
Correcting Gene Tree by Removal and Modification: Tractability and
ApproximabilityI

Stefano Berettaa,b,∗, Mauro Castellic, Riccardo Dondid

aIstituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate - Italia
bDipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano - Bicocca, Milano - Italia

cNOVA IMS, Universidade Nova de Lisboa, Lisboa - Portugal
dDipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo, Bergamo - Italia

Abstract

Gene tree correction with respect to a given species tree is a problem that has been recently proposed in
order to better understand the evolution of gene families. One of the combinatorial methods proposed to
tackle with this problem aims to correct a gene tree by removing the minimum number of leaves/labels
(Minimum Leaf Removal and Minimum Label Removal, respectively). The two problems have been shown to
be APX-hard, and fixed-parameter tractable, when parameterized by the number of leaves/labels removed.
In this paper, we focus on the approximation complexity of these two problems and we show that they are
not approximable within factor b logm, where m is the number of leaves of the species tree and b > 0 is
a constant. Furthermore, we introduce and study two new variants of the problem, where the goal is the
correction of a gene tree with the minimum number of leaf/label modifications (Minimum Leaf Modification
and Minimum Label Modification, respectively). We show that the two modification problems, differently
from the removal versions, are unlikely to be fixed-parameter tractable. More precisely, we prove that the
Minimum Leaf Modification problem is W [1]-hard, when parameterized by the number of leaf modifications,
and that the Minimum Label Modification problem is W [2]-hard, when parameterized by the number of
label modifications.

Keywords: Computational Biology, Gene Tree Reconciliation, Gene Tree Correction, Approximation
Complexity, Parameterized Complexity

1. Introduction

Macro-evolutionary events, like duplications and losses, are crucial evolutionary events for genome
evolutions [2, 3]. In particular, due to duplications, many gene copies can be found inside a genome. A gene
family consists of those gene copies originating from duplications of a single gene.

Given a gene family, a first step to understand its evolutionary history is to construct a phylogeny, called
gene tree, that represents the evolution associated with different gene families in a given set of species.
Usually, gene trees are built based on the similarity of the associated sequences. Then, the gene tree is
compared to a species tree, which is a phylogeny that represents the speciation history of the genomes of the
considered species, hence it is based on a model that considers only speciations as evolutionary events. The
comparison of a gene tree and a species tree is known as reconciliation [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
and has the goal of inferring the macro-evolutionary events (duplications, losses, and in some cases lateral
gene transfers) that occurred during evolution.

IA preliminary and abridged version of this paper has appeared in [1]
∗Corresponding author
Email addresses: stefano.beretta@itb.cnr.it (Stefano Beretta), mcastelli@novaims.unl.pt (Mauro Castelli),

riccardo.dondi@unibg.it (Riccardo Dondi)

Preprint submitted to Elsevier February 11, 2015

When no species tree is known, then the definition of the problem changes: starting from a set of possibly
discordant gene trees, it asks to infer a correct species tree, usually based on a parsimonious evolutionary
scenario [16, 6, 17].

It has been observed that reconciliation is highly sensitive to errors in the gene trees. Indeed, few errors
can produce a completely misleading evolutionary scenario, which usually leads to a greater number of
duplications and losses [18, 10]. Hence, in order to avoid such a drawback, gene trees have to be corrected
before the reconciliation process.

Some of the approaches presented in literature for gene tree correction, compute a set of possible candidate
solutions, obtained from the given gene tree with rearrangement operations on the tree structure (for example
nearest neighbour interchange) [19, 7, 20]. The goal of this procedure is the computation of a gene tree with
the minimum number of duplications and losses.

Errors in gene trees can be related to a special kind of duplications, called Non-Apparent Duplications
(NAD) [6]. NAD nodes are considered as potential results of errors in a gene tree, since each NAD node
represents a contradiction between the structure of a gene tree and a species tree that is not directly
explainable by gene duplications. Motivated by this observation, some recent approaches aim to correct a
gene tree by modifying its structure via polytomy refinement [21] or by removing misplaced leaves/labels [22].

The combinatorial approach considered in [22, 23], asks for the minimum number of leaves/labels to be
removed so that the computed gene tree does not contain NAD nodes. In [22, 23], the complexity of two
combinatorial problems related to the removal of leaves/labels (Minimum Leaf Removal and Minimum Label
Removal) has been investigated. In [23] the two problems have been shown to be APX-hard, even when each
label has at most two occurrences in the gene tree. When the gene tree contains no duplicated leaves, then
the problems are related to the Maximum Agreement Subtree of two trees, hence they are polynomial time
solvable [22]. Moreover, if the problems are parameterized by the number of leaves/labels removed, then
both Minimum Leaf Removal and Minimum Label Removal are fixed-parameter tractable [23].

In this paper, we further extend the approximability aspects of Minimum Leaf Removal and Minimum
Label Removal problems by strengthening the results obtained in [23]. More precisely, we prove that these
two problems are not approximable within factor b logm (while in [23] they were proved to be APX-hard).
Moreover, we investigate the complexity of two other variants of the gene tree correction problem, where,
instead of removing leaves/labels, we correct the gene tree by modifying its leaves/labels. First, we study
the approximation complexity of Minimum Leaf Removal and of Minimum Label Removal. We show in
Section 3 and in Section 4 that these two problems are not approximable within factor b logm, for some
constant b > 0, where m is the number of leaves of the species tree, even when each label has at most two
occurrences in the input gene tree. Then, we consider two new variants of the problem, called Minimum Leaf
Modification and Minimum Label Modification. The aim of these new variants is to correct the given gene
tree by modifying the minimum number of leaves (labels, respectively). We show in Section 5 that Minimum
Leaf Modification problem, differently from the removal version, is W [1]-hard, when parameterized by the
number of leaf modifications. Then, we show in Section 6 that Minimum Label Modification, differently from
the removal version, is W [2]-hard. We refer the reader to [24] for a formal description of the W hierarchy of
the parameterized complexity classes, and we just recall that a problem W [t]-hard, for t ≥ 1, is commonly
assumed not to be fixed-parameter tractable. Moreover, the last reduction implies that the Minimum Label
Modification problem is also not approximable within factor b logm, for some constant b > 0, where m is the
number of leaves of the species tree.

The inapproximability results we have obtained in this paper implies that designing efficient heuristics
with a provable approximation ratio (for example constant), with respect to an optimal solution, is unlikely.
On the other hand, the W -hardness of the new introduced problems implies that designing exact algorithms,
having the complexity exponentially depending only on the number of leaf/label modifications, is not a
promising research direction.

2. Preliminaries

In this section, we introduce some preliminary definitions that will be useful in the rest of the paper.

2

Consider a set Λ = {1, 2, . . . ,m} of integers, each one representing a different species. Consider a tree
R, then we denote by L(R) the set of its leaves, by Λ(R) the set of labels associated with L(R). Given an
internal node x of R, xl (xr, respectively) denotes the left child (the right child, respectively) of x. R[x]
denotes the subtree of R rooted at node x, and Λ(R[x]) denotes the set of labels associated with leaves of
R[x]. When there is no ambiguity on the tree, we consider C(x) = Λ(R[x]) (we call C(x) the cluster of x).
Any node on the path from the root of R to a node x is called an ancestor of x; the parent y of x is the
ancestor of x such that (y, x) is an arc of R.

In this paper, we consider two kinds of rooted binary trees leaf-labeled by the elements of Λ: species trees
and gene trees. For a species tree T there exists a bijection from L(T) to Λ (hence each element of Λ labels
exactly one leaf of T). For a gene tree G there exists a function from L(G) to Λ (hence each element of Λ
may label more than one leaf of G). In the rest of the paper, we denote by m the size of L(T) and by n the
size of L(G).

Given a tree R, a leaf removal of leaf l consists of: (1) removing l from R, and (2) contracting the resulting
node having degree two (that is the parent of l). A tree R′ obtained from a tree R through a sequence of leaf
removals, is said to be included in R. Given a set X ⊆ Λ(R), we denote by R|X the homomorphic restriction
of subtree R to X, that is the subtree of R obtained by a sequence of leaf removals, one for every leaf with a
label in Λ(R) \X. Moreover, a label removal of label λ ∈ Λ(R) consists of: (1) removing all the leaves of R
associated with λ, and (2) starting from the leaves, contracting the resulting nodes of the tree having degree
at most two.

We compare a gene tree G and a species tree T both leaf-labeled by Λ by means of the LCA mapping
(Least Common Ancestor mapping), denoted as lcaG,T . More precisely, lcaG,T maps every node x of G
to a node of T . Formally, for every node x of G, lcaG,T (x) = y, where y is the node of T such that (1)
C(y) ⊇ C(x), and (2) C(yl) 6⊇ C(x), C(yr) 6⊇ C(x). A node x of G is a duplication node (or a duplication
occurs in x), when x and at least one of its children are mapped by lcaG,T to the same node y of the species
tree T . A node of G, which is not a duplication node, is a speciation node.

Consider a duplication node x. Then if C(xl) ∩ C(xr) 6= ∅, x is called an Apparent Duplication node (AD
node). It can be easily shown that if x is an AD node, then x is a duplication node for any species tree T .
A duplication node x which is not an AD node, that is when C(xl) ∩ C(xr) = ∅, is called a Non-Apparent
Duplication node (NAD node). As observed in [22, 6], NAD nodes are related to errors in the gene tree.
In fact, each NAD node generates a contradiction with the species tree which does not correspond to the
presence of duplicated gene copies. A gene tree G is said to be consistent with a species tree T if and only if
each node of G is either a speciation or an AD node.

Therefore, the following combinatorial problems, Minimum Leaf Removal Problem and Minimum Label
Removal, have been introduced in [22, 23] for error-correction in gene trees.

Problem 1. Minimum Leaf Removal Problem[MinLeafRem]
Input: A gene tree G and a species tree T , both leaf-labeled by Λ.
Output: A gene tree G∗ consistent with T such that G∗ is obtained from G by a minimum number of leaf
removals.

Problem 2. Minimum Label Removal Problem[MinLabRem]
Input: A gene tree G and a species tree T , both leaf-labeled by Λ.
Output: A gene tree G∗ consistent with T such that G∗ is obtained from G by a minimum number of label
removals.

Moreover, we introduce two new combinatorial problems, where we modify, instead of removing,
leaves/labels of the gene tree so that the resulting tree is consistent with the given species tree. Given a
leaf x of G labeled by λx ∈ Λ, a leaf modification consists of replacing λx with a label in Λ \ {λx}. A label
modification of a label λ ∈ Λ consists of replacing λ with a label in Λ \ {λ}, that is, each occurrence of label
λ in the leaves of the tree G is replaced with a label in Λ \ {λ}.

Problem 3. Minimum Leaf Modification Problem[MinLeafMod]
Input: A gene tree G and a species tree T , both leaf-labeled by Λ.

3

Output: A gene tree G∗ consistent with T such that G∗ is obtained from G by a minimum number of leaf
modifications.

Problem 4. Minimum Label Modification Problem [MinLabelMod]
Input: A gene tree G and a species tree T , both leaf-labeled by Λ.
Output: A gene tree G∗ consistent with T such that G∗ is obtained from G by a minimum number of label
modifications.

3. Inapproximability of MinLeafRem

In this section, we consider the approximation complexity of the MinLeafRem problem. We show that
the problem is not approximable within factor c logm, for some constant c > 0, even when each label has
at most two occurrences in the gene tree (we denote this restriction of MinLeafRem as MinLeafRem(2)).
Inspired by the reduction presented in [23], we give a gap-preserving reduction from the Minimum Set Cover
(MinSC) problem. A gap-preserving reduction for two minimization problems is a reduction from a problem
which is known to be inapproximable (hence it is NP-hard to decide whether an instance admits an optimal
solution of value at most h or at least ch, where c is the gap) to a second problem such that the gap is
preserved (that is, for the second problem it is NP-hard to decide whether an instance admits an optimal
solution of at most value h′ or at least c′h′, where c′ is the gap). We refer the reader to [25] for details on
gap-preserving reduction. We recall that MinSC, given a collection F = {S1, . . . , Sp} of sets over a finite set
U = {u1, . . . uq}, asks for a minimum subcollection F ′ of F such that each ux ∈ U belongs to at least one set
of F ′. Notice that MinSC is known to be not approximable in polynomial time within factor b log q, for some
constant b > 0 [26].

Let (F , U) be an instance of MinSC. In the following, we define an instance of MinLeafRem(2) associated
with (F , U), consisting of a gene tree G and a species tree T , both leaf-labeled by a set Λ.

First, we define the set Λ of labels. For each element ui ∈ U , let d(ui) = |{Sj : ui ∈ Sj , 1 ≤ j ≤ p}|.
Moreover, set k = p2q2, and t = pk + 2pq + 1. The set Λ is defined as:

Λ =

 p⋃
j=1

Aj ∪Bj

 ∪(q⋃
i=1

Ui

)
∪ Z ∪ {α}

where the sets Aj , Bj , with 1 ≤ j ≤ p, Ui, 1 ≤ i ≤ q, and Z are defined as follows:

• Aj = {aj,l : 1 ≤ l ≤ k}, with 1 ≤ j ≤ p;

• Bj = {bj,l : ul ∈ Sj} ∪ {b′j,l : 1 ≤ l ≤ q − |Sj |}, with 1 ≤ j ≤ p;

• Ui = {ui,l : 1 ≤ l ≤ t} ∪ {u′i,l : 0 ≤ l ≤ p− d(ui)}, with 1 ≤ i ≤ q;

• Z = {zi : 1 ≤ i ≤ t}.

Let R be a tree, which is either the gene tree G, the species tree T , or a tree included in G with a leaf
labeled by α. The spine of R is the unique path that connects the root of R to the unique leaf of R labeled
by α.

The gene tree G is shown in Fig. 1. It consists of the following subtrees connected to the spine of G
(starting from the farthest from the root):

1. a subtree G(Sj), for each set Sj in F , where Λ(G(Sj)) = Aj ∪Bj ;
2. t leaves, each one labeled by a distinct zi, with 1 ≤ i ≤ t;
3. a collection of t subtrees G1(ui), . . . , Gt(ui), for each ui ∈ U . Subtree G1(ui) is leaf labeled by the set
{ui,1} ∪ {u′i,l : 0 ≤ l ≤ p− d(ui)} ∪ {bj,i : ui ∈ Sj} and subtree Gl(ui), with 2 ≤ l ≤ t, is leaf labeled by
the set {ui,l−1, ui,l}.

4

α
G(S 1)

. . .
G(S j)

. . .
G(S p)

z1

. . . zt
G1(u1)

. . .
Gi(u1)

. . .
Gt(u1)

. . . G1(uq)

. . .
Gi(uq)

. . .
Gt(uq)

G(S j)

b j,i1 b j,i2

. .
. b j,ix

b′j,1

. .
. b′j,q−|S j |

a j,1

. .
. a j,k

G1(uq)

u′q,p−d(uq) u′q,p−d(uq)−1

. .
. u′q,0

uq,1

b jd(uq),q

b jd(uq)−1,q

. .
. b ji,q

. .
. b j1,q

G|Z

Gi(uq)

uq,i−1 uq,i

Gt(uq)

uq,t−1 uq,t

G

Spine

Figure 1: The gene tree G and the subtrees G(Sj), G1(uq), Gi(uq), and Gt(uq). Notice that in G1(uq) the leaves
bjd(uq),q , bjd(uq)−1,q , . . . , bji,q , . . . , bj1,q refer to the sets Sjd(uq)

, Sjd(uq)−1
, . . . , Sji , . . . , Sj1 , respectively, containing uq (with

jd(uq) > jd(uq)−1 > · · · > ji > · · · > j1). Moreover, in G(Sj) the leaves bj,i1 , bj,i2 , . . . , bj,ix refer to ui1 , ui2 , . . . , uix ∈ Sj .

Similarly, T is shown in Fig. 2 and it consists of the following subtrees connected to the spine of T
(starting from the farthest from the root):

1. a subtree T (Sj), for each set Sj ∈ F , where Λ(T (Sj)) = Aj ∪Bj ;
2. t leaves, each one associated with a distinct label in Ui;

3. t leaves, each one labeled by a distinct zi, with 1 ≤ i ≤ t.

It is easy to see that T is a species tree uniquely leaf-labeled by Λ. The gene tree G is leaf-labeled by Λ, and
each label in Λ is associated with at most two leaves of G. Indeed, the sets of labels associated with more
than one leaf are {bj,i : ui ∈ Sj} (bj,i labels one leaf of the subtree G(Sj) and one leaf of the subtree G(ui)),
and {ui,l : 1 ≤ l ≤ t− 1} (ui,l labels one leaf of the subtree Gl(ui) and one leaf of the subtree Gl+1(ui)).

Before giving the details of the proof, we present an outline of the reduction. First, we prove some local
properties of the subtrees G(Sj), with Sj ∈ F : in Remark 1 and in Lemma 1, we show that a solution of
MinLeafRem(2) over instance (G,T) can be computed by removing leaves from G(Sj), in (essentially) two
possible ways: the set of leaves labeled by Aj or the set of leaves labeled by Bj . Then, exploiting some
properties of the subtrees Gl(ui), with ui ∈ U and 1 ≤ l ≤ t, and by Lemma 2 and Lemma 4, we are able to
relate the former case (the removal of leaves labeled by Aj) to a set Sj in a set cover (see Lemma 5), and
the latter case (the removal of leaves labeled by Bj) to a set Sj not in a set cover (see Lemma 6). First, we
introduce two preliminary properties of G and T .

Remark 1. Let Sj be a set of F , and let G(Sj) (T (Sj), respectively) be the subtree of G (of T , respectively)
associated with Sj. Then (1) the subtree of G(Sj) obtained by removing the leaves with labels in Aj is
consistent with T (Sj); (2) the subtree of G(Sj) obtained by removing the leaves with labels in Bj is consistent
with T (Sj).

5

α T (S 1)

. . . T (S j)

. . . T (S p)

u1,1

. . .
u′1,p−d(u1)

. . .
ui,1

. . .
u′i,p−d(ui)

. . .
uq,1

. . .
u′q,p−d(uq)

z1

. . .
zt

T (S j)

a j,1 a j,2

. .
. a j,k

b j,i1

b j,i2

. .
. b j,ix

b′j,1

. .
. b′j,q−|s j |

T |Ui

ui,1

. .
. ui,t

u′i,0

. .
. u′i,p−d(ui)

T |Z

z1

z2

. .
. zt

T |Uq

T |U1

T

Spine

Figure 2: The species tree T and its subtrees T |Z, T |Ui, and T (Sj). Notice that in in T (Sj) the leaves bj,i1 , bj,i2 , . . . , bj,ix
refer to ui1 , ui2 , . . . , uix ∈ Sj .

Proof. The proof follows from the observation that the trees G(Sj)|Bj and T (Sj)|Bj are isomorphic, and
that the trees G(Sj)|Aj , T (Sj)|Aj are isomorphic.

Next, we introduce a property of the subtrees G(Si) of G, with Si ∈ F .

Lemma 1. Let Sj be a set of F , and consider the corresponding subtrees G(Sj) of G and T (Sj) of T . Then:
(1) a solution of MinLeafRem(2) over instance (G,T) is obtained by removing at least q leaves from G(Sj);
(2) a solution of MinLeafRem(2) over instance (G,T) that contains a leaf of G(Sj) with a label in Bj is
obtained by removing at least k leaves from G(Sj).

Proof. (1) Assume that G∗ is a solution of MinLeafRem(2) over instance (G,T) that it is obtained by
removing less than q leaves from G(Sj). It follows that G∗ contains a subtree G∗(Sj) (included in G(Sj))
that contains a leaf with a label in Bj , and at least k − q + 1 leaves of G(Sj) with label in Aj (where
k−q+1 ≥ q ≥ 2). Then, if G∗(Sj) contains a leaf labeled by Bj and two leaves labeled by Aj , by construction
it contains a NAD node. Indeed, among the leaves of G∗(Sj) with a label in Bj , let lx be the leaf of G∗(Sj)
which is the closest to the root of G∗(Sj). Denote with wx the parent of lx in G∗(Sj). By construction, each
node x of G∗(Sj) which is a parent of a leaf of G∗(Sj) with a label in Aj , is mapped by lcaG∗,T in the same
node of T where wx is mapped. Hence, every node x would represent a NAD node. Since G∗(Sj) must
contain at least k− q + 1 leaves with a label in Aj , it follows that a solution of MinLeafRem(2) over instance
(G,T) removes at least q leaves from G(Sj) (the leaves having labels in Bj).

(2) If G∗(Sj) contains more than one leaf with a single label in Bj , then it must contain no leaf with a
label in Aj , otherwise by construction G∗(Sj) would have a NAD node. Hence, in this case at least k leaves
are removed from G(Sj). Now, if G∗(Sj) contains exactly one leaf with a single label in Bj , then it contains
at most one leaf with a label in Aj , hence in this case more than k leaves are removed from G(Sj).

Now, we show that we can assume that a solution of MinLeafRem(2) over instance (G,T) contains all
the leaves of G with a label in Z.

6

Lemma 2. Given a solution G∗ of MinLeafRem(2) over instance (G,T) that is obtained by removing less
than t leaves from G and in which a leaf with a label in Z is removed, then we can compute in polynomial
time a solution of MinLeafRem(2) over instance (G,T) that is obtained by removing less leaves than G∗ and
contains all the leaves with labels in Z.

Proof. Let G∗ be a solution of MinLeafRem(2) over instance (G,T) obtained from G by removing less than
t leaves. Notice that, since |Z| = t, at least one leaf with a label in the set Z must be in G∗. Assume that
G∗ is obtain by removing a leaf with label zl, with 1 ≤ l ≤ t, from G. It is easy to see that the insertion
of this leaf into G∗ (so that the order of the leaves labeled by Z is the same as in G) does not affect other
nodes of G∗, that is the insertion of the leaf with label zl does not create any NAD node.

Remark 2. Given an instance (G,T) of MinLeafRem(2), we can always compute in polynomial time a
solution having cost less than t.

Proof. Consider the following subtree G∗ included in G and consistent with T :

• for each subtree G(SJ) remove all the leaves having labels aj,1, . . . , aj,k;

• for each subtree G1(ui) remove all the leaves except for those having labels ui,1 and bj1,i.

The solution G∗ is obtained by removing kp+ pq leaves (k leaves from each subtree G(Sj), plus p leaves from
each subtree G1(ui)). Since t = pk + 2pq + 1 it follows that G∗ is obtained by removing less than t leaves.

Hence, by Remark 2 we can always compute a solution with less than t leaf removals. In what follows, by
Lemma 2 we assume that all the leaves with a label in Z belong to G∗. Now, for each ui ∈ U , we introduce
some properties of the subtree G1(ui) (Lemma 3), and of the subtrees Gl(ui), with 1 ≤ l ≤ t (Lemma 4).
This latter lemma implies that a solution contains all the leaves labeled by ui,l, with 1 ≤ l ≤ t, for each
ui ∈ U .

Lemma 3. Given ui ∈ U , let G1(ui) be the associated subtree of G. Each solution of MinLeafRem(2) over
instance (G,T) is obtained by removing at least p leaves from G1(ui).

Proof. Let G∗ be a solution of MinLeafRem(2) over instance (G,T), and let G∗1(ui) be the subtree of G
included in G1(ui). Assume that G∗1(ui) contains an internal node, that is, it contains at least two leaves.
Consider the internal node x of G∗1(ui) which is the farthest from the root of G∗1(ui). Let y be the node of T
where x is mapped to by lcaG∗,T . Notice that y is a node on the spine of T . By construction, since the order
of the leaves in G∗1(ui) is opposite with respect to T , then lcaG∗,T maps all the internal nodes of G∗1(ui) to y.
Since G1(ui) (and also G∗1(ui)) is uniquely leaf labeled, then any internal node G∗1(ui) other than x would be
a NAD node. Hence, G∗1(ui) must contain at most one internal node and thus G∗1(ui) contains at most two
leaves. Finally, since G1(ui) contains p+ 2 leaves, at least p leaves are removed from G1(ui).

Lemma 4. Let ui be an element of U and let G1(ui), G2(ui), . . . , Gt(ui) be the associated subtrees of G,
with 1 ≤ i ≤ q. Then, the subtree G∗1(ui) of G∗ contains the leaf labeled by ui,1.

Proof. Let G∗ be a tree included in G and consistent with T . From Lemma 2, it follows that each leaf with
a label in Z belongs to G∗, hence each node x on the spine of G∗ above Z is mapped to the root of T and
must be an AD node, so it must hold C(xl) ∩ C(xr) 6= ∅.

Assume that G∗ is obtained by removing from G1(ui) the leaf labeled by ui,1, and it contains a subtree
G∗2(ui) of G2(ui), such that a leaf of G2(ui) is not removed. Let y be the node on the spine of G∗ connected
to the root of G∗2(ui). Since G∗1(ui) does not contain ui, then it holds C(yl) ∩ C(yr) = ∅, and all the leaves of
G2(ui) must be removed. The same argument holds for each of the subtrees Gl(ui), with 3 ≤ l ≤ t. Hence, if
G∗ is obtained by removing from G1(ui) the leaf labeled by ui,1, then each leaf of Gl(ui), with 2 ≤ l ≤ t and

7

at least one leaf of G(u1) must be removed by G∗, leading to an overall number of 2t− 1 leaves removed to
obtain G∗ (which contradicts the assumption that each solution is obtained with less than t leaf removals).

Now, we are ready to show the two main technical results of the reduction.

Lemma 5. Let (F , U) be an instance of MinSC and let (G,T) be the corresponding instance of MinLeafRem(2).
Then, starting from a set cover F ′ of U , we can compute in polynomial time a feasible solution of
MinLeafRem(2) over instance (G,T) that it is obtained by removing exactly k|F ′| + q(|F| − |F ′|) + pq
leaves from G.

Proof. Let F ′ be a set cover of (F , U), then we define a feasible solution G∗ of MinLeafRem(2) over instance
(G,T) by removing some leaves of G as follows:

• for each Si in F ′, remove from the subtree G(Si) the set of leaves labeled by Ai (hence this subtree
G∗(Si) of G∗ has leafset labeled by Bi and k leaves are removed from G(Si));

• for each Si not in F ′, remove from the subtree G(Si) the set of leaves labeled by Bi (hence this subtree
G∗(Si) of G∗ has leafset labeled by Ai and q leaves are removed from G(Si));

• for each ui ∈ U , remove from G1(ui) all the leaves, except for the leaf labeled by ui,1 and a leaf labeled
by bj,i, where ui ∈ Sj and Sj ∈ F ′ (hence this subtree G∗1(ui) of G∗ has leafset labeled by ui,1 and bi,j
and p leaves are removed from G1(ui)). Notice that, since there could exist several leaves bi,j for which
the previous conditions are satisfied, we arbitrary choose one of them.

Next, we show that the gene tree G∗ included in G is consistent with T .
By Remark 1, the subtree G∗(Si), with 1 ≤ i ≤ p, is consistent with T . Furthermore, by construction,

since each subtree G∗l (ui), with 1 ≤ l ≤ t, consists of two leaves, it follows that it is consistent with T . Hence,
the only nodes left are those on the spine of G∗.

In the following we show that each node on the spine of G∗ is either a speciation node or an AD node.
Indeed, by construction each node x on the spine of G∗ such that C(x) 6⊇ Z is a speciation node. Each
node x on the spine of G∗, and such that C(x) ⊇ Z is a duplication node. First, consider the node x that
connects a subtree G∗1(ui) to the spine of G∗. Since element ui ∈ U is covered by a set of F ′, it follows that
C(xl) ∩ C(xr) = bj,i, for some set Sj ∈ F ′, hence x is an AD node. Now, consider a node x that connects a
subtree G∗l (ui), with 2 ≤ l ≤ t, to the spine of G∗. Since no leaf labeled by ui,l, with 1 ≤ j ≤ t, is removed
from the trees G∗1(ui), . . . , G

∗
t (ui) it follows that x is an AD node.

The feasible solution G∗ is obtained by removing k leaves from each subtree G(Si) associated with a set
Si in F ′, q leaves from each subtree G(Si) associated with a set Si not in F ′, and p leaves from each subtree
G1(ui), with ui ∈ U . It follows that G∗ is obtained by removing k|F ′|+ q(|F| − |F ′|) + pq leaves from G.

Lemma 6. Let (F , U) be an instance of MinSC and let (G,T) be the corresponding instance of MinLeafRem(2).
Then, for every h such that 1 ≤ h ≤ p, starting from a solution of MinLeafRem(2) over instance (G,T) that
is obtained by removing at most kh+ q(|F| − h) + pq leaves, we can compute in polynomial time a solution
of MinSC over instance (F , U) that consists of at most h sets.

Proof. Let G∗ be a solution of MinLeafRem(2) over instance (G,T), such that G∗ is obtained by removing
at most kh+ q(|F| − h) + pq leaves. First, by Remark 2, G∗ is obtained with less than t removals. Then, by
Lemma 2 we can assume that all the leaves with labels in Z belong to G∗.

Furthermore, we prove the following claim in order to relate the solution G∗ of MinLeafRem(2) to a cover
of (F , U).

Claim 1. Each G∗1(ui) contains exactly two leaves labeled by ui,1 and bj,i, for some Sj such that ui ∈ Sj.

8

Proof. By Lemma 4 each G∗1(ui) must contain the leaf labeled by ui,1. This implies that G∗1(ui) must also
contain a leaf labeled by bj,i that labels a leaf of a subtree G∗(Sj), otherwise the node on the spine of G∗

connected to the root of G∗1(ui) would be a NAD node.

From Claim 1 and Lemma 3 it follows that exactly p leaves are removed from each G1(ui), with 1 ≤ i ≤ t.
Notice that by Lemma 4, G∗1(ui) contains the leaf labeled by ui,1. Assume that the subtrees G∗2(ui), . . . , G

∗
t (ui)

are computed without any leaf removal. Then, by construction each of these subtrees is consist with T .
Moreover, each node on the spine of G∗ connecting the subtrees G∗2(ui), . . . , G

∗
t (ui) is an AD node. Hence,

we can assume that all the leaves with a label ui,w, with 1 ≤ i ≤ q and 1 ≤ w ≤ t, belong to G∗.
Finally, consider a subtree G∗(Sj), with 1 ≤ j ≤ p. By Lemma 1, we can assume that either G∗(Sj) has

leafset Bj or it has leafset Aj . As a consequence we can define a cover F ′ of U as follows:

F ′ = {Sj : Λ(G∗(Sj)) = Bi}.

Since at most kh+ q(|F| − h) + pq leaves are removed from G, it follows that G∗ contains at most h subtrees
G∗(Sj), with Λ(G∗(Sj)) = Bi, hence |F ′| ≤ h. Notice that F ′ covers each element of U . Indeed, by Claim 1
G∗1(ui) must contain a leaf labeled by bj,i. Moreover, since the node on the spine of G∗ connecting the
subtree G∗1(ui) must be an AD node, bj,i labels also a leaf of a subtree G∗(Sj), with ui ∈ Sj .

The inapproximability of MinLeafRem(2) follows from Lemma 5 and Lemma 6.

Theorem 1. MinLeafRem(2) is not approximable within factor c logm, for some constant c > 0, where
m = Λ.

Proof. Given an instance I = (F , U) of MinSC, let J = (G,T) be the corresponding instance of MinLeafRem(2).
We denote by OPTMinSC(I) (OPTMinLeafRem(J), respectively) the value of an optimal solution of MinSC
(that is the number of leaf removals in an optimal solution of MinLeafRem(2), respectively) over the instance
I (over the instance J corresponding to I, respectively).

The MinSC problem is known to be inapproximable within factor b ln q, for some constant b > 0, where
q = |U |. This implies that, given an instance of MinSC, it is NP-hard to decide whether the instance admits
an optimal solution of value at most f(I), for some function f(I)→ N, or an optimal solution having value
at least f(I)b ln q.

Now, let f : I → N be a function, we have proved in Lemma 5 that it holds

OPTMinSC(I) ≤ f(I)⇒ OPTMinLeafRem(J) ≤ f(I)k + q(p− f(I)) + pq

and, by Lemma 6,

OPTMinSC(I) > b ln qf(I)⇒ OPTMinLeafRem(J) > b ln qf(I)k + q(p− f(I)b ln q) + pq,

for some constant b > 0. Since k = p2q2, it follows that k ≥ pq, and k ≥ q(p−f(I)). Then, since p−f(I)b ln q
(p is the number of sets and f(I)b ln q is the size of a set cover),

b ln qf(I)k + q(p− f(I)b ln q) + pq ≥ b ln qf(I)k =
b

3
ln qf(I)k +

b

3
ln qf(I)k +

b

3
ln qf(I)k

that is

b ln qf(I)k + q(p− f(I)b ln q) + pq ≥ b

3
ln qf(I)k +

b

3
ln qf(I)q(p− f(I)b ln q) +

b

3
ln qf(I)pq

Since f(I) ≥ 1 and we assume OPTMinSC(I) > b ln qf(I), it holds:

OPTMinLeafRem(J) >
b

3
ln q (kf(I) + q(p− f(I)) + pq)

9

that is

OPTMinLeafRem(J) >
ln q

d
(kf(I) + q(p− f(I)) + pq)

for some constant d > 0. This implies that it is NP-hard to decide if an instance J of MinLeafRem(2) admits
an optimal solution with at most kf(I) + q(p− f(I)) + pq leaf removals or if it admits an optimal solution
with at least ln q

d (kf(I) + q(p− f(I)) + pq) leaf removals. Hence MinLeafRem(2) cannot be approximated

within factor ln q
d . Now, notice that |Λ| = m = 2t+ 2pq ≤ 2p2q3 + 5pq + 1 and that MinSC is known to be

inapproximable within factor b ln q, for some constant b > 0, when q and p are polynomially related [27].
This implies that m ≤ qα, for some constant α > 0, and that MinLeafRem(2) cannot be approximated within
factor c logm, for some constant c > 0.

4. Inapproximability of MinLabelRem

In this section, we consider the approximation complexity of the MinLabelRem problem, even when
each label has at most two occurrences in the gene tree (we denote this restriction of MinLabelRem as
MinLabelRem(2)). By slightly modifying the reduction of Section 3, we show that that MinLabelfRem(2) is
not approximable within factor c logm, for some constant c > 0, via a gap-preserving reduction from the
Minimum Set Cover (MinSC) problem.

Given an instance (F , U) of MinSC, we construct an instance of MinLabelRem(2) associated with (F , U),
consisting of a gene tree G and a species tree T , both leaf-labeled by a set Λ. Notice that T and Λ are
identical to the previous reduction, while G must be modified. More precisely, we will modify subtree G1(ui),
for each ui ∈ U . Indeed, notice that, for the construction of the previous section, each feasible solution of
MinLeafRem(2) (and similarly of MinLabelRem(2)) contains at most two leaves of G1(ui) and one of these
leaves is labeled by ui. Then, notice that if element ui is covered by two sets, say Sj1 and Sj2 , then all the
leaves labeled by bj1,i or by bj2,i must be removed, hence, it is not possible to directly define a relation with
a set cover.

In the instance of MinLabelRem(2), we define G1(ui) as a subtree whose leaves are (uniquely) labeled by
the set {ui,1}∪{bj,i : ui ∈ Sj}, such that the leaves labeled by bj1,i, . . . , bjx,i, associated with sets Sj1 , . . . , Sjx
containing ui where x = deg(ui), are in the same order as in T (see Fig. 3).

Notice that, by construction of G and T , Remark 1 and Lemma 2 hold also in this case.
Next, we prove some properties of the subtrees G1(ui), G2(ui), . . . , Gt(ui).

Lemma 7. Given ui ∈ U , let G1(ui) be the associated subtree of G. Each solution of MinLabelRem(2) over
instance (G,T) either is obtained by removing label ui,1 or it contains at least one label bj,i.

Proof. Assume that a solution G∗ of MinLabelRem(2) over instance (G,T) contains a subtree G∗1(ui) of
G1(ui) containing a leaf labeled by ui,1. Moreover, assume that G∗1(ui) contains exactly the leaf labeled by
ui,1. Then, notice that by construction, the node on the spine connected to G∗1(ui) in G∗ is a NAD node,
since each label associated with a leaf in G|Z is not removed. Assume that G∗1(ui) contains more that one
leaf. Then, a label bj,i is not removed, and two leaves with label bj,i belong to G∗, one in subtree G∗1(ui) and
one in subtree G∗(Sj), thus implying that the node on the spine connected to G∗1(ui) in G∗ is an AD node.

Lemma 8. Let ui be an element of U and let G1(ui), G2(ui), . . . , Gt(ui) be the associated subtrees of G. If
a solution G∗ of MinLabelRem(2) over instance (G,T) is obtained by removing the label ui,1 of G1(ui), then
G∗ is obtained by removing at least t labels.

Proof. From Lemma 2, it follows that each leaf with a label in Z belongs to G∗. Let G∗ be a tree included
in G and consistent with T . Each node x on the spine of G∗ over Z must be an AD node, hence it must hold
C(xl) ∩ C(xr) 6= ∅.

Assume that G∗ is obtained by removing from G1(ui) the label ui,1, and contains a subtree G∗2(ui) of
G2(ui), that is ui,2 labels a leaf of G∗. Let y be the node on the spine of G∗ connected to the root of G∗2(ui).

10

α
G(S 1)

. . .
G(S j)

. . .
G(S p)

z1

. . . zt
G1(u1)

. . .
Gi(u1)

. . .
Gt(u1)

. . . G1(uq)

. . .
Gi(uq)

. . .
Gt(uq)

G(S j)

b j,i1 b j,i2

. .
. b j,ix

b′j,1

. .
. b′j,q−|S j |

a j,1

. .
. a j,k

G1(uq)

uq,1 b j1,q

b j2,q

. .
. b ji,q

. .
. b jd(uq),q

G|Z

Gi(uq)

uq,i−1 uq,i

Gt(uq)

uq,t−1 uq,t

G

Spine

Figure 3: The gene tree G and the subtrees G(Sj), G1(uq), Gi(uq), and Gt(uq). Notice that in G1(uq) the leaves
bj1,q , bj2,q , . . . , bji,q , . . . , bjd(uq),q refer to the sets Sj1 , Sj2 , . . . , Sji , . . . , Sjd(uq)

, respectively, containing uq (with j1 < j2 <

· · · < ji < · · · < jd(uq)). Moreover, in G(Sj) the leaves bj,i1 , bj,i2 , . . . , bj,ix refer to ui1 , ui2 , . . . , uix ∈ Sj .

Then, it holds C(yl) ∩ C(yr) = ∅, implying that y would be a NAD node. Then, also ui,2 would be removed.
The same argument holds for each of the subtrees Gl(ui), with 3 ≤ l ≤ t. Hence, if G∗ is obtained by
removing label ui,1, then each label ui,l, with 2 ≤ l ≤ t, does not belong to G∗, leading to an overall number
of t labels which have been removed to obtain G∗.

Now, we show the main results of the reduction.

Lemma 9. Let (F , U) be an instance of MinSC and let (G,T) be the corresponding instance of MinLabelRem(2).
Then, starting from a set cover F ′ of U , we can compute in polynomial time a solution of MinLabelRem(2)
over instance (G,T) that it is obtained by removing at most k|F ′|+ q(|F| − |F ′|) labels from G.

Proof. Let F ′ be a set cover of (F , U), then we define a solution G∗ of MinLbelRem(2) over instance (G,T)
by removing some labels of G as follows:

• for each Si in F ′, remove (from the subtree G(Si)) the labels Ai (hence subtree G∗(Si) of G∗ has
leafset labeled by Bi and k labels are removed from G);

• for each Si not in F ′, remove from G the set of labels Bi (hence G∗(Si) of G∗ has leafset labeled by Ai
and q labels are removed from G(Si)).

Next, we show that the gene tree G∗ included in G is consistent with T .
By Remark 1, the subtree G∗(Si), with 1 ≤ i ≤ p, is consistent with T . Furthermore, by construction,

each subtree G∗l (ui), with 1 ≤ l ≤ t is consistent with T . Hence, the only nodes left to verify are those on
the spine of G∗.

By construction, each node on the spine of G∗ is either a speciation node or an AD node. Indeed, each
node x on the spine of G∗ such that C(x) 6⊇ Z is a speciation node. Each node x on the spine of G∗, and
such that C(x) ⊇ Z is a duplication node. First, consider the node x that connects a subtree G∗1(ui) to the

11

spine of G∗. Since element ui ∈ U is covered by a set of F ′, it follows that bj,i ∈ C(xl) ∩ C(xr), for some set
Sj ∈ F ′, hence x is an AD node. Now, consider a node x that connects a subtree G∗l (ui), with 2 ≤ l ≤ t, to
the spine of G∗. Since no label ui,l, with 1 ≤ j ≤ t, is removed from G, it follows that x is an AD node.

Solution G∗ is obtained by removing k labels for each set Si in F ′, q labels for each set Si not in F ′. It
follows that G∗ is obtained by removing k|F ′|+ q(|F| − |F ′|) labels from G.

Lemma 10. Let (F , U) be an instance of MinSC and let (G,T) be the corresponding instance of MinLabelRem(2).
Then, for every h such that 1 ≤ h ≤ p, starting from a solution of MinLabelRem(2) over instance (G,T) that
is obtained by removing at most kh + q(|F| − h) labels, we can compute in polynomial time a solution of
MinSC over instance (F , U) that consists of at most h sets.

Proof. Let G∗ be a solution of MinLabelRem(2) over instance (G,T), such that G∗ is obtained by removing
at most kh+ q(|F|−h) leaves. By Lemma 2, we can assume that all the leaves with labels in Z belong to G∗.

By Lemma 8, we can assume that no label ui,1 is removed and hence, that G∗ contains all the labels ui,w,
with 1 ≤ i ≤ q and 1 ≤ w ≤ t. Moreover, this fact implies that at least one label bj,i is not removed. Indeed,
if no label bj,i belongs to G∗ the node on the spine that connects subtree G∗1(ui) would be a NAD node.

Finally, consider a subtree G∗(Sj), with 1 ≤ j ≤ p. By Lemma 1, we can assume that either G∗(Sj) has
leafset Bj or it has leafset Aj .

As a consequence, we can define a cover F ′ of U as follows:

F ′ = {Sj : Λ(G∗(Sj)) = Bi}.

Since G∗ is obtained by removing at most kh + q(|F| − h) labels, it follows that G∗ contains at most h
subtrees G∗(Sj), with Λ(G∗(Sj)) = Bi, hence |F ′| = h. Notice that F ′ covers each element of U , since by
Lemma 8 a label bj,i is not removed, hence there exist two leaves labeled by bj,i, one in subtree G∗(Sj) and
one in subtree G∗1(ui).

The inapproximability of MinLeafRem(2) follows from Lemma 9 and Lemma 10.

Theorem 2. MinLabelRem(2) is not approximable within factor c logm, for some constant c > 0.

Proof. The proof is similar to that of Theorem 1. Given an instance I = (F , U) of MinSC, let J = (G,T)
be the corresponding instance of MinLabelRem(2). We denote by OPTMinSC(I) ((OPTMinLabelRem(J)),
respectively) the value of an optimal solution of MinSC (MinLabelRem(2), respectively) over the instance I
(over the instance J corresponding to I, respectively). From Lemma 5 it holds

OPTMinSC(I) ≤ f(I)⇒ OPTMinLabelRem(J) ≤ f(I)k + q(p− f(I))

and, by Lemma 6,

OPTMinSC(I) > b ln qf(I)⇒ OPTMinLabelRem(J) > b ln qf(I)k + q(p− f(I)b ln q),

for some constant b > 0. By using bounds similar to those of the proof of Theorem 1, we can show that if
OPTMinSC(I) > b ln qf(I) then

OPTMinLabelRem >
ln q

d
(kf(I) + q(p− f(I)))

for some constant d > 0, and this implies that MinLabelRem(2) cannot be approximated within factor ln q
d .

Now, notice that |Λ| = m = 2t + 2pq ≤ 2p2q3 + 5pq + 1 and that MinSC is known to be inapproximable
within factor b ln q, for some constant b > 0, when q and p are polynomially related [27]. This implies that
m ≤ qα, for some constant α > 0, and that MinLabelRem(2) cannot be approximated within factor c logm,
for some constant c > 0.

12

r|V |

r1

r0

α0

x0 x0

α1

α0 x1

. . .

α|V |

α|V |−1 x|V |

y0

. .
.

y0

. .
. yh+1

. .
.

yh+1

β
x1 xq

. . .

xt x|V |

h +
3

h +
3Spine

G(x0)
G(x1)

G(x|V |)

G1,q

Gt,|V |

y0 y1

. .
. yh+1

x0

α0

. .
. x|V |

α|V |
β

Spine

G

T

Figure 4: The gene tree G and the species tree T . Notice that the subtrees G1,q , Gt,|V | encode the edges {v1, vq}, {vt, v|V |} of
G, respectively. These subtrees are connected to the spine of G following the lexicographic order of the corresponding edges.

5. W[1]-hardness of MinLeafMod

In this section, we investigate the parameterized complexity of MinLeafMod and we show that the problem
is W[1]-hard when parameterized by the number of modified leaves, by giving a parameterized reduction
from the Maximum Independent Set (MaxIS) problem. We recall that MaxIS, given a graph G = (V,E),
asks for a subset V ′ ⊆ V of maximum cardinality such that for each u, v ∈ V ′ it holds {u, v} /∈ E. Notice
that the parameterized version of MaxIS asks whether there exists an independent set of G of size at least h.
Hence, in what follows h will denote the size of an independent set of G. We recall that MaxIS is known to
be W[1]-hard [28].

Remark 3. Given an instance G = (V,E) of MaxIS, we assume that the size of an independent set V ′ is at
most |V | − 3.

Proof. Let G = (V,E) be an instance of MaxIS, and let h > |V | − 2 be the size of independent set |V ′|. We
can compute in polynomial time (by removing every possible set consisting of at most 2 vertices) whether
there exists an independent set of size h.

Consider an instance G of MaxIS. Then, we will show how to construct (in polynomial time) a corresponding
instance (G,T) of MinLeafMod. First, we introduce the leafset Λ that labels the leaves of the two trees:

Λ = {xi, αi : 0 ≤ i ≤ |V |} ∪ {yi : 0 ≤ i ≤ h+ 1} ∪ {β}.

Now, we describe the two trees (see Fig. 4). Similarly to the previous reduction, the spine of G is the
unique path that connects the root of G to the internal node of G denoted as r0, while the spine of T , is the
unique path that connects the root of T to the unique leaf of T labeled by y0.

The species tree T is a “caterpillar” over leafset Λ. More precisely, G is built by connecting the following
subtrees to the spine of G (starting from the farthest from the root):

• a subtree G(xi), with 0 ≤ i ≤ |V |; G(x0) is a “caterpillar” over three leaves labeled by α0, x0, and x0,
respectively; G(xi), with 1 ≤ i ≤ |V |, is a “caterpillar” over three leaves labeled by xi, αi−1 and αi,
respectively. The nodes of the spine connected to G(xi), with 0 ≤ i ≤ |V | are denoted as ri;

13

• h+ 3 leaves each one labeled by yi, for each i, with 0 ≤ i ≤ h+ 1;

• a leaf labeled by β;

• for each edge {vi, vj} ∈ E, a subtree Gi,j having two leaves labeled by xi and xj , respectively.

First, we state a property of the instance (G,T).

Remark 4. Consider the instance (G,T) of MinLeafMod associated with an instance of MaxIS. Then, each
node that connects the farthest leaf from the root labeled by yi, with 0 ≤ i ≤ h+ 1, to the spine of the gene
tree G is a NAD node.

We call a leaf modification useless if it does not change the label of a leaf into a label yi, with 0 ≤ i ≤ h+1.
Next, we show that if there exists a solution of MinLeafMod with at most h + 2 leaf modifications, then
there exists a solution with at most h+ 2 leaf modification obtained without useless modifications.

Lemma 11. Consider a solution G∗ in which at most h + 2 leaves are modified. Then: (1) none of the
leaves labeled by yi, with 0 ≤ i ≤ h+ 1, is modified and (2) G∗ is obtained modifying the labels of h+ 2 leaves
of G[r|V |] and each of these leaves is assigned a distinct label in {y0, . . . , yh+1}.

Proof. (1) First notice that, since G contains h+ 3 leaves each one labeled by yi, with 0 ≤ i ≤ h+ 1, then
there exists at least one leaf of G labeled by yi which is not modified. Now, consider a solution G∗ in which
some of the leaves labeled by yi are modified and let w be the leaf farthest from the root of G∗ having a label
yi and that does not belong to G[r|V |]. Let x be the the parent of w. Notice that x cannot be a speciation,
since by construction this will imply the modification of all the leaves labeled by αj , with 0 ≤ j ≤ |V | and,
by Remark 3, |V | > h+ 2. Hence, x must be an AD node. This implies that there exists a node labeled by
yi in G[r|V |]. As a consequence, we can assume that no leaf with label in {yi : 0 ≤ i ≤ h+ 1} is modified,
otherwise we can compute a solution G′ in which less leaves are changed, by not modifying any leaf with
a label in {yi : 0 ≤ i ≤ h + 1}. Hence, h + 2 leaves must be modified in G[r|V |], it follows that no leaf of
{yi : 0 ≤ i ≤ h+ 1} is modified in G∗.

(2) We have shown that each leaf with a label in {yi : 0 ≤ i ≤ h + 1} is not modified. By Remark 4,
each node that connects the first leaf labeled by yi, with 0 ≤ i ≤ h+ 1, is a NAD node. It follows that in
an consistent tree G∗ this node must be AD node. Then, in G[r|V |] there are exactly h+ 2 leaves that are
modified, and each of these leaves is assigned a distinct labels of {y0, . . . , yh+1}.

Lemma 12. Consider a solution in which at most h+ 2 leaves are modified. Then none of the leaves labeled
by αi is modified.

Proof. By Lemma 11, we can assume that exactly h+ 2 leaves are modified, changing each of their labels to
a distinct label of {y0, . . . , yh+1}. Assume that a leaf labeled αi is modified in G∗(xi) or in G∗(xi+1). In
both cases, since the only modifications possible are to distinct labels in {y0, . . . , yh+1}, then the node ri+1

would be a NAD node.

Now, we can present the main results of this section.

Lemma 13. Given an independent set of G size h, we can compute in polynomial time a solution of
MinLeafMod over instance (G,T) in which exactly h+ 2 leaves are modified.

Proof. Consider an independent set I of G of size at least h. Choose the first h vertices, vi1 , . . . vih ∈ I
and compute a solution G∗ as follows: modify the node labeled by xij of G(xij) by assigning the label yij .
Moreover, modify the nodes labeled by x0 of G(x0) by assigning labels y0 and yh+1.

By construction, G∗ is consistent with T . Indeed, by construction each subtree G(xi), with 0 ≤ i ≤ h+ 1,
is consistent with T and the nodes of G∗ corresponding to ri, with 0 ≤ i ≤ h+ 1, are all AD nodes due to
the leaves labeled by αi. By construction, all the nodes with children yi, with 0 ≤ i ≤ h+ 1, are AD node.

14

Moreover, notice that, since the set {vi1 , . . . vih} is an independent set of G, for each subtree Gi,j at least
one of the labels in {xi, xj} belongs to G∗i,j and to G∗[r|V |], implying that these nodes are all AD nodes.

Lemma 14. Given a solution of MinLeafMod over instance (G,T) in which exactly h+ 2 leaves are modified,
we can compute in polynomial time an independent set of G consisting of at least h vertices.

Proof. Consider a solution G∗ of MinLeafMod in which exactly h+ 2 leaves are modified. By Lemma 11, it
follows that the solution must modify exactly h+ 2 leaves of G[r|V |]. Then, for each tree Gi,j having leaves
labeled by xi, xj , at least one of the leaves in G[r|V |] having those labels, is not modified. If this is not the
case, the node on the spine of G∗ connected to the root of Gi,j is a NAD node. Moreover, by Lemma 11
and by Lemma 12, it follows that the modified leaves of G∗[r|V |] are associated with labels in {x0, . . . , x|V |}.
Hence, define an independent set of G as follows: V ′ = {vi ∈ V : xi is a label associated with a modified leaf
of G∗[r|V |]}.
Then, since for each Gi,j , with leaves labeled by xi, xj , at least one of the leaves in G[r|V |] is labeled by xi,
xj , it follows that for each vi, vj ∈ V ′, it holds that {vi, vj} /∈ E. Then, it follows that V ′ is an independent
set of G of size h.

As a consequence of Lemma 13, of Lemma 14, and of the W [1]-hardness of MaxIS [28], we have the
following result.

Theorem 3. MinLeafMod is W[1]-hard when parameterized by the number of leaf modifications.

6. W[2]-hardness and Inapproximability of MinLabelMod

In this section, we investigate the parameterized and approximation complexity of the MinLabelMod
problem and we show that it is W[2]-hard and not approximable within factor c log n, for some constant
c > 0, by giving a (parameterized and approximation preserving) reduction from the Minimum Set Cover
(MinSC) problem (for a definition of MinSC see Section 3).

In the following, given an instance (C = {S1, . . . , Sp}, U = {u1, . . . , uq}) of MinSC, we show how to
construct in polynomial time an instance (G,T) of MinLabelMod. First, we introduce the leafset Λ that
labels the gene tree G and the species tree T :

Λ = {ci, αi : Si ∈ C} ∪ {ui,1, ui,2 : ui ∈ U}.

Now, we describe the two trees G and T (see Fig. 5). The species tree T is obtained by inserting in the
spine (starting from the root) a set of subtrees, each one having leafset labeled by {ui,1, ui,2}, with 1 ≤ i ≤ q,
then a set of subtrees each one having leafset labeled by {ci, αi}, with 1 ≤ i ≤ p.

The gene tree G is obtained by inserting in the spine (starting from the root) the following subtrees:

• a subtree G(ui), one for each ui ∈ U , where G(ui) contains a left subtree which is a “caterpillar” with
leaf uniquely labeled by ci,1, . . . , ci,d(ui) (being Si,1, . . . , Si,d(ui) the sets of C that contain ui), a right
subtree which contains a subtree with leaves uniquely labeled by {α1, . . . , αp, ui,1, ui,2}, with 1 ≤ i ≤ q.

• a set of p leaves labeled by αi, with 1 ≤ i ≤ p.

Next, we show that the instance (G,T) has the following property: (1) no label ui,x, with 1 ≤ i ≤ q and
x ∈ {1, 2}, is modified (see Lemma 15), (2) no label αi, with 1 ≤ i ≤ p, is modified, and (3) each modified
label ci, with 1 ≤ i ≤ p, is modified into a label αi (see Lemma 16).

First, we illustrate a property of the instance (G,T).

Remark 5. The NAD nodes of G are exactly the roots of the subtrees G(ui), with 1 ≤ i ≤ q.

15

α1 α2

. . . αp
G(u1)

. . .

G(ui)

. . .

G(uq)

G(ui)

ci,1 ci,2

. .
.

ci,d(ui)

ui,1 ui,2 αp

α1

...

c1 α1 c2 α2

. . .

cp αp

u1,1 u1,2

. . .

uq,1 uq,2

G T
Spine

Spine

Figure 5: The gene tree G with its subtree G(ui) and the species tree T .

As a consequence of Remark 5, we have that for each subtree G(ui), there exists at least one label in
Λ(G(ui)) that must be modified in each feasible solution of MinLabelMod.

Now, we prove that modifying a label ui,x is essentially useless.

Lemma 15. Let G′ be a solution of MinLabelMod obtained with h label modifications such that label ui,x,
with 1 ≤ i ≤ q and x ∈ {1, 2}, is modified. Then, starting from G′ we can compute in polynomial time a
solution G∗ with less than h modifications, such that in G∗ no label ui,x, with 1 ≤ i ≤ q and x ∈ {1, 2}, is
modified.

Proof. First notice that label ui,x is associated with a single leaf of G, namely of G(ui). Hence, we have
that an eventual modification affects only subtree G(ui) and, eventually, nodes on the spine of G (that are
already AD nodes due to labels αi). Now, if labels ui,x and cj (which is associated with a leaf of G′(ui)) are
modified in G′, then solution G∗ is obtained from G′ by modifying cj into αj and by not changing label ui,x.
The resulting subtree G∗(ui) does not contain NAD nodes.

Now, if a label ui,x is modified in G′, and no label cj associated with a leaf of G(ui) is modified in G′,
then solution G∗ is obtained from G′ as follows: modify cj into αj and do not change label ui,x. Again, the
resulting subtree G∗(ui) does not contain NAD nodes.

Now, we show that, if we modify a label ci, then this label must be modified into label αi.

Lemma 16. Let G′ be a solution of MinLabelMod over instance (G,T) obtained with h label modifications
such that label ci, with 1 ≤ i ≤ p, is modified. Then starting from G′ we can compute in polynomial time a
solution G∗ with at most h label modifications such that G∗ is obtained by modifying label ci into αi, with
1 ≤ i ≤ p.

Proof. First notice that, by Lemma 15, we can conclude that no label ui,x, with 1 ≤ i ≤ q and x ∈ {1, 2},
is modified. Hence, by construction (see Remark 5), we can conclude that in each subtree G(uj), with
1 ≤ j ≤ q, either a label ci or a label αi associated with a leaf of G(uj) must be modified. Notice that, by
construction, in each subtree G(uj) containing a leaf labeled by ci, with 1 ≤ i ≤ p, there exists a leaf labeled
by αi. Consider a label ci that has has been modified in a solution G′. We compute G∗ by modifying ci into
αi (and hence in G∗ label αi is not modified). Then the root of each subtree G∗(uj) corresponding to G(uj),
with 1 ≤ j ≤ q, is an AD node. Since no other subtree of G (not containing a leaf labeled by ci) is affected
by the modification of ci and αi and since G′ is obtained with h modifications, we can conclude that G∗ is a
solution obtained with at most h modifications.

16

Now, we are ready to prove the two main results of this section.

Lemma 17. Let (C, U) be an instance of MinSC and let (G,T) be the corresponding instance of MinLabelMod.
Then, starting from a cover C′ of U we can compute in polynomial time a solution of MinLabelMod over
instance (G,T) in which |C′| labels are modified.

Proof. The solution G∗ is constructed in polynomial time, starting from a cover C′, as follows: for each Ci in
C′, G∗ is obtained by modifying label ci into αi.

Obviously, G∗ is obtained by modifying |C′| labels. Next, we show that G∗ is consistent with T . Consider
a subtree G∗(ui). Each of these subtrees is obtained by modifying some labels, since C′ is a cover of Ui. By
construction, the internal nodes in the left subtree of G∗(ui), where there are leaves with modified labels,
are all speciation nodes. Moreover, no label associated with a leaf of the right subtree of G(ui) has been
modified in G∗(ui), hence by construction of G and by Remark 5, G∗(ui) contains only speciation nodes.
Finally, the root of each G∗(ui) is an AD node, since there exists a label αj that labels a leaf of the left and
the right subtrees of G∗(ui), being C′ a cover of U . Since the nodes on the spine of G∗ (by construction) are
either speciation nodes or AD nodes, it follows that G∗ is a feasible solution of MinLabelMod over instance
(G,T) in which at most h labels are modified, thus concluding the proof.

Lemma 18. Let (C, U) be an instance of MinSC and let (G,T) be the corresponding instance of MinLabelMod.
Then, given a solution of MinLabelMod obtained by modifying h labels, we can compute in polynomial time a
cover C′ of U consisting of h sets.

Proof. Consider a solution G∗ of MinLabelMod over instance (G,T). By Lemma 15 we can conclude that no
label ui,x, with 1 ≤ i ≤ q and x ∈ {1, 2}, is modified. It follows that only labels ci and αi, with 1 ≤ i ≤ p, can
be modified. Assume that the latter condition holds. Then, we can compute in polynomial time a solution in
which at least the same number of leaves of G∗ are modified, by substituting, for each αi modified in G∗, the
label ci with αi, leaving αi unchanged. Hence, we can assume that in G∗ only labels ci, with 1 ≤ i ≤ p, are
modified and by Lemma 16, we can assume that in G∗ the modified label ci is substituted with αi. Now, we
can define a set cover a follows:

C′ = {Si : label ci is modified into αi}.

C′ is indeed a set cover. Assume that ui is not covered by a set of C′, then no leaf of G∗(ui) has a modified
label, hence, by Remark 5 the root of G∗(ui) is a NAD node.

The inapproximability of MinLabelMod follows from Lemma 17 and Lemma 18 and from the inapprox-
imability [26]. The W[2]-hardness of MinLabelMod follows from Lemma 17 and Lemma 18 and from the
W[2]-hardness of MinSC [29].

Theorem 4. MinLabelMod is not approximable within factor c log |Λ|, for some constant c > 0, and is
W[2]-hard when parameterized by the number of label modifications.

Proof. The proof follows from Lemma 17 and Lemma 18 and from the fact that the described reduction is a
parameterized reduction and an approximation preserving reduction. Hence, since MinSC is W[2]-hard [29],
also MinLabelMod is W[2]-hard. Moreover, notice that MinSC is not approximable within factor c log q [26],
for some constant c > 0, and the same property holds for MinLabelMod. Since |Λ| = 2p+ 2q, and MinSC
is not approximable within factor c log q, for some constant c > 0, even when p and q are related by a
polynomial [27], it follows that MinLabelMod is not approximable within factor c log |Λ|, for each constant
c > 0.

17

7. Conclusion

In this paper, we studied the approximation and parameterized complexity of some combinatorial problems
related to gene tree correction. For MinLeafRem, MinLabelRem and MinLabelMod we showed that the
problems are not approximable within factor b logm, where m is the number of leaves of the species tree
and b > 0 is a constant. Moreover, we showed that the modification problems, differently from the removal
versions, are unlikely to be fixed-parameter tractable. More precisely, we showed that MinLeafMod is
W [1]-hard, when parameterized by the number of leaf modifications, and MinLabMod is W [2]-hard, when
parameterized by the number of label modifications.

There are some interesting future directions related to the approximation complexity of these problems.
The first natural question is whether MinLeafMod admits a constant factor approximation or not. Another
natural question is whether it is possible to have a polylog factor approximation algorithm for the problems
we considered.

Acknowledgements

We would like to thanks the anonymous referees for their valuable comments and suggestions.
S.B. is supported by the Italian Ministry of Education and Research (MIUR) through the “Flagship

InterOmics” (code PB05), “HIRMA” (code RBAP11YS7K), and the European “MIMOmics” (code 305280)
projects.

R.D. is partially supported by the Italian Ministry of Education and Research (MIUR) through PRIN
2010-2011 grant “Automi e Linguaggi Formali: Aspetti Matematici e Applicativi” (code H41J12000190001).

References

[1] S. Beretta, R. Dondi, Gene Tree Correction by Leaf Removal and Modification: Tractability and Approximability, in:
A. Beckmann, E. Csuhaj-Varjú, K. Meer (Eds.), CiE, vol. 8493 of Lecture Notes in Computer Science, Springer, 42–52,
2014.

[2] S. Ohno, Evolution by gene duplication, Springer, Berlin, 1970.
[3] E. Eichler, D. Sankoff, Structural dynamics of eukaryotic chromosome evolution, Science 301 (2003) 793–797.
[4] P. Bonizzoni, G. Della Vedova, R. Dondi, Reconciling a gene tree to a species tree under the duplication cost model.,

Theoretical Computer Science 347 (2005) 36–53.
[5] W. Chang, O. Eulenstein, Reconciling gene trees with apparent polytomies, in: D. Chen, D. T. Lee (Eds.), COCOON 2006,

vol. 4112 of LNCS, Heidelberg, 235–244, 2006.
[6] C. Chauve, N. El-Mabrouk, New perspectives on gene family evolution: losses in reconciliation and a link with supertrees,

in: S. Batzoglou (Ed.), RECOMB 2009, vol. 5541 of LNCS, Springer, Heidelberg, 46–58, 2009.
[7] D. Durand, B. Haldórsson, B. Vernot, A hybrid micro-macroevolutionary approach to gene tree reconstruction, Journal of

Computational Biology 13 (2006) 320–335.
[8] R. Page, GeneTree: comparing gene and species phylogenies using reconciled trees., Bioinformatics 14 (1998) 819–820.
[9] R. Page, J. Cotton, Vertebrate phylogenomics: reconciled trees and gene duplications, in: Pacific Symposium on

Biocomputing, 536–547, 2002.
[10] M. Sanderson, M. McMahon, Inferring angiosperm phylogeny from EST data with widespread gene duplication., BMC

Evolutionary Biology 7 (2007) S3.
[11] B. Vernot, M. Stolzer, A. Goldman, D. Durand, Reconciliation with non-binary species trees, Journal of Computational

Biology 15 (2008) 981–1006.
[12] J.-P. Doyon, C. Scornavacca, K. Gorbunov, G. Szöllősi, V. Ranwez, V. Berry, An Efficient Algorithm for Gene/Species

Trees Parsimonious Reconciliation with Losses, Duplications and Transfers, in: E. Tannier (Ed.), Comparative Genomics,
vol. 6398 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 93–108, 2010.

[13] M. Hallett, J. Lagergren, A. Tofigh, Simultaneous identification of duplications and lateral transfers, in: RECOMB, ACM,
2004.

[14] A. Tofigh, M. Hallett, J. Lagergren, Simultaneous identification of duplications and lateral gene transfers, IEEE/ACM
Trans. Comput. Biol. Bioinform. 8 (2011) 517–535.

[15] M. S. Bansal, E. J. Alm, M. Kellis, Efficient algorithms for the reconciliation problem with gene duplication, horizontal
transfer and loss, Bioinformatics 28 (12) (2012) 283–291.

[16] G. Blin, P. Bonizzoni, R. Dondi, R. Rizzi, F. Sikora, Complexity insights of the Minimum Duplication problem, Theor.
Comput. Sci. 530 (2014) 66–79.

[17] B. Ma, M. Li, L. Zhang, From gene trees to species trees, SIAM J. on Comput. 30 (2000) 729–752.
[18] M. Hahn, Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution, Genome Biology

8 (R141).

18

[19] K. Chen, D. Durand, M. Farach-Colton, Notung: Dating Gene Duplications using Gene Family Trees, Journal of
Computational Biology 7 (2000) 429–447.

[20] P. Górecki, O. Eulenstein, A linear time algorithm for error-corrected reconciliation of unrooted gene trees, in: J. Chen,
J. Wang, A. Zelikovsky (Eds.), ISBRA 2012, vol. 6674 of LNCS, Springer, Heidelberg, 148- 159, 2011.

[21] M. Lafond, C. Chauve, R. Dondi, N. El-Mabrouk, Polytomy Refinement for the Correction of Dubious Duplications in
Gene Trees, Bioinformatics 30 (17) (2014) to appear.

[22] K. M. Swenson, A. Doroftei, N. El-Mabrouk, Gene tree correction for reconciliation and species tree inference, Algorithms
for Molecular Biology 7 (2012) 31.

[23] R. Dondi, N. El-Mabrouk, K. M. Swenson, Gene Tree Correction for Reconciliation and Species Tree Inference: Complexity
and Algorithms, Journal of Discrete Algorithms 25 (2014) 51–65.

[24] R. G. Downey, M. R. Fellows, Parameterized Complexity, Monographs in Computer Science, Springer, 1999.
[25] V. V. Vazirani, Approximation algorithms, Springer, 2001.
[26] R. Raz, S. Safra, A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-Probability PCP

Characterization of NP, in: F. T. Leighton, P. W. Shor (Eds.), STOC, ACM, 475–484, 1997.
[27] J. Nelson, A Note on Set Cover Inapproximability Independent of Universe Size, Electronic Colloquium on Computational

Complexity (ECCC) 14 (105).
[28] R. G. Downey, M. R. Fellows, Fixed-Parameter Tractability and Completeness II: On Completeness for W[1], Theor.

Comput. Sci. 141 (1&2) (1995) 109–131.
[29] A. Paz, S. Moran, Non Deterministic Polynomial Optimization Problems and their Approximations, Theor. Comput. Sci.

15 (1981) 251–277.

19

