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We study theoretically and experimentally the propagation of optical solitons in a lattice nonlinearity,
a periodic pattern that both affects and is strongly affected by the wave. Observations are carried out
using spatial photorefractive solitons in a volume microstructured crystal with a built-in oscillating
low-frequency dielectric constant. The pattern causes an oscillating electro-optic response that induces
a periodic optical nonlinearity. On-axis results in potassium-lithium-tantalate-niobate indicate the
appearance of effective continuous saturated-Kerr solitons, where all spatial traces of the lattice vanish,
independently of the ratio between beam width and lattice constant. Decoupling the lattice nonlinearity
allows the detection of discrete delocalized and localized light distributions, demonstrating that the
continuous solitons form out of the combined compensation of diffraction and of the underlying periodic
volume pattern.
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The coupling between different and matched spectral
components of the optical field is one of the fundamental
effects governing propagation through periodic systems
[1]. The interplay between this coherent effect and non-
linearity has been extensively investigated allowing dif-
fraction control [2,3] and giving rise to self-localized states,
such as discrete and gap solitons [4–9]. Experiments on
discrete trapping are generally based on photonic lattices
made from etched waveguide arrays [5,8] or created
through optical induction in photorefractive media [7,10].
Studies have spanned a wide variety of physical mecha-
nisms affecting solitons, such as unconventionally biasing
[11,12], PT symmetry [13], and disorder [14]. At present,
however, the soliton has always evolved in a fixed linear or
nonlinear pattern, i.e., in conditions in which the lattice is
not appreciably affected by the wave [3,15].
Here, we study an entirely opposite condition: spatial

solitons that form in a lattice nonlinearity. A lattice non-
linearity is a periodic variation in the nonlinear response
that is, in turn, negligible in the linear response. This means
the lattice itself depends on the soliton, and both lattice
and soliton are strongly interacting during propagation.
This fundamental difference with respect to previous
experiments is schematically illustrated in Fig. 1, where
the optical propagation in a photonic lattice is compared
with that in a lattice nonlinearity. In general, the standard
physical condition [Fig. 1(a)] consists of a medium with
a periodic index of refraction variation δnlatt, affecting,
parametrically, the superimposed soliton nonlinearity δnsol.
So, while the nonlinear waves evolve into a lattice-
dependent trapped state, δnlatt remains almost completely
unaffected by the waves’ dynamics. On the contrary,

if the beam and lattice are mutually nonlinear, δn ¼
δnðδnsol; δnlattÞ, the nonlinear propagation spatially modi-
fies the underlying periodic pattern itself [Fig. 1(b)].
In our present experiment, we report the first observation

of continuous solitons in a lattice nonlinearity. The effect is
achieved in a microstructured photorefractive ferroelectric
crystal. The lattice nonlinearity emerges through the
strong interaction of the localized nonlinearity δnsol and
the delocalized periodic nonlinearity δnlatt driven by the
photoinduced space-charge field. The resulting on-axis
propagation dynamically shows a transition from a discrete
pattern to a soliton with the peculiar property of being
continuous in the transverse dimension, irrespective of the

FIG. 1 (color online). Nonlinear propagation in periodic sys-
tems. (a) Trapping in photonic lattices: the periodic pattern δnlatt
affects the spatial propagation but is not affected by the wave.
(b) Trapping in lattice nonlinearity: optical field and lattice are
mutually coupled and δnlatt depends on the waveform.
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beam size compared to the grating period. Discrete proper-
ties also emerge dynamically in the zero field after the
steady-state soliton formation, when the electro-optic and
photorefractive responses are decoupled.
We consider a compositionally disordered photorefrac-

tive potassium-lithium-tantalate-niobate (KLTN) crystal,
K1−αLiαTa1−βNbβO3 with α ¼ 0.04 and β ¼ 0.38, grown
through the top-seeded solution method by extracting a
zero-cut 2.4ðxÞx2.0ðyÞx1.7ðzÞ mm optical quality specimen.
The Curie point at the temperature TC ¼ 294 K is mea-
sured and characterized through low-frequency dielectric
spectroscopy that also signals the absence of large
deviations from the mean-field behavior, typical of other
near-transition disordered ferroelectric samples [16,17].
The sample is grown so as to manifest a sinusoidal variation
in the low-frequency dielectric constant [18–20]. An
electric field can turn this volume microstructure into a
periodic index of refraction modulation ΔnðxÞ through the
quadratic electro-optic effect [21]. The lattice nonlinearity
arises when this electric field is optically induced, as occurs
for the photorefractive screening nonlinearity [22,23]. The
leading terms are

ΔnðxÞ¼ δn0 cosðKxÞ ð1Þ
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where δn0 contains the contribution of the Sellmeier’s
refractive index grating, n0 is the unperturbed average
index of refraction, geff the appropriate electro-optic
coefficient, δTc the amplitude of the nonlinear grating,

K ¼ 2π=Λ the grating number, Λ being the grating period,
E0 ¼ V=lx (lx ¼ 2.4 mm) the bias field amplitude, and
uðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IðxÞ=IB
p

the beam intensity normalized to that of
the background. It follows that for a (1þ 1D) paraxial
monochromatic beam, propagating on axis in the presence
of an electro-optic lattice nonlinearity, the envelope Aðx; zÞ
of the optical field satisfies the nonlinear parabolic equation

i
∂Aðx; zÞ

∂z þ 1
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with ΔnðxÞ expressed according to Eq. (1) and
k ¼ 2πn0=λ. Numerical results are obtained using the beam
propagation method to resolve this equation with param-
eters that match those from our experiment. Referring to
Eq. (1), it should be noted that the first linear term only
weakly affects propagation. It is central to our present study
that, in turn, the field-dependent lattice term is not at all a
perturbation to the screening nonlinearity. Indeed, in our
sample, we obtain from the measured Bragg diffraction
efficiency [19] δn0 ≈ 5 × 10−5 and δTC ≈ 1 K, working at
T ¼ TC þ 4 K as in Fig. 3. Other parameters are n0 ¼ 2.4,
εr ¼ 0.91 × 104, and geff ¼ 0.16 m2=C4.
The experimental geometry in which focused beams

are launched into the microstructured KLTN is shown in
Fig. 2(a); μW cylindrical waves at λ ¼ 532 nm propagate
in a transmission configuration with respect to the grating,
with the main wave vector k ¼ kz orthogonal to the
grating vector K and to the bias field (on axis, ϑ ¼ 0).
Light beam polarization is chosen to maximize the external
field effect. The grating is optically detected with a plane
wave transmitted at the resonant Bragg condition ϑ ¼ ϑB

FIG. 2 (color online). Light propagation in the lattice nonlinearity embedded in a microstructured KLTN. (a) Sketch of the physical
geometry and (b)–(c) optical lattice detection: (b) transmission microscopy image at ϑ ¼ ϑB and (c) its intensity Fourier transform
revealing the grating period Λ ¼ 5.5� 0.3 μm (expanded view in the inset). (d) Observed beam dynamics from the starting delocalized
discrete pattern to the continuous soliton. (d1) Input and (d2) output beam when the lattice nonlinearity is deactivated. (d3) Output
discrete spatial distribution as soon as the lattice nonlinearity is enabled at V ¼ 400 V and (d4) continuous soliton at the steady state.
(e) Intensity Fourier transform of (d2) (red line), (d3) (cyan line), and (d4) (magenta line).
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[Figs. 2(b)–2(c)]; the Fourier transform reveals a grating
period Λ ¼ 5.5� 0.3 μm.
The observed beam propagation dynamics inside the

microstructured nonlinear lattice is shown in Fig. 2(d).
When the electro-optical response is not activated through
the bias field, the input Gaussian beam with full width at
half maximum FWHM ¼ 7 μm experiences quasilinear
diffraction, resulting in a FWHM ¼ 26 μm output distri-
bution [Figs. 2(d1)–2(d2)]. In these conditions, only the
weak linear part of the lattice is involved in the beam
propagation and, analyzing the spectrum [Fig. 2(e)], its
affect on the beam is negligible. However, when the beam
is exposed to the lattice nonlinearity, that is, the sample is
biased, it instantaneously (at fast electro-optic response
times) rearranges itself over the periodic index of refraction
pattern. Considering the μW power used in the experi-
ments, the photorefractive response begins changing the
pattern only approximately 10–20 seconds after this initial
stage. The discrete light distribution emerging in the first
instants, before the light is able to produce the space-charge
field, is shown in Fig. 2(d3), for u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ipeak=IB

p ≃ 8 and
V ¼ 400 V, and appears delocalized compared to the input
beam distribution. The operational temperature in this
case is T ¼ TC þ 2 K, so that, from Eq. (1), we expect
a nonlinear lattice with the same amplitude of the “homo-
geneous” photorefractive nonlinearity (Δn of the order of
10−3). The buildup of the space-charge field causes the
progressive local screening of the periodic lattice until the
continuous steady-state soliton forms after a few minutes

[Fig. 2(d4)]. The soliton transverse profiles have no trace of
a periodic feature, so the lattice nonlinearity allows the
transition from a discrete delocalized pattern to a continu-
ous soliton. In Fourier space (transverse spatial spectrum),
the spectrum of the output intensity distribution passes
from having a dominant peak compatible with the lattice
spatial frequency to a monotonic decaying behavior with-
out dominant resonances [Fig. 2(e)].
The continuous soliton behavior in the lattice non-

linearity is demonstrated in Fig. 3. When no bias field is
applied, the input beam with FWHM ¼ 7 μm experiences
homogeneous diffraction resulting in an FWHM ¼ 24 μm
output distribution [Figs. 3(a1)–3(b1)]. Applying a
V ¼ 580 V static potential, a steady-state soliton propa-
gation is obtained for an intensity ratio u0 ≃ 5 [Fig. 3(c1)].
This absence of discrete features is confirmed by numerical
simulation revealing a soliton shape typical of continuous
solitons, as reported in Fig. 3(d1). Interestingly, this find-
ing does not match what is expected for photorefractive
solitons in a fixed bulk grating, where waveforms satisfying
a two-parameter existence condition are characterized by
modulated components [15]. This underlines the role of the
lattice nonlinearity. The continuous behavior has roots in
the coupling between periodic and nonperiodic terms in
the soliton supporting nonlinearity. Indeed, simulations
demonstrate an index of refraction variation losing the
sinusoidal behavior in the soliton region [Fig. 3(f1)]; the
screening field locally leads the underlying lattice into a
latent state. This effect is independent both of the grating

FIG. 3 (color online). Soliton propagation: experimental and numerical results. Observed (a) input, (b) Diffracted, and (c) self-trapped
output at applied bias field for (top) 1D beams, with FWHM of 7 μm (tight-binding regime), (middle) 22 μm (weak-binding regime),
and (bottom) 2D beams. In all the cases, continuous localization emerges as confirmed numerically by (d) propagation and (f) associated
spatial index of refraction modulation (blue line) compared with just the contribution of the photorefractive response in biased condition
(orange line). (e) Experimental relation between normalized intensity and external field for 1D solitons with linear fit (dashed line).
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amplitude and of the beam width. The first statement is
verified spanning the experimental soliton parameters
ðu0; E0Þ [Fig. 3(e)] and changing the operational temper-
ature; in particular, we note that even when the lattice
amplitude is larger than the standard photorefractive term,
the continuous picture remains unchanged. In fact,
although we are not able to investigate this regime
experimentally because, close to Tc, the external field
needed for soliton formation induces the ferroelectric phase
transition, numerical simulations consistently indicate the
formation of continuous solitons. Independence from the
beam waist is demonstrated launching beams whose size
covers several grating periods (weak binding). As reported
in the middle row of Fig. 3, a FWHM ¼ 22 μm, u0 ¼ 2.5
input beam weakly diffracts when unbiased; it self-focuses
up to 8 μm in the nonlinear case. Even in this case, the
output lacks marked discrete features, as numerically
verified. We also demonstrate that what has been achieved
occurs in the same spatial lattice geometry for two-
dimensional solitons; a 2D continuous soliton, 8 μm sized,
is shown in Fig. 3(c3) at u0 ¼ 8.5. Figure 3(e) reports the
relation between normalized intensity and external field
for observed 1D solitons; the linear behavior is coherent
with the general relationship in centrosymmetric media,
even though the slope observed is considerably reduced,
this underlining the fundamentally different nature of our
present continuous solitons compared to conventional
screening solitons [22].
This picture is expected to change if the electro-optical

lattice can be decoupled from the photorefractive nonlinear
response. Since these two responses act on different time
scales, being the electro-optic modulation instantaneous
with respect to the photorefractive one, the grating can be
decoupled dynamically. This decoupling appears in the first
stages of propagation into the lattice nonlinearity and leads
to a discrete pattern, as discussed and reported in Fig. 2(d).
However, this also happens for transient states after the
soliton formation, when the bias field is removed. To
further characterize the underlying nonlinear response, we
carried out a zero-field readout, as reported in Fig. 4. As the
bias field is switched off after the steady state is reached,
previously guiding features become antiguiding and vice
versa [22]. The effect evolves in time as the now diffracting
beam washes out the original soliton-supporting space-
charge distribution. So, in our case, removing the bias field
causes the lattice to drop to zero everywhere except for in
the region in proximity to the original soliton, where the
space-charge field remains unshielded. The beam experi-
ences the local nonlinear lattice and discrete features are
now observable. We show the phenomena in Fig. 4 for
the dynamics subsequent to the soliton propagation in
Fig. 3(a). In the first stages [Figs. 4(a)–4(b)], a discrete
delocalized pattern takes place with some “waveguides”
more excited than others; numerical analysis at t ¼ 0,
according to the model described in [22], confirms this

behavior, and the resulting beam evolution is reported in
Fig. 4(e) with the underlying nonlinearity in Fig. 4(f).
The quantitative agreement between experimental and
numerical results is made explicit comparing the spectra
[Fig. 4(g)]; the excited modes coincide, and the dynamics
that cause the spectrum to progressively shed off its peaks,
show a consistent transfer of spectral content to the lower
frequency component. The characteristic frequencies are
identified as the first harmonic of the latticeK and the spatial
scale introduced by the beam waist [24]. After this phase,
the beam begins to modify the local index pattern and its
propagation and interesting transient states can emerge;
in Fig. 4(c), we show a transient discrete localization
occurring three minutes after the bias field was removed.
The nonstationary dynamics cause the localized pattern to
spread, ultimately reaching its final equilibrium state, where
normal diffraction is almost restored [Fig. 4(d)].
In conclusion, we have demonstrated continuous on-axis

soliton propagation in a lattice nonlinearity. The nonlinear
photonic lattice is characterized by the electro-optic cou-
pling with the soliton supporting nonlinearity and varies
depending on the beam features. These results point out
how the periodic properties of a medium can be made to not
emerge in the propagating waveform if they are filtered out
by a strong interplay between the nonlinear waves and the
nonlinear lattice. Discrete effects are shown to appear when
the grating is partially decoupled from the photorefractive
response, as in the first stages of the biased propagation or
in the zero-field dynamics. We also expect this kind of
lattice nonlinearity to support interesting soliton interaction

FIG. 4 (color online). Zero-field discrete dynamics after the
soliton formation. (a)–(d) Measured time evolution: (a)–(b) dis-
crete delocalized pattern, (c) localization with discrete features
and (d) relaxation to the equilibrium. (e)–(f) Numerical results at
t ¼ 0: (e) discrete propagation and (f) nonlinearity supporting the
periodically modulated output light distribution compared with
the previous soliton nonlinearity (orange line). (g) Comparison of
the spectral properties of (a) (magenta line) and (b) (cyan line)
with those of the numerical output in (e) (red line).
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phenomena [25,26]: specifically, numerical studies (not
reported here) indicate that a bound state of π out of phase
continuous solitons in adjacent lattice sites is possible.
In other words, the lattice nonlinearity, as a new periodic
optical medium proposed and studied here, opens up
interesting perspectives for exploring the physical correla-
tion between nonlinear waves and nonlinear lattices.
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