

Spring Meeting 2016

Daniela Galliani

University of Milano-Bicocca Material Science Department

Conjugated Polymer Nanocomposite

Towards a Novel Material for Thermal Energy Microharversting

Daniela Galliani University of Milano-Bicocca

Wearable Thermoelectric Microharvesters

Conjugated Polymers

Poly(3.4-ethylendioxythiophene) PEDOT

Low TE efficiency

Nanostructuration

An⁻ = Tos⁻, Cl⁻, PSS⁻, ecc

Bubnova, O. *et al.* Semi-metallic polymers. *Nat. Mater.* **13**, 190–4 (2014)

Conjugated Polymer Nanocomposite

Materials	S (μV/K)	PF (μW/m K ²)	ZT	Year
PEDOT:PSS/SWCNT	30	25	0.02	2013
PEDOT:PSS/MWCNT	70	500	-	2010
PEDOT:PSS/Bi2Te3	60	130	0.1	2010
PEDOT:PSS/Te	163	70.9	0.1	2013
PEDOT:PSS/Au NPs	26.5	51.2	~ 0.1	2014
PEDOT:PSS/Au nanorods	12	30	-	2014
PEDOT:PSS/Ge	~50	165	0.1	2014

Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, *Materials (Basel)*. 8, 732 (2015).

N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

EMRS 2016 Lille

Energy Filtering Effect

Energy Filtering Effect

Energy Filtering Effect

CHOOSING CRITERIA

- Intimate contacts between CP and NPs
- Similar work functions of the CP and the NPs
- Interfacial barrier height below
 100 meV

- Chemical interaction between CP and NPs
- Choice of CP and NP material

EXPERIMENTAL WORK

Mn₃O₄ Nanoparticles

Starting salt	Size control agent	Reagent	T (°C)	Size SEM determined (nm)
MnCl _{2.} 4H ₂ O	Ethanolamine	H ₂ O	25	25±6

S. Lei, K. Tang, Z. Fang, and H. Zheng, *Cryst. Growth* Des. 6, 1757 (**2006**)

EMRS 2016 Lille

Nanoparticle Functionalization

Homogeneous dispersion

Daniela Galliani University of Milano-Bicocca

Hybrid Film Making Experimental Work Ps decorated Mn₃O₄ NP FROT Mn₃O₄ aryl-EDOT NP In situ vmerization Solvent Base FeTos₃ **Substrate** (Kapton®) Blade 2) Solution spreading 3) Film drying 1) Solution deposition **EMRS 2016**

Lille

RESULTS

Thermoelectric Characterization

Results

(1.6×10⁻¹⁹ C)

Nanoparticle Influence on Polymer Morphology

Crystalline domain

Humidity Effect

Results

Detrimental effect on σ:

Water interposition between polymer chains

Beneficial effect on σ:

Counterion solvatation

Humidity Effect

$$\sigma - \sigma_{\rm dry} = \beta([NP]) x_{\rm w} \left(\sigma_0 + \sigma_1 e^{-[NP]/N_0} \right)$$

RH

Daniela Galliani University of Milano-Bicocca

Results

Humidity Effect Understanding parameters

$$\sigma - \sigma_{\text{dry}} = \beta \xi(\text{RH}; \delta_x, x_0) \left(\sigma_0 + \sigma_1 e^{-[NP]/N_0} \right)$$

Conclusions and Further Developments

Results obtained:

- A novel protocol to obtain hybrid material CP/INPs has been developed
- Understanding of morphology related aspects of the developed system

Conclusions and Further Developments

Further Developments:

 Development of a strategy to avoid nanomaterial detrimental effect on morphology

- 1. Implement polymerization and post-polymerization treatments to favor the rearrangements of NPs (head-to-tail)
- 2. Using 1D nanomaterial

Thank you for your kind attention!

Aknowledgments

University of Milano-Bicocca

Thermoelectrics Group: Professor Dario Narducci, Dr. Bruno Lorenzi, Dr. Laura Zulian LaSMO Group (Organic Synthesis): Professor Luca Beverina, Dr. Mauro Sassi Electrochemistry Group: Professor Riccardo Ruffo AFM Characterization: Dr. Silvia Trabattoni Co-Supervisor: Dr. Luca Bertini

SEM Characterization: Dr. Simone Battiston

University of Pavia

<u>Co-Supervisor:</u> Professor Umberto Anselmi-Tamburini