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SUMMARY

This paper considers species sampling models using constructions which arise from Bayesian

nonparametric prior distributions. A discrete random measure, used to generate a species sam-

pling model, can either have a countable infinite number of atoms, which has been the emphasis

in the recent literature, or a finite number of atoms K, while allowing K to be assigned a prior

probability distribution on the positive integers. It is the latter class of model we consider here,

due to the existence and interpretation of K as the number of species. We demonstrate the con-

sistency of the posterior distribution of K as the sample size increases.
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Some key words: Bayesian consistency; Exchangeable random partition; Gibbs–type partition; Species sampling

model.

1. INTRODUCTION

This paper is concerned with species sampling models. The idea we present here is motivated

by recent work appearing in Lijoi et al. (2007, 2008) and Favaro et al. (2009). The problem is

to estimate the number of species in a population, early work on which can be found in many

papers. See, for instance, Efron & Thisted (1976), Hill (1979), Boender & Rinnooy Kan (1987),

Chao & Lee (1992), Chao & Bunge (2002), Chao et al. (2009), Zhang & Stern (2005), Wang &

Lindsay (2005), Wang (2010) and Barger & Bunge (2010).

Lijoi et al. (2007) are predominantly concerned with estimating the number of new species

in a further sample of size m having previously observed a sample of size n. For this, Bayesian

nonparametric models are employed and, specifically, discrete random probability measures are

used, such as the Dirichlet process and the two parameter Poisson–Dirichlet process. More gen-

erally, two classes used are the class of normalized random measures, which are driven by non–

decreasing Lévy processes, and Gibbs-type priors (Lijoi et al., 2008, Favaro et al., 2009). These

models assume that the number of species is infinite, claiming that if the number of species in

the population is large, then it is reasonable to assume that it is infinite (Favaro et al., 2009,

Lijoi et al., 2007). Probably this was done because the mathematics is more attractive for such

models. The model we use here assumes that the number of species K in the population is fi-

nite. Therefore, having assigned a prior for K, we can consider estimating it. Moreover, we can

prove consistency of the posterior. In other words, the sequence of posterior distributions for K

accumulates at the true value as the sample size increases.
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Species sampling models: consistency for the number of species 3

2. THE MODEL

Let K be the random number of species in the population, and let V1, . . . , VK be the absolute

frequencies of the K species in the population, where {Vj} is a sequence of positive, inde-

pendent and identically distributed random variables and {Vj} is independent of K. Given that

there are K species, let P1,K , . . . , PK,K be the relative frequencies of the species in the popula-

tion, namely, Pj,K = Vj/
∑K

l=1 Vl (j = 1, . . . ,K). Clearly, the joint conditional distribution of

P1,K , . . . , PK,K given K is exchangeable and
∑K

j=1 Pj,K = 1.

Now assume that observations Xi (i ≥ 1) take values in a measurable space (X,X ), and that

the observations X1, X2, . . . are sampled from the random probability measure

K∑
j=1

Pj,K δZj , (1)

where {Pj,K : j = 1, . . . ,K} and {Zj} are two independent sequences, the Zj are independent

and identically distributed random variables with values in (X,X ) and the distribution α ofZ1 is

diffuse, that is α{x} = 0 for every x in X. Let the prior π for K be such that π(k) = P(K = k)

is positive for every k ≥ 1, where P is the probability measure that underlines all the random

variables above.

The above model belongs to the class of species sampling models introduced by Pitman

(1996), which has been widely studied in the statistical literature. A species sampling process

is a random probability measure of the form
∑∞

j=1 Pj δZj + (1−
∑∞

j=1 Pj)α, where {Pj} and

{Zj} are two independent sequences of random variables such that Pj ≥ 0 for every j ≥ 1 and∑∞
j=1 Pj ≤ 1, almost surely, the Zj are independent and identically distributed random vari-

ables with values in (X,X ) and α is the distribution of Z1, and it is diffuse. So, the model under

consideration is a species sampling model with finitely many positive weights, as considered by

Ongaro & Cattaneo (2004) and Ongaro (2004, 2005). Whereas we will focus on the posterior
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4 P. G. BISSIRI, A. ONGARO AND S.G. WALKER

distribution of K, Ongaro considered the posterior of the underlying random measure given by

(1).

For our model (1), the posterior for K is

πn(k) = P(K = k | X1, . . . , Xn)

=
π(k)k(k − 1) · · · (k −Kn + 1)E

(∏Kn
j=1 P

nj

j,k

)
∑∞

l=Kn
π(l)l(l − 1) · · · (l −Kn + 1)E

(∏Kn
j=1 P

nj

j,l

)I{k≥Kn},

(2)

where nj =
∣∣∣{i = 1, . . . , n : Xi = X∗j }

∣∣∣ , for j = 1, . . . ,Kn, |A| denotes the cardinality of a set

A, Kn is the number of different species among X1, . . . , Xn, and X∗1 , . . . , X
∗
Kn

are the distinct

values of X1, . . . , Xn.

We can also provide predictive distributions for other quantities, most important of which

would be the species of the next observation or the number of new species in a further sample.

But to emphasize what sets our model apart from the previous ones, we focus on results for the

number of species.

We briefly highlight the difference between our model and more classic models, such as the

mixed Poisson model. While both rely on multinomial structures, they are different; in our model,

and in fact for all species sampling models, it is the frequencies of species Pj,K which are

modeled conditional on K, but, with the classic models, it is the number of species with the

same number of observations which is modeled conditional on K. If fj,K denotes the number of

species with j observations, thenKn =
∑K

j=0 fj,K and n =
∑K

j=0 jfj,K . In this way, the sample

size n is random, and this is the practical difference between the classical models and the species

sampling models.
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Species sampling models: consistency for the number of species 5

3. CONSISTENCY

Let P0 denote the true population from which the observations X1, X2, . . . are sampled with

replacement. The observations are discrete, independent and identically distributed random vari-

ables under the probability measure P0. As before, P denotes the probability measure making

(Xi)i≥1 an exchangeable sequence directed by (1). Let E denote the expectation with respect to

P, the probability measure that yields the posterior and predictive distributions, while P0 gener-

ates the data.

Let k0 be the true unknown number of species in the population, that is, the number of possible

outcomes of each Xi under P0. We want to find conditions on the law of V1 to ensure that the

posterior πn of K is consistent, that is, limn→∞ πn(k0) = 1, P0–almost surely. Before proceed-

ing, denote Tl,t = {(x1, . . . , xl) ∈ Rl : xj > 0, 1 ≤ j ≤ l,
∑l

j=1 xj < t}, for every t > 0 and

l ≥ 1. Moreover, let Tl = Tl,1, namely, the l–dimensional open simplex.

THEOREM 1. Assume that:

a) π has a finite k0-th moment and π(k0) > 0;

b) the distribution of V1 is absolutely continuous with respect to Lebesgue measure and it has a

density fV1 that is positive on (0,M) or on (M,∞), for some M > 0;

c) for every l ≥ 2, the density of (P1,l, . . . , Pl−1,l), that is

gl(x1, . . . , xl−1) =

∫
[0,∞)

yl−1fV1(y(1−
∑l−1

j=1 xj))
∏l−1

j=1 fV1(yxj) dy, (3)

is continuous on Tl−1;

d) each k–dimensional marginal of gl, that is

g
(k)
l (x1, . . . , xk) =

∫
T
l−1−k,1−

∑k

j=1
xj

gl(x1, . . . , xl−1) dxk+1 · · · dxl−1, (4)
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6 P. G. BISSIRI, A. ONGARO AND S.G. WALKER

is continuous on Tk, for k = 1, . . . , l − 1 and l ≥ 3.

Then the posterior πn is consistent.

COROLLARY 1. If the assumptions of Theorem 1 hold, and π admits the (k0 + 1)–th moment,

then the Bayes estimator is consistent: limn→∞ E(K | X1, . . . , Xn) = k0, P0-almost surely.

The proof of the Theorem is deferred to the Appendix. The proof of the Corollary is similar

and is omitted.

4. GIBBS MODELS

4·1. Gibbs–type priors: definition and main properties

A relevant case for our model is given by the Gibbs–type priors with finitely many species,

studied by Gnedin & Pitman (2006) and Pitman (2006). We shall now introduce them, and we

shall show how they can be used for the estimation of the number of species in a population.

For each integer n ≥ 1, denote by Πn the random partition of {1, . . . , n} generated by

(X1, . . . , Xn) in the sense that any i 6= j belong to the same partition set if and only ifXi = Xj .

Recall that the probability distribution of a species sampling sequence is characterized by the

marginal distribution α of a single observation and the exchangeable partition probability func-

tions for each n ≥ 1, that is, the probability distribution of the random partition Πn,

p(n1, . . . , nk) = P(Πn ∈ {A1, . . . , Ak}) =
∑

(i1,...,ik)∈Ek
E
(∏k

j=1 P
nj

ij

)
,

where {A1, . . . , Ak} is a partition of {1, . . . , n}, nj is the cardinality of Aj , for j = 1, . . . , k,

n =
∑k

j=1 nj and Ek is the set of all ordered k-tuples of distinct positive integers. A Gibbs–

type prior is obtained if for each n ≥ 1 the exchangeable partition probability function is
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p(n1, . . . , nk) = Vn,k
∏k

j=1(1− σ)nj−1, for every n ≥ 1, and some σ < 1, where (a)n = a(a+

1) · · · (a+ n− 1) for any n ≥ 1 and (a)0 = 1.

In the case of Gibbs–type priors, the representation (1) with finite K holds true if and only

if σ < 0. This is the setup we examine in this paper. Gnedin & Pitman (2006) prove that each

Gibbs–type prior with −∞ < σ < 0 is such that the conditional distribution of (P1, . . . , PK−1)

given K is symmetric Dirichlet with K parameters equal to a = |σ|. Conditionally on K, the

directing random probability measure is distributed as a two–parameter Poisson–Dirichlet pro-

cess, introduced by Pitman (1995) and widely studied (Prünster & Lijoi, 2009). For a <∞, this

is equivalent to letting {Vj} be a sequence of independent and identically distributed random

variables with a common Gamma distribution, having shape parameter a and scale parameter 1.

The limiting case a = +∞ is obtained by taking Pj,k = 1/k, for every integer k ≥ 1, namely,

Vj = 1 for every j ≥ 1. This model is called coupon collecting by Pitman (2006). The exchange-

able partition probability function depends on (n1, . . . , nKn) only through n and Kn. Therefore,

any inference based on this model with a =∞ does not take into account the frequencies of the

species observed in the sample.

For finite a, the posterior for K is

πn(k) =
π(k)k(k − 1) · · · (k −Kn + 1)Γ(ka)/Γ(n+ ka)∑
l≥Kn

π(l)l(l − 1) · · · (l −Kn + 1)Γ(la)/Γ(n+ la)
I{k≥Kn}.

For this model, two different samples of the same size n and with the same number of distinct

values Kn yield the same posterior for K, the same predictive distribution, and clearly also the

same Bayes estimator.

4·2. Consistency and rate of convergence of the posterior

By Theorem 1, the posterior πn for this model is consistent. However, in this case, consistency

can be proved directly without resorting to the assumptions of Theorem 1. In particular, no
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assumption about the existence of the moments of π is required. Moreover, it is possible to

obtain the convergence rate of πn(k0). In fact, we can state the following result:

PROPOSITION 1. Let the distribution of (P1,k, . . . , Pk−1,k) be symmetric Dirichlet with k pa-

rameters equal to a, for some a > 0 and every integer k ≥ 1. Then πn is consistent and

πn(k0) ∼ 1− c(k0)
Γ(k0a+ a)

Γ(k0a)

1

na
, (5)

as n diverges P0–almost surely for a <∞, where c(k0) = (1 + k0)π(k0 + 1)/π(k0), and

πn(k0) ∼ 1− c(k0)
(

k0
1 + k0

)n

, (6)

as n diverges, P0–almost surely, for a =∞.

The proof of Proposition 1 is deferred to the Appendix.

A similar result for mixture models, where the number of mixtures replaces the number of

species, is obtained by Rousseau & Mengersen (2011). In species sampling models we are inter-

ested in the weights corresponding to distinct locations and not where the locations are. Typically,

in mixture models, when the number of mixtures replaces the number of species, locations are

important.
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APPENDIX

We now state a lemma, whose proof can be obtained by Jacobi’s transformation formula.
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LEMMA 1. If (W1, . . . ,Wl) is (0,∞)l–valued random vector with density h with respect to the l–

dimensional Lebesgue measure, then a density for (W1/
∑l
j=1Wj , . . . ,Wl−1/

∑l
j=1Wj ,

∑l
j=1Wj) is:

h̄(t1, . . . , tl−1, s) = sl−1h(st1, . . . , stl−1, s(1−
∑l−1
j=1 tj)ITl−1×(0,∞)(t1, . . . , tl−1, s).

The following lemma will be useful for the proof of Theorem 1:

LEMMA 2. Assume that π(k0) > 0. The posterior πn is consistent if and only if

lim
n→∞

∑
l>k0

π(l)

π(k0)
C(l, k0)

E
(∏k0

j=1 P
npj
j,l

)
E
(∏k0

j=1 P
npj
j,k0

) = 0. (A1)

for every l ≥ 1, where pj is the P0-probability that X1 is equal to X∗j , j = 1, . . . , k0, and C(m, k) is the

binomial coefficient of choosing k from m, that is m!/{k!(m− k)!}.

Proof. Let al,n = π(l)l(l − 1) · · · (l − k0 + 1)E
(∏k0

j=1 P
npj
j,l

)
. Since Kn = k0 for big n almost

surely,

πn(k0) ∼ ak0,n/
∑
l≥k0 al,n = 1−

∑
l>k0

al,n/ak0,n{1 +
∑
l>k0

al,n/ak0,n}−1, (A2)

as n→∞, P0–almost surely. Hence, as n diverges, πn(k0) goes to one if and only if
∑
l>k0

al,n/ak0,n

goes to zero and the proof is complete. �

Proof of Theorem 1. For every l > k0, let Sl,k0 =
∑k0
j=1 Vj/

∑l
j=1 Vj , for every l > k0, and Zn =

Snl,k0Yn, where Yn = E(n(k0−1)/2 exp{−n
∑k0
j=1 pj ln(pj/Pj,k0)} | Sl,k0), for every n ≥ 1. Moreover,

it is convenient to rewrite the ratio in (A1):

E
(∏k0

j=1 P
npj
j,l

)
E
(∏k0

j=1 P
npj
j,k0

) =
E
[
exp{−n

∑k0
j=1 pj ln(pj/Pj,l)}

]
E
[
exp{−n

∑k0
j=1 pj ln(pj/Pj,k0)}

] =
E(Zn)

E(Yn)
. (A3)

We shall deal with the numerator and the denominator separately. Let us deal with the denomina-

tor first. By Lemma 1 in the Appendix, gk0 is a density for the distribution of (P1,k0 , . . . , Pk0−1,k0).

By hypothesis c), taking l = k0, such density is continuous on Tk0−1. Moreover, by hypothesis b), the

support of (P1,k0 , . . . , Pk0−1,k0) is the (k0 − 1)-dimensional closed simplex. In fact, the transformation
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(v1, . . . , vk0) −→ (v1/
∑k0
j=1 vj , . . . , vk0−1/

∑k0
j=1 vj) maps (0,M ]k0 onto the (k0 − 1)–dimensional

simplex and the same is true for [M,∞)k0 , for every M > 0. Hence, the density gk0 is positive on Tk0−1.

In particular, this density is positive and continuous in (p1, . . . , pk0−1). Therefore, it is possible to

apply the multi–dimensional Laplace method (Hsu, 1948) to obtain:

lim
n→∞

E(Yn) = c2gk0(p1, . . . , pk0−1), (A4)

where c2 = (2π)(k0−1)/2 |hφ(p1, . . . , pk0−1)|−1/2
, and hφ is the determinant of the Hessian matrix of

the function φ(x1, . . . , xk0−1) =
∑k0−1
j=1 pj ln(pj/xj) + pk0 ln

{
pk0/(1−

∑k0−1
j=1 xj)

}
.

By (A3) and (A4), there is a constant c1 such that

E
(∏k0

j=1 P
npj
j,l

)
E
(∏k0

j=1 P
npj
j,k0

) ≤ c1n(k0−1)/2 E
[
exp{−n

∑k0
j=1 pj ln(pj/Pj,l)}

]
= c1 E (Zn) , (A5)

for every n ≥ 1.

A density for (P1,k0 , . . . , Pk0−1,k0 , Sl,k0) is

gl,k0(x1, . . . , xk0−1, s) = sk0−1g
(k0)
l {sx1, . . . , sxk0−1, s(1−

∑k0−1
j=1 xj)}. (A6)

In fact, Sl,k0 =
∑k0
j=1 Pj,l, Pj,k0 = Pj,l/

∑k0
j=1 Pj,l for 1 ≤ j ≤ k0, and one can apply Lemma 1

in the Appendix taking Wj = Pj,l (1 ≤ j ≤ k0) to obtain (A6). Hence, a conditional density of

(P1,k0 , . . . , Pk0−1,k0) given Sl,k0 is

gl,k0(x1, . . . , xk0−1, s)/ḡl,k0(s)I{ḡl,k0
>0}(s), (A7)

where ḡl,k0 is a density for Sl,k0 . By hypotesis d), (A6) is continuous as a function of (x1, . . . , xk0−1)

on Tk0−1 and so is (A7). Moreover, by hypothesis a), (A7) is also positive on Tk0−1. Hence, by the

multi–dimensional Laplace method,

lim
n→∞

Yn = c2gl,k0(x1, . . . , xk0−1, Sl,k0)/ḡl,k0(Sl,k0)I{ḡl,k0
(Sl,k0

)>0}, (A8)
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almost surely. Moreover,

E( lim
n→∞

Yn) = c2gk0(p1, . . . , pk0−1). (A9)

To prove (A9), it is sufficient to verify that:

E{gl,k0(p1, . . . , pk0−1, Sl,k0)/ḡl,k0(Sl,k0)I{ḡl,k0
(Sl,k0

)>0}} =

∫
[0,1]∩{ḡl,k0

>0}
gl,k0(p1, . . . , pk0−1, y)dy

= gk0(p1, . . . , pk0−1).

This can be done combining (A6), (4) and (3) and then computing the integral by substitution.

Combination of (A4) and (A9) yields that E(limn→∞ Yn) = limn→∞ E(Yn). Since 0 ≤ Zn ≤ Yn,for

every n ≥ 1, and limn→∞ Zn = 0, P–almost surely, this fact allow us to apply the Pratt’s lemma (Gut,

2005, page 221–222) to obtain that limn→∞ E(Zn) = 0. Therefore, by (A5),

lim
n→∞

E
(∏k0

j=1 P
npj
j,l

)
E
(∏k0

j=1 P
npj
j,k0

) = 0. (A10)

Since Sl,k0 ≤ 1, the ratio E
(∏k0

j=1 P
npj
j,l

)
/E
(∏k0

j=1 P
npj
j,k0

)
, which is equal to

E
(
Snl,k0

∏k0
j=1 P

npj
j,k0

)
/E
(∏k0

j=1 P
npj
j,k0

)
is bounded by one from above, for every l > k0. Hence,

C(l, k0)E
(∏k0

j=1 P
npj
j,l

)
/
{
π(k0)E

(∏k0
j=1 P

npj
j,k0

)}
≤ lk0/{k0!π(k0)},

for every l > k0 and by hypothesis
∑
l>k0

lk0π(l) <∞. Therefore, it is possible to apply the dominated

convergence theorem to obtain (A1) from (A10) and by Lemma 2 the proof is complete. �

Proof of Proposition 1. Consider first the case of finite a. In this case, E
(∏k

j=1 P
nj

j,l

)
=

Γ(la)
∏k
j=1 Γ(nj + a)/

(
Γ(n+ la)Γ(a)k

)
, for every integer k, l ≥ 1 and every k-tuple (n1, . . . , nk).

Therefore, the left hand side of (A1) becomes

lim
n→∞

∑
l>k0

π(l)

π(k0)
C(l, k0)

Γ(la)

Γ(k0a)

Γ(n+ k0a)

Γ(n+ la)
. (A11)
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As we noted above, for this model, we do not need assumptions about the moments of π, which were

useful to ensure the convergence of the series in (A1) dealing with the general case. In fact, the series in

(A11) converges for large enough n and for any π, its general term being of order lk0−n as l→∞, by

Stirling’s formula, that is, Γ(x) ∼ (2π)1/2xx−1/2e−x, x→∞.

At this stage, let us prove consistency. To this aim, note that with cn(l) = Γ(n+ k0a)/Γ(n+ la) for

every n ≥ 1 and every l > k0, the general term of the series in (A11) depends on n only through cn(l),

which is a nonnegative decreasing sequence since cn+1(l)/cn(l) = (ak0 + n)/(al + n) < 1, for every

l > k0. Therefore, one can apply the monotone convergence theorem.

In order to obtain the convergence rate, note that by (A2), πn(k0) ∼ 1−
∑
l>k0

bn(l), as n→∞,

where bn(l) = π(l)C(l, k0)Γ(la)/{Γ(k0a)π(k0)}cn(l), for l > k0. Moreover, since the Gamma function

is increasing on (2,∞), for n ≥ 2,

∑
l>k0+1

bn(l)

bn(k0 + 1)
≤

∑
l>k0+1

π(l)

π(k0 + 1)

l!

(l − k0)!(k0 + 1)

Γ(la)

Γ{(k0 + 1)a}
Γ{n+ (k0 + 1)a}

Γ(n+ la)
,

which goes to zero as n diverges, by the monotone convergence theorem. Hence,
∑
l>k0

bn(l) ∼

bn(k0 + 1) and therefore, πn(k0) ∼ 1− bn(k0 + 1), as n diverges, almost surely, that is equal to

1− c(k0){Γ(k0a+ a)/Γ(n+ k0a+ a)}{Γ(n+ k0a)/Γ(k0a)}. This implies (5) by Stirling’s formula.

At this stage, let dn(l) = C(l, k0)π(l)kn0 /{π(k0)ln}, for every n ≥ 1 and every l > k0. If a =∞,

then πn is consistent since limn→∞
∑
l>k0

dn(l) is zero, by the monotone convergence theorem. In fact,

the series converges for large n, since its general term is of order of lk0−n as l diverges. Therefore, by

(A2), πn(k0) ∼ 1−
∑
l>k0

dn(l). Moreover,
∑
l>k0

dn(l) ∼ dn(k0 + 1) as n→∞, which completes

the proof. �
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