C. Batini \& M. Scannapieco Data and Information Quality Book Figures

Chapter 9: Recent Advances in Object Identification

Evolution of research on object identification and corresponding evolution of the object identification life cycle

N data sets referring to the same or different related sets of entities

Comparison of quality measures in the entity space and in the comparison space

Metric	Entity Space	Comparison Space
Precision	$72,2 \%$	$72,2 \%$
Recall	$92,8 \%$	$92,8 \%$
F-measure	$81,2 \%$	$81,2 \%$
Accuracy	$94,3 \%$	$99,9 \%$
Specificity	$94,5 \%$	99,95
False positive rate	$5,4 \%$	0.000005%

@ Springer International
Publishing Switzerland 2016

Architecture of Tailor

Examples of citation domain string matching from [25]

Id	Left	Right
1	Katayama, T., 2A hierarchical and functional software process description and its enaction", Proc. 11th ICSE, IEEE, 1989, pp.343-352	T. Katayama, "A hierarchical and functional software process description and its enaction," In: Proceedings of the Eleventh Int. Conf. On Soft. Eng. Pages: 343\{352, IEEE Computer Society Press, Pittsburgh, PA, Jan 1989.
2	Knuth, D., The art of Computer Programming, Vol. III, Addison- Wesley, (1973).	8. D. Knuth, The art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1973.
3	[ESWARAN76] Eswaran, K. P., J. N. Gray, R. A. Lorie, I. L. Traiger, , The notions of consistency and predicate locks in a database system", Communications of the ACM, Vol. 19, No. 11, November, 76	[14] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, , The notions of consistency and predicate locks in a database system," Commun. Assoc. Comput. Mach., Vol. 19, No. 11, Nov. 1976

Example of traditional blocking (here and in the following of the section examples are inspired to [139])

Identifier	Surname	BK (Soundex encoding)
R1	Smith	S530
R2	Miller	M460
R3	Peters	P362
R4	Smyth	S530
R5	Millar	M460
R6	Miller	M460

a. Records table with BKVs
b. Inverted index data structure

Example of traditional sorted neighborhood

Window position	BK (Surname)	Identifier
1	Millar	R6
2	Miller	R2
3	Miller	R8
4	Myler	R4
5	Peters	R3
6	Smith	R1
7	Smyth	R5
8	Smyth	R7

Window range	Candidate record pairs
$1-3$	$(R 6, R 2),(R 6, R 8),(R 2, R 8)$
$2-4$	$(R 2, R 8),(R 2, R 4),(R 8, R 4)$
$3-5$	$(R 8, R 4),(R 8, R 3),(R 4, R 3)$
$4-6$	$(R 4, R 3),(R 4, R 1),(R 3, R 1)$
$5-7$	$(R 3, R 1),(R 3, R 5),(R 1, R 5)$
$6-8$	$(R 1, R 5),(R 1, R 7),(R 5, R 7)$

a. Records table with BKVs and window positions
b. Record pairs in windows

Example of sorted neighborhood based on inverted index

Window position	BK (Surname)	Identifier
1	Millar	R6
2	Miller	R2, R8
3	Myler	R4
4	Peters	R3
5	Smith	R1
6	Smyth	R5,R7

Window range	Candidate record pairs
$1-3$	$(R 6, R 2),(R 6, R 8),(R 6, R 4),(R 2, R 8),(R 2, R 4),(R 8, R 4)$
$2-4$	$(R 2, R 8),(R 2, R 4),(R 8, R 4),(R 8, R 4),(R 8, R 3),(R 4, R 3)$
$3-5$	$(R 4, R 3),(R 4, R 1),(R 3, R 1)$
$4-6$	$(R 3, R 1),(R 3, R 5),(R 3, R 7),(R 1, R 5),(R 1, R 7),(R 5, R 7)$

a. Records table with inverted index
b. Record pairs in windows

Example of suffix array based blocking

a. Records table with BK and suffixes
b. Sorted suffix-array

Examples of blocking predicates from [76]

Domain	Blocking Predicate
Census data Product normalization Citations	Same first three chars in Last Name Common token in Manufacturer Publication Year same or off-by-one

@ Springer International
Publishing Switzerland 2016

Blocking key values for a sample record from [76]

Author	Year	Title	Venue	Other
Freund, Y.	(1995)	Boosting a weak learning algorithm by majority	Information and computation	(121(2), 256-285

a. Sample record

Predicate	Author	Title	Venue	Year	Other
Contain common token	(freund, y)	(boosting, a, weak, learning, algorithm, by, majority)	(information, computation)	(1995)	$(121,2,256,285)$
Exact match	("freund $\mathrm{y}^{\prime \prime}$)	("Boosting a weak learning algorithm by majority")	("information and computation)	("1995")	("121 2256 285")
Same $1^{\text {st }}$ three Chars	(fre)	(boo)	(inf)	(199)	(121)
Contain same or off-by-one integer	-	-	-		$\begin{aligned} & \left(120 _121,121 _122,1 _2,\right. \\ & 2-3,, 255 _256, \\ & 256 _257, \\ & \left.284 _285,285 _286\right) \end{aligned}$

b. Blocking predicates and key sets produced by their indexing functions for the record

Example of semantic blocking from [473]

1	Smith, John
2	Smith, Jehn
3	Parker, Joe
4	Xmith, Jhon
5	Lyons, Don
6	Lee, Xiu

101	Title1	
102	Title2	
103	Title3	
104	Title4	
105	Title5	

	1	101
	5	101
	4	102
	5	102
	2	103
	3	103
	5	104
	6	104
	3	105
	6	105

@ Springer International
Publishing Switzerland 2016

Possible paths of agreement for three data sets in [536]

@ Springer International
Publishing Switzerland 2016

Examples of features in [145]

Name of Feature	Description
SubstringMatch	true iff one of the two strings is a substring of the other
PrefixMatch	true iff one of the two strings is a prefix of the other
StrongNumberMatch	true iff the two strings contain the same number
Edit distance	usual meaning
Jaccard distance	usual meaning

Phases of knowledge extraction and exploitation in [75]

Example of weight vectors from [138]

Record	Name		Address		
R1	Christine	Smith	42	Main	Street
R2	Christina	Smith	42	Main	St.
R3	Bob	O'Brian	11	Smith	Rd
R4	Robert	Bryee	12	Smythe	Road

WV(R1,R2): $[0.9,1.0,1.0,1.0,0.9]$ WV(R1,R3): $[0.0,0.0,0.0,0.0,0.0]$ WV(R1,R4): $[0.0,0.0,0.5,0.0,0.0]$ WV(R2,R3): $[0.0,0.0,0.0,0.0,0.0]$ WV(R2,R4): $[0.0,0.0,0.5,0.0,0.0]$ WV(R3,R4): [0.7, 0.3, 0.5, 0.7, 0.9]
a. Four record examples
b. Corresponding wieght vectors

An example Author/Paper resolution problem from [66]. Each box represents a paper reference (in this case unique) and each oval represents an author reference

P1: Code generation for machines with multiregister operations

P2: The universality of database languages

P3: Optimal partial-match Retrieval when fields are independently spegécificed

Example of exploitation of context information in [179]

```
Person (name, email, *coAuthor, *emailContact)
Article ( title, year, pages, *authoredBy, *publishedIn)
Conference (name, year, location)
Journal (name, year, volume, number)
```


Related records and corresponding Entity Relationship schema as adapted from [353]

```
(A1: "Dave White"; "Intel")
(A2: "Don White"; "CMU")
(A3: "Susan Grey"; "MIT")
(A4: "John Black"; "MIT")
(A5: "Joe Brown"; unknown)
(A6; "Liz Pink"; unknown)
a. Authors records
```

(P1: "Databases...."; "John Black"; "Don White")
(P2: "Multimedia......"; "Sue Gray"; "D. White")
(P3: "Title3...."; "Dave White")
(P4: "Title4..."; "Don White"; "Joe Brown")
(P5: "Title5...": "Joe Brown"; "Liz Pink")
(P6; "Title6..."; "Liz Pink"; "D. White")
b. Publications records

c. Corresponding Entity Relationship schema

Bibliographic example from [68]

(1) W. Wang , C. Chen, A. Ansari - A mouse immunity model
(2) W. Wang, A. Ansari - A better mouse immunity model
(3) L. Li, C. Chen, W. Wang - Measuring protein-bound fluxetine
(4) W.W. Wang, A. Ansari - Autoimmunity in biliar cirrhosis
a. A set of four papers

b. References to the same author are identically shaded

Reference graph and entity graph for the author resolution example in [68]

@ Springer International
Publishing Switzerland 2016

Motivating example in [159]

PublID	Author	Title	Venue	VenueID	Year
0	X.Li	Predicting the stock market	KDD	Int'l Conference on Knowledge Discovery	20
1	X.Li	Predicting the stock market	2010		
2	J.Smith	Semi-Definite Programming for Link Prediction	KDD	2010	
3	J.Smith	Semi-Definife Programing for Link Prediction	Conference on Knowledge Discovery	40	2011

Example of aggregate constraint in [121]

Member	Fees stored	Fees derived
John Doe	100	130
J. Doe	40	10
\ldots.	$\ldots .$.	$\ldots .$.

First scenario

Member	Fees stored	Fees derived
John Doe	100	100
J. Doe	40	10
\ldots.	$\ldots .$.	$\ldots .$.

Second scenario

Example of hybrid human-machine workflow proposed in [642]

Example proposed in [284]

Source	Name	Phone	Address
S1	Microsofe Corp.	$x x x-1255$	1 Microsoft Way
	Microsofe Corp.	$x \times x-9400$	1 Microsoft Way
	Macrosoft Inc.	$x x x-0500$	2 Sylvan W.
S2	Microsoft Corp.	$x x x-1255$	1 Microsoft Way
	Microsofe Corp.	xxx-9400	1 Microsoft Way
	Macrosoft Inc.	$x \times x-0500$	2 Sylvan Way
S3	Microsoft Corp.	$x x x-1255$	1 Microsoft Way
	Microsoft Corp.	$x \times x-9400$	1 Microsoft Way
	Macrosoft Inc.	$x x x-0500$	2 Sylvan Way
S4	Microsoft Corp.	$x \times x-1255$	1 Microsoft Way
	Microsoft Corp.	$x \times x-9400$	2 Sylvan Way
	Macrosoft Inc.	$x x x-0500$	1 Microsoft Way
S5	Microsoft Corp.	$x \times x-1255$	1 Microsoft Way
	Microsoft Corp.	$x x x-9400$	1 Microsoft Way
	Macrosoft Inc.	$x \times x-0500$	2 Sylvan Way
S6	Microsoft Corp.	$x \times x-2255$	1 Microsoft Way
	Macrosoft Inc.	$x x x-0500$	2 Sylvan Way
S7	MS Corp.	$x x x-1255$	1 Microsoft Way
	Macrosoft Inc.	$x \times x-0500$	2 Sylvan Way
S8	MS Corp.	$x x x-1255$	1 Microsoft Way
	Macrosoft Inc.	xxx-0500	2 Sylvan Way
S9	Macrosoft Inc.	xxx-0500	2 Sylvan Way
S10	MS Corp.	xxx-0500	2 Sylvan Way

b. Real-world entities

Name	Phone	Address
Microsofe Corp., Microsofe Corp, MS Corp.	$\begin{aligned} & x \times x-1255 \\ & \times x x-9400 \end{aligned}$	1 Microsoft Way
	xxx-0500	2 Sylvan Way, 2 Sylvan W.

Example from [54]

	Name	Phone	E-mail
r1	JohnDoe	$235-2635$	jdoe@yahoo
r2	J.Doe	$234-4358$	
r3	JohnD.	$234-4358$	jdoe@yahoo

a. An instance of persons representing persons

$r 4$	John Doe	$234-4358$ $235-2635$	jdoe@yahoo

b. A new record generated by merging

Pay-as-you-go approach in [664]

@ Springer International
Publishing Switzerland 2016

The framework presented in [127]. The ground truth cluster

Example from [17]

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { P_id } & \text { P_title } & \text { Cited } & \text { Venue } & \text { Authors } & \text { Year } \\ \hline \text { P1 } & \text { Towards efficient entity resolution } & 65 & \begin{array}{l}\text { Very Large Data Bases } \\ \text { P7 }\end{array} & \text { Towards efficient ER } & 45\end{array} \begin{array}{l}\text { Alon Halevy } \\ \text { Alon Halevy }\end{array}\right)$
@ Springer International
Publishing Switzerland 2016

Relation R after being clustered using an entity resolution algorithm

Cluster	P_id	P_title	Cited	Venue	Authors	Year
C1	P1, P7	Towards efficient entity resolution	110	Very Large Data Bases	Alon Halevy	2000
C2	P2, P3, P4	Entity Resolution on dynamic data	60	Proc of ACM SIGMOD Conf	Alon Halevy, Jane Doe	2005
C3	P5, P6	Entity Resolution for Census data	15	ICDE Conf. Proc of ICDE Conf	Alon Halevy	2002

@ Springer International
Publishing Switzerland 2016

Original business listings and object identification results in [278]

	BizId	Id	Name	Street address	City	Phone
D0	B1	r1	Starbucks	123 MISSION ST STE ST1	SAN FRANCISCO	4155431510
	B1	r2	Starbucks	123 MISSION ST	SAN FRANCISCO	4155431510
	B1	r3	Starbucks	123 Mission St	SAN FRANCISCO	4155431510
	B2	r4	Starbucks Coffee	340 MISSION ST	SAN FRANCISCO	4155431510
	B3	r5	Starbucks Coffee	333 MARKET ST	SAN FRANCISCO	415534786
	B3	r6	Starbucks	MARKET ST	San Francisco	
	B4	r7	Starbucks Coffee	52 California St	San Francisco	4153988630
	B4	r8	Starbucks Coffee	52 CALIFORNIA ST	SAN FRANCISCO	4153988630
	B5	r9	Starbucks Coffee	295 California St	SAN FRANCISCO	415986234
	B5	r10	Starbucks	295 California ST	SF	

a. Original business listings

b. PMalltsthinggsimeszzatkand 2016

New updates in [278]

	BizId	Id	name	Street address	city	phone
D1	B6	r11	Starbucks Coffee	201 Spear Street	San Francisco	4159745077
D2	B3	r12	Starbucks Coffee	MARKET STREET	San Francisco	4155434786
	B3	r13	Starbucks	333 MARKET ST	San Francisco	4155434786
D3	B1	r14	Starbucks	123 MISSION ST STE	SAN FRANCISCO	4155431510
	B1	r15	Starbucks	ST1	San Francisco	4155431510
D4	B5	r16	Starbucks Starbucks	295 CALIFORNIA ST	SAN FRANCISCO	4155431510
	B4	r17		SF	4153988630	

@ Springer International Publishing Switzerland 2016

Records to match and evolving rules in [663]

Record	Name	Zip	Phone
r1	John	54321	$123-4567$
r2	John	54321	$987-6543$
r3	John	11111	$987-6543$
r4	Bob	null	$121-1212$

Comparison Rule	Definition
B1	$\mathrm{P}_{\text {name }}$
B2	$\mathrm{P}_{\text {name }}$ AND $\mathrm{P}_{\text {zip }}$
B3	$\mathrm{P}_{\text {name }}$ AND $\mathrm{P}_{\text {phone }}$

a. Records to match
b. Evolving from rule B1 to rule B2

Possible relationships between polylines

@ Springer International
Publishing Switzerland 2016

Matching between road vector map and orthoimagery,from [123] @Springer 2006

a. map and image not aligned
b. map and image aligned
@ Springer International
Publishing Switzerland 2016

The approach presented in [123] @Springer 2006

The approach and example presented in [124] @Springer 2008

Inputs

@ Springer International Publishing Switzerland 2016

Intersection points automatically detected on a map in [124]

@ Springer International
Publishing Switzerland 2016

Countries and languages investigated in [518]

Country	Languages
China	Standard Chinese (Mandarin), Cantonese, Shangainese, Fozhou, Hokkinen-Taiwanese, Xiang, Gan, Hakka dialects, and others
France	French, regional dialects
Germany	German
Italy	Italian, German, French, Slovene
Japan	Japanese
Mexico	Spanish, indigenous languages (Mayan, Nauhatl, and others)
Saudi Arabia	Arabic
Spain	Castilian Spanish, Catalan, Galician, Basque
Taiwan	Mandarin Chinese, Taiwanese, Hakka dialects
United Kingdom	English, Scots, Scottish Gaelic, Welsh, Irish, Cornish
Yemen	Arabic

Classical object identification process

Privacy preserving object identification (inspired to [623])

Encoded/encrypted data
@ Springer International
Publishing Switzerland 2016

Secure hash encoding

First Name	Surname	Compound string	Hash string
peter	christen	peterchristen	51dc3dc1ca0
pete	christen	petechristen	h231g0180kl

@ Springer International
Publishing Switzerland 2016

k-anonymized tuples as used in [323]

Alice

Age	Zip Code
25	20133
50	12205
70	12209
30	40100

@ Springer International
Publishing Switzerland 2016

