THE VALUE OF EARLY GLASGOW COMA SCALE AND PUPILS CHANGES ON OUTCOME IN TRAUMATIC BRAIN INJURED PATIENTS.

S.M. Colombo^{*}, A. Vargiolu[°], M.G. Abate[°], <u>P.C. Volpi</u>^{*}, E.M.A. Mantovani^{*}, L. Beretta[#], N. Stocchetti[§], G. Citerio^{*,°}.

*School of Medicine and Surgery, University of Milan–Bicocca, Milan, Italy; [°]Neurointensive Care, Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy; [#]Neurointensive Care IRCCS Ospedale San Raffaele, Milan; [§]Neurointensive Care Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.

Introduction

Low Glasgow Coma Scale (GCS) score and early neuroworsening after traumatic brain injury (TBI) are associated with poorer outcome.

Objectives

To examine the influence of early trajectories (deterioration vs. improvement) on 6-months outcome after TBI.

Materials and Methods

Multicenter data from 2261 patients admitted in 3 NeuroIntensive Care Units (NICU) were prospectively collected from 1997 until 2012. Detailed prehospital, hospital admission and outcome data have been analyzed. Lost to follow up and "mistakenly severe"¹ patients have been excluded from the database leaving 1950 patients available for statistical analysis. We explored the association between the initial motor GCS, pupils reactivity and their changes until admission and dichotomized outcome (Glasgow Outcome Scale (GOS); favorable = 4-5; unfavorable = 1-3). We also described CT scan findings and need of urgent neurosurgery in neuroimproved (GCSm ≥ 2 points and/or normalization of pupils), neuroworsened (GCSm ≤ 2 points and/or pathological variation of pupils) and stable course (GCSm ± 1 point and no variation of pupils).

Results

Results are resumed in the two tables below.

		OUTO		
	Course	Fav (N, %)	Unfav (N, %)	p value
GCSm	Improved	188 (53.1)	166 (46.9)	
	Stable	701 (51.8)	652 (48.2)	0.0116
	Worsened	106 (43.6)	137 (56.4)	
Pupils	Improved	52 (45.6)	62 (54.4)	
	Stable	827 (52.7)	741 (47.3)	0.0433
	Worsened	72 (41.8)	100 (58.2)	
Neurological state	Improved	225 (52.3)	205 (47.7)	
	Stable	618 (52.6)	557 (47.4)	0.0170
	Worsened	152 (44)	193 (56)	

Table 1. Trajectories of GCS and pupilscompared to outcome

		CLINICAL NEUROLOGICAL TRAJECTORIES			
	Categories	Impr (N, %)	Stab (N, %)	Wors (N, %)	p value
CT Marshall	1 - 4	240 (55.8)	584 (49.7)	105 (31.9)	< 0.0001
	5 - 6	190 (44.2)	591 (50.3)	240 (68.1)	
Neurosurgery	Yes	138 (36.1)	451 (42.4)	193 (60.3)	< 0.0001
	No	244 (63.9)	613 (57.6)	127 (39.7)	
Age	0 - 29	153 (38.2)	364 (34.6)	91 (29.4)	
	29 - 54	140 (35.0)	320 (30.5)	80 (25.9)	< 0.0001
	54 - 94	107 (26.8)	366 (34.9)	138 (44.7)	

Table 2. Characteristics of population comparedto Clinical Neurological trajectories

Discussion

Early trajectories of neurological state are associated with 6-months outcome.

¹Stocchetti et al. J Neurotruma (2004); 21(9): 1131-1140