C. Batini \& M. Scannapieco Data and Information Quality Book Figures

Chapter 8: Object Identification

How three agencies represent the same business

Agency	Identifier	Name	Type of activity	AddresS	City
Agency 1	CNCBTB765SDV	Meat production of John Ngombo	Retail of bovine and ovine meats	35 Niagara Street	New York
Agency 2	0111232223	John Ngombo canned meat production	Grocer's shop, beverages	9 Rome Street	Albany
Agency 3	CND8TB76SSDV	Meat production in New York state of John Ngombo	Butcher	4, Garibaldi Square	Long Island

Examples of the matching objects of the three data typologies

R(FirstName, LastName, Region, State)

| Patrick | Metzisi | MM | Kenia |
| :--- | :--- | :--- | :--- |\quad| Patrick | Metzisi | Masai Mara | KE |
| :--- | :--- | :--- | :--- |

(a) Two tuples

R1(FirstName, LastName, Region)				R2(Region, State)		R3(State, Continent)	
Patrick		Metzisi	MM	MM K	Kenia	Kenia	Africa
Patrick		zisi	Masai Mara	Masai Mara	KE	KE	Africa

(b) Two hierarchical groups of tuples

```
<country>
    <name> Kenia </name>
    <cities> Nairobi, Mombasa, Malindi
    </cities>
    <lakes>
    <name> Lake Victoria </name>
    </lakes>
</country>
```

```
<country>
    Kenia
    <city> Nairobi </city>
    <city> Mombasa </city>
    <lakes>
        <lake> Lake Victoria </lake>
    </lakes>
</country>
```

(c) Two XML records

Relevant steps of object identification techniques

Example of string comparison

\ldots	\ldots	\ldots
ATT	\ldots	\ldots
IBM Corporation	\ldots	\ldots
\ldots	\ldots	\ldots

\ldots	\ldots	\ldots
ATT Corporation	\ldots	\ldots
IBM Corporation	\ldots	\ldots
\ldots	\ldots	\ldots

Object identification techniques

Name	Technical Area	Type of data
Fellegi and Sunter and extensions	probabilistic	Two files
Cost-based	probabilistic	Two files
Sorted Neighborhood and variants	empirical	Two files
Delphi	empirical	Two relational hierarchies
DogmatiX	empirical	Two XML documents
Intelliclean	knowledge-based	Two files
Atlas	knowledge-based	Two files

The Fellegi and Sunter record linkage formulation

Example distribution of match and not match in the sample as a function of distance among pairs

$\max \begin{array}{lllllllllllllll}12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & m i n & \text { distance }\end{array}$
 Vertical regions contain pairs of records ordered according to decreasing ®afleesingof Idisistranieezal

Publishing Switzerland 2016

Distribution of matching and unmatching applied to the universe U

Vertical regions contain pairs of records ordered according to decreasiomprallyestitefiadiostance

Publishing Switzerland 2016

The regions of the Fellegi and Sunter decision model [281]

Low agreement in comparison

Costs corresponding to various decisions

Cost	Decision	Actual Matching
C_{10}	D_{1}	M
C_{11}	D_{1}	U
C_{20}	D_{2}	M
C_{21}	D_{2}	U
C_{30}	D_{3}	M
C_{31}	D_{3}	U

Phases of the SNM method

Three hierarchical relations

Person

PId	First name	Last Name	RegId
1	Patrick	Mezisi	1
2	Amanda	Rosci	2
3	George	Oado	3
4	John	Mumasia	4
5	Vusi	Oymo	7
6	Luyo	Msgula	5
7	Frial	Keyse	8
8	Wania	Nagu	6
9	Paul	Kohe	7

Administrative Region Country

RegId	RegionName	CtryId	CtryId	CountryName
1	MM	1	1	KE
2	MM	2	2	Kenia
3	Masai Mara	1	3	SOA
4	Eastern Cape	3	4	South Africa
5	Free State	3	5	SWA
6	FS	4	6	Swaziland
7	HHohho	5		

The Delphi algorithm

1. Process first the top most relation
2. Group relations below the top most relation into clusters of tuples
3. Prune each cluster according to properties of distance functions eliminating tuples that cannot be duplicates.
4. Compare pairs of tuples within each group according to two comparison functions and corresponding thresholds
\checkmark Textual similarity between two tuples
\checkmark Co-occurrence similarity between the children sets of the tuples
5. Decide for duplicates comparing a suitable combination of the two measures against a given threshold or a set of thresholds.
6. Dynamically update thresholds
7. Move one level down in the hierarchy

Bridging file example

A	A\&B	B
Tax $_{1,1}$	Name $_{1}$, Surname $_{1}$, Address $_{1}$	SocialService $_{2,1}$
Tax $_{1,2}$	Name $_{2}$, Surname $_{2}$, Address $_{2}$	SocialService $_{2,2}$
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots
Tax $_{1, n}$	Name $_{n}$, Surname $_{n}$, Address $_{n}$	SocialService $_{2, n}$

A small portion of the registry of US citizens

Record \#	First Name	Last Name	State	Area	Age	Salary
1	Ann	Albright	Arizona	SW	65	70.000
2	Ann	Allbrit	Florida	SE	25	15.000
3	Ann	Alson	Louisiana	SE	72	70.000
4	Annie	Olbrght	Washington	NW	65	70.000
5	Georg	Allison	Vermont	NE	71	66.000
6	Annie	Albight	Vermont	NE	25	15.000
7	Annie	Allson	Florida	SE	72	70.000
8	George	Alson	Florida	SE	71	66.000

@ Springer International

An example of the duplicate identification rule in Intelliclean

```
Define rule Restaurant_Rule
Input tuples: R1, R2
IF (R1.telephone = R2.telephone)
AND (ANY_SUBSTRING (R1.ID, R2.ID) = TRUE)
AND (FIELDSIMILARITY (R1.address = R2.address) > 0.8)
THEN
DUPLICATES (R1,R2) CERTAINTY =0.8
```


The complete Intelliclean strategy

1. Preprocessing

Perform data type checks and format standardization
2. Processing
2.1 The compared records are fed into an expert system engine together with a set of rules of the form IF <condition> THEN <action>.
2.2 Check iteratively within a sliding window first Duplicate Identification rules and then Merge Purge rules using a basic production system to see which ones should fire based on the facts in the database, looping back to the first rule when it has finished.
2.3 Perform transitive closure under uncertainty using an improved version of the multi-pass Sorted Neighborhood searching method
3. Human verification and validation stage

Human intervention to manipulate the duplicate record groups for which merge/purge rules are not defined

Examples of transformations

1. Soundex converts an item into a Soundex code. Items that sound similar have the same code
2. Abbreviation replaces an item with corresponding abbreviation (e.g., third \rightarrow 3rd)
3. Equality compares two items to determine if each item contains the same characters in the same order
4. Initial computes if one item is equal to the first character of the other.
5. Prefix computes if one item is equal to a continuous subset of the other starting at the first character
6. Suffix computes if one item is equal to a continuous subset of the other starting at the last character
7. Abbreviation computes if one item is equal to a subset of the other (e.g., Blvd, Boulevard)
8. Acronym computes if all characters of one item string are initial letters of all items from the other string

Two relations

Relation1

LastName	Address	City	Region	Telephone
Ngyo	Mombsa Boulevard	Mutu	MM	$350-15865$

Relation2

LastName	Address	Region	Telephone
Ngoy	Mombasa Blvd.	Masai Mara	$350-750123$

Notation on matching decision cases

M	Actual match w.r.t. real world
U	Actual non match w.r.t. real world
FP	Declared match while actual non match
FN	Declared non-match while actual match
TP	Declared match while actual match
TN	Declared non match while actual non match

Comparison of decision methods

Technique	Input	Output	Objective	Human interaction	Selection/Conatruction of a representative for the matching reconds
FellegidSunter	γ vector of comparison functions Estimation of TH and Th. m - and u-probabilitizs	For each recond pair, decision on match, non-match, possible match with given error rates	Low erron rates (falae match and falae non-match) Minimization of possible matches	Clerical Review of possible matches	No
Cost Based	Matrix of costs of decision rules: m - and u-probabilitics:	For each recond pair, decision on match, non-match, possible match with given error rates:	Minimization of cost of errors: (false match and false nonmatch)	Clerical Review of possible matches Matrix of costs of decision rules	No
5NM	Declanative rules encoding domain knowledge (for tuple level decision) Comparison functions (for artribute value decision) Threshold (for attribute value decision)	For each recond pair, decision on match or non-match	Pracision/Recall troderoff.	Choice of the matching key Threshold Specification Decision Rules	No (only for incremental SNM)
Priority-Queus	Smith Waterman comparison function Threshold (for tuple value decision)	For each recond pair, decision on match or non-match	Pracision/Recall troderoff.	Threshold Specification	No
Delphi	Textual Comparison Function Co-occurrence matric Set of thresholds (dynamically updated)	For each recond pair, decision on match or non-match	Pracision/Recall trodgoff.	None	No
DogMatix	XML Threshold similarity (object level)	For each XML element pair, decision on match or non-match	Pracision/Recall trodgroff.	Selection of candidates Threshold Specification	No
IntelliClean	Duplicate Identification Rules (for tuple decision) Merge Purge Rules (for tuple decision) Set of thresholds (for attribute comparison and for tuple merging)	For each recond pair, decision on match or non-match Merged Result formatching reconds	Precision/Recall tcodepoff. User controllad confidentiality for merging	Duplicate Idgetificgtipo/Mecge/Purge Rules Specification Threshold Specification Human verification for merging duplicates when rules ane not specified	Yes
Atias	Learnt Decision rules Set of domain independent transformations Thrusholds	For each recond pair, decision on match or non-match	Pracision/Recall trodgoff.	Mapping rule learning	No

@ Springer International

Metrics used by to evaluate object identification by empirical techniques and related results

Technique	Metrics	Synttc/ Real Dta	Data Dimensions	Results
SNM	Precision False Positive Percentage	Synthetic	$1 . .000 .000$ records (120Mb)	Precision $50 \%-70 \%$ on independent pass Precision close to 90% with transitive closure False Positive Percentage not significant (0.050.2\%)
	Precision False positive Percentage False negative Percentage	Real	128.438 records ($13,6 \mathrm{Mb}$)	Not significant False Negatives Percentage Not significant False Positive Percentage
Priority-Queue	Precision Efficiency (Number of comparisons)	Synthetic	From around 300.000 records to around 480,000 records	Precision similar to SNM Efficiency: 5 times less than SNM
	Efficiency (Number of comparisons)	Real	255. 000 records	Precision not provided as for real data difficult to identify actual duplicates Efficiency - Number of reduced comparisons similar to the one for the synthetic data set
Delphi	False Positive Percentage False Negative Percentage	Real	270.000 records	False Positive Percentage less than 25\% False Negative Percentage around 20\%
DogMatix	Precision Recall	Real	Experiment1:1000 records Experiment2:10000 records	For similarity measure: Experiment 1: Precision 70-100\% Experiment 1: Recall: 2\%-35\% Experiment 2: Precision 60-100\%
IntelliClean	Precision	Real	Experiment1: 856 records Experiment2: 22.122 records	Experiment 1: Precision 80\% Experiment 1: Less than 8\% Recall Experiment 2 :Precision: 100\% Experiment 2 :Recall:100\%
Atlas	Precision (accuracy)	Real	Experiment1: 1.000 records Experiment2: 10.000 records	Experiment 1: Precision 100\% Experiment 2: Precision 99\%

@ Springer International
Publishing Switzerland 2016

