; (2) the role of public European Union R&D
investments in affecting those costs; and (3) the potential for the deployment of these tech-
nologies (both in OECD and non-OECD countries). We refer readers interested in the general
findings of the survey to Bosetti et al. (2012) and we focus here on the data on future costs
as they form the basis of our analysis.

Current 5-year EU R&D investment in solar technology is estimated at 165 million US
dollars. The ICARUS study elicited the probabilistic estimates of the 16 experts on the
2030 solar electricity cost (2005 c$/kWh) under three future Scenarios: (1) keeping current
levels of R&D constant until 2030, (2) increasing them by 50 %, and (3) increasing them
by 100 %. Coherent responses were obtained from 14 out of the 16 experts so the analysis
that follows focuses solely on them.16 We used linear interpolation of the survey’s collected
data (generally 3-6 points of each expert’s cumulative distribution function(cdf) conditional

15 The survey is part of a 3-year ERC-funded project on innovation in carbon-free technologies (ICARUS -
Innovation for Climate chAnge mitigation: a study of energy R&D, its Uncertain effectiveness and Spillovers
www.icarus-project.org).
16 By “coherent” we mean non-contradictory responses which do not violate the laws of probability. In
particular, 2 out of the 16 elicited experts provided probabilistic estimates implying non-monotonic cumulative
distribution functions, which is clearly in conflict with probability theory and thus unusable for our purposes.
As mentioned in the introduction, such incoherent expert estimates have been discussed in the literature
(Millner et al. 2013; Kriegler et al. 2009), and addressing them in the context of expert elicitations is deserving
of further study.
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Fig. 2 Expert and aggregate cdfs of the 2030 cost of solar technology conditional on the three R&D Scenarios.
Recall that the cdf’s domain is {2, 2.5, ..., 29, 29.5, 30}. Cost is measured in 2005 USc$/kWh

on R&D investment) to compute a pdf for each expert n ∈ {1, 2, ..., 14}, given the three
relevant levels of R&D investment denoted by r ∈ {r1, r2, r3} (here ri refers to Scenario i).17

These pdfs represent experts’ subjective probability distributions of the cost of technology as
denoted in Eq. (1). Figure 3 plots the corresponding cdfs as well as the cdf that the aggregate
pdf (2) leads to, under all three Scenarios.

As one can see in Fig. 2 there is considerable disagreement between experts over the
potential of solar technology. This disagreement is particularly acute under Scenario 1, and
diminishes as R&D levels increase. Nonetheless, the breakthrough nature of innovation and
the need to cross certain firm cost thresholds, means that ambiguity in expert estimates
remains an important concern, even under Scenario 3. This will become apparent in the
analysis to follow.

We measure the utility of an investment via its net payoff. Denoting the benefit associated
to a technology cost c by the function B(c) and the opportunity cost of an investment r by
O(r), this is given by the following utility function:

u(c, r) = B(c) − O(r). (11)

The next section describes how we provide numerical values for B(·) and O(·).

Quantifying benefits and opportunity costs of solar technology R&D. Expected benefits of
solar technology R&D investments are quantified via a general equilibrium intertemporal
model (Bosetti et al. 2006) that can account for a range of macro-economic feedbacks and

17 Please refer to the “Appendix” for more information on how expert pdfs were constructed from the ICARUS
survey data.
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Table 1 EU discounted
consumption improvement as a
function of 2030 solar-power cost

2030 Solar-technology cost c
(2005 USc$/kWh)

Benefit B(c) (US$ 109)

2 189.90

2.5 170.76

3 151.26

3.5 131.74

4 112.12

4.5 92.29

5 71.47

5.5 50.64

6 29.27

6.5 23.59

7 12.32

7.5 3.67

8 1.76

> 8 0

interactions. These include the effects of energy and climate change policies, the competition
for innovation resources with other power technologies, the effect of growth, as well as a
number of other factors.18 To capture the long-term nature of such investments, the integrated
assessment model is run over the time horizon 2005–2100 in 5-year time periods for the whole
range of exogenously-imposed possible 2030-costs of solar power that we are considering.
Subsequently, simulation results are compared to the benchmark case in which the cost of solar
power is so high that the technology is not competitive with alternative production modes.
For each possible 2030 solar-power cost, the benefit to the European Union is quantified by
the discounted EU-consumption improvement over the entire time-horizon 2005–2100 with
respect to the case where solar technology is not competitive. Table 1 summarizes the results.

Three important assumptions are at the basis of the numbers reported in Table 2. First,
as the survey concentrated on public EU R&D investment and the effects of increasing it,
we disregard spillovers and technological transfers to the rest of the world and consider only
the consumption improvement for Europe. Second, we evaluate the benefit of alternative
2030 costs of solar power assuming that no carbon policy is in place and that no special
constraints on other technologies are imposed (e.g., a partial ban on nuclear technology).
Third, we discount cash flows using a 3 % discount rate. Although our choice is well in the
range of discount rates adopted for large scale public projects, it is important to note that the
cost threshold for positive payoffs is robust for a wide range of more myopic discount rate
values. Our assumptions all err on the side of being conservative about the potential payoffs
of solar-technology R&D.

We now explain how we calculate the costs of solar R&D investment. Given an R&D
investment r , we assume that actual R&D spending is fixed at r during the period 2005-
2030, in line with the survey questions. After 2030 we assume that spending drops to half its
initial value, i.e. r/2, and remains at that level until 2100. This drop occurs because we assume

18 The analysis is carried out using the World Induced Technical Change Hybrid (WITCH) model (Bosetti et
al. 2006), an energy-economy-climate model that has been used extensively for economic analysis of climate
change policies. See www.witchmodel.org for a list of applications and papers.
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Table 2 Discounted opportunity
cost of R&D Scenarios R&D Scenario r Opportunity Cost O(r) (US$ 109)

r1 3.67

r2 5.51

r3 7.35

that post-2030 funds represent the government’s commitment to maintain the technological
gains achieved by 2030. We now derive the discounted opportunity cost of such expenditure
streams of solar-technology R&D spending. In doing so we follow Popp (2004) and assume
that, at every time period, this opportunity cost is equal to 4 times the original investment.
Thus, in our model the opportunity cost of a level of R&D investment r is given by the
net present value of the stream O(t) where O(t) = 4 · r for t = 1, 2, . . . , 6 and 2 · r for
t = 7, 8, ..., 20 (once again we use a 3 % discount rate). Table 2 summarizes these results
for the three R&D Scenarios that the ICARUS survey focused on.

Application of the decision-theoretic framework. We now extend our analysis to explicitly
account for aggregation ambiguity and adopt the decision-theoretic model introduced in
Sect. 3.19 Our objective is to compare the three R&D Scenarios, and we do not consider
optimizing over a wider R&D domain R. We make this choice primarily because we wish to
keep the applied section brief and pursue more in-depth empirical analysis in future work.20

Figure 3 plots Vmax (r |b) and Vmin (r |b) over b ∈
[

0,

√
13
14

]
≈ [0, .96] for the three

Scenarios.
Focusing first on Scenario 1, we note that equal-weight aggregation of expert opinion

(corresponding to b = 0) yields an expected payoff of approximately $1.36 × 109. We
observe that the worst-case expected payoff drops to about $−3.4×109 at b ≈ .25 at which
point it largely stops being sensitive to changes in b, slowly asymptoting to its minimum
value of $ − 3.67 × 109; in contrast, the best-case one increases steadily to a maximum
value of $22.7 × 109 at the maximum level of b = .96. Under Scenario 2, the expected
payoff for b = 0 is equal to $7.8 × 109. Subsequently, we see that the worst-case payoff
drops to 0 at b = 0.15, at which point it keeps decreasing at a smaller rate until it practically
reaches its minimum value of $ − 5.5 × 109 at b ≈ .55. Conversely, the best-case payoff
rises steadily to about $32 × 109 for b ≈ .55 at which point it continues to rise at a much
smaller rate until it reaches a maximum value of $33.3×109 at b = .96. Thus for Scenario 2,
aggregation uncertainty becomes largely unimportant once b reaches the threshold of 0.55.
Under Scenario 3 the unambiguous payoff is around $20×109, significantly higher than both
other Scenarios. The worst-case expected payoff drops relatively smoothly to a minimum
value of $ − 7.35 × 109 for b = .96, while the best-case one rises at a comparatively higher
rate to $70.9 × 109.

It is clear that aggregation ambiguity is important under Scenario 3, for both the worst-
and best-case expected payoffs, resulting in a wider spread than Scenarios 1 and 2. This fact

19 All simulations are performed in Mathematica. The optimizations are facilitated by the fact that right-
hand-side of Eqs. (5) and (6) can be rewritten as Vmin(r |b) = minp∈P(b)

∑N
n=1 pnun(r) and Vmax (r |b) =

maxp∈P(b)
∑N

n=1 pnun(r), where un(r) ≡ ∫
C u(c, r)dπn(c|r). These equalities are valid by the linearity of

the expectation operator under mixtures of distributions.
20 Indeed, constructing plausible approximations of experts’ un(r) functions over an interesting range of r
will likely require further engagement with the experts.
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Fig. 3 Worst and Best-Case net payoffs (benefits minus opportunity cost) for the three R&D scenarios. Net
payoffs are measured in US$ 109

is interesting in light of Fig. 2, which shows that experts’ pdfs are much more dispersed under
Scenarios 1 and 2 than they are under 3. The reason behind this seemingly unexpected result is
straightforward. As Table 2 suggests, expected payoffs of R&D investment are very sensitive
at low cost values, i.e., less than 8c$/kWh. The more aggressive investment of Scenario 3
has a greater effect on these lower cost values, and therefore its best- and worst-case payoffs
are in turn more sensitive to changes in b.

Figure 4 goes a step further and compares the three R&D Scenarios for all possible
combinations of b and α. Following the color scheme of Fig. 3, a region’s color corresponds
to the Scenario that performs the best within it, while the bold numbers within regions denote
the ranking of the three Scenarios within this range of (b, α) (e.g., an expression “321” means
Scenario 2 dominates 1, and Scenario 3 dominates both 2 and 1).

Figure 4 makes clear that Scenario 3 dominates 1 and 2 for an extremely wide range of
combinations of b and α. Conversely, Scenario 1 is the best option for a combination of very
high b and α. Somewhat surprisingly, we see that Scenario 2 is dominated by either 1 or 3
for all possible combinations of b and α and thus will never be chosen by a decision maker
whose preferences are captured by Eq. (7). Thus, on the basis of the presented data, it is
clear that policy makers should opt for the most aggressive R&D investment, unless they
are both (a) open to ignoring a very large set of surveyed experts (b) extremely concerned
about the possibility of worst-case failure. Moreover, assuming all three options are readily
implementable, they can safely disregard the middle-range R&D investment implied by
Scenario 2.

We end this section by noting that the result of Fig. 4 is quite robust to the application of
the model to different subsets of experts. This is due to, in large part, the fact that a significant
majority of experts agree that doubling current R&D has a good chance of pushing the cost
of solar below 7.5, which, according to WITCH and our assumption regarding opportunity
costs, is the threshold point for large gains to be realized. That being said, it also should be
mentioned that the views of Experts 4, 6, and 9, are at complete odds with this picture, so
that applying the model on their pdfs alone results in completely different ranking of the
three scenarios in (b, α)-space. In particular, Scenario 2 predominantly dominates 1 and 3,
and where that is not the case Scenario 1 is preferred (Scenario 3 is dominated everywhere
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Fig. 4 Comparison of the three R&D scenarios over all values of b and α

by either 1 or 2). This suggests that the pattern of Fig. 4 is not solely driven by assumptions
embedded into the WITCH model and the calculation of opportunity costs.

5 Conclusions

Expert elicitation studies can play an important role in informing environmental policy. If
designed well, they may be able to capture in a transparent and objective way subjective
probabilities that can subsequently be used as scientific data in the decision maker’s deliber-
ations.

When there is significant variation in expert estimates, condensing all of the problem’s
uncertainty into a single probability distribution reflecting equal weights across experts may
yield policy recommendations that are not robust, especially when the issue on which expert
opinion is sought is unprecedented or highly complex. To address such concerns, we pro-
posed and analyzed a variant of the well-studied α-maxmin model due to Olszewski (2007).
In line with the paper’s focus on R&D investment, decision variables in our model affect
experts’ subjective probability distributions of the future cost-effectiveness of an investment.
We applied our framework to original data from a recent expert elicitation survey on solar
technology. The analysis suggested that more aggressive investment in solar technology R&D
is likely to yield substantial benefits even after ambiguity over expert opinion has been taken
into account.

It should be mentioned that our work, while formally rooted in the literature of decision
making under ambiguity, may also be interpreted as a structured form of sensitivity analysis
in a purely Bayesian setting. Thus, it may be of interest also to scholars who are skeptical of
models of ambiguity aversion as a foundation of rational decision making.
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Our work suggests several fruitful avenues for future research. A particularly challeng-
ing one would be to extend the α-maxmin model to take into account higher moments or
quantiles [see, e.g., the quantile-based decision-theoretic framework of Rostek (2010)] of
the considered mixture distributions of Eq. (4). This change would introduce nonlinearities
that significantly complicate the analysis, both theoretically and computationally. Alterna-
tively, we could consider making expert weights quantile-specific, to reflect varying degrees
of decision-maker confidence across the domain of expert distributions. For instance, a deci-
sion maker may trust some experts more on the probability of tail events, while others more
on the probability of typical events, depending on their experience.21 On the applied front,
extensions of this work could delve deeper into the ICARUS survey data to obtain more data
points and ultimately solve for optimal R&D investment over a broader domain.

Appendix: Constructing Expert Pdfs for the Three R&D Scenarios from ICARUS
Survey Data

In the ICARUS survey, experts were asked to provide values for the 10th, 50th, and 90th
percentile of their distributions for the 2030 cost of solar technology conditional on all three
Scenarios. In addition, they were asked to provide values for the probability of this cost being
less than or equal to the following three values: 11.3, 5.5, and 3 c$/kWh. These “threshold”
cost levels correspond to projections of the costs of electricity from fossil fuels or nuclear
in 2030. The first (11.27 c$/kWh) corresponds to the 2030 projected cost of electricity from
traditional coal power plants in the presence of a specific policy to control CO2 emissions
(thus effectively doubling electricity costs from fossil sources). The second threshold cost
(5.5 c$/kWh) is the projected cost of electricity from traditional fossil fuels in 2030, without
considering any carbon tax. Finally, the third (3 c$/kWh) reflects a situation in which solar
power becomes competitive with the levelized cost of electricity from nuclear power.

Asking experts the follow up question on the likelihood of reaching threshold cost targets
allowed the survey authors to guard against the cognitive pitfalls associated with direct
elicitation of subjective probabilities, to increase the amount of elicited information, and to
deepen the discussion with the expert, hence improving their perception of his/her beliefs.
In cases where the two sets of answers (percentile values and threshold probabilities) were
inconsistent, we contacted the expert in order to obtain coherent estimates. Moreover, we
asked all experts to give values for the upper and lower limits of their distribution’s support
in order to pinpoint the intervals over which their implied probability distributions range.

Such corrected estimates were obtained from 14 out of the original 16 experts, and there-
fore the analysis of Sect. 4 focuses solely on them. Among the respondents, not all provided
values on the left and right endpoints of their distributions’ support. As a result, we deduced
between 6 and 8 points of 14 experts’ cumulative distribution functions (cdf) of the 2030 cost
of solar electricity, given the aforementioned three R&D investment Scenarios. From these
points a probability distribution function (pdf) was constructed using linear interpolation in
the following way. First of all, and in accordance with the experts’ answers, we considered
cost levels c lying in [2c$/kWh, 30c$/kWh] and discretized this interval on a scale of 0.5
(30c$/kWh represents an estimate of the technology’s current cost). Now, suppose an expert
reported the values of his/her cdf Fn at two successive points c1 and c2 where c2 > c1 and
gave no further information on cost levels between c1 and c2. Assuming right-continuity of
Fn we took the probability mass Fn(c2)− Fn(c1) to be distributed uniformly among the cost

21 We thank an anonymous referee for this suggestion.
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levels {c1 + .5, c1 + 1, . . . , c2}. For experts who did not provide values for the lower limit
of their distribution’s support we assumed that whatever probability mass remained to be
allocated (always less than .1) was distributed uniformly between the smallest argument of
the cdf and two cost levels below it. For example, if an expert only indicated that cl was his
y’th percentile and gave no further points of the cdf below this, we assumed that a probability
mass of y was distributed evenly across {cl − 1, cl − .5, cl}. In the case of an unknown upper
limit, if an expert only indicated that cu was his yth percentile and gave no further arguments
for the cdf above it, we assumed that a probability mass of 1 − y was distributed evenly
across {cu + .5, cu + 1}.

Following this procedure we arrived at probability distribution functions for all 14 experts
conditional on all three Scenarios. The implied cumulative distribution functions are depicted
in Fig. 3.
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