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Noise maps are considered as a powerful tool to determine the population exposure to environmen-
tal noise. A statistical approach to real-time noise mapping will be developed in DYNAMAP (Dy-
namic Acoustic Mapping), a co-founded project in the framework of LIFE 2013 program. The main 
preliminary action of the project is to define a statistically-based method to optimize the choice and 
the number of monitoring sites, which will provide the information to update the dynamic mapping 
process. In this work, preliminary results referring to a sample of roads of the city of Milan are pre-
sented. The sample database is made of 24 hour continuous acoustic monitoring of the hourly 
equivalent levels LAeqh in different sites, corresponding to 8 road functional classifications (from A 
to F and sub-classes). Once normalized, such trend profile provides a tool to group roads by their 
vehicular dynamics. Acoustic trend profiles will be also studied on a shorter time basis, with the 
aim of identifying road clusters that allow an updating of the map with an higher time frequency. 
Linking a non-acoustical parameter (hourly traffic flow) to the elements in each cluster represents 
the key-issue which allows each road segment of the urban network to be univocally assigned to the 
obtained clusters.  

 

1. Introduction 
Urban traffic noise has been the object of several studies aimed at investigating different aspects 

of its impact [1-6]. Initially, the environmental noise has been studied by using systematic sam-
pling, that is selecting measurements points by the use of grids over a map [2]. However, this ap-
proach showed to be time and cost consuming for road administrations and local or central authori-
ties, as well as to give more weight to noisier streets [7], thus providing biased maps. In fact, the 
noise on a street generally depends on its activity, the use in the urban context, width, presence of 
reflecting surfaces, presence of obstacles, type of paving, etc.. Acoustic simulation algorithms, im-
plemented by software, allow to reproduce noise emission and propagation on a wide area, starting 
from some static information about sound sources and environment. Dynamap project has the aim 
to develop a dynamic approach to noise mapping, able to update environmental noise levels through 
a direct link with a limited number of noise monitoring terminals. Hence, the need to group road 
network stretches in homogeneous clusters represent a possible method to size the network of moni-
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toring terminals. Roads sharing the same characteristics for some parameters such as vehicles’ flow 
capacity, number of lanes, etc., are grouped together. Such parameters are usually included in the 
functional classification of roads and linked to the role played in the urban mobility. However, this 
classification generally does not reflect the actual use of roads and, therefore, the actual noise emis-
sion. For a better description of the real behavior of noise in complex scenarios such as the road 
network of the city of Milan, we approached the problem considering an agglomeration method 
based upon similarities among the 24-h continuous acoustic monitoring of the hourly equivalent 
LAeqh levels. Once normalized, such trend profile provides a tool to group together roads according 
to their vehicular dynamics, therefore allowing a more real description of such road networks.  

2. Acoustic level profiles 
The dataset considered in the present work refers to the city of Milan, Italy, and is made of 138 

24-h continuous acoustic monitoring of the hourly equivalent levels LAeqh in 58 different sites corre-
sponding to 8 functional road classes (from A to F and sub-groups). Sub-groups belonging to clas-
ses E and F were merged. Data were recorded on weekdays and in absence of rain as prescribed by 
D.M. Ambiente 16/3/1998 [8]. Because of the non-homogeneity of LAeqh level dataset, due to dif-
ferent monitoring conditions such as different distances from the road but also to the condition of 
the street itself (its geometry, the presence of reflecting surfaces and obstacles in sound propagation 
and types of paving), we referred each ith hourly LAeqhij level of the jth temporal series to the daytime 
reference level, LAeqdj: 

(1) AeqdjAeqhij LL
ij
−=d  [dB]    (i = 1 h, ············, 24 h; j = 1, ············, 58) 

The normalization referred to the daytime LAeqd level was chosen because this descriptor is, in 
general, more often available than the nighttime LAeqn value. For all 58 sites, the rush-hour (time 
interval 7:30 a.m.-8:30 a.m.) and the night minimum (time interval 2:30 a.m.-3:30 a.m.) vehicle 
flow rate was available too. In 32 sites, monitoring periods extended over more days. In such cases 
the median of dij hourly values was calculated. The median was chosen as this index is less influ-
enced by the presence of outliers. Figure 1 illustrates the 24-hour mean profiles imδ  (green line) and 
the corresponding ± the standard error of the mean for each road functional class (light green area). 
Due to the poor sample size (3 profiles), category A roads present higher standard error.  

3. Statistical Analysis 
The functional classification of roads generally does not reflect their actual use, that is the 24-h 

hourly LAeqh level profiles might be extremely different for roads belonging to the same category. In 
fact, such difference mostly depends on the activity of each road in its urban context. For this rea-
son and as suggested in [9-10], we chose to explore our dataset by means of a cluster analysis. 

For this purpose, unsupervised clustering algorithms were employed to group together level pro-
files found to be “close” to one another. Various algorithms (hierarchical agglomeration using Ward 
algorithm [11], K-means algorithm [12], Partitioning Around Medoids [13], Expectation Maximiza-
tion algorithm by “mclust” module [14]) were considered, and their results compared. The number 
of clusters was chosen as a compromise between satisfactory discrimination and the need to limit 
the number of groups. The range of solutions for clustering was set from four groups (for a straight-
forward comparison with the number of road categories considered) to two (corresponding to the 
minimal discrimination). Euclidean distance was chosen as the metric of the distance among obser-
vations.  
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Figure 1. 24-hour mean profiles imδ  (green line) and the corresponding ± standard error of the mean for each road 
functional class (light green area). 

 

The statistical software R, a free software environment for statistical computing and graphics, 
was applied for the clustering. The package “clValid” [15-16] was used for validating the results 
and assess the quality of the clustering. All the clustering algorithms were ranked based on their 
performance as determined simultaneously by all the validation measures [17]. Thus, the optimal 
list, obtained through a score assigned by each validation index, gives a two-cluster K-means ag-
glomeration at the first place followed by PAM and hierarchical methods, each one yielding also a 
two-cluster separation. The two-cluster groups represent a satisfying balance between an adequate 
differentiation among profiles and the need to get a simple practical solution. Therefore, there exists 
the possibility of naturally grouping the 24-h average profiles ikδ according to their shape. The ob-
tained clusters were composed of roads belonging to different categories as reported in Tab. 1.  

The two clusters appeared to be composed primarily of contributions from different temporal 
profiles belonging mainly to roads of category D and F for Cluster 1 (made up of 31 temporal pro-
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files corresponding to 53.4% of total) and to roads of category A and E for Cluster 2 (made up of 27 
temporal profiles corresponding to 46.6% of total). 

Table 1:Composition of clusters. 

Cluster Road Category Total 
A D E F 

1 1 
(33.3%) 

5 
(55.6 %) 

6 
(31.6%) 

19 
(70.4%) 

31 

2 2 
(66.7%) 

4 
(44.4%) 

13 
(68.4%) 

8 
(29.6%) 

27 

 
This confirms that road traffic is primarily linked to the effective urban mobility use rather than 

its functional classification, as shown by the outcomes of previous studies [9]. Figure 2 shows the 
profiles of mean values ikδ and the corresponding ± the standard error of the mean for each cluster. 
Cluster 1 (blue line) presents two peaks: the first in the time interval 8-9 h and the second at 17 h. It 
fluctuates closely around the LAeqd until 19 h, afterwards it goes down in the night period till 3 h 
after which it starts raising again. Cluster 2 has just one lower peak at 8-9 h and higher values at 
nighttime. In the remaining time period, it shows a similar behavior of Cluster 1. 

 
Figure 2: Mean values of ikδ and their standard error for each cluster. 

Unlike the functional classification of roads, the two obtained cluster profiles cannot be applied 
straightforward to the whole network without any indication, which link them to a specific feature. 
To overcome such limitation, each mean cluster profile was associated with the corresponding traf-
fic flow rate at rush hour (TFRH) and the night minimum vehicle flow rate (NMVF) for each of the 
58 roads under consideration. Figures 3-6 show the probability density and the box plots for these 
parameters for the two-mean-cluster profiles. In particular, for the TFRH parameter we can observe 
that it presents quite separate density distributions. In addition, the interquartile range of the two 
clusters does not overlap. We can, therefore, consider a vehicular flow rate at rush hour of 2000 
vehicles/hour as threshold between the two profiles, that is roads featuring lower values (<2000 
vehicles/hour) can be associated with cluster 1 whereas higher flow rates (>2000 vehicles/hour) 
with cluster 2. In the case of NMVF parameter, the density distributions present different behaviors: 
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cluster 1 shows a sharp profile centered around zero vehicles per hour, whereas cluster 2 shows a 
flatter distribution though peaked at higher values. The corresponding boxplot gives distinct inter-
quartile ranges for the two clusters. In this case, the threshold value between the clusters is around 
40 vehicles per hour. 

  
Figure 3: Histogram and probability density 

vs. vehicle flow rate at rush hour for the K-means 
two-cluster results. 

Figure 4: Box plots of the traffic flow rate at 
rush hour for the two mean cluster profiles. 

 

 
 

Figure 5: Histogram and probability density 
vs. night minimum vehicle flow rate for the K-

means two-cluster results. 

Figure 6: Box plots of the night minimum 
vehicle flow rate for the two mean cluster pro-

files. 
 

4. Comparative analysis among profiles of different temporal discreti-
zation 

Another interesting issue related to noise mapping regards the smallest time interval a noise map 
can be updated without losing significant information from the original data (hourly levels). To this 
purpose, we extracted five new level profiles with temporal resolution of 30, 20, 15, 10, 5 minutes. 
Unfortunately, only a sub-set of the original data was available for this operation and, therefore, 
each new dataset was made up of 36 sites.  
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Figure 7: Comparison between the mean pro-
files 1iδ for cluster 1 with different temporal dis-

cretization. 

Figure 8: Comparison between the mean pro-
files 2iδ for cluster 2 with different temporal dis-

cretization. 
 

Table 2:Composition of clusters for different temporal discretization. 

Temporal 
Discretization 

[min.] 
Cluster 

Road Category 
Total 

A D E F 

60 
1 1 

(33.3%) 
3 

(75.0%) 
3 

(27.3%) 
12 

(66.7%) 19 

2 2 
(66.7%) 

1 
(25.0%) 

8 
(72.7%) 

6 
(33.3%) 17 

30 
1 1 

(33.3%) 
3 

(75.0%) 
3 

(25.0%) 
12 

(70.6%) 19 

2 2 
(66.7%) 

1 
(25.0%) 

9 
(75.0%) 

5 
(29.4%) 17 

20 
1 1 

(33.3%) 
3 

(75.0%) 
3 

(25.0%) 
11 

(64.7%) 18 

2 2 
(66.7%) 

1 
(25.0%) 

9 
(75.0%) 

6 
(35.3%) 18 

15 
1 0 

(0.0%) 
0 

(0.0%) 
3 

(25.0%) 
10 

(64.7%) 13 

2 3 
(100.0%) 

4 
(100.0%) 

9 
(75.0%) 

7 
(35.3%) 23 

10 
1 0 

(0.0%) 
0 

(0.0%) 
3 

(25.00%) 
10 

(58.8%) 13 

2 3 
(100.0%) 

4 
(100.0%) 

9 
(75.0%) 

7 
(41.2%) 23 

5 
1 0 

(0.0%) 
0 

(0.0%) 
3 

(25.0%) 
10 

(58.8%) 13 

2 3 
(100.0%) 

4 
(100.0%) 

9 
(75.0%) 

7 
(41.2%) 23 
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Each level profile with different temporal discretization was statistically analyzed and the results 
of the mean values, ikδ , for cluster 1 and 2 are shown in figure 7 and 8. The “high resolution” tem-
poral profiles (5, 10 and 15 min.) present quite different behavior when compared to the 60, 30 and 
20 min. profiles especially in the nighttime period. This is due to the statistic process of clustering 
which gives different composition of the two clusters for different temporal discretization (see Tab. 
2). For temporal discretization of 30 and 20 min. the composition of clusters is quite stable. In par-
ticular, cluster 1 is mainly made of roads of category belonging to classes D and F, whereas cluster 
2 to classes A and E. 

5. Conclusions 
A completely “blind” approach has been used to analyze the 24-h continuous acoustic monitor-

ing of the hourly equivalent levels LAeqh of different road categories aiming at searching for a better 
classification criterion of such profiles that reflected the actual use of roads. 

The cluster analysis approach showed that the dataset of measurements can be suitably grouped 
into two-mean profiles to be applied to roads with vehicular flow rate less (Cluster 1) and greater 
(Cluster 2) than 2000 vehicles/hour at rush hour and about 40 vehicles/hour at the night minimum. 

These profiles show also a different composition of the two clusters proving a loss of stability of 
the noise profiles for temporal resolution of 15, 10, 5 minutes. 
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