C. Batini & M. Scannapieco Data and Information Quality Book Figures

Chapter 9: Recent Advances in Object Identification

© Springer International Publishing Switzerland 2016 1

Comparison of quality measures in the entity space and in the comparison space

Metric	Entity Space	Comparison Space
Precision	72,2%	72,2%
Recall	92,8%	92,8%
F-measure	81,2%	81,2%
Accuracy	94,3%	99,9%
Specificity	94,5%	99,95
False positive rate	5,4%	0.000005%

Architecture of Tailor

Examples of citation domain string matching from [25]

Id	Left	Right
1	Katayama,T., 2A hierarchical and functional software process description and its enaction", Proc. 11th ICSE, IEEE, 1989, pp.343-352	T. Katayama, "A hierarchical and functional software process description and its enaction," In: Proceedings of the Eleventh Int. Conf. On Soft. Eng. Pages: 343{352, IEEE Computer Society Press, Pittsburgh, PA, Jan 1989.
2	Knuth, D., The art of Computer Programming, Vol. III, Addison- Wesley, (1973).	8. D. Knuth, The art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1973.
3	[ESWARAN76] Eswaran, K. P., J. N. Gray, R. A. Lorie, I. L. Traiger, \The notions of consistency and predicate locks in a database system", Communications of the ACM, Vol. 19, No. 11, November, 76	[14] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, \The notions of consistency and predicate locks in a database system," Commun. Assoc. Comput. Mach., Vol. 19, No. 11, Nov. 1976

Example of traditional blocking (here and in the following of the section examples are inspired to [139])

Identifier	Surname	BK (Soundex encoding)
R1	Smith	5530
R2	Miller	M460
R3	Peters	P362
R4	Smyth	5530
R5	Millar	M460
R6	Miller	M460

M460		P362	5530	
	·			
R2		R3	R1	
R5			R4	
R7				

a. Records table with BKVs

b. Inverted index data structure

Example of traditional sorted neighborhood

Window position	BK (Surname)	Identifier
1	Millar	R6
2	Miller	R2
3	Miller	R8
4	Myler	R4
5	Peters	R3
6	Smith	R1
7	Smyth	R5
8	Smyth	R7

Window range	Candidate record pairs
1-3	(R6,R2), (R6,R8), (R2,R8)
2-4	(R2,R8), (R2,R4), (R8,R4)
3-5	(R8,R4), (R8,R3), (R4,R3)
4-6	(R4,R3), (R4,R1), (R3,R1)
5-7	(R3,R1), (R3,R5), (R1,R5)
6-8	(R1,R5), (R1,R7), (R5,R7)

a. Records table with BKVs and window positions

b. Record pairs in windows

Example of sorted neighborhood based on inverted index

Window position	BK (Surname)	Identifier
1	Millar	R6
2	Miller	R2, R8
3	Myler	R4
4	Peters	R3
5	Smith	R1
6	Smyth	R5,R7

 Window range
 Candidate record pairs

 1-3
 (R6,R2), (R6,R8), (R6,R4), (R2,R8), (R2,R4), (R8,R4)

 2-4
 (R2,R8), (R2,R4), (R8,R4), (R8,R4), (R8,R3), (R4,R3)

 3-5
 (R4,R3), (R4,R1), (R3,R1)

 4-6
 (R3,R1), (R3,R5), (R3,R7), (R1,R5), (R1,R7), (R5,R7)

a. Records table with inverted index

b. Record pairs in windows

Example of suffix array based blocking

	i	ii	Suff
Identifier	BK (Given Name)	Suffixes	
			athe
R1	Catherine	Catherine, atherine, therine, herine, erine, rine	athe
P2	Katherina	Kathering athering thering	atr
NL.	Rumer mu	herina, erina, rina	cath
R3	Catherina	Catherina, atherina, therina,	cathe
		herina, erina, rina	cati
R4	Catrina	Catrina, atrina, trina, rina	eri
R5	Katrina	Katrina, atrina, trina, rina	eri
	•	·	

-			-
Suffix	Identifier	Suffix	Identifier
atherina	R2,R3	herine	R1
atherine	R1	katherina	R2
atrina	R4,R5	katrina	R5
catherina	R3	rina	R2,R3,R4,R5
catherine	R1	rine	R1
catrina	R4	therina	R2,R3
erina	R2,R3	therine	R1
erine	R1	trina	R4,R5
herina	R2,R3		

a. Records table with BK and suffixes

b. Sorted suffix-array

Examples of blocking predicates from [76]

Domain	Blocking Predicate
Census data	Same first three chars in Last Name
Product normalization	Common token in Manufacturer
Citations	Publication Year same or off-by-one

Blocking key values for a sample record from [76]

Author	Year	Title	Venue	Other
Freund, Y.	(1995)	Boosting a weak learning algorithm by majority	Information and computation	(121(2), 256-285

a. Sample record

Predicate	Author	Title	Venue	Year	Other
Contain common token	(freund, y)	(boosting, a, weak, learning, algorithm, by, majority)	(information, computation)	(1995)	(121,2,256,285)
Exact match	("freund y")	("Boosting a weak learning algorithm by majority")	("information and computation)	(``1995")	("121 2 256 285")
Same 1 st three Chars	(fre)	(boo)	(inf)	(199)	(121)
Contain same or off-by-one integer	-	-	-		(120_121, 121_122, 1_2, 2_3,,255_256, 256_257, 284_285,285_286)

b. Blocking predicates and key sets produced by their indexing functions for the record

Example of semantic blocking from [473]

Possible paths of agreement for three data sets in [536]

Examples of features in [145]

Name of Feature	Description
SubstringMatch	true iff one of the two strings is a substring of the other
PrefixMatch	true iff one of the two strings is a prefix of the other
StrongNumberMatch	true iff the two strings contain the same number
Edit distance	usual meaning
Jaccard distance	usual meaning

Phases of knowledge extraction and exploitation in [75]

Example of weight vectors from [138]

Record	Name		Address		
R1	Christine	Smith	42	Main	Street
R2	Christina	Smith	42	Main	St.
R3	Bob	O'Brian	11	Smith	Rd
R4	Robert	Bryee	12	Smythe	Road

WV(R1,R2): [0.9, 1.0, 1.0, 1.0, 0.9] WV(R1,R3): [0.0, 0.0, 0.0, 0.0, 0.0] WV(R1,R4): [0.0, 0.0, 0.5, 0.0, 0.0] WV(R2,R3): [0.0, 0.0, 0.0, 0.0, 0.0] WV(R2,R4): [0.0, 0.0, 0.5, 0.0, 0.0] WV(R3,R4): [0.7, 0.3, 0.5, 0.7, 0.9]

a. Four record examples

b. Corresponding wieght vectors

© Springer International Publishing Switzerland 2016 An example Author/Paper resolution problem from [66]. Each box represents a paper reference (in this case unique) and each oval represents an author reference

Example of exploitation of context information in [179]

Person (name, email, *coAuthor, *emailContact) Article (title, year, pages, *authoredBy, *publishedIn) Conference (name, year, location) Journal (name, year, volume, number)

Related records and corresponding Entity Relationship schema as adapted from [353]

Bibliographic example from [68]

- (1) W. Wang , C. Chen, A. Ansari A mouse immunity model
- (2) W. Wang, A. Ansari A better mouse immunity model
- (3) L. Li, C. Chen, W. Wang Measuring protein-bound fluxetine
- (4) W.W. Wang, A. Ansari Autoimmunity in biliar cirrhosis

a. A set of four papers

b. References to the same author are identically shaded

© Springer International Publishing Switzerland 2016

Reference graph and entity graph for the author resolution example in [68]

Motivating example in [159]

PubIID	Author	Title	Venue	VenueID	Year
0	X.Li	Predicting the stock market	KDD	10	2010
1	X.Li	Predicting the stock market	Int'l Conference on Knowledge Discovery	20	2010
2	J.Smith	Semi-Definite Programming for Link Prediction	KDD	30	2011
3	J.Smith	Semi-Definife Programing for Link Prediction	Conference on Knowledge Discovery	40	2011

Example of aggregate constraint in [121]

Member	Fees stored	Fees derived
John Doe	100	130
J. Doe	40	10

Member	Fees stored	Fees derived
John Doe	100	100
J. Doe	40	10
		•••••

First scenario

Second scenario

© Springer International Publishing Switzerland 2016

Example of hybrid human-machine workflow proposed in [642]

Example proposed in [284]

a. Data sources

Source Name		Phone	Address
	Microsofe Corp.	xxx-1255	1 Microsoft Way
51	Microsofe Corp.	xxx-9400	1 Microsoft Way
	Macrosoft Inc.	xxx-0500	2 Sylvan W.
52	Microsoft Corp.	xxx-1255	1 Microsoft Way
	Microsofe Corp.	xxx-9400	1 Microsoft Way
	Macrosoft Inc.	xxx-0500	2 Sylvan Way
	Microsoft Corp.	xxx-1255	1 Microsoft Way
53	Microsoft Corp.	xxx-9400	1 Microsoft Way
	Macrosoft Inc.	xxx-0500	2 Sylvan Way
C 1	Microsoft Corp.	xxx-1255	1 Microsoft Way
54	Microsoft Corp.	xxx-9400	2 Sylvan Way
	Macrosoft Inc.	xxx-0500	1 Microsoft Way
	Microsoft Corp.	xxx-1255	1 Microsoft Way
55	Microsoft Corp.	xxx-9400	1 Microsoft Way
	Macrosoft Inc.	xxx-0500	2 Sylvan Way
	Microsoft Corp.	xxx-2255	1 Microsoft Way
56	Macrosoft Inc.	xxx-0500	2 Sylvan Way
67	MS Corp.	xxx-1255	1 Microsoft Way
57	Macrosoft Inc.	xxx-0500	2 Sylvan Way
	MS Corp.	xxx-1255	1 Microsoft Way
58	Macrosoft Inc.	xxx-0500	2 Sylvan Way
59	Macrosoft Inc.	xxx-0500	2 Sylvan Way
510	MS Corp.	xxx-0500	2 Sylvan Way

b. Real-world entities © Springer Publishing Switzerland 2016 Name Phone Address Address 1 Microsoft Way 2 Sylvan Way, 2 Sylvan W.

Example from [54]

	Name	Phone	E-mail
r1	JohnDoe	235-2635	jdoe@yahoo
r2	J.Doe	234-4358	
r3	JohnD.	234-4358	jdoe@yahoo

a. An instance of persons representing persons

r4	John Doe	234-4358 235-2635	jdoe@yahoo

b. A new record generated by merging

Pay-as-you-go approach in [664]

© Springer International Publishing Switzerland 2016

Example from [17]

P_id	P_title	Cited	Venue	Authors	Year
P1	Towards efficient entity resolution	65	Very Large Data Bases	Alon Halevy	2000
P7	Towards efficient ER	45	VLDB	Alon Halevy	2000
P2	Entity Resolution on dynamic data	25	ACM SIGMOD	Alon Halevy, Jane Doe	2005
P3	ER on dynaminc data	20	Proc of ACM SIGMOD Conf	A.Y. Halevy, J. Doe	2005
P4	Entity Resolution for dynamic data	15	SIGMOD Conf.	A. Halevy, Jane D.	2005
Р5	Entity Resolution for Census data	10	ICDE Conf.	Alon Halevy	2002
Р6	ER on census data	5	Proc of ICDE Conf	Alon Y. Halevy	2002

Relation R after being clustered using an entity resolution algorithm

Cluster	P_id	P_title	Cited	Venue	Authors	Year
C1	P1, P7	Towards efficient entity resolution	110	Very Large Data Bases	Alon Halevy	2000
C2	P2, P3, P4	Entity Resolution on dynamic data	60	Proc of ACM SIGMOD Conf	Alon Halevy, Jane Doe	2005
С3	P5, P6	Entity Resolution for Census data	15	ICDE Conf. Proc of ICDE Conf	Alon Halevy	2002

Original business listings and object identification results in [278]

	BizId	Id	Name	Street address	City	Phone
	B1 B1 B1	r1 r2 r3	Starbucks Starbucks Starbucks	123 MISSION ST STE ST1 123 MISSION ST 123 Mission St	SAN FRANCISCO SAN FRANCISCO SAN FRANCISCO	4155431510 4155431510 4155431510
	B2	r4	Starbucks Coffee	340 MISSION ST	SAN FRANCISCO	4155431510
DO	B3 B3	r5 r6	Starbucks Coffee Starbucks	333 MARKET ST MARKET ST	SAN FRANCISCO San Francisco	415534786
	B4 B4	r7 r8	Starbucks Coffee Starbucks Coffee	52 California St 52 CALIFORNIA ST	San Francisco SAN FRANCISCO	4153988630 4153988630
	85 85	r9 r10	Starbucks Coffee Starbucks	295 California St 295 California ST	SAN FRANCISCO SF	415986234

a. Original business listings

New updates in [278]

	BizId	Id	name	Street address	city	phone
D1	B6	r11	Starbucks Coffee	201 Spear Street	San Francisco	4159745077
D2	B3 B3	r12 r13	Starbucks Coffee Starbucks	MARKET STREET 333 MARKET ST	San Francisco San Francisco	4155434786 4155434786
D3	B1 B1	r14 r15	Starbucks Starbucks	123 MISSION ST STE ST1	SAN FRANCISCO San Francisco	4155431510 4155431510
D4	B5 B4	r16 r17	Starbucks Starbucks	295 CALIFORNIA ST 52 California St	SAN FRANCISCO SF	4155431510 4153988630

Records to match and evolving rules in [663]

Record	Name	Zip	Phone	
r1	John	54321	123-4567	
r2	John	54321	987-6543	
r3	John	11111	987-6543	
r4	Bob	null	121-1212	

Comparison Rule	Definition
B1	p _{name}
B2	P name AND P zip
B3	P _{name} AND P _{phone}

a. Records to match

b. Evolving from rule B1 to rule B2

Possible relationships between polylines

Matching between road vector map and orthoimagery, from [123] @Springer 2006

a. map and image not aligned

b. map and image aligned

© Springer International Publishing Switzerland 2016

The approach presented in [123] @Springer 2006

Lat / Long

Publishing Switzerland 2016

The approach and example presented in [124] @Springer 2008

Intersection points automatically detected on a map in [124]

© Springer International Publishing Switzerland 2016

Countries and languages investigated in [518]

Country	Languages
China	Standard Chinese (Mandarin), Cantonese, Shangainese, Fozhou, Hokkinen-Taiwanese, Xiang, Gan, Hakka dialects, and others
France	French, regional dialects
Germany	German
Italy	Italian, German, French, Slovene
Japan	Japanese
Mexico	Spanish, indigenous languages (Mayan, Nauhatl, and others)
Saudi Arabia	Arabic
Spain	Castilian Spanish, Catalan, Galician, Basque
Taiwan	Mandarin Chinese, Taiwanese, Hakka dialects
United Kingdom	English, Scots, Scottish Gaelic, Welsh, Irish, Cornish
Yemen	Arabic

Classical object identification process

© Springer International Publishing Switzerland 2016

Privacy preserving object identification (inspired to [623])

Secure hash encoding

First Name	First Name Surname Compound		Hash string
peter	christen	peterchristen	51dc3dc1ca0
pete	christen	petechristen	h231g0180kl

k-anonymized tuples as used in [323]

Bob

Age	Zip Code		Age	Zip Code
25	20133		(20-40)	20***
50	12205		(40-60)	122**
70	12209		(60-80)	12***
30	40100		(20-40)	40***