
Profiling Similarity Links in Linked Open Data
Blerina Spahiu∗, Cheng Xie†, Anisa Rula∗, Andrea Maurino∗, Hongming Cai†

∗University of Milano - Bicocca
{spahiu, rula, maurino}@disco.unimib.it
†Shanghai Jiao Tong University
{chengxie, hmcai}@sjtu.edu.cn

Abstract—Usually the content of the dataset published as LOD
is rather unknown and data publishers have to deal with the
challenge of interlinking new knowledge with existing datasets.
Although there exist tools to facilitate data interlinking, they
use prior knowledge about the datasets to be interlinked. In
this paper we present a framework to profile the quality of
owl:sameAs property in the Linked Open Data cloud and
automatically discover new similarity links giving a similarity
score for all the instances without prior knowledge about the
properties used. Experimental results demonstrate the usefulness
and effectiveness of the framework to automatically generate new
links between two or more similar instances.

I. INTRODUCTION

The idea behind Linked Open Data (LOD) is that datasets
should be linked in order to promote interoperability and
integration among large data collections on the Web [4].
Data interlinking focuses on identifying equivalent entities by
determining the similarity between their entity descriptions to
represent the fact that they refer to the same real world entity
in a given domain. This similarity between two entities often
is represented by using the standard owl:sameAs property.

In the context of LOD 2014 [14], we count 1,532,323
owl:sameAs triples. DBpedia is the dataset with the highest
number of owl:sameAs triples (792,268) followed by rd-
fize.com (215,716), ontologycentral.com (166,020) and linked-
statistics.org(144,543). From this first analysis we may deduce
that datasets in the LOD cloud are sparsely connected due
to the fact that, usually, data publishers are not aware about
the content of the datasets and thus the task of interlinking
is not straightforward since it requires previous knowledge
on the content of the datasets. In LOD cloud the resource
nyt:881848324977853829911 from the NYTimes dataset is
linked through the sameAs property with dbpedia:Senegal2.
The first resource describes Woods Hole, a place in the town
of Falmouth in Barnstable County, Massachusetts, US, while
the second describes Senegal, a country in Africa. These
two resources have wrong sameAs links because they do
not represent the same entity in the real world. Also in
the current LOD cloud gn:2964180/gaillimh.html3 belonging
to GeoNames dataset and the resource in LinkedGeoData
lgdo:node5820433194 are not linked with the sameAs property
even though they refer to the same city in Ireland, Galway.

1ny - http://data.nytimes.com/
2dbpedia - http://dbpedia.org/resource/
3gn - http://geonames.org
4lgdo - http://linkegeodata.org/tiplify/

The problem of finding similar objects among heteroge-
neous data sources is a well studied problem in the Semantic
Web Community. This task is performed on the basis of the
evaluation of the degree of similarity among descriptions of
entities. Two survey papers review and summarize the ap-
proaches on data interlinking [16], [17]. The work presented in
this paper attempts to exploit the actual state of owl:sameAs
links in the cloud, and investigate to which extent we can auto-
matically find other similar pairs in the datasets without prior
knowledge about their content. This will help applications built
on top of LOD datasets to discover more links for the same
entity, thus enriching the information about an instance with
other properties found in other datasets. To achieve this goal,
we developed a framework to identify ambiguities and suggest
possible inconsistencies and incompleteness. The framework
implements two similarity finding techniques one for string
similarity and one for numeric similarity, to analyze the quality
of existing links and propose new ones to resolve the identified
ambiguities. First, we extract all properties for instances which
have an owl:sameAs property between two datasetes in the
cloud and transform them into tables. Secondly, we calculate a
similarity score comparing each row between tables of datasets
we want to find similar entities. We consider a similarity
threshold greater than 0.9 for the instances to be categorised
as similar. and test our framework on 13 LOD datasets.

This work provides contributions to: (1) a framework to
automatically find similar pairs between datasets published
as LOD, (2) an evaluation model to estimate the quality of
existing sameAs links.

The rest of this paper is organized as follows: Section II
discusses the approach to automatically find similar pairs
between datasets; Section III introduces the experiments to
evaluate the effectiveness and usefulness of the framework.
Related work is discussed in Section IV. In Section V we
draw conclusions and future work.

II. OVERVIEW OF THE APPROACH

The problem of discovering same entities in different
datasets is quite well known in record linkage [5] and ontology
matching community [2]. The proposed approach to discover
links between datasets in LOD is shown in Figure 1.

Our approach consists of four processes: i) Data Collection;
ii) Data Preparation; iii) Similarity Model; and iv) Linkage
Discovery. In the following we describe each process in detail.



Fig. 1. Pipeline for similar entities finding in LOD

A. Data Collection

To evaluate the quality of owl:sameAs links we consider
datasets from the LOD cloud 20145. While the subject is
considered to be internal to the dataset for which we want to
find similar links, the object may be internal or external to this
dataset. For each RDF triple we check if the extracted object
is a resource or not. In case of a resource, the description of
this resource occurring at subject position is also collected in
order to have the complete information between the subject
and the object linked through an owl:sameAs property.

B. Data Preparation

As our aim is to automatize the process of similar instance
finiding it is more easy to work with tables rather than with
triples. Similarity between instances can be seen as a problem
of finding similar rows between different tables of different
datasets. The idea of ”DBpedia as Tables”6 inspired us to
analogously create our matching tables. For each class we
create one table. Figure 2 shows how to create Linked Data
as Tables. As an example, we consider two instances of the
class State from GeoNames dataset, named Salvador
and Norway having many properties (illustrated by arrows)
and their corresponding values (illustrated by squares). We
transpose this information into tables where in the first row,
the local name of the properties are places, while the first
column contains the URIs of the instances and the remaining
cells contain the values for each property for the corresponding
class. Once we built the tables we check if instances have
more than four properties. If not they are removed from the
tables. We create the LabelLike group which comprises the
following properties: label, name, title, text, comment, subject
and abstract. For each instance, we check if it has at least
one property belonging to the LabelLike group. If instances
do not have one of those properties, they are not considered
for similarity calculations, because it is very difficult even for
humans to find similar instances if they do not share at least
one of the values for the properties in LabelLike group and if
the number of properties is very low.

5http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/
6http://wiki.dbpedia.org/services-resources/downloads/dbpedia-tables

C. Similarity Model
All string property values are tokenized at special characters

such as: /, , :, ;, # and at capital letters. We use two
formulas to calculate the similarity for properties value: String
Similarity and Numeric Similarity.

1) String Similarity: For each cell containing a string value
we used the following formula to calculate the similarity score
[3]:

S(s, l) =

∑|s|
i=1 Max{Edit(s[i], l[1..|l|])}

|s|+ |l| −
∑|s|

i=1 Max{Edit(s[i], l[1..|l|])}
(1)

where s and l are string sets, s refers to the shortest set
while l refers to the longest set. S(s, l) gives the similarity
score between set s and l. Edit(s[i], l[1..|l|]) calculates the
similarity between s[i], where i=0,...n and n is the number of
strings in the set to all elements in l by using Levenshtein
distance metrics. Max{Edit(s[i], l[1..|l|])} has a value from
[0,1]. In Figure 3, the property geo:alternateName has two
values. In cases when a property has more than one value
the similarity is calculated for each of them. In this example
two values of the property alternateName, from Geonames
dataset are, Salvador de Bahia | Sao Salvador. In LinkedGeo
dataset the value of the property label is Salvador. In the above
formula the shortest set s(i) is Salvador equal to 1, while the
longest set l(l) is Salvador de Bahia | Sao Salvador equal to 2.
We use Levenshtain distance to measure the similarity score
between the values Salvador de Bahia and Sao Salvador from
GeoNames and Salvador from LinkedGeoData, respectively
0.3 and 0.67. In the numerator part of the formula we select
the maximum value between them, which in our example is
0.67. The denominator is equal to 2.23 (as s=2, l=1and Max
Edit = 0.67). The similarity score between the values for the
property alternateName and label is 0.3 (0.67/2.23). In the
same way, we iterate through all the values of the cells. Note
that we do not make an aligment between the headers of the
tables when we calculate the similarity score.

2) Numeric Similarity: For each cell with a numeric value
we used the following formula to measure the similarity score:

S(n1, n2) =

{
0, if |n1 − n2| > Min{RanOf(n1), RanOf(n2)}

1−
|n1 − n2|

Min{RanOf(n1), RanOf(n2)}
,



Fig. 2. Linked Data as Tables

where n1 is the numerical value of the cell in one table, and
n2 is the numerical value of the cell in the other table. The
RanOf gives the value range of the numerical values in that
column. This formula helps us to compare different numerical
values. As we are not aware about the properties that are being
compared, sometimes the comparison is not straightforward.
For instance, comparing only numerical values can be ambigu-
ous, e.g. the coordinates with population. Suppose to find in a
table a cell with the value 34.6458201 and a cell in the other
table containing the value 346,458,201. Using the formula (2)
for numeric similarity we can deduce that the similarity is
0 because n1 - n2 is 346458166,3541799 which is greater
than the minimum value range of both columns. Therefore,
these two cells cannot be compared. The similarity score
between –12.97111111 from GeoNames and –12.9816356E1
from LinkedGeo using formula (2), is 0.998.

3) Aggregation: To calculate the similarity score between
two instances (two different rows in tables), we consider only
property values, for which the similarity score is greater than
0.9. Thus, in the example above to calculate the similarity
score between the first instance of the GeoNames dataset and
the first instance of the LinkedGeoData dataset, we consider
only the cells with the values Salvador, –12.9816356E1 and
–3.8482077100000005E1. Respectively for these values, the
similarity score is, 1, 0.998, 0.999. To calculate the similarity
score for these two instances we aggregate the similarity
score of each cell weighting all values using the geometric
progression of 75% increase. We use this aggregation model
to reward the properties for which the similarity value is grater
than 0.9. If only one cell has the similarity score greater
than 0.9 then for the aggregation, this score is multiplied
by 0.75. If two cells have similarity score greater than 0.9,
then their score is multiplied by (0.75 + 0.75*0.25)/2. If
three columns have similarity score greater than 0.9 their
score is multiplied by (0.75 + 0.75*0.25 + 0.75*0.0625)/3.

The similarity score of the first instance of the GeoNames
dataset and the first instance of the LinkedGeoData dataset
is equal to ((1+0.998+0.999)/3)*0.9843 = 0.9833. Note that
the number of properties value with similarity score greater
than 0.9 and the aggreegated score are tunnable parameters.
The more properties with similarity score greater than 0.9
can contribute to the aggregated score, the more confident we
are to categorise these instances as similar. Also, the greater
the threshold for cell similarity, the more confident we are to
categorise these two instance as similar.

D. Linkage Discovery

After calculating the similarity score for each instance, we
consider as sameAs instances, those for which the agregated
similarity score is greater than 0.9. We trained different values
for this threshold as shown in Figure 4 and we can observe
that for a threshold equal to 0.9 our approach reaches the
best performance, where precision has the highest value with
respect to recall and F-measure. Our framework is precision
oriented. In this step of the approach, we discover sameAs
links, filtering only those instances with agregated similarity
score greater than 0.9.

III. EVALUATION

A. Dataset and Gold Standard

Dataset. To evaluate our framework we used the datasets
and the data interlinking information in LOD cloud 2014. For
our experiments we consider GeoNames from the geographic
domain as the dataset for which we want to find similar
instances. The number of outdegree links from this dataset
to the other datasets is 20, while the number of indegree
links from other datasets to GeoNames is 134 [14]. In the
LOD cloud, GeoNames has 7135 sameAs links (incoming and
outgoing).

Gold Standard. We consider as Gold Standard (GS) the
owl:sameAs links between GeoNames and other datasets



Fig. 3. Instance Similarity Finding

Fig. 4. Framework performance tunning similarity threshold

that already exist in LOD cloud7. The first column of the
Table I shows the distribution of owl:sameAs links for the
experimantal datasets in the current state of the LOD cloud.

B. Results

As described in Section II, we initially extract 5,890 triples
having owl:sameAs property, where the subject is from
GeoNames dataset and the object is from other datasets. For
each triple we check if the object is a resource or not. If yes,
we also extract the information for that resource appearing in
the subject position of any triple in the cloud. The number
of overall extracted triples are 587,985. For each instance in
owl:sameAs triples we check how many properties it has.
We do not consider those instances for which the number of
properties is smaller than four and do not have a property from
the LabelLike group. We consider this requirenment because
it is very difficult even for humans to decide if two resources
are the same, having only four properties and none of them

7nytimes.com, europa.eu, geovocab.org, linkedmdb.org, didactalia.net,
linkedgeodata.org, lexvo.org, dbpedia.org, 270a.info, lenka.no

being from LabelLike group. After applying these filters in
our experimental data we have 1,798 owl:sameAs that link
to 610 distinct instances from GeoNames and 1,798 instances
from target datasets. Triples are then transposed into tables
as described in Section 2.2. We conduct two experiments to
evaluate our framework. In the first experiment we consider
as target only those datasets which GeoNames has at least
one owl:sameAs property, while in the second experiment
we randomly select and add in the experimental data triples
from these datasets, such that there are no owl:sameAs links
between them and GeoNames.

a) GeoNames with other datasets where at least one
owl:sameAs link exist: In the first experiment we eval-
uate the framework for finding similar instances between
GeoNames and all the other datasets where at least one
owl:sameAs link exists. In the Gold Standard there are
1,798 owl:sameAs instances between these datasets. Our
framework generates 1,333 links as True Positive, 127 links
as False Positive and 465 links as True Negative. In terms
of precision, recall and F- measure the framework returns the
following results: Precision (P) = 0.91, Recall (R) = 0.74 and
F-measure (F) = 0.82.

b) GeoNames with other datasets where at least one
or no owl:sameAs link exists: In the second experiment
we evaluate the framework to find similar links between
GeoNames with all the others datasets adding some noise
in the experimental data. The noise consist of triples from
13 different datasets. We added triples from the datasets
from the first experiment and also triples from three other
datasets (ordnancesurvey.co.uk; fao.org and ucd.ie), where no
owl:sameAs links exist in the Gold Standard. We add
these triples to evaluate if our framework would be able to
find similar links between GeoNames dataset and the triples
considered to be noise. Our framework generate 1,333 links
as True Positive and 277 as False Positive. Table I shows



TABLE I
DISTRIBUTION OF SAMEAS LINKS IN GOLD STANDARD AND FRAMEWORK

RESULTS

Dataset GS TP FP TP* FP*
nytimes.com 497 460 4 462 2
europa.eu 719 679 97 770 6
geovocab.org 16 0 91 65 25
linkedmdb.org 11 9 0 9 0
didactalia.net 10 0 0 0 0
linkedgeodata.org 45 31 18 46 3
lexvo.org 97 18 1 19 0
dbpedia.org 227 127 23 131 19
270a.info 175 9 0 9 0
lenka.no 1 0 1 1 0
ordnancesurvey.co.uk 0 0 30 14 16
fao.org 0 0 10 10 0
ucd.ie 0 0 2 2 0
Gold Standard (GS), True Positive (TP), False Positive (FP), Verified True Positive (TP*), Verified False Positive (FP*).

the distribution of the links generated by the framework for
each dataset. In terms of precision, recall and F- measure the
framework returns the following results: Precision (P) = 0.81,
Recall (R) = 0.74 and F-measure (F) = 0.77. As an observation,
in the second experiment the performance of our framework
decreases as a result of an increasing number of False Positive.

C. Discussion

In the following we will analyse in more detail the results
from our framework, focusing in the False Positive. In order
to evaluate the performance of our approach we manually
check if the links generated as False Positive were correct
or not. As a checking result, from 127 as False Positive from
the first experiment, 99 were correct and 28 were incorrect
mappings, meaning that the total number of True Positive
is 1,432 and the number of False Positive is 28. Manually
checking from 277 False Positive mappings from the second
experiment, 206 links were correct so the number of real
True Positive found by the framework is 1,539, while the
number of real False Positive is 71. From this verification we
prove that our framework could find 14 similar links between
GeoNames and ordnancesurvey.co.uk, among which there are
no links in the LOD cloud, thus improving the linkage infor-
mation. We found that the resource e.g gn:2110425/nauru.html
should be linked to gv:0–1708 as both refer to the island
of Nauru and gn:2652355/cornwall.html should be linked
to ords:70000000000437509 as both refer to the county of
Cornwell in England. This information currently is missing in
the LOD cloud. While if we check for two resources classified
as similar gn:6324733/st john s.html from GeoNames dataset
and ords:7000000000019514 from OrdnanceSurvey we see
that these two recources refer to different places eventhough
they share the same name. In the information that we have
in the cloud, these two resources share three properties for
the name (LabelLike group) and one of the coordinates is
similar. These four properties contribute to the similarity
score categorising these two resources as similar. Another

8gv : http://gadm.geovocab.org/id/
9http://data.ordnancesurvey.co.uk/doc/

misclassification is between gn:2618425/copenhagen.html and
dbpedia:Copenhagen Municipality. Because these resources
share many properties our framework classifies them as sim-
ilar. While we observe some true classification errors, many
of the mistakes made by our framework point to fact that
many resources are described with similar properties so it is
difficult also for humans without prior knowledge to classify
them as similar. Our framework can be used also to check
the quality of URIs in a dataset. In the dataset ordnancesur-
vey.co.uk, the resource Isle of Wight is described with two
URIs, ords:7000000000025469 and ords:7000000000025195.
Also in LinkedGeoData we find that the resource for the city
of Vienna has two different URIs, lgdo:node240034347 and
lgdo:node17328659.

IV. RELATED WORKS

As we mentioned in the introduction we focus on data
linking at instance level and thus in the related work we present
only those tools or techniques that are close to our approach.

Similarity is usually performed on string bases. Similar
to [9], we adopt the Edit Distance (Levenshtein) similarity
function and the numerical similarity. Often semi-automated
approaches, which must be preconfigured by the user may
select from a wide range of similarity functions those suitable
for the task at hand such as Silk [9]. The Silk system
[9] assumes a supervised matching scenario where the user
specifies entities to link in a configuration file and selects an
aggregation approach (weighted average, max(min), Euclidean
distance, or weighted product) for her task. Similar to Silk, the
LIMES system [18] is a semi-automated approach that needs
a configuration file to be setted up. In contrast, our approach
implements an automated workflow which can be applied to a
wide range of domains and is considered totally unsupervised.
Our approach that is considered complementary to Silk and
LIMES, take as input not only two datasets but one against
all datasets in the LOD cloud.

LINDA [19] is a system used to compute the similarity
between two entities based on their neighbours. Two kinds
of similarities are computed; apriori similarity and contextual
similarity. Apriori similarity is based on literals and constraints
and contextual similarity is computed in each iteration and
considers the current state of similarity matrix. In contrast
from our approach LINDA assumes each dataset to be already
disambiguated while in our approach we do not make such an
assumption thus addressing a more widely application.

A statistical and qualitative analysis of instance level equiv-
alence in the LOD cloud to automatically compute alignments
at the conceptual level could be found in [6]. Adopting
classical Jaccard methods to the ontology alignment task
allow to improve the level of integration between datasets
as this will help to resolve semantic heterogeneity. The au-
thors used the Jaccard coefficient to measure the similarity
between two concepts when interpreted as sets of instances.
They considered DBpedia as the source datasets and 6 target
datasets, and extracted the sameAs links and also the concepts
hierarchy where the behaviour of classical Jaccard similarity



measure was analysed by studying the influence of hierarchical
information in producing the alignments.

Authors in [13], introduced an approach to automatically
detect redundant identifiers solely by matching the URIs of
information resources. They used two techniques to match
URIs. The first is to tokenize the URI in all special characters
and calculate the cosine similarity of all TF-IDF vectors and
the second technique is to use exact string matching techniques
after dividing the URI into prefix, infix and suffix to detect
duplicates. Their approach is limited only for string similarity
and do not cover cases when the URI contains numerical
information and blank nodes. In contrast our approach covers
both cases.

The LiQuate framework [11] combines Bayesian Networks
and rule-based systems to analyze the quality of data and
links in the LOD cloud. The Bayesian Networks models
dependencies among resources, while queries among these
models, represent the probability that different resources have
redundant labels or that a link between two resources is
missing while a probabilistic rule-based system is used to
infer new links that associate equivalent resources. LiQuate
framework can be used to suggest ambiguities or possible
incompleteness in the data or links and to resolve the ambigu-
ities and incompleteness identified during the exploration of
the Bayesian Network. The LiQuate framework deals with two
incompleteness problems; link incompleteness and ambiguities
between labels of resources and between sets of links. In
difference with our approach, Liquate is a semi automatic
approach for which the last update was in 2013.

Authors in [12], have proposed a framework for iterative
blocking where the entity resolution results of blocks are
reflected to other blocks, in order to generate new record
matches. Our approach is orthoganal with the proposed one,
as the former can be applied to any system, while the latter
can be used with any core ER algorithm that processes a block
of records.

V. CONCLUSION

In this paper we proposed a framework which can automat-
ically find similar instances in the LOD cloud without a prior
knowledge about the type they belong to and the properties
they share. The results show that this framework is very useful
to find similar pairs between datasets not only in the same
category but also with other datasets despite the category they
belong to.

The analysis of the limitations of our framework, i.e., the
cases where the similar pairs found were wrong, point to the
current information in LOD, where usually instances even
though describing different things, their property values are
similar. As a future work we plan to run the framework in
the whole LOD cloud, considering not only the instances
connected by the owl:sameAs property but all the instances
and also verify the True Negative links generated to verify
for quality problems between the instances already connected
with the owl:sameAs property in the LOD cloud.
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Approach for Large-Scale Link Discovery on the Web of Data, IJCAI
2011, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2312–2317.
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