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Objective: We review two alternative ways of modeling stability and change of

longitudinal data by using time-fixed and time-varying covariates for the observed

individuals. Both the methods build on the foundation of finite mixture models, and

are commonly applied in many fields but they look at the data from different perspec-

tives. Our attempt is to make comparisons when the ordinal nature of the response

variable is of interest.

Methods: The latent Markov model is based on time-varying latent variables to

explain the observable behavior of the individuals. It is proposed in a semiparametric

formulation as the latent process has a discrete distribution and is characterized by a

Markov structure. The growth mixture model is based on a latent categorical variable

that accounts for the unobserved heterogeneity in the observed trajectories and on

a mixture of Gaussian random variables to account for the variability in the growth

factors. We refer to a real data example on self-reported health status to illustrate

their peculiarities and differences.
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1 INTRODUCTION

The analysis of longitudinal or panel data by using latent

variable models has a long and rich history mainly in the

social sciences. In the past several decades, the increased

availability of large and complex data sets, have witnessed a

sharp increase in interest in this topic. Nowadays, it demands

the development of increasingly rigorous statistical analytic

methods that can be proved useful for data reduction as well

as for inference. Among the different proposals available there

are two main broad classes of models: one tailored to consider

the transition over time and the other focused on growth or

trajectory analysis. Among the former, we discuss the latent

Markov (LM) model which is mainly used for the analysis of

categorical data. Among the second class, the growth mixture

model (GMM) is originally employed with observed contin-

uous response variables. In the following we compare the

models to account for the recent improvements proposed in

literature. Previous comparisons can be found in [1,2] and

some hints are available in [3]. We consider measurements

on an ordinal scale to illustrate similarities and differences

between these models.

The LM models may be classified as observation-driven

models tailored for many types of longitudinal categorical

data as showed recently in [4,5]. The evolution of the indi-

vidual characteristics of interest over time is represented by

a latent process with state occupation probabilities that are

time-varying. They are extensions of the latent class model [6]

when multiple occasion of measurements are available and of

Markov chain models for stochastic processes when an error

term is included in the observations. They allow for unob-

served heterogeneity among individuals or within the latent

states. Even if the first basic model formulation proposed

by Wiggins [7] does not include the covariates, at present
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time-constant and time-varying covariates can be added in

the measurement or in the latent part of the model. Wiggins

proposed this model at Columbia in a social science research

project when Paul Lazarsfeld was principal investigator

(see for more details http://www.nasonline.org/publications/

biographical-memoirs/memoir-pdfs/lazarsfeld-paul-f.pdf).

In 1955 in his Ph.D. dissertation he analyzed the applicative

example of a single item of human behavior moving over

time in a nonexperimental context. When the model is formu-

lated according to a discrete time-dependent latent process

it may be classified as a semiparametric approach. It allows

modeling with different data in applications in fields such as

medicine, sociology, biology, or engineering (see also [8,9]).

Some of the connections with the hidden Markov model

employed to analyze time-series data are illustrated in [10].

The hidden Markov model was also developed in the social

science field to study sudden changes in learning processes

by Miller [11]. An alternative model formulation to assess

causal effects under the potential outcome framework [12]

has been recently proposed in [13].

Conventional growth models or growth curve models

(GCMs) are viewed either as hierarchical linear models or as

structural equation models. Their use in analyzing continuous

response variables has been widely discussed in the literature

(see, among others [14,15]). Their use in modeling and ana-

lyzing categorical data has recently received more attention

[16,17]. Latent growth modeling was first proposed indepen-

dently in [18,19] in relation to the longitudinal factor analysis

and later extended and refined in [20–22]; see also [23].

The GCM aims at studying the evolution of a latent indi-

vidual characteristic in order to estimate the trajectories by

accounting for individual variability about a mean popula-

tion trend. It imposes a homogeneity assumption, requiring

that all individuals follow similar trajectories. The GMM pro-

posed by [24] (see also [25,26]) is a generalization of the

GCM which accounts for the heterogeneity in the observed

development trajectories by employing a latent categorical

variable. The finite mixture of linear and multinomial regres-

sion models allows us to disentangle the between-individual

differences and the within-individual pattern of changes

through time (see also [27,28]). It is a parametric approach

where the population variability in growth is modeled

by a mixture of subpopulations with different Gaussian

distributions.

A specific case of the GMM is the latent-class growth

curve model (LGCM) (see, among others, [29–31]), also

termed as latent class regression model by [32]. Another

terminology employed in [33] is latent class growth analy-

sis (LCGA). The multinomial model is used to identify the

homogeneous groups of developmental trajectories by avoid-

ing the random effects of Gaussian distribution assumption.

The individuals in each class share a common trajectory [34]

without considering the between-class heterogeneity. There-

fore, in the LGCM, the individual heterogeneity is captured

completely by the mean growth trajectories of the latent

classes. However GMM allows us to model the class-specific

variance components (intercept and slope variance). For a

more complete comparison between GMM and LGCM, see

also [35]. An alternative extension of these models to the

counterfactual context has been proposed in [36].

We illustrate two recent extensions of the LM model and

GMM where the ordinal response is made by thresholds

imposed on an underlying continuous latent response vari-

able. We show how the discrete support for the latent variable

used in the LM model framework can be appropriate in

this context. The models are compared on how they allow

covariates, how they make inference, on their computational

features required to achieve the estimates, and on their ability

to classify units and their predictive power. Our proposal to

compare them in terms of fitting, parsimony, interpretation,

and prediction is an attempt to review the recent literature on

these models for panel data. The results of the model fitting

are illustrating through a data set on longitudinal study aimed

at describing self-perceived health status, which also appears

in other published scientific articles (see, among others [37]).

The structure of the paper is as follows. In Section 2 we

introduce the basic notation for both models and we sum-

marize the main features concerning the estimation issues.

In Section 3 we demonstrate the effectiveness of the models

explaining their purposes in relation to the applied example

and their results. In the last section we draw some concluding

remarks.

2 MAIN NOTATION AND ILLUSTRATION
OF THE MODELS

One way to afford the issue of ordinal response variables con-

sists in deriving a conditional probability model from a linear

model for a latent response variable. The observed variables

are obtained by categorizing the latent continuous response

that may be related, for example, to the amount of understand-

ing, attitude, or wellbeing required to respond in a certain

category. Let Yit be the observed ordinal variable for indi-

vidual i , for i= 1, … , n at time t, t= 1, … , T . We assume

an underlying continuous latent variable Y∗
it , via a threshold

model given by

Yit = s iff 𝜏s−1 < Y∗
it ≤ 𝜏s,

where s= 1,2, … , S and −∞= 𝜏0 <𝜏1 <𝜏2 < · · ·<𝜏s− 1 <

𝜏s =+∞ are the cut-off points by which it is possible to

achieve a unique correspondence. With S response categories,

there are S− 1 threshold parameters, 𝜏s, s= 1,2, … , S− 1.

2.1 LM models for ordinal data

Under the basic model we assume the existence of a discrete

latent process such that

Y∗
it = 𝛼it + 𝜀it,
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with 𝛼i1, … , 𝛼iT following a hidden Markov chain with

state space 𝜉1, … , 𝜉k, initial 𝜋u = p(𝛼i1 = 𝜉u), and transi-

tion probabilities 𝜋u|ū = p(𝛼it = 𝜉u|𝛼i,t− 1 = 𝜉ū), ū, u= 1, … , k.

Moreover, 𝜀it is a random error with normal or logistic

distribution.

In the case of time-varying or time-fixed covariates col-

lected in the column vectors xit, the model is extended as:

Y∗
it = 𝛼it + x′it𝛽 + 𝜀it,

so as to include these covariates in the measurement model

concerning the conditional distribution of the response vari-

ables given in the latent process. The covariates are allowed

in the latent part of the model; however, the model is better

identified when the covariates are stored in the latent or in

the measurement model. The choice is related to the research

question and the aims of the analysis.

The model has a simple structure if the discrete latent pro-

cess follows a first-order homogeneous Markov chain and

we can assume the conditional independence of an observed

response variable Yit in relation to the other responses given

the latent process for i= 1, … , n, t= 1, … , T . This is called

the local independence assumption. The conditional distri-

bution of the responses is denoted by f t(y|u, x), u= 1, … , k,

whereas the latent stochastic process U has initial probability

function p(u), for u= 1, … , k, and transition probability func-

tion pt(u|ū), where t= 2, … , T , u , ū= 1, … , k, and k denote

the discrete number of latent states. Therefore, a semipara-

metric model results. A generalized linear model parameteri-

zation [38] allows us to include properly the covariates in the

measurement model. In this way, by using suitable link func-

tions we can allow for specific constraints of interest and we

can also reduce the number of parameters.

An effective way to include the covariates in the measure-

ment model is to consider

𝜼tux = Clog[Mf t(u, x)],

where C is a suitable matrix of contrasts, M is a marginaliza-

tion matrix with elements 0 and 1, which sums the probabili-

ties of the appropriate cells and the operator log is coordinate

wise, f t(u, x) is a c-dimensional column vector with elements

f t(y |u, x ) for all possible values of y. In the following, 𝜂ty|ux
denotes each element of 𝜼tux where y= 1, … , s− 1. Within

this formulation, we can state some hypothesis of interest by

constraining the model parameters according to the research

question related to the application. For example, an interesting

formulation is the following:

𝜂y|ux = 𝛽1y+𝛽2u+x′𝜷3, y = 1, … , s−1, u = 1, … , k, (1)

where the levels of 𝛽1y are cut-off points or threshold param-

eters, 𝛽2u are intercepts specific to the corresponding latent

state, and 𝜷3 is a vector of parameters for the covariates. The

above is possible once we define the global logits [38] on the

conditional response mass function:

𝜂y|ux = log
f (y|u, x) + · · · + f (s − 1|u, x)
f (0|u, x) + · · · + f (𝑦 − 1|u, x) , y = 1, … , s− 1.

We carry out the estimation of the model parameters in

two ways: by using the maximum likelihood method through

the EM algorithm [39] or by the Bayesian methods apply-

ing the Markov Chain Monte Carlo methods [40]. Within the

first choice, the log-likelihood is maximized according to the

following steps until convergence:

E. step to compute the expected value of the complete data

log-likelihood given the observed data and the current

value of 𝜽, which denotes all the model parameters;

M. step to maximize this expected value with respect to 𝜽 and

thus update 𝜽.

We use the recursions developed in the hidden Markov

literature by [41] and by [42] to compute the quantities of

interests. They enable computing efficiently the expected val-

ues of the random variables involved in the complete data

log-likelihood:

𝓁∗(𝜽) =
T∑

t=1

k∑
u=1

∑
x

s−1∑
y=0

atuxylog ft(y |u, x) +
k∑

u=1

b1ulog p(u)

+
T∑

t=2

k∑
u=1

k∑
u=1

btuulog pt(u|u),

where atuxy is the number of individuals that are in latent state

u and provide response y at occasion t, b1u is the frequency

of the latent state u, and btuū is the number of transitions from

state ū to state u at occasion t.
As for other mixture models [43] there may be many local

optima, therefore the estimation is carried out by consider-

ing multiple sets of starting values for the chosen algorithm.

A drawback of the EM algorithm is that it does not pro-

vide a direct quantity to assess the precision of the maximum

likelihood estimates. It is possible to consider the missing

information principle. In the case of the regular exponential

family [44], the observed information is equal to the com-

plete information minus the missing information due to the

unobserved components [45,46]. For an implementation of

the above and for the directed acyclic Gaussian graphical

models with hidden variables see [47]. Its computational bur-

den is low over that required by the maximum likelihood

estimation.

The model selection may be based on a likelihood ratio

(LR) test statistics between the model with k latent classes

and that with k+ 1 latent classes for increasing values of k,

until the test is not rejected. However, we need to employ

the bootstrap to obtain a p-value for the LR test. It is

based on a suitable number of samples simulated from the

estimated model with k latent classes [48]. In [49] they

select the best parsimonious model through a consistent esti-

mator based on the parametric bootstrap. The best model

is one among those with the proposed number of latent

classes.

We select the number of latent states according to

the information criteria most commonly employed: the

Akaike information criterion (AIC, [50]) and the Bayesian
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information criterion (BIC, [51]). We recall that, when the

states are selected according to the model with the smallest

value of BIC, we decrease the maximum of the log-likelihood

value, considering also the total number of individuals.

Their performance has been studied in-depth in the litera-

ture on mixture models (see, among others [43], Chapter

6). They are also employed in the hidden Markov literature

for time-series, where they are penalized by the number of

time occasions (see, among others [52]). The BIC is usually

preferred to AIC, as the latter tends to overestimate the num-

ber of latent states but it may be too strict in certain cases

(see, among others [53]). The theoretical properties of BIC

in the LM models framework are still not well established.

However, BIC is a commonly accepted choice criterion for

these models as well as to choose the number of latent

classes for the latent class model (see, among others [54]).

In [5], this criterion is also used together with other diag-

nostic statistics measuring the goodness-of-classification.

A more recent study [55] compares the performance

of some likelihood and classification-based criteria, such

as an entropy measure, for selecting the number of

latent states when a multivariate LM model is fitted to

the data.

An interesting feature of the LM model concerns predic-

tion. As shown in [5] the local decoding allows prediction

of the latent state for each individual at each time occa-

sion by maximizing the estimated posterior function of the

latent process. The global decoding employing the Viterbi

algorithm [56], (see also [57]) allows us to obtain the most

a posteriori likely predicted sequence of states for each indi-

vidual. The joint conditional probability of the latent states

given the responses, and the covariates f̂U|X,Y (u |x, y) are

computed by using a forward recursion according to the max-

imum likelihood estimates of the model parameters, where

u denotes a configuration of the latent states. The optimal

predicted state

û∗
t = arg max

u
r̂t(u)p̂t+1(u|û∗

(t−1))

is found by considering r̂1(u) = p̂(u|x)∏
t

f̂1(y1|u1, x), where

the hat denotes the value of the parameter at the maximum

of the log-likelihood of the model of interest, for u= 1, … , k;

and computing in a similar way r̂t(u), for t= 2, … , T and

ū= 2, … , k; then maximizing such that û∗
T = arg max

u
r̂T (u).

2.2 Growth mixture models

The GCMs provide the estimated shapes of the individual

trajectories accounting for within and between individual dif-

ferences. The measurement model concerning the observed

responses deals with individual growth factors. The latent

model is related to the means, variances, and covariances of

the growth factors to explain between-individual differences.

First we recall the LGCM and then the GMM. The LGCM

without covariates is defined by the following equations:

Y∗
it = 𝛼i + 𝜆t𝛽i + 𝜆2

t qi + 𝜀it,

𝛼i = 𝜇𝛼 + 𝜁𝛼i, (2)

𝛽i = 𝜇𝛽 + 𝜁𝛽i,

qi = 𝜇q + 𝜁qi ,

for i= 1, … , n and t= 1, … , T , where 𝛼i and 𝛽 i are named

intercept and slope growth factor respectively, and qi is the

quadratic growth factor. To allow identifiability, the coeffi-

cient of the intercept growth factor is fixed to 1. Therefore,

it equally influences the repeated measures across the waves

and it remains constant across time for each individual. Dif-

ferent values can be assigned to the coefficient 𝜆t related to

each time occasion t, in order to dispose of growth curves with

different shapes that are linearly or not linearly dependent on

time. In order to define a growth model with equidistant time

points, the time scores for the slope growth factor are fixed

at 0, 1,2, … , T − 1 (see, among others [15]). The first time

score is fixed at zero and the intercept growth factor can be

interpreted as the expected response at the first time point.

The time scores for the quadratic growth factor are fixed at

0, 1,4, … , (T − 1)2 to allow for a quadratic shape of the tra-

jectory, and for a linear growth model the quadratic growth

factor qi is fixed at 0 for all i, i= 1, … , n.

The measurement errors 𝜀it in Equation 2 are not corre-

lated across time, they are i.i.d. disturbances. Because there is

no intercept term in the measurement model, the mean struc-

ture of the repeated measures is determined entirely by means

of the latent trajectory factors. In the structural model, the

parameters 𝜇𝛼 , 𝜇𝛽 , and 𝜇q are the population means of the

intercept, slope, and the quadratic term respectively; 𝜁𝛼i is the

deviation of 𝛼i from the population mean intercept, 𝜁𝛽i is the

deviation of 𝛽 i from the population mean slope, and 𝜁qi is the

corresponding deviation from the population mean quadratic

factor. They are assumed to follow a multivariate Gaussian

distribution with zero means and variances denoted by 𝜓𝛼𝛼 ,

𝜓𝛽𝛽 , and 𝜓qq respectively and they are uncorrelated with 𝜀it.

The covariance of the intercept and the slope growth factor

is 𝜓𝛼𝛽 , those of the quadratic factor with the intercept and

the growth factor are 𝜓𝛼q and 𝜓𝛽q, respectively. When the

response is ordinal or categorical, the thresholds are assumed

to be equal for each measurement occasion by imposing the

constraint 𝜏st = 𝜏s for all t, t= 1, … , T and the constraint

𝜇𝛼 = 0 is also required.

In the conditional growth model, the time-fixed covariates

are included as predictors of the growth factors or as direct

predictors of the response variable. Time-varying covariates

can only be included as predictors in the measurement model

according to the following equations where the quadratic term

as in Equation 2 is deleted to simplify the notation:

Y∗
it = 𝛼i + 𝜆t𝛽i + 𝜔it𝛾t + 𝜀it,

𝛼i = 𝜇𝛼 + x′i𝛾𝛼 + 𝜁𝛼i, (3)

𝛽i = 𝜇𝛽 + x′
i𝛾𝛽 + 𝜁𝛽i,
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for i= 1, … , T and t= 1, … , T , where 𝛾𝛼 and 𝛾𝛽 are vectors

of parameters for the time-fixed covariates xi on 𝛼i and

𝛽 i, respectively, and 𝛾 t is the vector of parameters for the

time-varying covariates 𝜔it on the measurement model.

The unconditional GMM is defined by a latent categori-

cal variable U accounting for the unobserved heterogeneity in

the development among individuals. It represents a mixture

of subpopulations whose membership is inferred by the data

(for a review, see, among others [15,58]). It is characterized

by the following equations:

Y∗
t =

k∑
u=1

pu(𝛼u + 𝜆tu𝛽u + 𝜀tu),

𝛼u = 𝜇𝛼u + x′𝛾𝛼u + 𝜁𝛼u,

𝛽u = 𝜇𝛽u + x′𝛾𝛽u + 𝜁𝛽u,

for t= 1, … T , where pu is the probability of belonging

to latent class u, for u= 1, … , k which defines the latent

trajectory, with the constraints pu ≥ 0 and
∑k

u=1 pu = 1,

where k is equal to the number of mixture components. The

thresholds 𝜏s are unknown and they are estimated and con-

strained to be equal across time and latent classes. The

intercepts of the growth factors may vary across latent

classes. With categorical response variables, the growth fac-

tor referred to the last class is constrained to zero for identi-

fiability issues and the others are estimated from the model.

The variances and covariance of the growth factors can be

allowed to be class-specific or constrained to be equal. Resid-

uals of the growth factors and of the measurement model are

assumed with a Gaussian distribution within each latent class.

As in Equation 3 only time-fixed covariates may be included

to infer the latent class through a multinomial logistic regres-

sion model since the latent variable is typically viewed as time

invariant. Therefore, the GMM reduces to the GCM when

k= 1 and to the LGCM when the within-class growth factor

variance and covariances 𝜓𝛼u,𝜓𝛽u,𝜓𝛼𝛽u are set to zero for all

u= 1, … , k. In the latter case, the between-individual vari-

ability is captured only by the latent class membership. The

thresholds are estimated with the mean cumulative response

probabilities for a specific response category at each mea-

surement occasion by the estimated distribution of the latent

growth factors.

The maximum likelihood estimation of the model param-

eters when there are categorical response variables and con-

tinuous latent variables requires numerical methods. The

computation is carried out by using Monte Carlo integration

[15,59]. As in the standard Gaussian mixture models, impos-

ing constraints on the covariance matrices of the latent classes

ensures the absence of singularities and potentially reduces

the number of local solutions [24,28]. The model selection

concerns the choice of the number of the latent classes and the

order of the polynomial of the group’s trajectories. The most

common applied empirical procedure is the following: first

the order of the polynomial is assessed by estimating both lin-

ear and nonlinear unconditional GCM, or GMM with k= 1,

GMM(1) in the following. Then, the number of latent classes

is determined according to the unconditional model in order

to avoid an over-extraction of the latent classes (see also [60]).

Finally, the covariates are added in the model as predictors of

the latent classes.

The LR statistic is employed for the model selection also

by considering the bootstrap (see, among others [61]) as illus-

trated in the previous section. The number of latent classes

is selected according to the AIC or BIC indices illustrated in

Section 2.1. The relative entropy measure [62] is commonly

employed to state the goodness of classification:

Ek = 1 −

n∑
i=1

k∑
u=1

− p̂iulog(p̂iu)

nlog(k)
, (4)

where p̂iu is the estimated posterior probability of belonging

to the u-th latent class at convergence, k is the number of latent

classes, and n is the sample size. The values approach 1 when

the latent classes are well separated. However, we notice that

it differs from the normalized entropy criterion defined by

[63] which instead divides the first term of the Equation 4 by

the difference between the log-likelihood of the model with k
classes and the one with just one class. The above criteria may

lead to a model lacking of interpretability in terms of latent

classes or in which only few individuals are allocated in a

class. As suggested by many authors such a choice needs also

to be guided by the research question as well as by theoretical

justification and interpretability [64–66]. The optimal num-

ber of classes derived from the LGCM is always bigger than

the optimal number of classes derived from GMM. Within

the LGCM, individuals with slightly different growth param-

eters are allocated to a different latent class compared with the

GMM (see, among others [67]).

3 REAL DATA EXAMPLE: THE HEALTH
AND RETIREMENT STUDY

In order to show the main differences among the models

illustrated in the previous section, we consider a longitudi-

nal study aimed at describing self-perceived health status.

The latter is a frequently used way to establish health pol-

icy and care as the repeated subjective health assessment

reflects the self-perception of health and how it is going to

evolve over time. It is recorded by one item with response

categories defined according to an ordinal variable. The data

is taken from version I of the RAND HRS data, collected

by the University of Michigan (see also http://www.cpc.unc.

edu/projects/rlms-hse and http://www.hse.ru/ org/hse/rlms).

The 30 406 respondents were asked to express opinions on

their health status at T = 8 approximately equally spaced

occasions, from 1992 to 2006. After considering only indi-

viduals with no missing data, we ended up with a sample of

n= 7074 individuals. The response variable is measured on a



6 PENNONI AND ROMEO

TABLE 1 Fitted statistics for an increasing number of latent states from 1
to 11 of the LM model with covariates and number of parameters

Log-likelihood AIC BIC #par

LM(1) −80 623.52 161 267.0 161 335.7 10

LM(2) −69 789.21 139 604.4 139 693.6 13

LM(3) −65 707.82 131 451.6 131 575.2 18

LM(4) −63 968.06 127 986.1 128 157.7 25

LM(5) −63 293.98 126 656.0 126 889.3 34

LM(6) −63 062.23 126 214.5 126 523.4 45

LM(7) −62 894.29 125 904.6 126 302.7 58

LM(8) −62 739.12 125 624.2 126 125.3 73

LM(9) −62 645.69 125 471.4 126 089.1 90

LM(10) −62 615.99 125 450.0 126 198.2 109

LM(11) −62 650.58 125 561.2 126 453.5 130

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information

criterion; LM, latent Markov; #par, number of parameters.

scale based on five categories: “poor”, “fair”, “good”, “very

good”, and “excellent”. For each individual, some covariates

are also available: gender, race, education, and age (at each

time occasion). The study relies on the investigation of the

population heterogeneity in the health status perception as

well as on prediction of features needs to be especially tai-

lored for those elders who are identified to share the most

difficult health conditions.

First, we summarize the estimation process for both models

presented in Section 2 and then we make some comparisons

on the estimated quantities. The estimation of the LM models

is undertaken in the R environment [68] through the library

LMest (V2.2) [69] that is available on the Comprehensive R

Archive Network. This version also accounts for the covari-

ates on the latent part of the model and missing values on the

responses. The estimation of the growth models is undertaken

via the commercial software MPLUS (V7.2). The syntax code

is available from the authors upon request.

For the LM model parameterized as in Equation 1

we employ the model search procedure as illustrated in

Section 2.1 to find the best model among those with a

number of latent states from 1 up to 11. The search strat-

egy which is implemented to account for the multimodal-

ity of the likelihood function is based on estimating the

same model many times with the same number of states by

using deterministic and random starting values for the EM

algorithm. The number of different random starting values

is proportional to the number of latent states. The rela-

tive log-likelihood difference is evaluated by considering a

tolerance level equal to 10−8. The model is estimated for

an increasing number of latent states while checking for

the replication of likelihood values. The best model is the

one with nine latent states according to the BIC values as

showed in Table 1 denoted by LM(9) in the following. The

table also reports the AIC values and the number of free

parameters.

The estimated cut-off points of the LM(9) model are 𝜏1 =
8.261, 𝜏2 = 4.559, 𝜏3 = 0.800, 𝜏4 = −3.470. The estimated

TABLE 2 Estimated support points and parameters referring to the initial
probabilities of the chain of the LM(9) model

Latent state Support points Initial probabilities

1 −8.657 0.047

2 −4.941 0.117

3 −2.456 0.192

4 −1.147 0.028

5 −0.224 0.213

6 2.062 0.189

7 4.303 0.121

8 5.159 0.213

9 7.357 0.067

Abbreviation: LM, latent Markov.

initial probabilities are reported in Table 2 together with the

support points. The estimated support points are arranged in

increasing order, in order to interpret the resulting latent states

from the worst (latent state 1) to the best (latent state 9) health

conditions. We notice from Table 2 that 11% and 19% of

individuals are in the second and third latent states respec-

tively, which are worse states with respect to latent states 6

and 8. Table 4 reports the matrix of the estimated transition

probabilities between latent states. The only greater probabil-

ities than 0.10 in the elements adjacent to the diagonal are

those of the transition from the first to the second latent state

and from the second to the third. For the latent state 4, the

probability to move to the latent states 7 or 8 or 9 is higher

than 0.10. They show that the individuals belonging to this

state, perceiving bad health conditions at the beginning of

the survey, have some probability to feel better (to improve

their health conditions) over time. For the latent state 8, the

probability of moving to latent state 3 or 4 or 5 are higher

than 0.10.

Table 3 shows the effect of the covariates on the prob-

ability of reporting a certain level of the health status. In

particular, women tend to report worse health status than

men (the odds ratio for females versus males is equal to

(exp(−0.185)= 0.831), whereas white individuals have a

higher probability of reporting a good health status with

respect to non-whites (the odds ratio for non-whites versus

whites is equal to (exp(−1.341)= 0.261). We also observe

that better educated individuals tend to have a better opinion

about their health status especially those with a high educa-

tional qualification. Finally, the effect of age is decreasing

over time and its trend is linear as the quadratic term of age

is not significant.

In Figure 1 we compare the individual response profiles of

the LM(9) model obtained by using the estimated posterior

probabilities according to the rules illustrated in Section 2.1.

They are related to the white female participants over 65 years

of age at the third wave of interview, who are highly educated.

They may constitute a special group of people to account for.

From Figure 1 we notice that some profiles are less regular

than others: they detect those females whose health status may
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TABLE 3 Estimates of the vector of the regression parameters of the LM(9) model

Coefficient Female Non-white Some college College and above Age Age2

𝛽 −0.185 −1.341 1.37 2.461 −0.125 −0.001

se 0.075 0.109 0.092 0.104 0.007 0.026

Abbreviations: LM, latent Markov; se, standard errors.

TABLE 4 Estimates of the transition probabilities under the LM(9) model (probabilities out of the diagonal greater than 0.1 are in bold)

𝜋u|u

1 2 3 4 5 6 7 8 9

1 0.796 0.182 0.000 0.001 0.006 0.001 0.002 0.012 0.000

2 0.053 0.822 0.106 0.002 0.000 0.000 0.000 0.017 0.000

3 0.008 0.020 0.868 0.004 0.061 0.001 0.000 0.038 0.000

4 0.026 0.013 0.001 0.336 0.006 0.039 0.155 0.292 0.132

5 0.002 0.024 0.015 0.000 0.887 0.066 0.006 0.000 0.000

6 0.000 0.004 0.024 0.003 0.024 0.896 0.045 0.001 0.003

7 0.001 0.004 0.001 0.052 0.025 0.009 0.845 0.001 0.062

8 0.018 0.061 0.189 0.301 0.153 0.000 0.000 0.278 0.000

9 0.000 0.000 0.000 0.050 0.006 0.051 0.072 0.000 0.821

Abbreviation: LM, latent Markov.
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FIGURE 1 Individual profiles for a selected group of individuals for the

LM(9) model. LM, latent Markov.

strongly decline due to events that are not observed through

the covariates.

For the growth models, we detect the best model within

the class of GMMs according to the model strategy illus-

trated at the end of Section 2. As the first step, we estimate

two GMMs without covariates with just one latent class in

which the respondents’ opinions about their health are spec-

ified as a function of linear and nonlinear growth patterns.

The GMM with a quadratic effect shows a log-likelihood

equal to −63 996.8 and the BIC index equal to 128 100 with

12 parameters. This model is preferred according to a BIC

index as the GMM without the quadratic effect results in the

log-likelihood equal to −63 116.3 and the BIC value equal to

128 303.5 with eight parameters (the 𝜒2 test is equal to 1761

with four degrees of freedom which is significant). As the

second step, we reject the hypothesis of homogeneity within

groups since the log-likelihood of the linear model under this

assumption decreases to −83 152.7. When we consider the

quadratic term we reach three dimensions of integration, the

computer burden increases exponentially and the model with

a high number of latent classes does not reach the conver-

gence. The estimated parameters of the linear GMM model

denote that the perception of a good health status decreases

over time. The variances of the intercept and of the slope

factor are significant, indicating the existence of individual

differences in growth trajectories. As a third step, we fit the

selected GMM model without covariates by considering the

existence of a mixture of Gaussian distributions from two

up to five components with varying patterns of the growth

trajectories.

Table 5 shows the results. We select the model with three

latent classes according to the BIC index denoted as GMM(3)

as the models with a higher number of components do not

reach the convergence criteria. The model with four latent

classes has the same log-likelihood value of the model with

three latent components. The best log-likelihood value for the

model with five latent classes is not replicated with differ-

ent starting values. As a last step, we include in the model

of Equation 3 time-fixed covariates, taken as constants across

the latent classes. Their coefficients are significant with the

exception of the quadratic effect of age. The resulting model

has a log-likelihood equal to −63 421.0 and a BIC index equal
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TABLE 5 Selection of the number of latent classes of the GMM without
covariates

Latent class Log-likelihood BIC #par Entropy

1 −64 116.3 128 303.5 8 1.000

2 −64 092.3 128 282.2 11 0.599

3 −63 982.3 128 088.7 14 0.719

4 −63 982.2 128 115.1 17 0.428

5 −63 977.2 128 131.7 20 0.746

Abbreviations: BIC, Bayesian information criterion; GMM, growth mixture

model; #par, number of parameters.

TABLE 6 Classification probabilities for the GMM(3) with covariates
according to the most likely latent class membership (row) by the average
conditional probabilities (column)

1 2 3

Class 1 0.436 0.556 0.008

Class 2 0.022 0.973 0.005

Class 3 0.028 0.436 0.537

Abbreviation: GMM, growth mixture model.

to 127 143.3 with 34 parameters. The entropy value as in

Equation 4 is equal to 0.763.

The estimated probabilities of GMM(3) and the average

conditional probability of belonging to each latent class are

displayed in Table 6. This is a common employed way to

assess the tenability of the selected model as the average pos-

terior probability of group membership for each trajectory is

considered as an approximation of the trajectories’ reliability.

The posterior probabilities are used to assign each individual

membership to the trajectory that best matches. Values of 0.70

or 0.80 are reference values in the literature to group individ-

uals with a similar pattern of change in the same latent class.

Table 6 shows the classification probabilities for the selected

GMM(3) by considering the most likely latent class member-

ship (row) by the average conditional probabilities (column).

We notice that contrary to our expectation, the diagonal val-

ues referred to the first and third latent class are lower than that

of the second latent class meaning that these classes are not

properly identified. The percentage of units belonging to the

first and third latent classes according to the estimated pos-

terior probabilities is equal to 10.8% and 3.2%, respectively.

From Table 7, the estimated coefficients of the covariates on

the growth factor are not high and the sign of the female coeffi-

cient is reversed in comparison to that estimated by employing

the LM model. Therefore, females tend to report better health

status than man. This is probably due to the poor reliability

of the selected model. The high education shows the highest

positive estimated coefficient on the intercept factor.

As shown in Table 8 the estimated covariance is nega-

tive, meaning that the individuals with the highest values of

the intercepts at the first occasion (e.g. with better perceived

health) change more rapidly into a worse perception. Figure 2

illustrates the estimated trajectories where the first latent class

TABLE 7 Estimates of the regression parameters of the intercept and slope
growth factor of the GMM(3) with covariates

Coefficient Female Non-white
Some

college
College

and above Age

𝛾𝛼 0.265 −1.506 1.037 1.876 −0.044

se 0.103 0.170 0.136 0.148 0.009

𝛾𝛽 0.005 0.032 −0.040 −0.071 0.000

se 0.012 0.015 0.016 0.018 0.001

Abbreviations: GMM, growth mixture model; se, standard errors.

TABLE 8 Estimates of the structural parameters of GMM(3) with
covariates

Coefficient Estimates se Coefficient Estimates se

𝜇𝛼(1) −6.734 0.498 𝜇𝛽(1) −0.105 0.090

𝜇𝛼(2) −2.302 0.443 𝜇𝛽(2) −0.193 0.069

𝜇𝛼(3) 0.000 0.000 𝜇𝛽(3) −1.292 0.118

𝜓𝛼 6.501 0.422 𝜓𝛽 0.065 0.005

𝜓𝛼𝛽 −0.272 0.039

Abbreviations: GMM, growth mixture model; se, standard errors.

t

E
st

im
at

ed
 p

re
di

ct
ed

 p
ro

fil
e 

tr
aj

ec
to

rie
s

1 2 3 4 5 6 7 8

−
11

−
9

−
7

−
5

−
3

−
1

latent class 3 
latent class 2 
latent class 1 

FIGURE 2 Response profile plot for the GMM(3) with covariates. GMM,

growth mixture model.

identifies the individuals with initial poor health status and

a slow decline in their health, the second latent class those

with a better initial health status and a slightly faster decline

compared to the first class and the third latent class indi-

viduals perceiving a strong worsening of their health status

over time.

4 CONCLUDING REMARKS

We propose a comparison between the LM models and the

GMMs when the interest lies in modeling longitudinal ordi-

nal responses and time-fixed and time-varying individual
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covariates. The interest in this topic is relevant since in many

different contexts ordinal data are a way to account for the

importance given by an item or to measure something which

is not directly observable.

The LM model is a data-driven model which relays on

a latent stochastic process following a first-order Markov

chain with the fundamental principle to estimate transi-

tions between latent states and to capture the influence of

time-varying and time-fixed covariates on the observed transi-

tions. GMM exploits a latent categorical variable to allow the

unobserved heterogeneity in observed development trajecto-

ries. The latent variable is time invariant and it describes the

trend through a polynomial function allowing for time-fixed

covariates. We illustrate the main features of the models and

their performance by referring to a specific application based

on real data in which the ordinal response variable describes

the self-perceived health status. The aim is also to estimate a

life expectancy for longevity.

We can summarize the main differences between the LM

model and the GMM according to the following characteris-

tics: (1) the model estimation and selection procedure leading

to the choice of the number of the latent states or classes,

(2) the way they relate the conditional probabilities of the

responses to the available individual covariates, (3) the model

capability to use the posterior probabilities in order to get pro-

files for each latent class membership. We show that the LM

model outperforms the GMM mainly because it is more rig-

orous on each of the above points. With reference to (1) the

model choice is more complex for the GMM and it starts with

the model without covariates. We found that the Monte Carlo

integration for the GMM with a number of latent classes up

to three, leads to improper solutions. The selection of the best

model is more straight for the LM model, however it requires

a search strategy to properly initialize the EM algorithm and

therefore it is computationally demanding when the num-

ber of latent states in the model is high. With reference to

(2) the covariates are better handled by the LM model since

they are allowed according to a suitable parametrization for

categorical data such as global logits. While in the LM model

the covariates may affect the measurement part of the model

or may influence the latent process, in the GMM they can

affect both but in the measurement model, only time-fixed

covariates are allowed. Then, when the interest is on detecting

subpopulations in which individuals may be arranged accord-

ing to their perceived health status, the LM model is more

appropriate. The GMM can be useful when just a mean trend

is of interest and the expected subpopulations are not too

many. With reference to (3) the predictions of the LM model

are based on local and global decoding. The first is based

on the maximization of the estimated posterior probability of

the latent process and the second on a well-known algorithm

developed in the hidden Markov model literature to get the

most a posteriori likely predictive sequence. In the GMM,

the prediction is based on the maximum posterior probability

and as shown in the example it may not be precise when the

internal reliability of the model is poor.

We conclude that, due to the asymptotic properties of

the algorithm used to estimate the posterior probabilities,

the LM model should be recommended especially when the

prediction of the latent states is one of the main interests in

the data analysis. The GMM leads to select a lower number

of subpopulations compared with the LM model. However,

this is not always a desirable property since when the data are

rich, as in the applicative example, it may not be of interest to

extremely compress their information. Within the LM model

it is possible to detect also a reversible transition between

the latent states. On the other hand, the consideration of the

time dimension in the structural form made by the GMM is

inadequate to explain the latter feature of the data.

The results proposed by the applied example may be use-

ful when the interest is to evaluate the needs of the elderly in

order to prevent fast deterioration of their health, or to investi-

gate in more depth the reasons for improved health conditions

with increasing age and therefore plan specific interventions

for their health.
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