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SUMMARY

This paper considers species sampling models using constructions which arise from Bayesian
nonparametric prior distributions. A discrete random measure, used to generate a species sam-
pling model, can either have a countable infinite number of atoms, which has been the emphasis
in the recent literature, or a finite number of atoms K, while allowing K to be assigned a prior
probability distribution on the positive integers. It is the latter class of model we consider here,
due to the existence and interpretation of K as the number of species. We demonstrate the con-

sistency of the posterior distribution of K as the sample size increases.
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Some key words: Bayesian consistency; Exchangeable random partition; Gibbs—type partition; Species sampling

model.

1. INTRODUCTION

This paper is concerned with species sampling models. The idea we present here is motivated
by recent work appearing in Lijoi et al. (2007, 2008) and Favaro et al. (2009). The problem is
to estimate the number of species in a population, early work on which can be found in many
papers. See, for instance, Efron & Thisted (1976), Hill (1979), Boender & Rinnooy Kan (1987),
Chao & Lee (1992), Chao & Bunge (2002), Chao et al. (2009), Zhang & Stern (2005), Wang &
Lindsay (2005), Wang (2010) and Barger & Bunge (2010).

Lijoi et al. (2007) are predominantly concerned with estimating the number of new species
in a further sample of size m having previously observed a sample of size n. For this, Bayesian
nonparametric models are employed and, specifically, discrete random probability measures are
used, such as the Dirichlet process and the two parameter Poisson—Dirichlet process. More gen-
erally, two classes used are the class of normalized random measures, which are driven by non—
decreasing Lévy processes, and Gibbs-type priors (Lijoi et al., 2008, Favaro et al., 2009). These
models assume that the number of species is infinite, claiming that if the number of species in
the population is large, then it is reasonable to assume that it is infinite (Favaro et al., 2009,
Lijoi et al., 2007). Probably this was done because the mathematics is more attractive for such
models. The model we use here assumes that the number of species K in the population is fi-
nite. Therefore, having assigned a prior for K, we can consider estimating it. Moreover, we can
prove consistency of the posterior. In other words, the sequence of posterior distributions for K

accumulates at the true value as the sample size increases.
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Species sampling models: consistency for the number of species 3

2. THE MODEL

Let K be the random number of species in the population, and let V1, ..., Vk be the absolute
frequencies of the K species in the population, where {V;} is a sequence of positive, inde-
pendent and identically distributed random variables and {V;} is independent of K. Given that
there are K species, let P g, ..., Pk i be the relative frequencies of the species in the popula-
tion, namely, Pj x = V;/ S35, Vi (j = 1,..., K). Clearly, the joint conditional distribution of
Pik, ..., Pk given K is exchangeable and 3"/ | P; s = 1.

Now assume that observations X; (i > 1) take values in a measurable space (X, 2"), and that

the observations X1, Xo, ... are sampled from the random probability measure
K
> Pik iz, (1)
j=1
where {Pj x : j=1,...,K} and {Z;} are two independent sequences, the Z; are independent

and identically distributed random variables with values in (X, .2") and the distribution v of Z is
diffuse, that is a{x} = 0 for every x in X. Let the prior 7 for K be such that 7(k) = P(K = k)
is positive for every £ > 1, where P is the probability measure that underlines all the random
variables above.

The above model belongs to the class of species sampling models introduced by Pitman
(1996), which has been widely studied in the statistical literature. A species sampling process
is a random probability measure of the form > 322, Pjdz; + (1 — >_72, Pj)a, where {P;} and
{Z;} are two independent sequences of random variables such that P; > 0 for every j > 1 and
Z;; P; <1, almost surely, the Z; are independent and identically distributed random vari-
ables with values in (X, .2") and « is the distribution of Z1, and it is diffuse. So, the model under
consideration is a species sampling model with finitely many positive weights, as considered by

Ongaro & Cattaneo (2004) and Ongaro (2004, 2005). Whereas we will focus on the posterior
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distribution of K, Ongaro considered the posterior of the underlying random measure given by

D).

For our model (1), the posterior for K is

(k) =P(K =k | X1,..., Xp)
m(k)k(k —1) - (k — Ko+ 1)E (Hﬁi’a P;};) 2

= I
o] n; {kZK’VL}’
S, 7~ 1)+ (1~ o + DE (15 1)

wheren; = [{i=1,...,n: X; = X]*} ,forj=1,..., K,, |A| denotes the cardinality of a set
A, Ky, is the number of different species among X1, ..., Xy, and X7, ..., X} are the distinct
values of X1,...,X,.

We can also provide predictive distributions for other quantities, most important of which
would be the species of the next observation or the number of new species in a further sample.
But to emphasize what sets our model apart from the previous ones, we focus on results for the
number of species.

We briefly highlight the difference between our model and more classic models, such as the
mixed Poisson model. While both rely on multinomial structures, they are different; in our model,
and in fact for all species sampling models, it is the frequencies of species Pj i which are
modeled conditional on K, but, with the classic models, it is the number of species with the
same number of observations which is modeled conditional on K. If f; x denotes the number of
species with j observations, then K,, = ZJK:() fjxandn = Z]K:O J fj, k- In this way, the sample
size n is random, and this is the practical difference between the classical models and the species

sampling models.
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Species sampling models: consistency for the number of species 5

3. CONSISTENCY

Let Py denote the true population from which the observations X7, X, ... are sampled with
replacement. The observations are discrete, independent and identically distributed random vari-
ables under the probability measure Py. As before, P denotes the probability measure making
(Xi)i>1 an exchangeable sequence directed by (1). Let E denote the expectation with respect to
P, the probability measure that yields the posterior and predictive distributions, while Py gener-
ates the data.

Let kg be the true unknown number of species in the population, that is, the number of possible
outcomes of each X; under Py. We want to find conditions on the law of V; to ensure that the
posterior 7, of K is consistent, that is, lim,_,~ 7, (ko) = 1, Pog—almost surely. Before proceed-
ing, denote T} ; = {(z1,...,7) €ER 1 2; > 0,1 < j <, Zé‘:1 xj < t}, for every t > 0 and

[ > 1. Moreover, let T} = 1} 1, namely, the [-dimensional open simplex.
THEOREM 1. Assume that:

a) T has a finite ko-th moment and m(kg) > 0;
b) the distribution of V1 is absolutely continuous with respect to Lebesgue measure and it has a
density fy, that is positive on (0, M) or on (M, o), for some M > 0;

c) for every | > 2, the density of (P1y, ..., Pi_1;), that is

g, .., 1) = /[o )yl_lfvl (y(1 = Y52 2y) TT2) fua (yay) d, ()

is continuous on Ty_q;

d) each k—dimensional marginal of g, that is

k
g (x,... 1) = gi(xy, ..., —q) dapyq - - - day_q, 4)

T k
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6 P. G. BISSIRI, A. ONGARO AND S.G. WALKER

is continuous on Ty, fork =1,... .l —1landl > 3.

Then the posterior T, is consistent.

COROLLARY 1. Ifthe assumptions of Theorem 1 hold, and 7 admits the (ko + 1)—th moment,

then the Bayes estimator is consistent: lim, - E(K | X1,...,X,) = ko, Po-almost surely.

The proof of the Theorem is deferred to the Appendix. The proof of the Corollary is similar

and is omitted.

4. GIBBS MODELS
4-1.  Gibbs—type priors: definition and main properties

A relevant case for our model is given by the Gibbs—type priors with finitely many species,
studied by Gnedin & Pitman (2006) and Pitman (2006). We shall now introduce them, and we
shall show how they can be used for the estimation of the number of species in a population.

For each integer n > 1, denote by II, the random partition of {1,...,n} generated by
(X1,...,X,) in the sense that any ¢ # j belong to the same partition set if and only if X; = X.
Recall that the probability distribution of a species sampling sequence is characterized by the
marginal distribution « of a single observation and the exchangeable partition probability func-

tions for each n > 1, that is, the probability distribution of the random partition 11,,,

p(na,...,ng) =PI, € {Ar,..., Ak}) =36, ier B (H?:l Pi?.j) :

where {A1,..., Ay} is a partition of {1,...,n}, n; is the cardinality of A;, for j =1,...,k,
n = Z;’?:l n; and E}, is the set of all ordered k-tuples of distinct positive integers. A Gibbs—

type prior is obtained if for each m > 1 the exchangeable partition probability function is
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Species sampling models: consistency for the number of species 7

p(ni,...,nk) = Vok H?Zl(l — 0)n;—1,foreveryn > 1, and some o < 1, where (a), = a(a +
1)---(a+n—1)forany n > 1 and (a)y = 1.

In the case of Gibbs—type priors, the representation (1) with finite & holds true if and only
if o < 0. This is the setup we examine in this paper. Gnedin & Pitman (2006) prove that each
Gibbs—type prior with —oco < o < 0 is such that the conditional distribution of (P, ..., Px_1)
given K is symmetric Dirichlet with K parameters equal to a = |o|. Conditionally on K, the
directing random probability measure is distributed as a two—parameter Poisson—Dirichlet pro-
cess, introduced by Pitman (1995) and widely studied (Priinster & Lijoi, 2009). For a < oo, this
is equivalent to letting {V;} be a sequence of independent and identically distributed random
variables with a common Gamma distribution, having shape parameter a and scale parameter 1.
The limiting case a = +o0 is obtained by taking P;; = 1/k, for every integer £ > 1, namely,
V; = 1forevery j > 1. This model is called coupon collecting by Pitman (2006). The exchange-
able partition probability function depends on (n1, ..., ng, ) only through n and K,. Therefore,
any inference based on this model with a = oo does not take into account the frequencies of the
species observed in the sample.

For finite a, the posterior for K is

n(k)k(k—1)---(k = K, + 1)I'(ka)/I'(n + ka)

(k) = o, 1O — 1) (1 — Ky + 1)D(la)/T(n + la) F=5nT

For this model, two different samples of the same size n and with the same number of distinct
values K, yield the same posterior for K, the same predictive distribution, and clearly also the

same Bayes estimator.

4.2.  Consistency and rate of convergence of the posterior

By Theorem 1, the posterior 7, for this model is consistent. However, in this case, consistency

can be proved directly without resorting to the assumptions of Theorem 1. In particular, no
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8 P. G. BISSIRI, A. ONGARO AND S.G. WALKER

assumption about the existence of the moments of 7 is required. Moreover, it is possible to

obtain the convergence rate of m, (ko). In fact, we can state the following result:

PROPOSITION 1. Let the distribution of (P j, . .., P,—1 ) be symmetric Dirichlet with k pa-

rameters equal to a, for some a > 0 and every integer k > 1. Then m, is consistent and

I'(k 1
(ko) ~ 1= (o) ot ®)

as n diverges Po—almost surely for a < oo, where c(ko) = (1 + ko)m(ko + 1) /7(ko), and

k n
malln) ~ 1= clho) (42 ) ©

as n diverges, Po—almost surely, for a = oc.

The proof of Proposition 1 is deferred to the Appendix.

A similar result for mixture models, where the number of mixtures replaces the number of
species, is obtained by Rousseau & Mengersen (2011). In species sampling models we are inter-
ested in the weights corresponding to distinct locations and not where the locations are. Typically,
in mixture models, when the number of mixtures replaces the number of species, locations are

important.

ACKNOWLEDGEMENT

The authors would like to thank three anonymous reviewers who provided comments and
suggestions on an earlier version of the paper. This work was partially supported by the European

Social Fund and Regione Lombardia within the grant Dote Ricercatori.

APPENDIX

We now state a lemma, whose proof can be obtained by Jacobi’s transformation formula.
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Species sampling models: consistency for the number of species 9

LEMMA 1. If (Wy,...,W)) is (0,00)'—valued random vector with density h with respect to the I—

dimensional Lebesgue measure, then a density for (W1 / 22:1 Wi, ...,Wi—1/ 23:1 Wj, 2221 W) is:

h(tl, cee ,tl—la 8) = Sl_lh(stl, ey Stl_l, 8(1 - Eé_:ll tj)]ITl_lx(O,oo)(tla ces 7tl—17 S)

The following lemma will be useful for the proof of Theorem 1:

LEMMA 2. Assume that w(kg) > 0. The posterior m, is consistent if and only if

E Hko: PP
lim ”g) C(1, ko) ( il J:_) —0. (A1)
nvoe S (ko) E (Hj0=1 PL,’:;)

for every | > 1, where p; is the Po-probability that X is equal to X7, j =1,..., ko, and C(m, k) is the

binomial coefficient of choosing k from m, that is m!/{k!(m — k)!}.

Proof. Let aj, = w(1)l(1—1)---(l — ko + 1)E (H?”Zl P;flpj). Since K, = ko for big n almost

surely,

(ko) ~ akOan/lek‘o agn =1— Zl>k0 An ko {l + Zl>k¢0 alm/ako,n}_lv (A2)

as n — 00, Po—almost surely. Hence, as n diverges, 7, (ko) goes to one if and only if ), ko Qi /Qko.n

goes to zero and the proof is complete. (]

Proof of Theorem 1. For every | > ko, let Sj j, = Zf"zl V;/ 22:1 Vj, for every | > ko, and Z,, =
Si'ko Yn, where Y, = E(ntko—1/2 exp{—n 25021 i In(p;/Pjko)} | Sike)s for every n > 1. Moreover,

it is convenient to rewrite the ratio in (A1):

E(ILL 7)) Elewl-nSiipmmi/Pil] &z, (A3)

E(II PR)  Elew{-n 3, /P B

We shall deal with the numerator and the denominator separately. Let us deal with the denomina-
tor first. By Lemma 1 in the Appendix, gx, is a density for the distribution of (P gy, - - -, Pro—1,k0)-
By hypothesis c), taking [ = ko, such density is continuous on T},_1. Moreover, by hypothesis b), the

support of (P1 k- - - » Pro—1,k,) 1S the (ko — 1)-dimensional closed simplex. In fact, the transformation
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(V1,03 V) — (V1/ Zfozl Vjy oy Ukg—1/ 250:1 v;) maps (0, M]* onto the (ko — 1)-dimensional

simplex and the same is true for [M, 0o)*o, for every M > 0. Hence, the density gy, is positive on Ty, 1.
In particular, this density is positive and continuous in (pi, ..., pk,—1). Therefore, it is possible to

apply the multi-dimensional Laplace method (Hsu, 1948) to obtain:

lim E(Y,) = cagro (D1, - - Pho—1); (A4)

n—oo

where ¢y = (2m)*o=D/2 |1y (py, . .. ,pk0—1)|_1/2 , and hy is the determinant of the Hessian matrix of
. ko— ko —
the function ¢(x1, ..., Tk,—1) = Zj":ll pjln(p;/x;) + pr, In {pko/(l — Zjozll x])} .
By (A3) and (A4), there is a constant c; such that
E (H’?O_ p?”’j)
J=177 _
— < eno-D/2 g exp{—n 250:1 Dj ln(pj/P,J)}} = E(Z,), (A5)
E (szl Pj,ko)

for every n > 1.

A density for (P1 kg, - - > Pro—1,ko+ St.ko ) 1S
9l,ko (xlv cee s Tho—1, 8) = sk07lgl(k0){szla ce ey STho—1, 3(1 - Z;%:;l z])} (Aé)

In fact, Spx, = 250:1 P, P, = Pj,l/Z?:l Pj; for 1 <j <kp, and one can apply Lemma 1

in the Appendix taking W, = P;; (1 < j < kp) to obtain (A6). Hence, a conditional density of

(Pl,k07 PN 7Pk0—1,k0) given Sl,ko is
9l.ko (mh s Lho—1, 5)/§l,k:0 (S)H{gl,ko >O}(S)> (AT)
where g j, is a density for S; i,,. By hypotesis d), (A6) is continuous as a function of (z1,...,Tk,—1)

on Tj,—1 and so is (A7). Moreover, by hypothesis a), (A7) is also positive on Tj,_;. Hence, by the

multi-dimensional Laplace method,

lim Yy, = c2giko (1, - - s Tho—15 St,k0 )/ Gtko (ko (g, 1y (S15y) >0} (A8)

n—oo
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almost surely. Moreover,

E( im Y,) = cagk, (P15 - - > Pro—1)- (A9)

n—oQ

To prove (A9), it is sufficient to verify that:

E{G1,k0 (P1, - - - s Pro—15 St,k0) /G0 (St ko LGy 1y (81 g) >0} F = / Giko (P15 -+ Pho—1, Y)Yy
[071]ﬂ{gl,ko >0}

= Gro (P15 Pho—1)-
This can be done combining (A6), (4) and (3) and then computing the integral by substitution.
Combination of (A4) and (A9) yields that E(lim,,_,c Y,) = lim,,—, o E(Y;,). Since 0 < Z,, < Y, for
every n > 1, and lim,,_,», Z,, = 0, P-almost surely, this fact allow us to apply the Pratt’s lemma (Gut,

2005, page 221-222) to obtain that lim,, ,~, E(Z,,) = 0. Therefore, by (A5),

li PUL= ) (Hﬁilpﬁg —0 A10
(e ) (A1)
;20 Pjky

Since  Sip, <1, the ratio E(H?‘;l Py ) JE (H?‘;IPL’;Z), which is equal to

E (S{fko Hfozl Pfﬁ;) /E (H§0=1 P]",I;;) is bounded by one from above, for every [ > k. Hence,

(L ko)E (T2, P ) / {m (ko) (T3, P ) b < 18 /ot (ko)

for every | > ko and by hypothesis » ko I*o7(1) < oo. Therefore, it is possible to apply the dominated

convergence theorem to obtain (A1) from (A10) and by Lemma 2 the proof is complete. (]

Proof of Proposition 1. Consider first the case of finite a. In this case, E (Hf:1 Pjnl]) =
' (la) H§:1 I'(n; 4+ a)/(T(n+ la)I'(a)¥), for every integer k,I > 1 and every k-tuple (ni,...,ny).

Therefore, the left hand side of (A1) becomes

) w(l) I'(la) T'(n+ koa)
== gk:o 7T(]@‘O)C(l’ko)r(koa) I'(n+la)

(A11)
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As we noted above, for this model, we do not need assumptions about the moments of m, which were
useful to ensure the convergence of the series in (A1) dealing with the general case. In fact, the series in
(A11) converges for large enough n and for any 7, its general term being of order I*0~" as | — oo, by
Stirling’s formula, that is, I'(x) ~ (27)*/22%~1/2¢=% 1 — oo.

At this stage, let us prove consistency. To this aim, note that with ¢, (I) = T'(n + koa)/T'(n + la) for
every n > 1 and every [ > ko, the general term of the series in (A11) depends on n only through ¢, (1),
which is a nonnegative decreasing sequence since ¢, 11(l)/c, (1) = (ako + n)/(al +n) < 1, for every
I > kg. Therefore, one can apply the monotone convergence theorem.

In order to obtain the convergence rate, note that by (A2), mn(ko) ~1— 3, bn(l), as n — oo,
where b, (1) = n(1)C(l, ko)T'(la) /{T (koa)7 (ko) }cn (1), for I > k. Moreover, since the Gamma function

is increasing on (2, 00), for n > 2,

by (1 m(l I I'(la '{n+ (ko +1)a
DB S () T{n+(ko+ D)

ioer bn (o 1) ko+1) (I — ko)l(ko + 1) T{(ko + 1)a}  D(n+la)

I>ko+1
which goes to zero as n diverges, by the monotone convergence theorem. Hence, Zl>k0 b (1) ~
by (ko + 1) and therefore, 7, (ko) ~ 1 — b, (ko + 1), as n diverges, almost surely, that is equal to
1 —c(ko){T(koa + a)/T(n + koa + a) }{T'(n + koa) /T (koa)}. This implies (5) by Stirling’s formula.
At this stage, let d,, (1) = C(l, ko)w(1)kly /{7 (ko)!"}, for every n > 1 and every [ > kq. If a = o0,
then mr,, is consistent since lim, o, I>ko dy,, (1) is zero, by the monotone convergence theorem. In fact,
the series converges for large n, since its general term is of order of /¥~ as [ diverges. Therefore, by

(A2), mp(ko) ~ 1 =3, dn(l). Moreover, >, dn(l) ~ dn(ko + 1) as n — oo, which completes

the proof. g
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