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Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics”
investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained
considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this
reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce
data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers
to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3) that
are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can
be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines) on MALDI-
MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination). The model is able to
provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances,
reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting

potential discriminating areas of clinical interest.

1. Introduction

Thyroid lesion diagnosis constitutes an important issue in
terms of life quality of the affected patients. Currently, this
pathology is diagnosed through cytomorphological evalu-
ation of smears obtained after an ultrasound-guided fine
needle aspiration biopsy (FNAB). A category of malignancy
is then assigned to specimens according to the SIAPEC-
IAP (Ttalian Society of Anatomic Pathology and Cytology)
classification [1]. In particular, a category (ranging from
THYI to THY5 in the European system) is associated with
the following lesions and groups of patients: inadequate
withdrawal (THY1), benign lesions (THY2), lesions with
unknown malignancy potential (THY3), and malignant
lesions (THY4 and THY5). The general guidelines suggest
that patients diagnosed as being of THY4 or THY5, along

with the ones diagnosed as being of THY3, must undergo
a total thyroidectomy and a consequent lifelong hormone
replacing therapy, resulting in possible complications during
or after surgery and in possible compliance issues during
the patient’s life. Surprisingly, 70% of the THY3 cases result
benign after a deep histological evaluation after surgery [1],
highlighting the diagnostic problem related to the undeter-
mined reports (THY3).

The lack of protein and genetic biomarkers to reliably
support thyroid lesion diagnoses led us to exploit the dis-
criminative power of a machine learning technique (i.e.,
Support Vector Machine, SVM) applied to Matrix-Assisted
Laser Desorption/Ionisation-Mass Spectrometry Imaging
(MALDI-MSI) data. MALDI-MSI data has already proven
itself to be capable of highlighting differences in the pro-
teomic profile of different types of thyroid lesions [2, 3],



further supporting our work. MALDI-MSI is an analytical
technique that allows the study of the spatial distribution and
relative abundance of a wide range of molecules directly on-
tissue, without the need of any labelling or extraction pro-
cesses that can possibly hinder both the molecular structure
and the extraction yield of the analytes of interest [4]. For
this reason MALDI-MSI has gained considerable attention in
recent years and has been widely employed in several fields
with successful results, from oncology and immunology to
forensics and from pharmacology to the study of plants [5].
Although the advantages of MALDI-MSI are unquestionable
for the explorative research, it also leads to file sizes of several
gigabytes and more recently even terabytes of complex and
high dimensional data from a single examined tissue slice.
Computational analysis of MSI data and mining procedures
are therefore challenging to be met [6].

Specifically, in this paper, we show how a Support Vec-
tor Machine based classification [7] can provide accurate
discrimination of thyroid bioptic specimens using mass
spectrometry imaging data, thus aiming at taking MALDI-
MSI to the daily clinical practice to aid the clinical routine
for diagnostic processes. Taking advantage of the general
purpose applicability of the SVM model (broadly applied
in both proteomics and more general biomolecular classi-
fication problems; see, e.g., [8] and [9], resp.) we provide
accurate classification of THY3 patients to a benign or a
malignant category. Moreover, to reduce the dimensionality
of available data, we applied a feature selection algorithm
(i.e., recursive feature elimination; see, e.g., [10]) to a derived
dataset obtained through the generation of an average (rep-
resentative) spectrum per patient.

The paper is laid out as follows. In Sections 2.1 and 2.2 we
briefly describe the samples and the data acquisition process.
In Section 2.4 we detail the preprocessing phase. In Sec-
tion 3 we report the model construction and the “standard”
classification process while in Section 4 we introduce the
pixel-by-pixel classification, important to highlight potential
discriminating areas of clinical interest. We show the results
in Section 6 and conclude, finally, in Section 7 by discussing
our findings.

2. Materials and Methods

2.1. Patients. The study was conducted on leftover bioptic
material collected at the Department of Pathology, University
of Milano-Bicocca, Monza Brianza, Italy. A cohort of 43
subjects with the following characteristics (Table 1) was
enrolled:

(i) 14 subjects diagnosed as being of THY2, 8 THY4, and
10 THYS5 (for a total of 32 patients),

(ii) 11 subjects diagnosed as being of THY3.

2.2. Acquisition of Mass Spectra. The cytological smears
have been scanned through a ScanScope CS digital scanner
(Aperio, Park Center Drive, Vista, CA, USA), to obtain a
digitalised image of the specimen. After sample preparation,
mass spectra were acquired using the ultrafleXtreme MALDI-
TOF/TOF mass spectrometer (Bruker Daltonics GmbH,
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TaBLE 1: Table listing all the patients enrolled in the study, along with
the cytological and histological diagnosis.

Patient number ~ Cytological diagnosis ~ Histological diagnosis
Patient #1 THY2 Ben
Patient #2 THY3 Ben
Patient #3 THY4 PTC
Patient #4 THYS5 PTC
Patient #5 THY2 Ben
Patient #6 THYS5 PTC
Patient #7 THY2 Ben
Patient #8 THYS5 PTC
Patient #9 THY3 PTC
Patient #10 THY4 PTC
Patient #11 THY2 Ben
Patient #12 THY4 PTC
Patient #13 THY3 Ben
Patient #14 THY3 PTC
Patient #15 THY4 PTC
Patient #16 THY2 Ben
Patient #17 THY2 Ben
Patient #18 THY3 PTC
Patient #19 THY2 Ben
Patient #20 THY3 Ben
Patient #21 THY4 PTC
Patient #22 THY3 Ben
Patient #23 THYS5 PTC
Patient #24 THY2 Ben
Patient #25 THY4 PTC
Patient #26 THY4 PTC
Patient #27 THY2 Ben
Patient #28 THY2 Ben
Patient #29 THY2 Ben
Patient #30 THYS5 PTC
Patient #31 THY5 PTC
Patient #32 THY2 Ben
Patient #33 THYS5 PTC
Patient #34 THY3 Ben
Patient #35 THY2 Ben
Patient #36 THY3 Ben
Patient #37 THY3 Ben
Patient #38 THYS5 PTC
Patient #39 THYS5 PTC
Patient #40 THYS5 PTC
Patient #41 THY3 Ben
Patient #42 THY4 PTC
Patient #43 THY2 Ben

Ben: benign lesions; PTC: papillary thyroid carcinoma.

Bremen, Germany) in linear positive mode. All acquired
spectra range from m/z 3000 to 25000, with a raster (namely,
the spatial resolution) of 100 micrometers.
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FIGURE 1: MALDI-MSI data cube. The intensity value of a specific
analyte compound is localised as follows: x- and y-axis represent
the spatial coordinates of the 2D digitalised tissue image (a mouse
brain is shown in this example); the z-axis represents the mass-to-
charge (m/z) ratio in the acquired spectra. For each m/z value in the
spectrum, a 2D molecular image is computed by colouring the pixels
according to the relative abundance (intensity of that m/z value) of
the selected compound across the tissue section.

2.3. MALDI-MSI Data. Generally, a mass spectrometry
imaging dataset consists of a “data cube” (Figure 1) resulting
from the acquisition of one mass spectrum for each pixel of
the digitalised tissue image. By considering a particular mass-
to-charge (m/z) value, we can then represent the spatial dis-
tribution of the corresponding compound (with that specific
m/z) by colouring each pixel according to its intensity values
(i.e., relative abundance) at different spatial coordinates. In
other words, for each m/z value in the spectrum, a molecular
image showing the spatial distribution of the corresponding
analyte is generated, possibly highlighting regions where
the selected molecule localises. Finally, spectra from specific
regions of the sample can be exported and passed to the
software for elaboration.

2.4. Data Preprocessing. Raw data provided by MALDI
instruments can be viewed also as a simple collection of
independent spectra which are generally unaligned and noisy.
Data preprocessing is a crucial step for allowing fair compar-
isons and reducing both technical and analytical variability
or artefacts. To provide more reliable elaboration, we first
applied the following steps.

(i) Baseline Subtraction and Smoothing. The baseline of a
spectrum is a segment connecting points with the lowest
intensities on which the entire spectrum lies. The baseline
is essentially made of noise (electrical noise and chemical

background generated by impurities), which, in turn, hinders
the feature extraction process (peak picking). In this work the
baseline subtraction process has been computed using the
TopHat algorithm, while the denoising was performed using
the Savitzky-Golay smoothing, in order to bring the spectra
onto the x-axis and to present more defined peaks (thus
allowing more reproducible peak picking selections [11]).

(ii) Normalisation. Normalisation is the process that consists
in the multiplication of all the intensity values in the mass
spectrum by a scaling factor, which results in an intensity axis
broadening or narrowing. Here we applied the so-called total
ion count (TIC) method: all the intensities of each spectrum
in the dataset are divided by the spectrum total current (i.e.,
the sum of all the intensities), providing each spectrum with
the same integrated area under the curve [12].

(iii) Peak Picking. The peak picking was made using the
Median Absolute Deviation (MAD) as a noise estimation
method, with a signal-to-noise (S/N) ratio threshold of 3.
The peak picking results in the selection of the highest m/z-
intensity coordinates of the peaks in the spectra (i.e., features
for the following selection phase) [13]. This leads to a massive
reduction of the data dimensionality that will lead to a more
computationally efficient analysis.

(iv) Peak Alignment and Filtering. All peaks have been aligned
(with a tolerance of 2000 ppm) in order to prevent slightly
analytical variations in the m/z values from being seen as
distinct peaks. This ensures more consistent and coherent
results, since possible artefacts in the identification of putative
biomarkers are prevented from being generated. In addition,
in order to remove false positive peaks coming from the noise,
a filtering has been applied, resulting in keeping only the
signals that are present in at least the 25% of all the spectra
in the dataset.

The peak alignment and filtering have been performed on
the entire dataset, as part of the preprocessing of the entire
spectral data. Although this can potentially introduce some
bias, especially in low-intensity peaks, closer to the noise and
possibly not well resolved, this effect is compensated by the
filtering, which was performed, for this reason, on the entire
dataset. The signal-to-noise (S/N) ratio method (which we
used) for peak picking is known to generate false positive
peaks [6], and this is why the filtering is performed. Other
peak picking methods, such as the orthogonal matching
pursuit (OMP), which evaluates the shape of the peak rather
than its intensity, are known to be more robust and reliable
[6], but there are no R functions at the moment to perform
peak picking with this algorithm. This could be an input for
future work, to make peak picking more robust to peak shape
and symmetry and to decrease the number of false positive
peaks.

2.5. Peak-List Matrix and Data for Classification. The prepro-
cessing step provided us with a peak-list matrix. This matrix
with other elaborated data has been used to build and evaluate



the inference model. We summarise the data we used as
follows.

Dataset 1: Peak-List Matrix. As referred to above, this
data is directly provided by the preprocessing step,
yielding a number of aligned peaks of 144.

Average Profile Data. The obtained profiles were then
used for the average profile classification as described
in the next sections. In particular, for this task, the
following two datasets were created.

Dataset 2: Training Set. It contains peak-list data from
THY?2, THY4, and THYS5 patients.

Dataset 3: Validation (Test) Set. It contains peak-list
data from THY3 patients.

While the former data was used to cross validate and obtain
a classification model, the latter was applied as an external
(further) validation set.

3. Average Profile Classification

To obtain a classifier we applied sequentially the following
steps.

(i) Recursive Feature Elimination. In this phase, we executed
a wrapper feature selection process using the training set
(dataset 2) as defined previously. To avoid overfitting and
allow for the classifier to work properly, we applied a repeated
(2 times) 10-fold cross-validation process with the recursive
feature elimination (RFE) algorithm. In particular, to evaluate
the performances of the selected subsets of features, we
iteratively applied a partial least squares (PLS) model (for
implementation issue see R “caret” package [14]). In this
way, we obtained a subset of 20 features, which, in turn,
was submitted for further elaboration as described in the
following step.

Feature selection decreases the risk of overfitting, espe-
cially with this reduced number of patients. When using
individual spectra/pixels per patient, the risk of overfitting
is reduced, but the algorithm can become slower and less
efficient in terms of performances and classification capability
(see the comparison of computational times in Table 2 and
of classification performances in Tables 3 and 5; the process
has been executed on a machine equipped with 16 GB of
RAM, an Intel i7-4702mq CPU, and a 7200 rpm hard disk, on
Ubuntu Linux): in fact, the mathematical formula that defines
the model will be much more complicated. On the contrary,
we want the algorithm to be fast and eflicient, especially if
an ensemble classifier is to be implemented in the future:
when more algorithms are employed at the same time to vote
for the class of the unknown sample, it is important that
since the time taken by the process exponentially increases
with the number of algorithms running, the classification is
performed in reasonable time. This would also increase the
translatability of the approach to the daily clinical routine.
Finally, by retaining more peaks, the model can become more
susceptible to variations in the peak intensity due to analytical
variability and fluctuations in the instrument sensitivity and
performances.
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TABLE 2: Table displaying the difference in computational time taken
by the classification process when employing the feature selection
and when not. The tuning parameter grid is the same in both cases.

Feature selection No feature selection
RFE 75.656 //
SVM tuning and test 32.392 117.524

Times are displayed in seconds and calculated by the R function sys-
tem.time().

TABLE 3: Validation performances of the SVM classifier without
performing feature selection.

Accuracy Sensitivity Specificity PPV NPV ROC
EV 0.273 0.000 1000  0.000 0.273 0.500
2x10-fold CV 0.567 0.000 1.000  0.000 0.567 0.500

In our case, the performances indicate the ability of the algorithm to correctly
detect the benignity when the case is filed as THY3.

EV: external validation; CV: cross-validation; PPV: positive predicted value;
NPV: negative predictive value.

(ii) SVM Classification. A Support Vector Machine (SVM)
model was trained using dataset 2 with the features provided
by the recursive feature elimination. Moreover, the SVM was
tuned to maximise the model capability, thus obtaining a
classification with high performances.

A 10-fold cross-validation was performed 2 times onto the
training data to assess the reliability of the SVM. The trained
classifier was then tested onto validation dataset 3 (THY3
patients), returning the classification performances based
upon the degree of concordance between the predicted class
and the actual class, in terms of sensitivity, specificity, positive
predictive value (PPV), negative predicted value (NPV), and
ROC AUC (area under the curve).

4. Pixel-by-Pixel Classification

After testing the SVM classifier onto the average proteomic
profiles, we applied the trained model to predict the class of
all the individual spectra in the MALDI-MSI dataset, which
is one mass spectrum for each pixel: this results in a pixel-by-
pixel classification, namely, the classification of tissue areas
rather than the entire proteomic profile of a patient. Since
for each spectrum the physical coordinates of the digitalised
image are also retained, then it is also possible to colour the
corresponding pixels over the image. In other words, for each
patient, a molecular image with pixels coloured according to
the class is shown, highlighting differently classified tissue
areas.

In the classification of new (unknown) MSI data, the algo-
rithm preprocesses the spectra in the same way as the training
dataset and aligns the peaks from the new data to the ones
used for building the model. The peak filtering is performed
onto the unknown MSI data before running the pixel-by-
pixel classification, not in the average profile classification, in
order to discard the presence of false positive peaks picked
by the MAD algorithm, when individual spectra/pixels per
patient are used.
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TABLE 4: Tuning parameters of the Support Vector Machines, with
and without performing the feature selection. The best parameters
are chosen according to the classification performance of the model.

Featu?e Kernel Cost Epsilon Gamma
selection

RFE Radial 10 0.1 0.11
No RFE Radial 10 0.1 L1

TaBLE 5: Validation performances of the SVM classifier after
performing the RFE feature selection.

Accuracy Sensitivity Specificity PPV NPV ROC
EV 0.818 0.750 1000  1.000 0.600 0.875
2x 10-fold CV  0.713 0.625 0.775  0.740 0.767 0.778

In our case, the performances indicate the ability of the algorithm to correctly
detect the benignity when the case is filed as THY3.

EV: external validation; CV: cross-validation; PPV: positive predicted value;
NPV: negative predictive value.

5. Implementation

All the conceptual procedures described in this paper have
been coded using the R environment (https://www.r-project
.org/). The spectra were formatted as imzML files [15],
imported into R using the “MALDIquantForeign” package
[13] and processed using the “MALDIquant” package [13].

6. Results

Our primary interest was to build an accurate model able
to discriminate malignant from benign thyroid bioptic spec-
imens. Our approach was empirical: we first designed a
specific knowledge discovery process (Section 3) able to pro-
vide an accurate model for case versus control classification
(i.e., THY2 versus THY4 and THY5). Then we evaluated
the model performances onto a validation set (THY3) as
described in the previous paragraphs.

Table 5 reports the performances obtained after a
repeated (2 times) 10-fold cross-validation process (using
dataset 2) onto the validation set containing only patients
diagnosed as being of THY3 (dataset 3). The performances
are based upon the degree of concordance between the
predicted class and the actual class, in terms of sensitivity,
specificity, positive predictive value (PPV), negative predicted
value (NPV), and ROC (Receiver Operating Characteristic)
AUC (area under the curve).

Specifically, Table 6 displays the difference between the
class that was predicted by the model and the actual class
provided by the histological analysis.

A visualisation of the obtained accuracy can also be given
through the pie chart in Figure 2.

The performances are further elucidated by the ROC
curve, whose AUC (area under the curve) of 0.875 indicates
a good capability of the model in assigning specimens to the
correct class (Figure 3).

Table 4 lists the parameters applied to the Support Vector
Machines after the tuning (i.e., parameter optimisation). The

TABLE 6: Discrepancy between the predicted class and the actual
diagnosis.

Sample Predicted class True class
Patient #2 Ben Ben
Patient #9 PTC PTC
Patient #13 Ben Ben
Patient #14 PTC PTC
Patient #18 PTC PTC
Patient #20 PTC Ben
Patient #22 Ben Ben
Patient #34 Ben Ben
Patient #36 Ben Ben
Patient #37 Ben Ben
Patient #41 PTC Ben
Hits
Misses

FIGURE 2: Graphical evaluation of the patient classification operated
by the model. The green area is proportional to the number of
correctly classified patients, while the blue area corresponds to the
number of misclassifications.

computational time of the automatic tuning process is clearly
dependent on the range of values to be evaluated and the
optimisation method applied for the evaluation. In this case,
we optimised the model parameters over a fixed set of default
values (see, e.g., [14]) simply by taking the best resulting
performance.

As described above, MALDI-MSI data is represented by
spectra corresponding to pixels of the digitalised tissue image.
Instead of performing the classification onto the average
proteomic profile only, this operation can be performed
onto the individual spectra coming from the single patient
as well. In this way, a spectra-by-spectra (corresponding to
pixel-by-pixel) classification of the patient specimen can be
obtained. Since spectra retain their spatial coordinates during
the statistical analysis, it is also possible to colour each pixel
according to the inferred class (i.e., green for benign and
red for malignant). This process resulted in the green and
red area picture (Figure 4), providing a tissue area based
classification rather than a standard profile classification of
the entire proteomic profile.
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FIGURE 4: Pixel-by-pixel classification. An entire thyroid cytological
smear is displayed. A mass spectrum was acquired for each pixel and
the pixel-by-pixel classification has been applied. Green pixels cor-
respond to spectra classified as benign (HP: hyperplastic) while red
pixels correspond to malignant (PTC: papillary thyroid carcinoma)
spectra.

7. Conclusion and Discussion

The work presented here shows the capability of MALDI-
MSI to accurately classify unknown specimens obtained
from the clinical routine. In this context, machine learning
techniques (e.g., SVM) may be considered as a valuable
approach able to exploit the full potentiality of the MALDI-
MSI data, without the need of porting these findings to other
clinical tests. This, in turn, allows MALDI-MSI to properly
aid the diagnosis of specimens in the daily clinical practice.
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Importantly, given that MALDI-MSI looks at the sample at
the molecular level, the possibility of performing a pixel-by-
pixel classification constitutes a key point in the diagnostic
process. In fact, areas highlighted by the inference model can
represent regions that are undergoing molecular alterations
that are not correlated with morphological changes or very
tiny groups of cells that escaped the cytomorphological
evaluation. Our results clearly suggest broader investigations
either on different datasets or on different classification
systems (i.e., ensemble classifiers). Moreover, the next studies
will evaluate the possibility of MALDI-MSI to provide the
information needed for identifying the correct subgroup
of the pathology, to assess the disease progression, and to
possibly detect the presence of the disease in the very early
stages, providing concrete help in diagnoses. Finally, when
more data is available, we will also exploit the possibility
of classifying tissue specimens providing inference models
directly trained on specific localised areas.
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