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Abstract

A Knowledge Graph (KG) is a semantically organized, machine readable collection of
types, entities, and relations holding between them. A KG helps in mitigating seman-
tic heterogeneity in scenarios that require the integration of data from independent
sources into a so called dataspace, realized through the establishment of mappings
between the sources and the KG. Applications built on top of a dataspace provide
advanced data access features to end-users based on the representation provided by
the KG, obtained through the enrichment of the KG with domain specific facets. A
facet is a specialized type of relation that models a salient characteristic of entities of
particular domains (e.g., the vintage of wines) from an end-user perspective.

In order to enrich a KG with a salient and meaningful representation of data, do-
main experts in charge of maintaining the dataspace must be in possess of extensive
knowledge about disparate domains (e.g., from wines to football players). From an
end-user perspective, the difficulties in the definition of domain specific facets for
dataspaces significantly reduce the user-experience of data access features and thus
the ability to fulfill the information needs of end-users. Remarkably, this problem has
not been adequately studied in the literature, which mostly focuses on the enrichment
of the KG with a generalist, coverage oriented, and not domain specific representation
of data occurring in the dataspace.

Motivated by this challenge, this dissertation introduces automatic techniques to
support domain experts in the enrichment of a KG with facets that provide a domain
specific representation of data. Since facets are a specialized type of relations, the
techniques proposed in this dissertation aim at extracting salient domain specific rela-
tions. The fundamental components of a dataspace, namely the KG and the mappings
between sources and KG elements, are leveraged to elicitate such domain specific rep-
resentation from specialized data sources of the dataspace, and to support domain
experts with valuable information for the supervision of the process. Facets are ex-
tracted by leveraging already established mappings between specialized sources and
the KG. After extraction, a domain specific interpretation of facets is provided by re-
using relations already defined in the KG, to ensure tight integration of data. This
dissertation introduces also a framework to profile the “status” of the KG, to support
the supervision of domain experts in the above tasks.

Altogether, the contributions presented in this dissertation provide a set of auto-
matic techniques to support domain experts in the evolution of the KG of a dataspace
towards a domain specific, end-user oriented representation. Such techniques analyze
and exploit the fundamental components of a dataspace (KG, mappings, and source
data) with an effectiveness not achievable with state-of-the-art approaches, as shown
by extensive evaluations conducted in both synthetic and real world scenarios.
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1
Introduction

The rapid growth of structured and semi-structured data available on the Web un-
veiled new horizons and business opportunities, and lead to the development of Data
Intensive applications in a variety of domains, from eCommerce to the Open Govern-
ment context [28]. A Data Intensive application (DI application) aims at fulfilling the
information needs of end-users by leveraging data acquired, integrated, and main-
tained over time. The established data management approach for DI applications ac-
counts to the pay-as-you-go integration of data sources into a dataspace [39]. Semantic
heterogeneity of data from different sources is one of the main challenges to be faced in
the maintenance of dataspaces [41]. Knowledge Graphs (KGs) emerged as an effective
tool to cope with this challenge [49, 56].

A KG is a semantically organized, machine readable, graph-like collection of en-
tities, types, and relations holding between them [133], and can be represented using
different data models, such as RDF or the Relational Model. A KG acts also as a repos-
itory of machine readable knowledge used to integrate new data into the dataspace,
via the establishment of mappings between the sources and the KG. A KG provides
a machine readable representation of data that is the backbone upon which the user-
experience of a DI application can be enhanced by implementing advanced data access
features. Such features are usually supported by the enrichment of the KG with a set
of facets: specialized relations aimed at model the salient characteristics of entities from
specific domains (e.g., news, actors, or wine bottles), from an end-user perspective.

The effective maintenance of the dataspace, its KG and mappings, is a key asset for
DI applications. The richness and quality of the representation provided by the KG
influences not only the ability of a DI application to fulfill the information needs of
end-users, but also the ability to integrate new sources into the dataspace [49]. Domain
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1. INTRODUCTION

experts play a crucial role in this picture because they are in charge of performing
and supervising the execution of crucial data management tasks, ensuring the equate
quality of data provided to end-users [134, 135]. Such tasks includes the modeling
and the enrichment of the schema of the KG (i.e., types, relations and facets), and the
discovery of mappings between the sources and the KG. In order to proper maintain
the dataspace, domain experts must be equipped with effective tools that not only
provide automatic support for specific data management tasks, but also provide the
necessary information for supervision and validation.

Several challenges arise in the maintenance of the KG and mappings in a datas-
pace. One of them accounts to the definition of meaningful and domain specific facets.
Enriching the schema of the KG with domain specific facets so as to support the ad-
vanced data access features demanded by DI applications is crucial, but nevertheless
hard. Such task requires an understanding of the salient characteristics of instances
for a large number of domains, and thus is difficult and time consuming at a large
scale. The majority of state-of-the-art approaches in this area focus on the enrichment
of the KG schema with types and relations extracted from the sources (see Section 3.1),
while few focus on the extraction of facets [100, 110, 151, 33, 60] for data presentation.
Among such approaches, none specifically tackles the problem of extracting domain
specific facets. As a result, the current state-of-the-art does not provide adequate sup-
port to domain experts in the enrichment of the schema of the KG with granular, do-
main specific representation.

Motivated by these challenges, this dissertation studies how to enrich the schema
of a KG with domain specific facets extracted from a vast amount of structured sources,
providing interactive methods to domain experts in charge of maintaining a dataspace
to ensure the adequate quality of the data. To the best of our knowledge, we are among
the first in focusing on the enrichment of a KG with domain specific facets. We pro-
pose an approach to extract facets from structured data integrated into a dataspace
by leveraging mappings established between sources and KG types, as an effective
way to enforce the domain specificity of the extracted facets (see Chapter 4). We then
discuss an approach to provide a domain specific interpretation of extracted facets.
We propose to re-use relations specified by the KG of the dataspace, or eventually by
other external KGs, so as to reconcile the end-user oriented representation of instances
provided by facets to the back-end oriented representation provided by KG relations,
and thus refine the integration between sources (see Chapter 5). Finally, we introduce
an approach to provide an overview of the specificity of relations of a KG, which con-
stitutes a vital information for domain experts in charge of supervising the enrichment

2



1.1 An eCommerce Data Intensive Application

Figure 1.1: The TrovaPrezzi Italian Comparison Shopping Engine.

of the KG schema with domain specific facets and their domain specific interpretation
(see Chapter 6).

In the remainder of this chapter we present a DI application from the eCommerce
domain that constitutes a motivating example of the research work discussed in this
dissertation (Section 1.1). We then sketch the general data management methodology
for dataspaces (Section 1.2), discuss some of the limitations of current approaches to
the management of dataspaces (Section 1.3), and provide an overview of the contribu-
tions discussed in the dissertation (Section 1.4).

1.1 An eCommerce Data Intensive Application

A Comparison Shopping Engine (CSE) is a particular type of DI application specific
for the eCommerce domain. A CSE integrates product offers from a large set of eMar-
ketplaces into a dataspace. End-users access a CSE in order to find offers and compare
them along several possible dimensions, including their price or specific technical fea-
tures (e.g., the screen size of smartphones). TrovaPrezzi1 is one of the most accessed
Italian CSEs. Active since year 2002, at the time of writing TrovaPrezzi integrates
about 12 millions offers from about 3000 eMarketplaces, and is accessed by about 13
millions of unique end-users every month.

1http://www.trovaprezzi.it
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1. INTRODUCTION

The TrovaPrezzi Dataspace

Figure 1.1 depicts a screenshot of a web page from TrovaPrezzi, which displays offers
of a specific category (i.e., Televisions). From an end-user perspective, TrovaPrezzi
provides two basic data access features: type-based and facet-based browsing. Types (or
categories) provide a coarse-grained representation of all the offers of the TrovaPrezzi
dataspace, and allow users to rapidly recall the “family” of offers they are interested
in. Conversely, facets provide a fine-grained, domain specific representation of of-
fers, which helps users to rapidly recall offers with specific characteristics (e.g., all
TVs with a 40 inches screen, from Figure 1.1). The core of the TrovaPrezzi dataspace
is a KG (exemplified in Figure 1.2), which includes products (e.g., Iphone6) modeled
as KG entities, product categories (e.g., MobilePhone) modeled as KG types, general-
ist attributes common to all the offers (e.g., price) modeled as generalist facets, and
technical features (i.e., displaySize) modeled as domain specific facets.

Figure 1.2 provides a schematization of the data management process adopted by
the TrovaPrezzi CSE. Data sources (i.e., eMarketplaces) exchange their data by means
of semi-structured CSV and XML formats. The integration process is driven and su-
pervised by domain experts with the aid of tools, and is performed by establishing
mappings between source and KG entities, types, and relations. When a new source
requests the inclusion of its data into the dataspace, it is first asked to provide a CSV of
XML dump of its offers, as for instance the one depicted in Figure 1.2. Then, domain
experts incrementally establish mappings from the data source to the KG. Preliminary
mappings are established in order to interpret the generalist characteristics of offers,
such as the title or the price (i.e., the mapping between attr_4 column and brand in Fig-
ure 1.2). Offers are integrated in the dataspace since this preliminary mapping: users
can search and find them.

The integration is initially weak, because offers have no fine-grained, domain spe-
cific representation attached, being them characterized by very few generalist facets
such as price or brand. As a result, at this stage TrovaPrezzi is able to provide basic
search and browse features with somehow limited user-experience, but the absence of
granular, domain specific representation does not allow to go much far beyond that.
Then, mappings are established in order uniformly categorize offers using KG types.
At this stage offers start to be interpreted, for instance, as mobile phones. Then, do-
main experts start defining facets aimed at providing a domain specific representation
of offers, and the integration is possibly further refined by establishing fine-grained
mappings between instances. At this final stage, offers are tightly integrated.

4
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Figure 1.2: The dataspace of a Comparison Shopping Engine.

Data Management Challenges

In the data management approach adopted by TrovaPrezzi the problem of seman-
tic heterogeneity between sources is tackled by establishing mappings between the
sources and the KG. The KG provides an end-user oriented representation of offers
based on types, relations and facets. Enhanced user-experience built on top of this
representation of data allows TrovaPrezzi to effectively fulfill the information needs
of its end-users. Intuitively, the quality and the richness of such representation impact
the user-experience of TrovaPrezzi, and consequently the business revenue originated
from it.

At the time of writing, a dedicated team composed by 12 domain experts drives,
supervises and validates the entire data management process described above through
several tools maintained by two teams of 2 and 3 software engineers, including the au-
thor of this dissertation. The modeling of the schema of the KG (i.e., the definition of
types, relations and facets for data presentation), and the discovery of mappings from
the sources to the KG, are the main duties of the domain experts team, and are difficult
and time demanding. The enrichment of the KG with meaningful facets at large scale
requires a deep understanding of the salient characteristics of offers (e.g., wines are
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characterized by grape, type, provenance, and so on) for a large number of diverse
domains. Also, the discovery of mappings is challenging because it requires the es-
tablishment of a huge amount of fine-grained mappings (i.e., millions of mappings,
in the case of TrovaPrezzi) between specialized (i.e, domain specific) sources and the
KG.

As of April 2016, about the 85% of offers integrated into the TrovaPrezzi dataspace
is represented and presented to end-users only by means of generalist facets such as
price or description. Efforts in providing rich and domain specific representation of
offers focus on “mainstream” categories such as smartphones, tablets, or notebooks,
and which account to about the 35% of product categories available in TrovaPrezzi,
while more “niche” categories such as wines or ski equipment are deliberately left
behind, due to the high maintenance costs. However, while mainstream categories
alone contribute to a considerable portion of the revenue generated by TrovaPrezzi,
niche categories constitute the “long tail” currently not fully exploited due to the lack
of intelligent data management tools to support domain experts in the maintenance of
domain specific representation of offers.

As a final remark, the challenges highlighted in this section apply not only to the
specific case of TrovaPrezzi, but also to every more general scenario that requires the
management and the integration of data from specialized data sources. For example,
data released by public institutions in the Open Data and eGovernment context [88]
is extremely domain specific and include, for instance, census, crime, but also pollu-
tion and public expenses related data2. In this context, the development of improved
services to citizens based on such data requires a deep understanding of the underly-
ing domain, that is difficult to achieve [50]. Remarkably, this difficulty constitutes one
of the barriers in the adoption and reuse of Open Data available from public institu-
tions [124].

1.2 Data Management Methodology for Dataspaces

Due to the large amount of heterogeneous data managed by DI applications like the
CSE described in the last section, the maintenance of a dataspace (i.e., the KG and the
mappings) follows an incremental pay-as-you-go process [77].

2see for instance http://index.okfn.org/
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1.3 Limitations in the Support to Domain Experts

Model, Map and Materialize

Three different but related data management tasks are continuously performed during
the whole lifespan of a dataspace: the modeling of the schema of the KG, the definition
of mappings between the sources and the KG, and materialization of integrated data into
the dataspace. Modeling accounts to the enrichment of the KG with types, relations
and facets for presenting data to end-users. A facet is a specialized type of relation that
models a salient characteristic of entities of particular domains (i.e., types). The goal
of the first two activities (i.e., modeling and mapping) is to enable the materialization
phase, where mappings from the sources to KG types and relations defined in the
modeling phase are automatically leveraged in order to transform source data and
import it into the dataspace.

Role of Domain Experts

The contribution of domain experts is fundamental in the management of the datas-
pace, as they are in charge of incrementally drive, supervise, and validate all the data
management tasks presented in this section. Through an effective supervision, do-
main experts incrementally enrich the KG with a richer and domain specific represen-
tation of instances, and establish mappings between elements of such representation
and the sources. Providing automatic support for domain experts in these tasks is
crucial for a proper and effective management of the dataspace.

1.3 Limitations in the Support to Domain Experts

Enriching the schema of the KG to provide a rich and domain specific representation
of instances requires a deep understanding of the salient characteristics of instances for
a large number of diverse domains, and thus is difficult and time consuming at a large
scale. Intelligent tools are needed also to support domain experts in the establishment
of mappings, to ultimately ensure an high quality of the data in the dataspace. More-
over, domain experts must be equipped not only with tools that actually enrich the
schema of the KG and establish mappings, but also with the necessary information to
proper supervise such tools and validate their results, in order to ensure the adequate
quality of data.

Many different approaches can be potentially applied to support domain experts in

7
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the management of the dataspace (see Chapter 3 for an in depth discussion). However,
such approaches have several limitations, among which there are:

1. Extraction of domain specific facets. Despite some work focused in the enrich-
ment of the KG schema with facets [100, 110, 151, 33, 60], to the best of our knowl-
edge no previous work focused on extracting domain specific facets. Enriching
the KG schema with such facets is challenging because requires a granular anal-
ysis of the semantics of a vast amount of heterogeneous data with approaches
capable to capture domain specificity. As a result, the current state-of-the-art
supports domain experts in the enrichment of the schema of the KG with types,
relations, and generalist facets, but not domain specific ones.

2. Profiling of the KG. There have been several efforts in the state-of-the-art to
profile a KG with the goal of providing domain experts with the necessary in-
formation needed to supervise the data management process of dataspaces [89].
However, such approaches either include only a portion of data estimated to be
more relevant in order to understand and explore the structure of the KG, or in-
clude a set of statistics without capturing patterns in the KG, which can provide
useful insights to domain experts in the execution of data management tasks for
dataspace maintenance. Extracting a more complete profile of a KG is challeng-
ing because it requires to find the right balance between richness and compact-
ness. A profile should be rich enough to represent the whole KG, and compact
enough to avoid redundant information so as not to overwhelm domain experts.

1.4 Contributions and Outline

Motivated by the challenges and the limitations discussed in the last sections, this dis-
sertation investigates how to enrich the schema of a KG with domain specific facets
extracted from a vast amount of structured sources, providing interactive methods to
domain experts in charge of maintaining a dataspace to ensure the adequate quality
of the data. With the above research question in mind, the contributions of this disser-
tation are schematized in Figure 1.3 and summarized in the remaining of this section.

Domain Specific Facet Extraction
Chapter 4

We study how to support domain experts in the extraction of domain specific facets
so as to enrich the KG schema with granular, domain specific representation of data.
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Figure 1.3: A summary of the contributions of this dissertation.

Facets are specialized relations aimed at model the salient characteristics of entities
from specific domains (e.g., news, actors, or wine bottles), and thus the technical prob-
lem tackled in this contribution accounts to the extraction of salient domain specific
relations. The proposed approach leverages the information already present in the
dataspace, in the form of mappings established between source and KG types, to sug-
gest meaningful facets specific for a given KG type.

Specificity-based Interpretation of Facets
Chapter 5

We then focus on providing a domain specific interpretation of extracted facets, by
annotating them with KG relations. Given a facet, the proposed approach derives a set
of candidate relations from KG and ranks them considering how much their semantics
is similar to the semantics of the facet, focusing on domain specificity. By re-using
relations specified by the KG of the dataspace, we reconcile the end-user oriented
representation of instances provided by facets to the back-end oriented representation
provided by KG relations, thus refining the integration between sources.
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Knowledge Graph Profiling
Chapter 6

We propose a KG summarization model that provides an abstract view of KG relations,
in the form of Abstract Knowledge Patterns (e.g., (Wines, origin, Region)) and their
corresponding occurrence statistics extracted from the KG. With such knowledge at
hand, domain experts can properly supervise the extraction and annotation of facets
and validate their result, deciding for example to annotate a facet with a relation that
they consider more domain specific with respect to automatically suggested ones. The
summarization model has been included in ABSTAT, a framework capable to profile
a KG by providing an abstract representation of it.

Case Study: Product Autocomplete
Appendix A

We describe a case study from the eCommerce domain where the rich domain spe-
cific representation is leveraged in order to provide an advanced Product Autocom-
plete feature for eMarketplaces. The Product Autocompletion system, which is named
COMMA, is an example of the impact of the core contributions of this dissertation, de-
ployed and evaluated on the real world scenario of an Italian eMarketplace.

Outline of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we provide
a formal definition of a dataspace and its components: the KG, the data sources and
the corresponding mappings between them. We also describe the Data Management
methodology adopted in the management of a dataspace and stress the importance
of supporting domain experts in the enrichment of the KG with a domain specific
representation of data. In Chapter 3 we survey the state-of-the-art in management of
dataspaces. Chapters 4, 5, 6 present the core contributions of this dissertation right
before Chapter 7, where we conclude the dissertation with a summary of the research
goals achieved and contributions, and outline the potential future work and impact of
the proposed techniques.

Note

The work described in this dissertation has been done in collaboration with Matteo
Palmonari, Brando Preda, Anisa Rula, Blerina Spahiu, Andrea Maurino, Carlo Batini
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and Giuseppe Vizzari, and partially appeared in [99, 108, 107, 98, 127]. The domain
specific facet extraction technique described in Chapter 4 is currently running in pro-
duction within the TrovaPrezzi CSE. The facet interpretation technique described in
Chapter 5 is included in STAN3, a tool for the interpretation of generic tabular data
(see Section 5.7). Finally, the KG summarization framework described in Chapter 6
can be accessed online through the ABSTAT web application4.

3http://stan.disco.unimib.it - https://github.com/brando91/STAN
4http://abstat.disco.unimib.it - https://github.com/rporrini/abstat
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2
Dataspaces and Knowledge Graphs

2.1 Dataspace Components

We now provide a more formal definition of a dataspace. A dataspace D is composed
by a Knowledge Graph K, a set of data sources S and a set of mappingsM between
K and data sources in S:

D =< K, S, M > .

Figure 2.1 provides a schematization of a dataspace D. As a remark, in this section we
do not aim at providing a comprehensive formal definition of a dataspace. Instead,
we focus on the concepts that are more relevant to this dissertation: the KG, the data
sources and the mappings between them. For simplicity and without loss of gener-
ality, we use First Order Logic (FOL) statements to model all the components of the
dataspace described in the following sections. By using FOL, we discuss this model
without being bounded to any specific representation. In practice, however, different
data models can be adopted to represent the KG, the sources and the mappings, such
as RDFS, OWL, or the Relational Model, by using well-defined subsets of FOL (e.g.,
Description Logics [6] as for OWL2).

2.1.1 Knowledge Graph

A Knowledge Graph (KG) is constituted by a signatureN , a set of terminological axioms
T and a set of assertions A

K =< N , T ,A > .
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Figure 2.1: The schematization of a dataspace.

Instances, Types and Relations

The signature N of a KG defines the vocabulary of a DI application domain and is
composed by a set N I of individuals (or constant symbols), a set NC of unary predicate
symbols and a set NP of a binary predicate symbols

N =< N I ,NC ,NP > .

Adhering to the standard FOL formalism, given a signature N an interpretation I is
a pair 〈D, I〉 where D is any nonempty set of objects, called the domain of the inter-
pretation, and I is a mapping, called the interpretation mapping, from the non-logical
symbols (constants, predicates, and function symbols) to functions and relations over
D [20]. Signature elements are interpreted under the standard FOL semantics as:

• Instances - N I . Instances are of two different types: entities (e.g., the instance
that describes the city of Chicago), and literals (e.g., “2” or “chicago”); we denote
instances with constants symbols like a, b, . . . .
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2.1 Dataspace Components

• Types - NC . Provide a categorization of instances, as for example a type that
represents mobile phones; types are denoted with unary predicate symbols like
C, D, . . . .

• Relations - NP . Conceptualize reciprocal relationships between instances, as for
example the relation that holds between a mobile phone and its operating sys-
tem; relations are denoted with binary predicate symbols like P , Q, . . . .

Instances, types and relations are associated to a set of lexicalizations. A lexicaliza-
tion is a sequence of natural language tokens that briefly characterizes an instance a,
relation P or type C, respectively. We define a special function lex(x) which tracks
the correspondence between a signature element x (instance, type or relation) and its
lexicalizations.

Assertions

The setA contains assertions in the form of FOL statements about instances. An asser-
tion is a ground atomic formula built with the signature N . We distinguish between
two kinds of assertions: typing and relational assertions. Typing assertions are in the
form

C(a),

stating that a is an instance of the type C. Similarly, a relational assertion in the form

P (a, b)

states that there is a relation named P which holds between a subject instance a and
an object instance b. Through all this dissertation, we will denote withAC the set of all
typing assertions, while we will denote with AP the set of all relational assertions.

Types and relations provide a representation of instances at different granularities.
Types provide a more coarse grained representation: an instance is characterized as
an instance of one or more types. For example, in the toy KG depicted in Figure 2.2
the instance Iphone6 is characterized as an instance of the type SmartPhone by means
of the assertion

SmartPhone(Iphone6).
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Conversely, relations provide a fine-grained representation: an instance is character-
ized by means of its reciprocal relations with other instances. For example, the in-
stance Iphone6 may be characterized by its brand (i.e., Apple), its operating system
(i.e., Ios) etc, by means of assertions such as

os(Iphone6, Ios).

Terminological Axioms

The set T of terminological axioms provides a specification of types and relations in
the form of FOL statements about them. In practice, such terminological axioms can
be specified using particular languages that constitute a fixed subsets of FOL with well
defined formal properties and different expressivity, such as RDFS1 or OWL22. Such
specifications, along with types and relations, constitute the schema of the KG3.

One of the most basic, yet common, type of statements are the ones that allow to
specify subtype relations between types. Statements such as

∀x
(
D(x)→ C(x)

)
1https://www.w3.org/TR/rdf-schema/
2https://www.w3.org/TR/owl-overview/
3For KGs modeled using RDFS or OWL the schema is usually called vocabulary or ontology.
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2.1 Dataspace Components

specify a subtype relation holding between the type D and the type C by stating that,
whenever x is an instance of D, then x is an instance of type C. From terminological
axioms about types it is possible to extract a subtype graph

G = (NC ,�)

where � is a particular relation over NC introduced to represent the subtype relation
between two types. For instance in Figure 2.2, the subtype hierarchy (and hence, the
subtype graph G) of types in NC can be specified by axioms

∀x
(
SmartPhone(x)→ Product(x)

)
∀x
(
Product(x)→ Thing(x)

)
∀x
(
Company(x)→ Thing(x)

)
∀x
(
OperatingSystem(x)→ Thing(x)

)
.

Besides types, terminological axioms also provide a specification of KG relations
in terms of their domain (i.e., subjects of the relation) and range (i.e., objects of the
relation), also called domain and range restrictions. In principle it is possible to specify
different kinds of domain and range restrictions (i.e., by stating what instances belong
to the domain/range). For example, using RDFS it is possible to specify the domain
of a relation P by means of the axiom

∀x∀y
(
P (x, y)→ C(x)

)
,

stating that whenever an instance x is subject of a relation P , then x is an instance of
the type C. Similarly, axioms in the form of statements like

∀x∀y
(
P (x, y)→ D(y)

)
state that whenever an instance y is object of a relation P , then y is an instance of the
type D.

Observe that coarse-grained terminological axioms similar to the ones just de-
scribed are one of the well established practices to specify a KG relation, that is by
making use of the RDFS language. Other more expressive languages, such as OWL2,
allow to specify more fine-grained domain or range restrictions. For example, the
axiom

∀x∀y
(
C(x)→

(
P (x, y)→ D(y)

))
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states that whenever y is an object of a relation P whose subject x is an instance of the
type C, then y is an instance of the type D. Another example of a more fine-grained
specification of a relation is the axiom

∀x∀y
(
P (x, y)→ C1(x) ∨ . . . ∨ Cn(x)

)
which defines the domain of P as the set that includes all x that are instances of type
C1 or C2 . . . or Cn.

A more “basic” language with limited expressive power like RDFS may be easier to
understand and master by domain experts. Moreover, despite the limited expressive
power, RDFS still supports basic inference that allows to derive new knowledge (in the
form of new assertions to be added to the KG) from existing assertions and domain
and range restrictions. For example, from the following specification of a relation os

∀x∀y
(
os(x, y)→ SmartPhone(x)

)
and the relational assertion

os(iphone6, ios)

it follows that the typing assertion SmartPhone(iphone6) holds.

The usage of “basic” languages in the specification of the types and relations has
some limitations, imposed by their limited expressive power. Suppose, for example,
that domain experts in charge of maintaining the KG want to reuse the relation os

introduced to represent the operating system of smart phones, to characterize also
notebooks. Limited by the expressive power of RDFS, they specify the following ter-
minological axiom

∀x∀y
(
os(x, y)→ Notebook(x)

)
.

From this axiom, together with the axiom and assertions provided in the above para-
graph, it can be inferred that Notebook(iphone6). A common practice in order to enable
the reuse of relations in similar situations is to relax their domain specificity, by defin-
ing a new generalist type, say for example Device, which is a super-type of SmartPhone

and Notebook and to update terminological axioms accordingly. The effect of this de-
sign choice is to make the relation less domain specific. In some cases, where enabling
the reuse of relations is the main goal, this design choice ultimately leads to the defini-
tion of generalist relations by completely relaxing domain and range restrictions (also
known as underspecification [1]). The other common practice is to use a more expressive
language, such as OWL2. However, this more expressive power comes at the cost of a
more difficult understanding and thus error prone maintenance of the terminological
axioms by domain experts (e.g, risk of enabling undesired inferences) [47, 1].
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2.1.2 Data Sources as Source Graphs

Data come from data sources in a variety of different data representation formats. Ex-
amples of these formats are depicted in Figure 2.3. Data sources may exchange their
data by means of structured formats as exemplified by Figure 2.3a (e.g., a database
dump or an RDF graph), semi-structured formats as exemplified by Figure 2.3b (e.g.,
CSV, XML, JSON) or unstructured formats exemplified by Figure 2.3c (e.g., text). Re-
gardless of how much structured is the format for data exchange supported by a data
source, a general approach is to represent the source data as a source graph [128, 74,
117, 16]. When not explicitly represented [128, 16] this graph structure is extracted
from data using ad-hoc heuristics for semi-structured formats (e.g., quasi-relational
structure assumption for tabular data [74]) or NLP techniques for unstructured for-
mats [117].

Hence, a source S is defined in a similar way as the KG, that is constituted by a
signature Ñ , a set of terminological axioms T̃ and a set of assertions Ã

S =< Ñ , T̃ , Ã > .

Similarly to the KG, a data source signature Ñ is constituted by a set of instances Ñ I ,
types ÑC , and relations ÑP . Source types and relations are defined as unary and binary
FOL predicates, respectively. In particular, we write C̃(ã) and P̃ (ã1, ã2) to denote the
classification of a source instance ã under the type C̃ (i.e., a typing assertion) and the
relation P̃ holding between ã1 and ã2 (i.e., a relational assertion), respectively.

Depending on how structured is the format, some information may or may not
be explicitly exposed by the data source. Structured data exchange formats such for
example RDF allow to explicitly represent and exchange the source signature Ñ , the
assertions in Ã, and terminological axioms T̃ specified using RDFS or OWL2. In par-
ticular, RDF provides a graph-based representation of data which is explicitly con-
ceived to support data exchange and integration over the Web [16]. In contrast, semi-
structured data formats such as CSV, XML or JSON do not allow to explicitly represent
and exchange terminological axioms, but only assertions. XML and JSON represent
data with graph-like structures, while CSV represents data as tables. In the latter case,
even if not explicitly represented, a graph-like structure can be extracted by leveraging
the quasi-relational structure of a table [74]4, as exemplified in Figure 2.3b.

Source types and relations provided by a semi-structured data source are not for-

4See Section 3.2.2 for a more in-depth discussion.
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Figure 2.3: Examples of sources that exchange data by means of different formats.

mally specified, resulting in a lack of explicit machine readable semantics attached to
them, in contrast with structured data sources. The lack of explicit semantics is more
observable in unstructured formats, such as plain or short texts (e.g., microblog posts).
In unstructured formats the signature, the terminological axioms and assertions are
not explicitly represented. Remarkably, the management of data exchanged in such
formats is more challenging and requires the automatic extraction of source instances,
types and relations from the data, by applying Named Entity Recognition [87] and
Relation Extraction [117] approaches.

In summary, a dataspace may potentially integrate data exchanged in a variety of
different formats. In this setting, data heterogeneity and ambiguity are two of the main
challenges that arise. Source data is heterogeneous because comes from independent
sources, each one with its possibly own representation. Data is ambiguous because
in many cases lacks an explicit semantics attached. Unstructured data is the most
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ambiguous, because it lacks not only semantics, but also structure. In contrast, struc-
tured data represented and exchanged in RDF or more generally through Semantic
Web models, languages and standards is potentially less ambiguous, because its se-
mantics can be explicitly exchanged. Moreover, a common and established practice
is to reuse the semantics provided by shared ontologies and vocabularies (e.g., Foaf5,
Dublin Core6, Schema.org7), thus potentially reducing heterogeneity of data provided
by different sources [16].

2.1.3 Mappings

A dataspace stores a set of mappings M between KG elements (i.e., instances, types
and relations) and elements from data sources. We define three types of mappings,
and characterize them in terms of the type of elements between which they hold: type-
to-type (t-to-t), relation-to-relation (r-to-r) and instance-to-instance (i-to-i). Figure 2.4 pro-
vides and example of these mappings. Observe that these three types of mappings
allow to specify the integration of the source data into the KG at different granu-
larity levels. Coarse grained integration is performed by establishing t-to-t coarse
grained mappings. The integration is refined by establishing r-to-r mappings, so as
to provide a richer representation of source instances. Finally, i-to-i mappings provide
fine grained integration. As in traditional data integration settings [70], mappings are
specified using Horn clauses. This formalism is consistent with the FOL logic-based
formalism introduced to represent the KG and the sources, as Horn clauses can be
represented by means of FOL formulas.

A t-to-t mapping is encoded as a Horn clause in the form:

C(x)← C̃(x)

where C is a KG type, C̃ is a source type and x is a source instance. The semantics
of a t-to-t mapping is such that all source instances ã that are classified as instances
of the source type C̃, are also classified as instances of the KG type C. For example,
the specification of the t-to-t mapping depicted in Figure 2.4 between the source type
Product and the KG type SmartPhone can be given by means of the Horn Clause

SmartPhone(x)← Product(x).

5http://www.foaf-project.org/
6http://dublincore.org/
7http://schema.org/
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Similar to t-to-t mappings, r-to-r mappings are encoded as Horn clauses in the
form:

P (x, y)← P̃ (x, y)

where, P is a KG relation, P̃ is a source relation and x and y are two source instances.
The semantics of a r-to-r mapping is such that if a source relation P̃ holds between
two source instances x and y, then the KG relation P holds between x and y. For
example, the specification of the r-to-r mapping depicted in Figure 2.4 between the
source relation display and the KG relation displaySize can be given by means of the
Horn Clause

displaySize(x, y)← display(x, y).

Instances are mapped by i-to-i mappings, specified Horn clauses with empty head
and using special relations that hold between a source and a KG instance:

sameAs(x, y).

The (rather trivial) semantics of an i-to-i mapping is such that the source instance x is
equivalent to the KG instance y. For example, the specification of the i-to-i mapping
depicted in Figure 2.4 between SamsungGalaxyA7 and the KG instance GalaxyA7 can be
given by means of the Horn Clause

sameAs(GalaxyA7, SamsungGalaxyA7).
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2.2 Facets: End-user Oriented Representation
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Figure 2.5: A example of facets built on top of a KG.

As a final remark, observe that in principle, the definition given in this section allows
to specify also more complex mappings, such for instance the t-to-t mapping

AndroidDevice(x)← Product(x), operatingSystem(x,Android)

without compromising the formal framework provided by this Chapter. However,
allowing the specification of arbitrarily complex and expressive mappings come at
the cost of sacrificing their ease of maintenance, and is a rare practice in real world
dataspaces.

2.2 Facets: End-user Oriented Representation

Within a dataspace, a KG provides a semantically rich representation of instances
through types and relations. This representation is “general purpose”, and supports
the spectrum of data management operations performed to maintain the dataspace.
Besides such back-end oriented perspective, however, the other important goal of a
KG is to enable a DI application to provide end-users with enhanced access to the
data of the dataspace, like one depicted in Figure 2.5. One established way to pur-
sue this goal is through the definition of a particular type of relations, that we name
facets [147, 31]. A facet is a relation that represents a salient characteristic of instances
of a KG type (i.e., domain) and can be informally defined as:
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A (1) mutually exclusive, and (2) collectively exhaustive aspect,
property, or characteristic of a (3) class or specific subject [138].

Facets are relations but, in contrast with the general purpose ones introduced in
Section 2.1.1, are meant for data presentation to end-users. For example, Figure 2.5
depicts a dataspace in which wine bottles are characterized by facets that include the
country of origin and an year of production (i.e., vintage). On top of this representa-
tion a DI application can provide a faceted search interface where users can use facets
to filter the results of a full text query [105, 151]. Applying the high level definition
provided in the beginning of this section, a facet is defined as a relation that:

1. has many-1 cardinality (referred to “mutually exclusive”, in the above defini-
tion)8;

2. exhaustively covers the set of possible values of the relationship that represents
(referred to “collectively exhaustive”);

3. is domain specific (referred to “specific subject”);

Observe that a facet is, by all means, a relation. However, a relation is not necessar-
ily a facet. Consider, for instance, the KG depicted in Figure 2.5, which defines three
different relations: description, origin and vintage. Among them, the relation vintage is a
facet for representing wines, because it is domain specific, in contrast with the relation
description (every product offer may have a description attached). In fact, the range of
description potentially contains heterogeneous values: such facet would be composed
by all the descriptions of all KG instances, and can hardly be considered a salient char-
acteristic of wine bottles. Through the rest of this dissertation, with the term facets we
will refer to this particular type of KG relations.

From a formal point of view, a facet holds between a fixed domain of instances of a
specific KG type C and a range of facet values V = {v1, . . . , vn}:

F =< C, V > .

8In real world, for practical reasons, the constraint on mutual exclusivity may be somehow relaxed,
as for instance a facet representing actors starring in a movie. In this case, although not of many-1
cardinality, the relation represented by this facet is still a salient aspect for movies.
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Since F is a relation, its specification is given by a set of terminological axioms that
intuitively model the properties that a relation must satisfy in order to be considered
as a facet:

∀x
(
C(x)→ ∃y F (x, y)

)
∀x
(
C(x)→ ∀z

(
F (x, y) ∧ F (x, z)→ y = z

))
∃x
(
C(x) ∧ F (x, v1)

)
. . .

∃x
(
C(x) ∧ F (x, vn)

)

where F (x, v) is a faceted assertion, meaning that v is asserted to be the value of the
facet F that characterizes the instance x. Observe that the first two axioms specify the
many-1 cardinality of the facet, while domain specificity with respect to a specific KG
type C is enforced by the inclusion of typing assertions C(x) in terminological axioms.

Depending on the level of abstraction of the KG type to which they are referred,
facets can be of two types: generalist or domain specific. For example, the facet seller is
generalist, as it may be referred to product offers in general, while the facet vintage is
specific for the domain of wines. Domain specific facets are crucial in order to provide
enhanced data access to end-users [105]. By relying on domain specific facets, a DI
application is able to present more interesting and meaningful information to end-
users, which would be more difficult to provide by relying on generalist facets only.
This difference between domain specific and generalist representations is exemplified
by the two faceted search interfaces depicted in Figure 2.6. The one in the left side is
based on representation given by generalist facets9, while the one at the right is based
on domain specific facets10. Wine bottles on the left side are characterized by generalist
facets such as seller and price, which are applicable to all the KG instances (i.e., products
in this example). Conversely, in the faceted search interface on the left side, instances
are characterize by domain specific facets for wines (modeled as a specific KG type),
such as grapeVarietal or countryOfOrigin. It is straightforward to notice that provides a
more enhanced user experience to end-users.

9http://bit.ly/less-characterized-wines, accessed on February 2016
10http://bit.ly/more-characterized-wines, accessed on February 2016
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Generalist Facets Domain Specific Facets

Figure 2.6: Examples of generalist and domain specific representation of KG instances.

2.3 Lifecycle of a Dataspace

The predominant data management methodology adopted for dataspaces, and in par-
ticular of the management of KG and the mappings between its elements and source
data, follows a pay-as-you-go approach based on data co-existence and supervised by
domain experts with the use of (semi) automatic tools [41]. In this section we discuss
the lifecycle of a dataspace that supports DI applications, with particular focus on the
process of bootstrapping and maintaining the KG and the mappings over time.

2.3.1 Example

To better illustrate the lifecycle of a dataspace, we rely on an example from the eCom-
merce domain and in particular a Comparison Shopping Engine (CSE) similar to the
one described in Section 1.1. In the case of a CSE, data sources consist of several eMar-
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Figure 2.7: Bootstrapping a KG.

ketplaces exchanging data by means of structured or semi-structured formats, such
for instance tabular CSV files. The goal of a CSE is to provide users with uniform and
advanced access to offers sold by individual eMarketplaces and integrated into the
dataspace.

Figure 2.7 depicts the dataspace of our hypothetical CSE resulting from the boot-
strapping phase. Observe that the KG specifies only one type (i.e., Product) of in-
stances. This representation is generalist, but sufficient to support the establishment
of coarse-grained t-to-t mappings. From an end-user viewpoint, offers are represented
by a set of facets such as price and soldBy. Observe that, as the KG specifies Offers as
the only one type, such facets are somehow domain specific, given the current status
of the KG (i.e., they are specific for offers). However, they capture only few salient
aspects of offers, being the level of abstraction of the type Offer high. At this stage,
source data is weakly integrated into the dataspace, but the CSE is still able to de-
liver search and browse features on top of it. However, such features (i.e., the faceted
search interface depicted in Figure 2.7) are based on the representation provided by
generalist facets and thus cannot go much far beyond full text and/or basic faceted
search.

Figure 2.8 depicts the dataspace of our hypothetical CSE after the beginning of the
maintenance phase. Now the KG provides a more rich and domain specific represen-
tation of instances. The KG has been enriched with new types, relations and facets,
and thus supports the establishment of fine-grained mappings. The KG specifies two
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Figure 2.8: Maintaining a KG.

types of products, SmartPhone and Wine, with domain specific facets such as displaySize

for smartphones and grape for wines. The presence of this more fine-grained represen-
tation supports the establishment of fine-grained mappings, thus tightening the inte-
gration between sources up. The CSE now starts to deliver enhanced user-experience
on top of the domain specific representation provided by the KG.

2.3.2 Model, Map and Materialize

Three different but related data management tasks are continuously performed during
the whole lifespan of a dataspace, from bootstrapping to maintenance: the modeling of
the schema of the KG, the definition of mappings between the sources and the KG, and
materialization of integrated data into the dataspace. Modeling accounts to enrichment
of the schema of the KG with types, relations and facets. The goal of the first two
activities (i.e., modeling and mapping) is to enable the materialization phase, where
mappings from the sources to KG types and relations defined in the modeling phase
are automatically leveraged in order to transform source data and import it into the
dataspace.

Observe the materialization of source data is not strictly necessary, at least in prin-
ciple. Mappings are a set of “transformation” rules (e.g, from a source type to a KG
type) that can be leveraged to enable the formulation of queries over the integrated
data without requiring to materialize it, in the vein of virtual data integration method-
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ologies. However, materialization is necessary for the case of dataspaces of DI appli-
cations that require further bulk analysis or processing over the integrated data (e.g,
indexing into a full text search engine). Conversely, DI applications that have specific
requirements concerning the freshness of data (e.g., a CSE for flights) may choose to
materialize data in response to end-users queries and apply mappings to transform
data “on the fly”.

In this methodology, the integration between data sources is initially weak (e.g,
few coarse grained t-to-t and/or r-to-r mappings). The representation provided by the
KG is incrementally enriched (i.e., modeling) over time with new types, relations, and
facets for data presentation, which in turn supports the refinement of the integration
of source data via the establishment of new and more fine-grained mappings. As
the integration is tightened, and the representation is richer, the KG is incrementally
enriched with domain specific facets, so as to support more advanced data access
features, from and end-user perspective. This pay-as-you-go approach based on the
refinement of the integration over time differentiates this methodology for managing
a dataspace from traditional data integration methodologies that require fully fledged
integration before any service can be delivered to end-users [70].

Modeling, mapping, and materialization are performed during the whole lifecycle
of the dataspace, with one remark concerning modeling. In fact, while it is true that
modeling is performed during the entire lifecycle of a dataspace, it has different goals
whenever performed in the bootstrapping or maintenance phases, as schematized in
Figure 2.9. The main goal of the bootstrapping phase is to provide a representation of
data so as to immediately start the integration of data sources. In this phase, the rep-
resentation provided by the KG is generalist, and aims at covering the higher amount
of data as possible. For example, in a CSE, data may be represented with a generalist
type such as Offer, and characterized by a price (a generalist facet). Conversely, the
main focus during the maintenance phase is to provide a richer and domain specific
representation of data, so as to tighten the integration up via the establishment of new
mappings, but also to enable advanced data access features through the definition of
domain specific facets.

2.3.3 Role of Domain Experts in Data Management Tasks

The contribution of domain experts is fundamental in the management of the datas-
pace, as they are in charge of incrementally drive, supervise, and validate all the data
management tasks presented in the last section. Through an effective supervision, do-
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Figure 2.9: Evolution of a dataspace over time.

main experts incrementally enrich the KG with a richer and domain specific represen-
tation of instances, and establish mappings between elements of such representation
and the sources. Providing automatic support for domain experts in these tasks is
crucial for a proper and effective management of the dataspace.

Domain experts may be relatively autonomous in modeling the KG during the
bootstrapping phase because it requires the definition of a generalist representation.
However, enriching the schema so as to provide a more rich and domain specific rep-
resentation of instances once in the maintenance phase, requires a deep understanding
of the salient characteristics of instances for a large number of diverse domains, and
thus is difficult and time consuming at a large scale. Intelligent tools are needed also
to support domain experts in the establishment of mappings, to ultimately ensure an
high quality of the data in the dataspace. As a final remark, domain experts must be
equipped not only with tools that actually enrich the schema of the KG and establish
mappings, but also with the necessary information to proper supervise such tools and
validate their results, in order to ensure the adequate quality of data.

30



2.4 Summary

2.4 Summary

In this chapter, we described the anatomy of a dataspace, its components and how
these components, and in particular domain specific facets, provide a rich representa-
tion that can be leveraged by DI applications to deliver advanced data access features
to end-users. We described the lifecycle of a dataspace, focusing on the bootstrapping
and maintenance of the dataspace and its corresponding KG over time.

Domain experts in charge of supervising the whole data management process of a
dataspace face hard challenges. Enriching a KG with a domain specific representation
of instances is difficult, but nevertheless crucial. Such process requires, among other
things, the extraction of end-user oriented relations that model the salient characteris-
tics of instances of a KG type, which are named facets, and their consequent domain
specific interpretation. However, this is particularly challenging and time consum-
ing for domain experts to be performed at a large scale, because it requires extensive
knowledge of disparate domains. Moreover, domain experts in charge of maintaining
the dataspace and the KG must be equipped not only with tools to actually perform
a diverse set of data management tasks, but also with the necessary information to
proper supervise such tools and validate their results, in order to ensure the adequate
quality of data.
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3
Literature Review

Chapter 2 provided a detailed discussion of the technical and methodological back-
ground in the management of a dataspace. We highlighted the necessity to support do-
main experts in crucial data management tasks such as the enrichment of the schema
of the KG (to support the modeling phase), the establishment of mappings, and to pro-
vide domain experts with adequate information for supervision and validation. We
now discuss the state-of-the-art in the management of dataspaces, focusing on how
effectively supports the the enrichment of the schema of the KG (Section 3.1) and the
establishment of mappings (Section 3.2). Moreover, we will discuss also approaches
that aim at profiling the current status of a KG, so as to provide the vital information to
domain experts useful for supervision and validation (Section 3.3), before concluding
the chapter in Section 3.4.

3.1 Knowledge Graph Schema Enrichment

State-of-the-art approaches support the enrichment of the KG schema by extracting
types (e.g., [91, 148, 149, 126, 92, 93, 75, 72, 10, 130, 32, 82]), relations and facets [69,
132, 151, 33, 60, 100, 73] from source data. In our discussion we will focus our atten-
tion mainly on relation and facet extraction approaches, because they share the same
goal of this dissertation: to enrich the KG with a rich representation of instances. As
sources of a dataspace expose data in different formats (as discussed in Section 2.1.2),
we classify and discuss state-of-the-art approaches depending on how structured is
data from which they extract types, relations or facets.
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3.1.1 Extraction from Structured Sources

A large body of work focus on the extraction types and relations from databases
(see, [128] for a recent survey). The general goal of such body of work is to bootstrap
the schema of KG, eventually including a set of terminological axioms. The most ele-
mentary approach for the extraction of types and relations from a relational database
consists of creating a KG type from each table (i.e., table-to-type) and a KG relation
for each table column (i.e., column-to-relation) [13, 15]. An example of such approach
is depicted in Figure 3.1. Although elementary, this approach inspired most of related
work in this area, which aim at automatically discovering the semantics hidden in the
database structure for extracted types and relations.

State-of-the-art approaches extract types and relations along with a set of termi-
nological axioms involving them (e.g., [24, 95, 63, 144, 64]). Terminological axioms
are usually in the form of domain and range restrictions and emerge from constraints
specified in the database (e.g., primary or foreign keys). Consider, for instance, the
relational database described in Figure 3.1. Following the elementary approach de-
scribed earlier, the type Product is extracted from the table Products, while the type
ProductCategory is extracted from the table Product_Categories. An instance of Product

is characterized by a set of relations including brand and category. The semantics of
the latter relation is specified by terminological axioms that emerges from the foreign
key between tables Products and Product_Categories specified by the database. Hence,
domain and range restrictions can be extracted in the form of terminological axioms
like

∀x
(
category(x, y)→ Product(x)

)
∀y
(
category(x, y)→ ProductCategory(y)

)
.

Approaches described in this section are mainly applicable during the boostrap-
ping phase of the KG lifecycle, but not in the maintenance phase, because they have
two limitations: (1) they extract generalist relations, and (2) they consider a single data
source as input. As a result, they are capable to extract only a generalist, and not do-
main specific, representation of instances. Moreover, this representation has limited
power in representing data exposed by other data sources. These two limitations make
the described approaches applicable during the early life of a KG, and are particularly
useful when a KG is bootstrapped from a set of “core” data sources (e.g., a preliminary
product catalog of the Comparison Shopping Engine described in Section 1.2). How-
ever, they provide only a generalist representation, which applies to data from single
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Figure 3.1: An example of extraction of the KG schema from a relational database.

sources in isolation and thus are of little help in the management phase.

3.1.2 Extraction from Semi-Structured Sources

Related work in the extraction of types and relations from databases inspired the con-
struction of the DBpedia KG [69]. The general idea behind the DBpedia project is that
knowledge can be extracted from Wikipedia articles and consolidated into a KG which
includes relations. In their very first work [5], DBpedia creators extract relations from
Wikipedia infoboxes (e.g., the ones depicted in Figure 3.2). Infoboxes are consistently-
formatted boxes, which are present in most of Wikipedia articles, and that syntheti-
cally characterize instances of a given set of types (e.g., musical artists). Infoboxes are
generated through the application of domain specific templates, as for example the one
depicted in Figure 3.3. Practically, a template consists of a structured set of predefined
attributes (e.g., name) and relative values. The DBpedia relation extraction framework
turns these attributes into relations and outputs the corresponding set of relational as-
sertions involving them. For example, given the template in Figure 3.3, the DBpedia
relation extraction framework extracts the relation birthPlace along with the relational
assertion birthPlace(BillGates, Seattle).

The approach to relation extraction just described has some evident, yet well known
limitations, which stem from the intrinsic heterogeneity that characterizes Wikipedia
templates and their attributes [69]. In fact, as the Wikipedia infobox templating sys-
tem has evolved over time, different communities of Wikipedia editors use different
templates to represent the same types of entities (e.g., Japanese cities vs Swiss cities).
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Figure 3.2: Two infoboxes from Wikipedia (as of February 2016).

Templates created by different communities also model the same relations with syn-
tactically different attributes (e.g., birthplace and placeofbirth). Moreover, attribute val-
ues are heterogeneous, in the sense that they are expressed using a wide range of
different formats. As a result, the DBpedia relation extraction approach produces a
set of relations that are: (1) not normalized, and (2) whose ranges potentially contains
not normalized, possibly inconsistent values. In summary: while the relations result-
ing from the extraction cover a wide range of knowledge domains, they provide a
low-quality representation of instances.

To address the limitations of the automatic extraction of relations, DBpedia cre-
ators proposed a different crowd-sourcing based paradigm, based on the explicit def-
inition of mappings between template attributes and the well defined relations pro-
vided by the DBpedia Ontology, which constitutes the schema of the DBpedia KG [17].
These mappings, along with the DBpedia Ontology, are collaboratively curated and
maintained by a community of users1. This significantly increases the quality and
richness of representation provided by KG. Observe that a similar approach has been
applied to the YAGO KG [132], which is the other noticeable KG built from knowl-
edge extracted from Wikipedia articles. In fact, as for DBpedia relations, the extrac-

1http://mappings.dbpedia.org
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Figure 3.3: An example of template for persons.

tion approach implemented by YAGO relies on a predefined set of mappings between
template attributes and KG relations.

Observations on the weaknesses of the DBpedia relation extraction approach are
particularly relevant to this dissertation as they stem from data heterogeneity. In fact,
while it is true that the DBpedia KG is enriched with types and relations extracted from
a single data source (i.e., Wikipedia), it is also true that Wikipedia editors are orga-
nized in different communities each one with different and independent ways of clas-
sifying and representing source instances. Observed from this perspective, Wikipedia
poses the same data management challenges faced by DI applications that deal with
the integration of multiple data sources. Approaches based on the explicit definition
of mappings between template attributes and KG relations introduce a bottleneck in
the management of the dataspace, especially when extending the KG towards new
domains of knowledge.

The problem of extracting domain specific facets, to represent instances described
by Wikipedia articles have been studied also by Li et al. [151]. The approach proposed
by the authors takes in input a set of Wikipedia articles, and outputs a set of facets. Ob-
serve that, in this case, all the extracted facets share a common domain which includes
all the entities described by input articles. Conversely, the ranges of facets include all
the instances described by articles that are hyperlinked from input articles. Hyperlinks
between two given articles are considered as a clue of the fact that there exists a rela-
tionship between instances described by those articles. Given a set of input articles,
the proposed approach selects all the instances described by hyperlinked articles and
partitions them into facet ranges, based on the classification provided by Wikipedia
categories. As Wikipedia categories provide a very rich classification scheme [132]
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Figure 3.4: A Web page describing books.

the authors devise an automatic approach to find the partition that best balances the
generality and the specificity of facets.

Facets have been extracted from HTML documents provided by semi-structured
data sources using unsupervised [33] or supervised [60] machine learning techniques.
Similarly to Li et al. [151], those approaches take in input a set of HTML documents
describing domain specific source instances (e.g., books from Figure 3.4) and output a
set of facets, specified in terms of the same domain, which includes all the instances
described by input documents, and with facet ranges extracted from HTML elements
embedded in the documents (e.g., the ones highlighted in red in Figure 3.4). Again, the
main challenges that such approaches must face stem from the intrinsic heterogeneity
of values extracted from HTML elements. In order to address these challenges, QD-
Miner [33] propose an unsupervised approach based on the adaptation of the Quality
Threshold clustering algorithm [46], which devises a set of facet ranges by jointly max-
imizing specificity and coverage across instances described by the input documents.
The same challenge is tackled by Kong and Allan [60], who propose a Graphical Model
based approach that is based on the estimation of the probability of two values to be
part of the same facet range, based on training data.
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3.1.3 Extraction from Unstructured Data Sources

Some state-of-the-art approaches extract facets from unstructured data sources [100,
110]. Large unstructured text document collections are analyzed in order to identify
a set of relevant terms, that will form the ranges of extracted facets. Such approaches
typically rely on lexical resources such as WordNet [37] to handle the intrinsic het-
erogeneity and ambiguity of source data, but also on extra information provided by
full text query logs, when available. Other state-of-the-art approaches extract types
taxonomies from unstructured data sources [82, 130, 32, 126, 92, 93, 75, 72, 10, 149].
State-of-the-art approaches in this area analyze lexico-graphical patterns such as x is a
y found in text (also known as Hearst Patterns [44]) and devise a type taxonomy from
them. They do not extract relations, nor facets. Observe that approaches discussed in
this section cover unstructured data sources, which represent only one of the possible
formats used to exchange data in dataspaces. For this reason, they are complemen-
tary to the contributions of this dissertation, which focus on more structured data (see
Section 4.6).

3.2 Mapping Discovery

State-of-the-art approaches related to mapping discovery automatically establish map-
pings between source and KG instances, types and relations, provided by structured [38,
122, 27, 71, 131, 83, 78, 104], semi-structured [74, 143, 120, 145, 112, 156, 86, 154, 153,
155] and unstructured [87, 119] data sources. Related work that is most relevant to this
dissertation focuses on the establishment of mappings between structured and semi-
structured data sources and the KG, and we review them in the following sections. We
will not cover the establishment of mappings from unstructured data sources, as state-
of-the-art approaches focus on the establishment of i-to-i mappings between source
instances described in free text and KG instances. Those approaches, proposed in the
literature under the general classification of Named Entity Recognition and Linking,
are less relevant to this dissertation, which focuses more on the schema of the KG (i.e.,
types and relations). However, we point the interested reader to [87, 119], for two
surveys of that area.
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3.2.1 Mapping Structured Sources

Early approaches on the discovery of mappings in presence of structured sources have
been provided by the Data Management community, under the general classifica-
tion schema matching [128] approaches. They support the management of particu-
lar dataspaces where sources provide direct access to tables and views of a database.
However, these approaches can be hardly applied to most of the dataspaces on a Web
scale, where sources are distributed over the Web and are accessible via the HTTP pro-
tocol [39]. More recently, the discovery of mappings between structured data sources
have been studied also in the ontology matching field (see [122] for a survey), with
focus on data sources that represent and exchange data by means of the RDF data
model.

Ontology matching approaches mainly focus on the establishment of t-to-t map-
pings and r-to-r mappings, while the establishment of i-to-i mappings has been stud-
ied under the general classification of Instance Matching [38]. The widely adopted ap-
proach in establishing t-to-t and r-to-r mappings is to analyze terminological axioms
(i.e., subtype relations, domain and range restrictions) as well as types’ and relations’
lexicalizations. State-of-the-art approaches apply a composition of different criteria
in order to compute the similarity between two types or relations. Syntactic similar-
ity criteria are used to compare lexicalizations (see, [26] for a survey of the main ap-
proaches). Structural similarity criteria apply graph matching techniques to the graph
extracted from terminological axioms, which includes the subtype hierarchy but also
domain and range relationships between types and relations (e.g., [83, 71, 131]).

State-of-the-art ontology matching approaches perform particularly well on t-to-t
mappings as testified by results of the Ontology Alignment Evaluation Initiative [123],
a yearly competition held at the Ontology Matching Workshop active since 20062.
Unfortunately, current ontology matching approaches do not perform comparably
well in the establishment of r-to-r mappings [78, 104, 27]. In this context, approaches
based on well chosen string similarity metrics tuned to consider relations outperform
more “holistic” ones that jointly establish t-to-t, r-to-r and i-to-i mappings [27] such
as [71, 131]. The important remark is that information about the domain and range of
relations is crucial for effectively establishing r-to-r mappings. In structured sources
that adhere to the RDF data model, this information is explicitly available (see Sec-
tion 2.1.2).

2http://oaei.ontologymatching.org/
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However, in the case of generalist relations, domain and range information may
not be discriminative enough, or even be absent (i.e., no terminological axioms spec-
ified). In fact, generalist relations are often underspecified [1] as a result of precise
modeling choices that aim at favoring sharing and re-use, e.g., the relation dc:date

from the general purpose Dublin Core Elements Vocabulary3. Still, underspecified re-
lations may be used by a data source with a more domain specific semantics. This kind
of domain specificity (i.e., emerging from usage) cannot be captured by state-of-the-art
relation mapping approaches are based on the analysis of terminological axioms.

3.2.2 Mapping Semi-Structured Sources

A large body of work discovers mappings between semi-structured data sources and
the KG, and in particular of tabular (e.g., CSV) data, under the general classification
of table annotation approaches [74, 143, 120, 145, 112, 156, 86, 154, 153, 155]). The task
of interpreting a semi-structured table gained attention since a seminal study from
2008 by Cafarella et al. [21], who shown that the Web pages contain a huge amount
of high-quality tables containing useful relational data. Table annotation approaches
are particularly relevant to this dissertation, because semi-structured tables are one of
the most commonly used exchange format in dataspaces. Figure 3.5 depicts the in-
put (i.e., a table) and the expected output (i.e., a set of mappings) of a generic table
annotation algorithm. Many table annotation approaches assume that a table include
a subject column that is, a column containing the subject entities described by the ta-
ble [143, 145, 155], while the remaining columns contain entities or literal values that
are in a relationship with subject entities. The goal of a table annotation approach
is to interpret a table by establishing mappings between cells, columns and pair of
columns, and a KG instances (i-to-i), types (t-to-t), and relations (r-to-r), respectively.

Venetis et al. [143] apply a maximum likelihood inference model to estimate the
probability of a relation that holds between values from two columns. The same in-
ference model is applied in order to annotate columns with types. The estimation of
the maximum likelihood model is based on computation of the frequencies within the
KG of all pairs of values of the same row as subjects and objects of relations, and does
not consider any type information. Wang et al. [145] interpret tabular data sources
using the Probase KG [149]. Probase is a probabilistic KG and it provides scores that
model the plausibility and the ambiguity of entities being instance of a certain type and
a type being characterized by certain relations. Those scores are computed during the

3http://dublincore.org/documents/dces/
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Figure 3.5: Schematization of the input and the output of a table annotation approach.

bootstrapping of the KG. They interpret a table by identifying the subject column, es-
tablish a t-to-t mapping between it and a KG type and then establish r-to-r mappings
between the remaining columns and KG relations. Their approach is KG dependent,
since they rely on plausibility and ambiguity scores provided by Probase in order to
compute the overall score of a candidate mapping.

TableMiner [155] interprets tables with entities, types and relations from the gen-
eralist KG Freebase. One of the main contributions of TableMiner is the usage of con-
textual information extracted from the Web page that contains the table (e.g., table
caption, surrounding text, RDFa/Microdata annotations). Following the same intu-
ition of Wang et al. [145], TableMiner starts with identifying the subject column and
provides a set of preliminary i-to-i and t-to-t mappings. Those mappings are then
jointly refined using an iterative learning procedure. r-to-r mappings are then com-
puted based on the result of the refinement phase.

The above mentioned table annotation approaches tackle the establishment of the
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various type of mappings independently and propose a principled combination of
the result. However, also more holistic approaches have been proposed by Limaye et
al. [74] and Mulwad et al. [86]. They model the interdependence between table cells,
columns and rows using probabilistic graphical models [59] and perform collective
inference in order to jointly compute the optimal mappings. However, more recent
approaches that tackle the establishment of different (i.e., i-to-i, t-to-t, r-to-r) mappings
separately outperformed the joint inference based ones [143, 155].

Karma [57, 136, 137, 113] is designed for situations where data from different data
sources to be interpreted partially overlap and propose a semi-automatic and interac-
tive mapping process that learns how to establish new mappings based on mappings
previously defined. The domain expert is asked to initially specify t-to-t mappings
between columns and KG types. Then, Karma automatically computes a set of r-to-r
mappings between pairs of table columns and KG relations. At each step, the domain
expert can revise and refine the mappings automatically computed by the system. As
Karma assumes that data from the sources to be interpreted partially overlap, it learns
how to suggest t-to-t [57] and r-to-r mappings [137], by using a Conditional Random
Fields [65] (CRF) based model trained with previously defined t-to-t mappings that
uses features extracted from values in the columns. Given the defined t-to-t map-
pings, Karma is also able to infer r-to-r mappings by leveraging axioms in the input
ontology in terms of relation domains and ranges.

3.3 Knowledge Graph Profiling

Another body of work that is relevant to this dissertation is related to data summariza-
tion [152, 141, 84, 22, 51, 111, 61, 29, 67, 4], which aims at profiling a KG by providing
an abstract representation of its data (i.e., a summary) in terms of types, relations and
their reciprocal usage. Effective summarization approaches are crucial in order to
support both algorithms and domain-experts in the supervision of data management
tasks in dataspaces, by providing the capability to answer to questions like: (1) what
instances or types are described in the KG? (2) What relations are used to character-
ize the instances? (3) What types of instances are linked by a certain relations and
how frequently? We now review state-of-the-art summarization approaches explicitly
proposed for large KGs.

A schematization of the summarization process for a KG is provided in Figure 3.6.
A first body of work devise summarization models aimed at identifying portions of
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Figure 3.6: Overview of a generic structured data summarization approach.

data that are estimated to be more relevant in order to understand and explore the
structure and the representation of KG instances. Early approaches rank the axioms
of an ontology based on their salience so as to present a view over the ontology to
the users [152], while more recent approaches such as RDF Digest [141] identify the
most salient subset of data using a more rich set of different criteria, including the
distribution of instances.

A second body of work focus on the summarization of a KG by reporting statis-
tics about the usage of types and relations in the data. Among these approaches
Loupe [84], the most noticeable one, extracts types and relations along with a rich
set of statistics on their usage for the representation of instances. Loupe provides a
summary of a KG by extracting a rich set of abstract relation patterns found in the
data and their corresponding frequency. Those patterns are extracted in the form of
(C, P, D), where C and D are types, and P is a relation. Patterns provide an ab-
stract overview of how relations are used to represent instances of particular types.
In [22], authors consider types and relation usage in the summarization process of an
RDF graph and use information similar to relation patterns. A similar approach is
also used in MashQL [51], a system proposed to query graph-based source data (e.g.,
RDF) without prior knowledge about the structure and schema of a data source. Pat-
tern extraction from RDF data is also discussed in [111], but in the context of domain

44



3.4 Summary

specific experiments and not with the purpose of defining a general structured data
summarization framework.

Other approaches that tackle the KG summarization problem do not extract rela-
tionships between source types but instead provide several other statistics. SchemeEx
extracts interesting theoretic measures for large KGs, by considering the co-occurrence
of types and relations [61]. A data analysis approach on RDF data based on an warehouse-
style analytic is proposed in [29]. This approach focuses on the efficiency of processing
analytical queries which poses additional challenges due to their special characteris-
tics, such as complexity, evaluated on typically very large KGs, and long runtime. In
the same line of work, Linked Open Vocabularies4, RDFStats [67] and LODStats [4]
provide several statistics about the usage of types and relations, but without repre-
senting connections between types.

3.4 Summary

In this chapter we reviewed the state-of-the-art in supporting domain experts in the
main data management tasks for the maintenance of dataspaces. We started from
by reviewing approaches that provide automatic support to domain experts in the
modeling of the KG schema, and in particular approaches whose goal is to enrich
the schema of the KG (Section 3.1). We saw that a large body of work have been
proposed to support the enrichment of the schema by extracting types, relations and
facets from diverse types of sources, from structured sources to unstructured sources.
Then, we turned our attention on the discovery of mappings between source data and
elements of the KG schema, focusing in particular on structured and semi-structured
data sources (Section 3.2). Finally, we reviewed approaches that aim at profiling a
KG, so as to provide domain experts with the necessary information needed to su-
pervise and validate approaches that automatize the above data management tasks
(Section 3.3).

As we saw in this chapter, there are a variety of different approaches that can be
potentially applied to support domain experts in the management of the dataspace.
However, such approaches have several limitations, which we summarize in the fol-
lowing.

4http://lov.okfn.org/

45

http://lov.okfn.org/


3. LITERATURE REVIEW

Lack of Support for the Extraction of Facets

Most of the approaches described in Section 3.1, focus on the extraction of types and
relations, while few focused on the extraction of facets [100, 110, 151, 33, 60]. Although
facets are by all means relations, they serve different purposes, being relations back-
end oriented and facets end-user oriented. Moreover, to the best of our knowledge,
no work focused on extracting domain specific facets. As a result, the current state-
of-the-art supports domain experts in the enrichment of the schema of the KG with
types, relations, and generalist facets, but not domain specific ones.

Limited Insights About the Status of the KG

Related work in the profiling of KGs is more limited, compared to KG schema en-
richment and mapping discovery. From the review given in Section 3.3, emerges that
state-of-the-art approaches currently provide a profile of the KG that is either incom-
plete, because includes only a portion of data estimated to be more relevant in order
to understand and explore the structure of the KG, or a set of statistics without being
able to capture patterns in the data, which can in principle provide useful insights to
domain experts during the execution of data management tasks for the maintenance
of the dataspace.

In summary, current state-of-the-art provides limited support for the extraction of
facets, and in particular domain specific ones, which are currently left to nearly com-
pletely manual work by domain experts. To overcome this limitation, in this disserta-
tion we propose an approach to the enrichment of the KG with domain specific facets
composed by two different steps, discussed in Chapters 4 and 5. In particular, we first
extract domain specific facets from structured data sources based on existing t-to-t
mappings already established by domain experts, to enforce domain specificity. Then,
we provide a domain specific interpretation of extracted facets, by reusing relations
specified by the KG of the dataspace or eventually by other external KGs. While the
first approach specifically enriches the KG with domain specific facets, the second ap-
proach reconciles the end-user oriented representation of instances provided by facets
to the back-end oriented representation provided by relations with the benefit of tight-
ening the integration between the sources up and thus empowering the capability to
provide advanced data access features to end-users of the dataspace. As supervision
and validation of domain experts is crucial in this picture, in Chapter 6 we propose a
KG profiling approach that provides domain experts with insights about the current

46



3.4 Summary

status of the KG. In particular, our approach is capable to provide an overview of the
specificity of relations of a KG, which constitutes vital information for domain experts
in charge of supervising the enrichment of the KG schema with domain specific facets
and their domain specific interpretation with KG relations.

47





4
Domain Specific Facet Extraction

4.1 Overview

Type-based and facet-based browsing are two examples of data access features that many
DI intensive applications, such as the Comparison Shopping Engine described in Sec-
tion 1.1, aim to deliver to their users. These features require the creation and mainte-
nance of a domain specific representation respectively based on KG types, and facets [138,
147]. As introduced in Sections 2.1.1 and 2.2, KG types provide a coarse-grained rep-
resentation of all the instances in the dataspace, which helps users to rapidly recall the
“family” of instances they are interested in. Conversely, facets provide a fine-grained
representation of KG instances, which helps users to rapidly recall instances with spe-
cific characteristics (e.g., “Grape: Barolo”, “Type: Red Wine”).

Facet creation and maintenance is an extremely time and effort consuming task
in the context of DI applications and specifically in the context of CSEs. This task
is left to manual work of domain experts and requires a deep understanding of the
salient characteristics of KG instances (e.g., wines are characterized by grape, type,
provenance, and so on) for a large number of diverse product types or domains. As
a result, many CSEs provide only few generalist facets (e.g., price and merchant) and
others provide a richer set of domain specific facets but only for a limited amount of
popular product types.

This chapter introduces an automatic, domain specific facet extraction approach,
which supports domain experts in the creation of significant domain specific facets.
Facets are specialized relations aimed at model the salient characteristics of entities
from specific domains (e.g., news, actors, or wine bottles), and thus the technical
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problem tackled in this chapter accounts to the extraction of salient domain specific
relations. Our approach leverages the information already present in the dataspace,
namely (i) taxonomies used to classify instances from structured the data sources and
(ii) t-to-t mappings established between source and KG types, to suggest meaningful
facets specific for a given KG type. In fact, unlike the KG types, which have to cover
instances from very diverse domains, source taxonomies are often domain specific.
Domain experts map domain specific types from source taxonomies (e.g., Barolo) to
generalist types in the KG (e.g., Wines). The intuition behind the proposed approach is
to reuse the fine-grained source types that occur in several source taxonomies mapped
to KG types (e.g., Barolo, Cabernet), to extract a set of relevant facets for a given KG
type. In addition, since our approach extracts facets from source types, the generation
of the corresponding faceted assertions for extracted facets over dataspace instances
is straightforward, supporting facet-based browsing.

The proposed approach incorporates an automatic facet extraction algorithm that
consists of two steps: extraction of potential facet values (e.g., Cabernet) and clustering
of facet values into sets of mutually exclusive facet ranges (e.g., Bordeaux, Cabernet,
Chianti). The algorithm is based on structural analysis of source taxonomies and on
Taxonomy Layer Distance, a novel metric introduced to evaluate the distance between
source types in different heterogeneous taxonomies. Experiments conducted to eval-
uate the approach show that our algorithm is able to extract meaningful facets that
can then be refined by domain experts. The remaining of the chapter discusses in de-
tails this contribution, starting from Section 4.2, in which we provide a definition of
the problem of extracting domain specific facets. In Section 4.3 we describe our facet
extraction approach, and we discuss how to populate the KG with faceted assertions
for the extracted facets in Section 4.4. We evaluate our approach in Section 4.5. Com-
parison with related work (Section 4.6) and a final summary of the contribution here
described (Section 4.7) end the chapter.

4.2 Problem Definition

Our goal is to extract a set of facets so as to provide a domain specific representation of
instances of a specific KG type. As input of the problem, we assume that there exists
a KG subtype graph and a set of mappings between types from a set of source tax-
onomies and KG types. We assume that the mappings have many-to-one cardinality,
i.e., many source types in each source taxonomy are mapped one KG type. In the rest
of this section we recall the formal definitions introduced in Chapter 2 and define the
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Domain Specific Facet Extraction problem.

KG Subtype Graph and Types

The KG subtype graphG = (NC ,�) consists of a set ofNC of KG types and a subtype
relation �. We recall from Section 2.1.1 that such subtype graph is constructed from
terminological axioms about KG types.

Source Taxonomy and Types

A source taxonomy T̃ = (ÑC , �̃) consists of a set ÑC of source types and a subtype
relation �̃ that imposes a partial order over ÑC . We also assume that a source type C̃
is associated to one or more lexicalizations. Consistently with Section 2.2, we assume
that the correspondence between a source type C̃ and its lexicalizations is provided
by the values taken by the function lex(C̃).

T-to-t Mapping

A t-to-t mapping C(x) ← C̃(x) is a correspondence between a leaf type C̃ of some
source taxonomy ÑC and a KG type C. The semantics of a t-to-t mapping between
C̃ and C is that instances that are classified under C̃ at the source are classified as
instances of C once they are integrated into the dataspace.

Facet

Recall from Section 2.2 that a facet can be defined as “a clearly defined, mutually exclu-
sive, and collectively exhaustive aspect, property, or characteristic of a class or specific
subject” [138]. A facet F =< C,V > is a relation that holds between a domain of in-
stances of the KG type C and a range of facet values V = {v1, . . . , vn}. For example,
a facet such as F =< Wines, {Italy,France, . . . ,Chile} > may conceptualize the rela-
tion that holds between instances of the KG type Wines and the respective country of
origin.
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Facet Extraction

Given a KG type C and a set of t-to-t mappings between source types C̃1, . . . , C̃i and
C, extract a set of facets FC that provide a domain specific representation of instances
of C. More formally, given C and mappings between source types C̃1, . . . , C̃i and C,
we aim at extracting a set of facets

FC = {F1 =< C,V1 >, . . . , Fn =< C,Vn >}

where the domain of all the facets is fixed and includes all instances of the KG type C.
Observe that, as the facet domain is fixed, solving the Domain Specific Facet Extraction
Problem basically accounts to the extraction of facet ranges VC = {V1, . . . ,Vn} for
domain specific facets, given a KG type C.

4.3 Approach

The approach to facet extraction proposed in this dissertation is sketched in Figure 4.1
and is aimed to support domain experts who are in charge of maintaining domain spe-
cific KGs and corresponding mappings. Domain experts trigger the extraction process
for a specified KG type. An automatic facet extraction algorithm suggests a set of do-
main specific facets to domain experts, who inspect, validate and refine them, deciding
which facets will be consolidated into the KG.

The automatic facet extraction algorithm at the core of the proposed approach is
inspired by the following principle: specialized taxonomies used in data sources con-
tain information that can be analyzed to extract a set of significant domain specific
facets that characterize instances of a specific KG type. The facet extraction algorithm
extracts the set of facets FC for a KG type C using a two-phase process:

1. Value Extraction: a set of normalized facet values is produced by case loweriza-
tion, special characters removal and stemming of all the source types mapped to
C.

2. Value Clustering: facet values are clustered together into facet ranges according
to source taxonomies structural analysis. Since we look for facets of mutual ex-
clusive values, we admit facets containing at least two values. Thus, values that
cannot be added to any facet (i.e., clusters of one element) are discarded.
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Figure 4.1: Overview of the proposed approach to domain specific facet extraction.

4.3.1 Value Extraction

During this phase we identify the set of facet values that are frequently used for the
representation of source instances. In order to identify such values for for a KG type
C we rely on existing mappings to C. For each source taxonomy T̃ we form the set
NC
T̃

of values occurring as lexicalization of source types mapped to C and all their
ancestors in the respective source taxonomy. The level of detail of source taxonomies
can be different in each source taxonomy, thus ancestors’ lexicalizations are included
in NC

T̃
to consider every possible significant value. The set NC

T̃
for a KG type C and a

source taxonomy T̃ is defined as

NC
T̃

= {lex(C̃) | C(x)← C̃(x) ∨ C(x)← C̃ ′(x), with C̃ ′ �̃ C̃}.

The set V C
T̃

of normalized values is obtained by applying case lowerization, special
characters removal and stemming to NC

T̃
. As far as stemming is concerned, we use

Hunspell Stemmer1 to normalize values’ terms with respect to their singular form.

1http://hunspell.sourceforge.net/
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Hunspell stemmer is based on language dependent stemming rules that are available
for most of languages. Normalized values are then unioned together to form the set
V C of facet values for a for a KG type C. In this phase, duplicated values are removed.
The set V C of unique values for a KG type C over all the n source taxonomies is
defined as

V C =
n⋃
i=1

V C
T̃i
.

After normalization and unioning, a simple ranking function is applied to V C .
Unique values are ranked according to their frequency over the all sets V C

T̃i
. Intuitively,

the more a value occurs as source type mapped to the KG type C, the higher rank it
will get. Based on this ranking we reduce V C to the set V C

k of the top k frequent values.
The rationale behind this choice is to keep only those values that are more commonly
used across many independent and heterogeneous sources and thus are likely to be
more relevant for the fine-grained representation of dataspace instances. The set V C

k

of the top frequent values produced by this phase represents the input for the next
phase. In addition, we keep track of the (possibly) many source types to which each
value v ∈ V C

k correspond. In this way, the annotation of the dataspace instances with
facet values extracted by the algorithm is straightforward.

Example. Given the two taxonomies A and B in Figure 4.1, for the KG type Wines

NWines
A = {Beverages,Wines,Tuscany,Chianti, Sicily,Nero d′Avola,Vermentino}

and

NWines
B = {Root,Food And Drinks,Wines,White Wines,Verdicchio,Red Wines,

Cabernet, Lombardy,Sicily,Chianti}.

After normalization, values from NWines
A and NWines

B form the set of unique facet val-
ues

V Wines = {Root,Beverage,Food And Drink,Wine, Lombardy,Cabernet,Tuscany,

Chianti, Sicily,Vermentino,Nero d′Avola,White Wine,Verdicchio,Red Wine}.

4.3.2 Value Clustering

Values in V C
k are clustered to form the set of facet ranges VC . The goal is to cluster to-

gether all values that are more likely to be coordinate values identifying objects of the
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same relation. As an example, suppose that the set V Wines
k = {Cabernet,Chianti, Lombardy, Sicily}

is produced in the Value Extraction phase. An ideal clustering should be V1 = {Cabernet,Chianti}
and V2 = {Lombardy,Sicily} because each facet range refers to a same relation (i.e., the
wine’s grape variety and the origin Italian region).

So as to discover the set VC of facets ranges over V C
k , the DBSCAN density-based

clustering algorithm [35] is used. DBSCAN clusters together values within a maxi-
mum distance threshold ε and satisfying a cluster density criterion and discards as
noise values that are distant from any resulting cluster. The DBSCAN algorithm re-
quires in input the minimum cardinality of expected clusters and the maximum dis-
tance threshold ε. In the proposed approach, the minimum cardinality is set to 2,
while the best value for ε is found empirically (see Section 4.5). Finally, DBSCAN
does not require a number of expected clusters as input. DBSCAN is used for sev-
eral reasons. The proposed approach must deal with heterogeneous taxonomies, thus
it cannot make any assumption about the shape of clusters (i.e., facet ranges) and it
must employ clustering techniques that incorporate the notion of noise. Otherwise,
clustering algorithms requiring the expected number of clusters as input are not suit-
able (e.g., KMeans [43]) since the number of facets to detect is not known in advance.

In order to use the DBSCAN clustering algorithm it is crucial to provide an effec-
tive distance metric between the values. We propose a distance metric that considers
near those values that refer to a same characteristic of instances, according to a tax-
onomic structural criterion. We now formally define the proposed distance metric,
starting from the principle that it aims at capturing: source type mutual exclusivity.

Source Type Mutual Exclusivity Principle

Recall from Section 2.2 that a facet is “a clearly defined, mutually exclusive, and collec-
tively exhaustive aspect, property, or characteristic of a class or specific subject” [138].
The Source Type Mutual Exclusivity principle (STME) states that the more two val-
ues refer to mutually exclusive types, the more they should be grouped together into
the same facet range. Given two source types C̃1 and C̃2, their occurrence as sib-
lings may indicate that C̃1 and C̃2 are mutually exclusive (e.g., Cabernet and Chianti in
Figure 4.2). STME is a structural principle: it takes source taxonomies structure into
account by considering reciprocal relationships among types.
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Taxonomy Layer Distance

We propose a distance metric that captures the STME principle by considering sib-
ling relationships between source types, or more generally, the co-occurrence of types
on a same taxonomy layer. Given a taxonomy T̃ , a taxonomy layer lT̃ of T̃ is the set
of all types that are at the same distance from the taxonomy root. For example, the
set {Lombardy,Tuscany,Sicily} is a layer for taxonomy A in Figure 4.2. At large scale,
types occurring on same taxonomy layers are likely to be mutually exclusive since
they usually represent partitions of the set of source instances categorized under the
considered taxonomy. Considering co-occurrences on the same taxonomy layer rep-
resents a principled way to capture the STME principle: the more two values v1 and
v2 co-occur at the same layer across all source taxonomies, the more they should be
clustered together and thus the less they are distant from each other.

We compute the Taxonomy Layer Distance (TLD) between two values v1 and v2

by counting their co-occurrences on the same taxonomy layer and scaling it by their
nominal occurrences across all source taxonomies. Computing TLD is equivalent to
computing the Jaccard Distance between the two sets of taxonomy layers where two
values v1 and v2 occur, respectively. Given a value v and a source taxonomy T̃ we
define the set Lv

T̃
of layers containing v in T̃ as Lv

T̃
= {lT̃ | v ∈ lT̃ } (a type can occur

in more than one layer). The overall set Lv of layers containing v is computed by
unioning all layers across all n source taxonomies as

Lv =

n⋃
i=1

Lv
T̃i
.
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The Jaccard Distance between Lv1 and Lv2 is then computed as:

TLD(v1, v2) = 1− |L
v1 ∩ Lv2 |
|Lv1 ∪ Lv2 |

.

Example. Given the two source taxonomies from Figure 4.2 and values Cabernet and
Chianti, we first compute layers containing Cabernet and Chianti

l1A = {Cabernet,Chianti,CantinaFirriato,CantinaAlmeria}
l2A = {Cabernet,Nero d′Avola}
l1B = {Vermentino,Cabernet,Verdicchio,Chianti}.

The set of layers containing Cabernet and Chianti are

LCabernet
A = {l1A, l2A}

LCabernet
B = {l1B}

LCabernet = LCabernet
A ∪ LCabernet

B = {l1A, l2A, l1B}
LChianti
A = {l1A}

LChianti
B = {l1B}

LChianti = LChianti
A ∪ LChianti

B = {l1A, l1B}.

Hence, the distance between Chianti and Cabernet is computed as

TLD(Cabernet,Chianti) = 1−
|LCabernet ∩ LChianti|
|LCabernet ∪ LChianti|

= 1−
2

3
=

1

3
.

4.4 Faceted Assertions Generation

The output of the facet extraction algorithm described in the last section is the set of
extracted facets FC = {F1 =< C,V1 >, . . . , Fn =< C,Vn >} that, after the validation
of domain experts, enrich the schema of the KG. However, to enable the proper pub-
lication of such facets in the front-end of the dataspace, additional information must
be stored. In particular, to enable query answering after the materialization of source
data into the dataspace (see, Section 2.3), a set of mappings from the sources to the
newly extracted facets has to be generated.

Recall from Section 4.3.1 that values in the facet ranges are extracted from the lex-
icalizations of source types and normalized by applying lowerization, special charac-
ters removal and stemming. During such phase, we keep track of the (possibly) many

57



4. DOMAIN SPECIFIC FACET EXTRACTION

source types to which each normalized facet value correspond. To this end, we define a
convenient function origin that takes a normalized facet value in input and returns the
set of source types from which the value have been extracted. This function concep-
tually “reverses” the value normalization by accessing the correspondences between
normalized facet values and source types stored during the value extraction phase.

Given an extracted facet F =< C,V > and the correspondences between normal-
ized facet values and source types from which they have been extracted, mappings
are generated in the following form:

F (x, v)← C̃(x), C̃ ∈ origin(v), v ∈ V.

The semantics of such mappings is that a value v is asserted to be the value of the facet
F for the instance x, if x is an instance of the source type C̃, v is included in the ex-
tracted facet range and was extracted from C̃. Such mapping acts as a transformation
rule used to populate the KG with a set of faceted assertions during the materializa-
tion of source data into the dataspace. Such faceted assertions will then be leveraged
in the front-end of the dataspace to support, for example, a faceted search interface
(see Section 2.2 for more details).

4.5 Evaluation

The core idea of our proposed approach to domain specific facet extraction is that we
group facet values according to a structural criterion (i.e., TLD). Hence, we focus on
evaluating the facet value clustering phase. Our goal is to show that TLD effectively
captures the STME principle and supports domain experts in facets definition. To
the best of our knowledge there are no distance metrics for taxonomies that explicitly
aim at capturing the STME principle. However, structural similarity metrics that con-
sider path distance between types of a taxonomy are good candidates to compare our
work to. Intuitively, the more two source types co-occur in the same source taxonomy
path (i.e., they are similar to some degree according to structural similarity metrics)
from the root to a leaf, the less they are mutually exclusive and the more they should
be clustered into different facet ranges (i.e., the clustering algorithm should consider
them distant from each other).

In the experiments described in this section, TLD is compared with two known
structural type similarity metrics, namely Leacock and Chodorow [68] (LC) and Wu
and Palmer [150] (WP) metrics. Both LC and WP achieve high effectiveness results in
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determining the similarity of concepts within the WordNet taxonomy [118]. LC mea-
sures the similarity between two taxonomy types by considering the shortest path be-
tween them and scaling it by the depth of the taxonomy. Similarly, WP measures the
similarity between two types by considering the distance from their nearest common
ancestor and the distance of the nearest common ancestor from the taxonomy root. We
adapted LC and WP to the case of multiple taxonomies. More specifically, given two
source types C̃ and D̃ we evaluate their LC and WP similarities for each source tax-
onomy where C̃ and D̃ co-occur and we take the mean similarity as the final distance
value.

4.5.1 Gold Standard

We created a gold standard from the real world TrovaPrezzi Italian PCE dataspace.
We chose ten TrovaPrezzi global categories and ran the Values Extraction phase over
them. We presented the set of top k frequent values to TrovaPrezzi domain experts,
who found that relevant facet values generally appear among the top 100 ranked val-
ues. Thus we choose k = 100 as cardinality of the set of extracted facet values. Facet
values were manually grouped together by a domain expert from TrovaPrezzi map-
ping team and facets were then validated by other domain experts in order to ensure
their correctness. As we expected, some of the values were discarded by domain ex-
perts as they could be added to any existing facet range.

Table 4.1 shows some statistics about the Gold Standard. Gold Standards’ KG types
cover different domains and a relevant portion of the overall KG of the CSE, that is 688
source taxonomies and 22594 leaf mappings. For each source taxonomy an average of
about 33 mappings have been specified. Moreover, for 322 source taxonomies map-
pings to more than one KG type have been specified. Notice that all the data upon
which we created the gold standard are lexicalized in Italian. Our approach to do-
main specific facet extraction is language independent, thus results that we present in
following sections are comparable to others obtained considering different languages.
For sake of clarity, we provide examples translated to English.

4.5.2 Evaluation Metrics

We evaluate our facet extraction approach from two different perspectives: facet value
effectiveness and value clustering effectiveness. This kind of evaluation campaign
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Table 4.1: Gold Standard statistics.

#Source Taxonomies #Mappings Mean Std.Dev.

Dogs and Cats Food 80 5592 69.90 266.95
Grappe, Liquors, Aperitives 115 1254 10.90 24.49
Wines 184 8967 48.73 324.63
Beers 58 156 2.69 3.84
DVD Movies 164 2042 12.45 45.48
Rings 138 936 6.78 13.61
Blu-Ray Movies 55 395 7.18 16.67
Musical Instruments 128 1306 10.20 27.49
Ski and Snowboards 55 790 14.36 23.45
Necklaces 148 1156 7.81 17.88

Overall 688 22594 32.84 195.79

has been previously used to evaluate several facet extraction approaches [60, 33]. We
introduce the notation we will use in the rest of the section. Given a KG type C,
we denote with V C the set of discovered facet values (i.e., values that have not been
classified as noise by the algorithm). We denote with V C

∗ the set of gold standard facet
values (i.e., values not classified as noise by domain experts). Lastly, we denote with
VC the set of manually discovered facet ranges (i.e., the gold standard for the KG type
C), which is compared to the set VC∗ of automatically discovered facet ranges.

Value Effectiveness

In our proposed approach noisy values are discarded. In order to evaluate the ability
of our technique to filter noisy values out we compare sets V C and V C

∗ , using Pre-
cision (P ), Recall (R) and F-Measure (F1). All these metrics do not take clustering
effectiveness into account.

Value Clustering Effectiveness

We evaluate clustering effectiveness using several standard clustering quality metrics,
that are Purity (P ∗), Normalized Mutual Information (NMI∗), Entropy (E∗), and F-
Measure for clustering (F ∗). One remark about the usage of these evaluation metrics
is that the set of facet values clustered by our approach is different from the set of
facet values grouped by humans (i.e., VC 6= VC∗ ). We may fail in including meaningful
values into some clusters, or we may mistakenly include noisy values into some facets.
Clustering quality metrics cannot handle these cases. Thus, we modify facet ranges
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in VC by (1) removing all noisy values and by (2) adding to VC as single value facet
ranges all gold standard values that have been automatically classified as noise. These
adjustment ensures that VC = VC∗ and thus clustering quality metrics can be used
properly. With this adjustment, facet value effectiveness is not considered.

Overall Quality

In order to evaluate the overall effectiveness of our approach, we aggregate facet value
precision P , facet value recall R and clustering F-measure F ∗ into an overall quality
measure. The PRF ∗ measure combines P , R and F ∗ by means of an armonic mean:

PRF ∗ =
3 ∗ P ∗R ∗ F ∗

R ∗ P + P ∗ F + P ∗R
.

4.5.3 Experimental Results

We conducted several experiments, comparing clustering performance of TLD, LC
and WP metrics. We recall from Section 4.3.2 that the DBSCAN algorithm used for
clustering is configured with a maximum distance threshold ε. Optimal values of ε
depend on the used distance metric, and influence clustering performance. The tun-
ing of ε can be driven by two orthogonal factors: overall quality (i.e., PRF ∗) and the
number of discovered clusters. High values of ε (i.e., quality oriented configuration)
can lead to better overall quality, but fewer discovered clusters (i.e., the clustering
algorithm will tend to group values into one single cluster). Lower values of ε (i.e.,
cluster number oriented configuration) can lead to lower quality, but more discovered
clusters. We found that quality oriented and cluster number oriented configurations
generally coincide except for LC. In the following section we refer to quality oriented
configuration of LC as LCq while we indicate with LCn the corresponding cluster num-
ber oriented configuration. Since optimal configurations for WP and TLD coincide we
omit pedices for them.

Table 4.2 presents results of our experiments. TLD is more effective in finding rel-
evant facet values and discarding noisy ones, as indicated by an higher F1. The abil-
ity of effectively discarding noisy values substantially reduces domain experts’ effort
in validating discovered facets. LCq and WP obtain almost perfect value recall, but
substantially lower precision. Thus, they do not effectively support domain experts.
Moreover, TLD achieves best performance according to quite all clustering effective-
ness metrics, with the exceptions of purity and entropy for LCn. Clusters discovered
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Table 4.2: Effectiveness of TLD, LC and WP metrics.

Value Effectiveness Clustering Effectiveness Quality
P R F1 F ∗ NMI∗ Purity E∗ PRF ∗

LCn 0.359 0.447 0.370 0.403 0.603 0.308 0.243 0.359
LCq 0.394 0.953 0.537 0.666 0.709 0.220 0.685 0.531
WP 0.377 0.984 0.525 0.682 0.714 0.210 0.744 0.520
TLD 0.416 0.901 0.541 0.719 0.746 0.286 0.416 0.558

Table 4.3: Number of groups discovered by TLD, LC, and WP for each source type, compared
to the gold standard.

|VC
∗ | LCq LCn WP TLD

Dogs and Cats Food 3 1 5 1 7
Grappe, Liquors, Aperitives 1 1 5 1 6
Wines 3 1 1 1 6
Beers 2 6 4 3 14
DVD Movies 2 2 3 1 3
Rings 4 1 6 2 7
Blu-Ray Movies 2 2 3 2 5
Musical Instruments 6 1 3 1 5
Ski and Snowboards 1 1 3 1 7
Necklaces 8 2 6 3 11

by LCn contain more homogeneous values, in the sense that they have been manu-
ally classified as belonging to the same gold standard group. However, LCn achieves
better purity and entropy at the cost of discarding most of the values as noise, thus
sacrificing overall quality.

The difference between TLD and state-of-the-art metrics is even more evident if
we consider the number of detected clusters for each gold standard type C (Table 4.3).
WP and LCq fail in properly partitioning the overall set V C

k of facet values, thus failing
in detecting groups (i.e., they detect only one or two clusters). They are too inclusive
and thus they group facet values at a granularity level that is too high to be suitable
for effectively supporting domain experts in bootstrapping a faceted classification sys-
tem within the dataspace. From the other side, LCn discards too much values to be
effective.

In addition to standard evaluation metrics, we provide a more intuitive insight of
results of the facet extraction process, using TLD for facet value clustering compare to
state-of-the-art metrics. Table 4.4 depicts an example of facets ranges discovered for
the KG type Wines by TLD, WP, LCq, and LCn compared to manually defined ones.
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Table 4.4: Discovered ranges of domain specific facet ranges for TLD, WP and LC compared to
manually discovered ones. Numbers after facet ranges indicate their cardinality.

LCq V1 = {Wine, Red Wine, White Wine, . . . , Piedmont, Lombardy, . . . , Sicily, Donnafugata,
Cusumano, . . . , Alessandro di Camporeale, . . . , France} (98)

LCn V1 = {Wine, Red Wine, White Wine, . . . , France, . . . , Chianti} (36)

WP V1 = {Wine, Red Wine, White Wine, . . . , Piedmont, Lombardy, . . . , Sicily, Donnafugata,
Cusumano, . . . , France} (100)

TLD

V1 = { Piedmont, Tuscany, Sicily, , . . . , France } (14)
V2 = { Red, White, Rosé } (3)
V3 = { Red Wine, White Wine, Rosé Wine } (3)
V4 = {Moscato, Chardonnay, . . . , Merlot } (13)
V5 = { Tuscany Wine, Sicily Wine} (2)
V6 = { Donnafugata, Cusumano, . . . , Principi di Butera } (27)

Gold Standard
V1 = { Piedmont, Lombardy, . . . , Sicily } (21)
V2 = { Red Wine, White Wine, . . . , Rosé Wine } (14)
V3 = { Donnafugata, Cusumano, . . . , Alessandro di Camporeale} (12)

Validating and refining ranges discovered by TLD requires much less domain experts’
effort than LCq, LCn and WP.

Table 4.4 highlights a difficulty of TLD in grouping together different lexicaliza-
tions of same values (e.g., Red Wine and Red). One naive approach to overcome this
difficulty is to normalize source type names by removing terms belonging to the KG
types for which the facets are extracted (e.g., the term Wine when extracting facets
to characterize instances of the KG type Wines). However, this naive solution cannot
be generalized to every KG type. For example, if we remove from the source type
Dog Food all the terms belonging to the gold standard KG type Dogs and Cats Food we
end up with an empty, inconsistent facet value. Moreover, also the more conservative
approach of removing KG type terms only if they all occur in the source type cannot be
generalized. For example, if we consider the gold standard type Musical Instruments,
using the more conservative approach we will not normalize source types Wind Instruments

and Winds.

We implemented and evaluated both the previously described naive solutions, and
found that they both decrease the effectiveness of our approach. We believe that ef-
fectively solving the problem of different lexicalizations requires Natural Language
Processing language specific techniques. NLP techniques can be used to discriminate
between KG types terms that refer to nouns, verbs, etc. and thus can be safely removed
from source types without creating inconsistencies or change types lexicalizations’ se-
mantics. Introducing this kind of NLP language specific techniques comes at the cost
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of sacrificing the language independence of our approach. However, this represents
an interesting extension of our approach.

4.6 Comparison with Prior Art

Different approaches to the problem of extracting a domain specific representation of
instances (in terms of relations and facets) from heterogeneous data sources have been
proposed (see Section 3.1). Facets are usually extracted from a document collection (e.g.,
[32, 130, 82, 146]), from search engine query results (e.g., [151, 60, 33, 55]) or from the
combination of documents and search engine query logs (e.g., [110, 100, 73]). Document
collection based approaches tackle the problem of extracting facets from a document
collection. External resources such as WordNet [32, 130], Wikipedia [32, 146] or its
Linked Data version DBpedia [82] are exploited to enrich the extracted set of facets
values. Our approach is different from document collection based ones because we
analyze source taxonomies structure in order to provide sets of mutually exclusive
facet values.

The focus of query result based approaches is on classification of HTML docu-
ments returned by a data source in response to a keyword query search. Facets are
extracted from Wikipedia documents [151] analyzing, among other things, Wikipedia
categories and reciprocal links between documents. In more general approaches facets
are extracted by analyzing raw HTML pages in using unsupervised [33] or super-
vised [60] machine learning techniques. State of art query result based approaches
deal with the specific problem of integrating and ranking heterogeneous facets that
are already present in documents. Our approach takes in input source taxonomies
and mappings between them and KG types.

The focus of query logs approaches is on the usage of user query statistics to iden-
tify facet values. Query logs are analyzed in order to select relevant facet values with
respect to closed, fixed [110] or open, not defined a-priori [100, 73] set of facets. Query
log based approaches are strictly dependent on end-user queries: they do not consider
currently available dataspace instances. Our approach analyzes source types and tax-
onomies, and thus provide a more comprehensive and domain specific dataspace in-
stances representation. All the previously described approaches are complementary to
ours. We extract facets from a different source than previous approaches: taxonomies
used to characterize source instances. We expect the facet extraction process to benefit
from the integration of state-of-the-art facet extraction techniques.
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Taxonomy structure analysis has been employed in the field of Ontology Match-
ing [122]. In this field, several similarity metrics between ontology (and also taxon-
omy) concepts have been proposed and/or adapted from other domains [26, 68, 150,
81]. However, experimental results provided in this chapter show that our proposed
distance metric (i.e., TLD) is more effective in capturing the mutual exclusiveness of
concepts across multiple heterogeneous taxonomies.

4.7 Summary

This chapter discussed an automatic, language independent approach to the prob-
lem of facets extraction from heterogeneous taxonomies. We proposed a novel metric
designed ad-hoc to capture source type mutual exclusivity across taxonomies. We
used the proposed metric as a clustering distance metric for grouping together mu-
tual exclusive facet values. Experimental results show that our approach outperforms
state-of-the-art taxonomy concepts similarity metrics in capturing types mutual exclu-
siveness. Our approach provides valuable aid and reduces domain experts’ effort in
enriching the KG schema with domain specific facets. In addition, since our approach
extracts facets from source types, the population of the KG with the corresponding
faceted assertions for extracted facets over dataspace instances is straightforward, sup-
porting facet-based browsing.
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5
Specificity-based Interpretation of Facets

5.1 Overview

In the last chapter we discussed an automatic facet extraction approach that supports
domain experts in the extraction of facets. As for most of state-of-the-art facet ex-
traction approaches (e.g., the ones discussed in Section 3.1) the approach presented
in the last chapter does not take into account the interpretation of a extracted facets,
in the sense that it is not able to understand which relation is modeled by the facet
and provide a machine-readable semantics associated with it. In order to fully exploit
the powerful domain specific representation potentially provided by facets, a more
complete interpretation of their semantics is needed.

This chapter presents an automatic approach to interpret a facet by annotating it
with relations holding between KG instances of given domain and facet values. The
key insight behind the approach discussed in this chapter is to re-use relations defined
by in a KG to interpret the meaning of a facet. Given a facet comprised of a set of
facet values and a facet domain, the proposed approach derives a set of candidate
relations from KG and ranks them considering how much their semantics is similar to
the semantics of the facet. The core of the approach is the notion of semantic similarity.
Our hypothesis is that we can assess the similarity between a facet and a relation P by
considering the extensional semantics of P , that is the usage of P in KG with respect
to the different domains of knowledge conceptualized by KG types.

Solving the facet annotation problem is challenging for several reasons. Facet val-
ues are ambiguous and highly domain dependant, and thus there may be more than
one relation suitable for the annotation of a given facet. For example, facet values such
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as English, German, French, Spanish may refer to the language of a specific book or to
the nationality of a basketball player. So as to leverage the extensional semantics of
the relations provided by KG, both facet values and domain must be matched with re-
lational assertions and types that are used to classify entities from KG. We address this
challenge by providing a convenient representation of KG that supports the matching
of facet values with relational assertions from KG, and the matching of the facet do-
main with types. Moreover, we design a ranking function that is able to effectively
quantify semantic similarity.

The rest of this chapter is organized as follows. Section 5.2 introduces the facet
annotation problem, while Section 5.3 defines the semantic similarity between a facet
and a KG relation. In Section 5.4, we describe a filter and rank facet annotation ap-
proach that, given a facet, selects relations from a KG and ranks them according to
their similarity. Section 5.5 describes an extensive evaluation using KGs with differ-
ent characteristics, along with the comparison of the proposed facet interpretation ap-
proach with state-of-the-art ones, which are described in Section 5.6 before concluding
the chapter in Section 5.81.

5.2 Problem Definition

Our approach considers facets and a KG. In the following paragraph we briefly recall
the definition of these two kind of artifacts from Chapter 2, and the facet annotation
problem. We then highlight the basic intuition behind our proposed approach.

Knowledge Graph

A Knowledge Graph (KG) consists of a set of named relations holding between named
instances classified using types. A relation P is specified in terms of domain and range re-
strictions expressed by means of First Order Logic (FOL) terminological axioms. Such
domain and range axioms typically impose a restriction on the type of subject or ob-
ject instances of a relation, respectively. We refer to this specification as the intensional
semantics of a relation (see Section 2.1.1). The KG includes also a set of relational asser-
tions AP in the form of P (s, o). A relational assertion explicitly states that the P holds

1The approach described in this chapter, which is the result of the most recent work carried out as part
of PhD activities of the author, is planned to be submitted within May or June 2016 at most. A version of
the working paper is available at http://bit.ly/facet-annotation-paper-draft
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between a subject instance s and an object instance o. Relational assertions provide
an alternative specification of the semantics of P emerging from its usage within KG.
We refer to this specification as extensional semantics, as opposed to the intensional
semantics specified by the KG schema.

Types are organized in subtype graph G = (NC ,�), where NC is the set of all KG
types, and � is a subtype relation that holds between them. Observe that in principle
a KG may specify more than one subtype graphs (e.g., the DBpedia KG). An instance e
is an instance of one or more types. We define a function types(e) that returns the set of
types of e, including all the supertypes through the subtype graph (i.e., the transitive
closure of the types’ set). Both types, and entities are associated to lexicalizations. A
lexicalization is a sequence of natural language tokens that are associated to a type,
entity, or a literal value. We denote with lex(C), lex(e) the set of lexicalizations of a
type C, an entity e, respectively. The lexicalizations of a literal value is the set that
contains the value itself. For instance, considering Figure 5.1: lex(J_R_R_Tolkien) =
{“John Ronald Reuel Tolkien”, “J. R. R. Tolkien”}.

Facet

Recall from Section 2.2 that a facet is a relation that models a salient characteristic of
a specific type of entities and a set of values. A facet F =< C,V > holds between
a domain of instances of the type C and a range of facet values V = {v1, . . . , vn}. For
instance, the facet F = < Books, {Agatha Christie, Arthur C. Clarke, . . .} > is depicted in Fig-
ure 5.1. Observe that in this setting, the facet domain C, is expressed in terms of a
source type of entities. We assume this type (e.g., Books) to be available at least in
the form of its lexicalization. We notice also that the specification of facet is not “bal-
anced”, in the sense that the facet domain is defined differently from the facet range,
being the first a lexicalized type and the second a set of values, respectively.

Facet Annotation

Annotating a facetF means finding a relationP or more generally a setP = {P1, . . . , Pn}
of relations from KG, such that the semantics of P is similar to the semantics of F . Fig-
ure 5.1 shows a graphical depiction of the facet annotation problem. In essence, solv-
ing the facet annotation problem consists of assessing the degree of similarity between
the semantics of a relation P from KG and a facet F .
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Figure 5.1: The facet annotation problem.

Solving the facet annotation problem basically accounts to solving a relation an-
notation (i.e., interpretation) problem [74, 143, 120, 145, 112, 156, 86, 154, 153, 155, 27].
The goal of relation annotation approaches (see Section 3.2), is to annotate an input
source relation with target relations from a defined KG. However, there is one cru-
cial difference between a relation annotation problem and a facet annotation problem.
In fact, the specification of a facet is unbalanced, in the sense that the facet domain is
specified differently from the facet range. The facet domain is specified by means of a
lexicalization of an entity type, while the facet range is specified by means of a set of
values. This setting is different from typical relation annotation settings, which deal
with relations whose specification is balanced. Relation domains and ranges are either
both specified in terms of sets of values (i.e., for relation annotation in web table inter-
pretation tasks [74]) or in terms of entity types (i.e., for relation annotation in ontology
matching tasks [27]).

5.3 Specificity Driven Semantic Similarity

For seek of simplicity, we write that a relation P is similar to a facet F , meaning that
their semantics are similar. In a nutshell, we consider a relation P similar to a facet F if
P is: (1) specific with respect to the facet domain, (2) it covers all the facet values, and (3)
it frequently connects entities from the facet domain to facet values within KG. Given
a facet F , our intuition is to quantify specificity, coverage, and frequency of relations, by

70



5.3 Specificity Driven Semantic Similarity

  

Books

Agatha Christie
Arthur C. Clarke
Paulo Coelho
Charles Dickens
J. K. Rowling
J. R. R. Tolkien
Anna Sewell

  

author

The_Hobbit

2001_A_Space_Odyssey

J._R._R._Tolkien

Arthur_C._Clarke

Person

Work

BBC_Online

BBC

intensional semantics extensional semantics

entitytype relation

Domain Range

universe universe

(a) A specific relation w.r.t. books.
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(b) A generic relation w.r.t. books.

Figure 5.2: An example that illustrates the difference between specific and generic relations.

looking at their extensional semantics, that is the usage in KG.

The core concept on which we base our definition of semantic similarity is speci-
ficity. We argue that the more a relation P is specific with respect to the domain and
the range of a facet F , the more P is similar to F . We rely on an example to better
explain why we consider it crucial in determining the similarity between a facet and
a relation2. Consider the facet from Figure 5.2. The facet range includes, for instance,
Arthur_C._Clarke, and J._R._R._Tolkien, while the facet domain is Books. Intuitively,
the facet holds between books and their authors. Now, consider the two relations
author (Figure 5.2a) and creator (Figure 5.2b). Both relations hold between The_Hobbit

and J._R._R._Tolkien, and between 2001_A_SpaceOdyssey and Arthur_C._Clarke. From
this view point they both look similar to F as they hold between the same entities.

However, if we take a look at the intensional semantics of author and creator, we
realize that the domain of the latter is completely unspecified: any entity can poten-
tially be part of such a domain. Moreover, looking at the extensional semantics of
creator provided by KG, we realize that creator holds not only between books and
writers, but also between fictional characters and places and their respective creators.

2The presented example is drawn from the DBpedia KG (version 3.9), with some simplifications.
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Observed from this viewpoint, author looks much more similar than creator to F . In
fact, the domain of author is much more specific with respect to the facet domain (i.e.,
Books), compared to the domain of creator.

Our definition of semantic similarity includes also coverage. Ideally, given F , a
relation P that holds between entities from the domainC and all facet values should be
considered highly similar to F . For instance, given the facet from Figure 5.2, suppose
that we find that the relation author holds between instances of type Book and all the
books denoted by facet values. In this situation, we consider author similar to the facet,
because all the facet values appear within instances of author (i.e., the “coverage” of
author over the facet values is maximum).

Frequency is orthogonal to coverage. In principle, given F , the more frequently
facet values are connected by a relation P to instances from the domain C, the higher
the similarity between P and F . The rationale behind frequency is to favour relation
that are more frequently used within KG with respect to the facet domain, for instance
favoring relations like language over origLanguage3.

5.4 Facet Annotation

The intuition underlying our facet annotation approach is to consider the extensional
semantics of relations as a source of evidence on the similarity between F and a relation
P . As a principle, we may consider a relational assertion P (s, o) as positive evidence
on the similarity between F and P if (1) s is an instance of the same type described by
the facet domainC, and (2) o is equal to some facet value v ∈ V . However, the concrete
application of this principles is challenging because (1) both the facet domain and facet
values must be matched with types and relation objects from KG, and (2) we cannot
assume KG to completely cover the domain of knowledge conceptualized by F . In fact
in this situation, it may be that KG only partially represents the domain of knowledge
conceptualized by a facet (i.e., some book authors may not correspond to any entity in
KG). Thus, although KG may be a source for positive evidence, we cannot consider it
as a source of negative evidence whenever the facet domain cannot be matched to any
KG type, or some facet values cannot be matched to any object. For this reason, our
approach relies on positive evidence only in order to quantify the similarity between
F and P . We assume the world conceptualized by KG to be open in the sense that
we admit the annotation of F with P , even when the facet domain partially matches

3Both of them are used in DBpedia to denote the original language of publication of books.
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Figure 5.3: The Facet Annotation process.

KG types (i.e., players vs. basketball players) facet values only overlap with relation
objects.

Our facet annotation approach is depicted in Figure 5.3 and its composed by on
two distinct phases: relation filtering and relation ranking. Given a facet F , we first
match the facet domain and the facet values to relational assertions P (s, o) from KG,
so as to gather evidence from KG on the similarity between F and KG relations. In this
phase, the facet domain and values are matched against a convenient representation of
relational assertions, that we name relational assertion signature. Signatures support the
matching between the facet domain and the types of s, and between facet values and
objects o. The result of the filtering phase is a set of matching signatures for each KG
relation P , to which we refer as the extensions of P induced by F . Then, in the ranking
phase, we analyze the non empty extensions of relations induced by F in order to
quantify the degree of similarity between each relation and F , adhering to principles
described in Section 5.3: specificity, coverage, and frequency.

5.4.1 Relation Filtering

So as to support the filtering phase, we represent each relational assertion in KG by
means of a relational assertion signature (signature for brevity). A signature δ(s,o) is an
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abstract and lexicalized representation of a relational assertion P (s, o). It is abstract as
includes all the types of the subject s as well as the types of the object o. It is lexicalized
as it includes the lexicalization of o as well as the lexicalization of all the types of s.
More formally, a signature δ(s,o) is defined as:

δ(s,o) = < types(s), types(o), lex(s), lex(o) > (5.1)

where types(s), types(o) are the set of types of the subject and the object, respectively
and lex(o) is the lexicalization of the object. Special attention must be posed to the set
of subject types lexicalizations lex(s), which is defined as the union of the lexicaliza-
tions of all the types of the subject. Formally:

lex(s) =
⋃

t∈types(s)

lex(t). (5.2)

Through abstraction we explicitly record that there exists a relationship that holds
between instances of certain types. In other words, we adopt an existential semantics
for signatures. Such semantics will be leveraged to quantify the specificity of a relation
with respect to the facet domain. Through lexicalization we describe subject types and
objects of relational assertions with a set of natural language terms, that are matched
to facet domain C and facet values from V . This allow us to capture the coverage and
the frequency principles. Signatures are indexed and stored in a convenient inverted
index, so as to support the filtering phase, where relation extensions are selected by
matching the facet with signatures.

We represent the extensional semantics of a relation P in terms of the previously
defined signatures. In particular, we represent the extension of a relation P as the set ∆P

of signatures δ(s,o) of all relational assertions from the assertion set A of KG involving
P . Formally:

∆P = {δ(s,o) | P (s, o) ∈ A}. (5.3)

Given F and a matching functionmatch between a facet and a signature, in the relation
filtering phase, we form the extension of a relation P induced by F by selecting the set of
signatures of P that match F . Formally:

∆F
P = {δ(s,o) ∈ ∆P |match(F, δ(s,o))}. (5.4)

∆F
P stores the amount of positive evidence that can possibly be found in KG on the

similarity between F and P . Evidence is collected by matching the facet to signatures.
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The criteria according to which signatures are considered to be positive evidence are
encoded in the match boolean matching function. Our approach is based on the com-
bination of two different matching functions, focusing on matching the facet domain
and the facet values, respectively. The d-match function selects the signatures whose
subject types match the facet domain. In order to accomplish this task we consider the
lexicalizations of the subject types lex(s) and compare it with the lexicalization of the
facet domain lex(C):

d-match(F, δ(s,o)) is true iff lex(C) ∩ lex(s) 6= ∅. (5.5)

Orthogonally, r-match function focuses on selecting those signatures whose object
matches at least one facet value:

r-match(F, δ(s,o)) is true iff ∃v ∈ V s.t. lex(v) ⊆ lex(o). (5.6)

We then combine d-match and r-match together so as to select the signatures whose
subject types match the facet domain and the object matches at least one facet value.
More formally:

∆F
P = {δ(s,o) ∈ ∆P | d-match(F, δ(s,o)) ∧ r-match(F, δ(s,o))}. (5.7)

In general, the higher the cardinality of ∆F
P , the more positive evidence can be

found in KG on the similarity between F and P . Conversely, when ∆F
P = ∅, we can

conclude that F and P are not similar, because there is no evidence in KG on their
similarity. This relation allows us to prune a relation P ′ when ∆F

P ′ = ∅. Given F , we
query the indexed signatures and form the set P = {P1, . . . , Pn} of relations with a
non-empty relation extension ∆F

P1
, . . . , ∆F

Pn
.

5.4.2 Relation Ranking

In the relation ranking phase, extensions selected in the filtering phase are analyzed
so as to assess the similarity between F and relations. We encode all the principles
described in Section 5.3 (i.e., specificity, coverage, frequency) into a set of scores that will
be aggregated into an overall semantic similarity score. Finally, we rank the relations
in P accordingly.

Specificity

We capture the specificity of a relation P with respect to F by looking at the extension
∆P and compare them with the extension ∆F

P induced by F . If ∆F
P is very “close” to
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∆P , we may consider the semantics of P to be somehow preserved when annotating
F with P . Of course, it is crucial to provide a definition of what we mean by “close”.
In principle one may apply a majority voting inspired approach, that is the more ∆F

P

and ∆P overlap (i.e., more “votes” for P ), the more we can consider P similar to F .
However, this majority-based approach is likely to fail in capturing the specificity of
P with respect to F .

The cardinality of set of facet values V is usually several orders of magnitude
smaller compared to the cardinality of the set of possible objects of a given relation
P . As a result, |∆F

P | � |∆P |, thus making the direct comparison of the two extensions
not discriminative enough. Moreover, ∆F

P is the result of a matching algorithm and
it may include signatures resulting from false positive matches. To account for these
issues we consider types instead of signatures. We compare the sets of subject and
object types extracted from the signatures in ∆P with the ones extracted from signa-
tures in ∆F

P . We follow the intuition that the more these sets are similar, the more ∆F
P

is “close” to ∆P and thus the semantics of P is preserved. We consider this a strong
positive clue of the similarity between P and F .

Given a generic extension ∆, we form the subject type set Dom[∆] by selecting all
the types of all the subjects from signatures in ∆. More formally, the subject type set
Dom[∆] of an extension ∆ is defined as

Dom[∆] = {C | ∃δ(s,o) ∈ ∆, C ∈ types(s)∧ 6 ∃C ′ ∈ types(s), C ′ � C}. (5.8)

Observe that Dom[∆] does not contain all the subject types. Instead, it contains all the
types that are minimal. In general, a type C is minimal for an instance e if there are no
other types in types(e) that are subtypes of C.

By considering the minimal types only, we enforceDom[∆] to provide a view of the
specificity of the domains of ∆, asDom[∆] contains the most specific types that are used
to categorize the subjects of signatures from ∆. We than capture the domain-specificity
of a relation P with respect to F by comparing the subject type sets extracted from
the two extensions ∆P and ∆F

P . As a principle, we consider P specific with respect to
F if their extensions contain the same set of specific subject types. More formally, we
compare Dom[∆P ] and Dom[∆F

P ] using the well known weighted Jaccard similarity
for sets:

d-spec(F, P ) =
w-card(Dom[∆P ] ∩Dom[∆F

P ])

w-card(Dom[∆P ] ∪Dom[∆F
P ])

(5.9)

where the w-card function provides a weighted cardinality of the subject type set
Dom[∆]. Each type C ∈ Dom[∆] is weighted considering the cardinality of the set
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of its supertypes (i.e., depth) according to the subtype graph. We furthermore scale
the weight of each type C by the maximum depth of all the subtypes of C to ensure
weights within the [0, 1] interval. More formally:

w-card(Dom[∆]) =
∑

C∈Dom[∆]

|supertypes(C)|
max

C′∈subtypes(C)
|supertypes(C ′)|

. (5.10)

The rationale of using this scaled depth is to further bias the function d-spec towards
the most specific subject types.

We compute also the range-specificity of P with respect to F , by adapting the r-spec
function to consider the object types instead of the subject types. Similarly to Equa-
tion 5.8, we formally define the set Ran[∆] of object types extracted from a generic
extension ∆ as:

Ran[∆] = {C | ∃δ(s,o) ∈ ∆, C ∈ types(o)∧ 6 ∃C ′ ∈ types(o), C ′ � C}. (5.11)

We thus adapt Equation 5.9 accordingly:

r-spec(F, P ) =
w-card(Ran[∆P ] ∩Ran[∆F

P ])

w-card(Ran[∆P ] ∪Ran[∆F
P ])

. (5.12)

Coverage

We capture the coverage of a relation P over a facet F by computing the rate of facet
values for which there exists at least one matched signature δ(s,o) ∈ ∆F

P . Intuitively,
we aim at capturing percentage of facet values for which there is evidence of them
being object of the relation. More formally:

cov(F, P ) =
|{v ∈ V | ∃δ(s,o) ∈ ∆F

P s.t. r-match({v}, δ(s,o))}|
|V|

. (5.13)

The rationale behind the coverage is to boost those relations whose objects are equally
distributed (i.e., they cover) over the facet value set V .

Weighted Frequency

Observe that both specificity and coverage do not take into account the cardinality
of the extension ∆F

P , which can in principle give a clue on the similarity between P
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and F : the bigger ∆F
P , the more evidence we got from KG that the semantics of P is

preserved when annotating F . However, recall that ∆F
P may include false positives

resulting from the our matching phase. As a result, not all the evidence gathered from
∆F
P may equally contribute in assessing the similarity between P and F . In principle,

the highest quality evidence that we may get from KG are signatures whose subject
type is exactly the facet domain C.

So as to capture this principle, we introduce the weighted frequency. Intuitively, we
count signatures in ∆F

P , weighting them considering the similarity between the lexi-
calization of facet domain lex(C) and the lexicalization of all subject types lex(s). Our
intuition is that the more similar lex(C) and lex(s), the higher quality of the evidence
provided by the signature. More formally:

freq(F, P ) =
1

|V|
∑

δ(s,o)∈∆F
P

|lex(s) ∩ lex(C)|
|lex(s) ∪ lex(C)|

(5.14)

where the quality of each signature ∆F
P is computed as the Jaccard similarity between

the two lexicalizations. The factor 1/|V| is introduced to scale down the resulting
weighted frequency by the number of the facet values (i.e., the cardinality of V).

Computing the Final Rank

We aggregate all the scores that capture the specificity, coverage and frequency prin-
ciples into a single, global similarity score for a relation P and a F . Observe that
all the scores provide values within the [0, 1] interval, with the noticeable exception
of the freq score (i.e., weighted frequency). The freq score may in principle have a
huge impact on the overall score because provides positive evidence captured in an
unbounded way. As a result, it can possibly skew the overall score.

Thus, to make all the scores more comparable we smooth them by a logarithmic
factor. Moreover, we enforce 1 as the lower bound of each score and then multiply all
the smoothed scores together. This aggregation results in a similarity score which is a
non-decreasing monotone function with no upper bound and lower bound equal to 1.
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More formally:

drc(F, P ) =
(

1 + ln(d-spec(F, P ) + 1)
)
· (5.15)(

1 + ln(r-spec(F, P ) + 1)
)
·(

1 + ln(cov(F, P ) + 1)
)
·(

1 + ln(freq(F, P ) + 1)
)

where the +1 inside the logarithm ensures each score ≥ 0 while the +1 outside the
logarithm enforces 1 as lower bound. Intuitively, we thus let each score to contribute
by a positive factor, as we consider positive evidence only.

5.5 Evaluation

In our experiments we annotate facets with relations from two different KGs: DBpedia
and YAGO. We compare our ranking approach with the majority voting model and
the maximum likelihood model proposed by Venetis et al. [143] adapted to the facet
annotation problem. We rely on two different gold standards as ground truth for
the annotation: a manually created one for DBpedia and a state-of-the-art one for
YAGO, which has been introduced for evaluation of table annotation approaches [74].
Experimental results indicate that our approach outperforms the state-of-the-art ones
in annotating facets.

We implemented our approach along with the baseline algorithms using the Java
programming language and the Lucene library4. The code repository, along with all
the gold standards we compared our approach against and experimental results pro-
vided in this section are publicly accessible5. Experiments were conducted on a Dual
Core 2.54GHz processor machine, 4GB RAM, 128GB SSD HD, under the Ubuntu Linux
Desktop 64bit operating system.

5.5.1 Knowledge Graphs

We consider two different KGs with different characteristics, highlighted in Table 5.1.
DBpedia (version 3.9) contains 753958 types, 53195 relations and more than 96M rela-
tional assertions involving them. In our experiments, we include two subtype graphs:

4http://lucene.apache.org/
5https://bitbucket.org/rporrini/facet-annotation/
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Table 5.1: Knowledge Graphs’ statistics.

Types Relations Relational Assertions

DBpedia 753958 53195 ∼ 96.8M
YAGO 184512 89 ∼ 5.5M

Table 5.2: Gold Standards’ statistics.

Facets Relations
# Domains Vital Correct

dbpedia-numbers 8 7 ∼4 ∼19
dbpedia-entities 31 13 ∼7 ∼7

dbpedia 39 13 ∼3 ∼9

yago-explicit 83 17 1 -
yago-ambiguous 83 10 1 -

the first one is extracted from the DBpedia ontology, and the second one is extracted
from DBpedia categories. DBpedia categories are extracted from Wikipedia categories
and are known to be noisy and low quality [62]. The second KG we consider is YAGO
(version: 2008-w40-2)6, which includes 184512 types, 89 relations and more than 5M
relational assertions involving them.

5.5.2 Gold Standards

The data sets used for evaluation consist of two disjoint sets of facets manually anno-
tated with relations from DBpedia and YAGO, respectively. In the case of DBpedia we
found that there exist more than one relation that is similar to the facet, while in case
of YAGO there is only one similar relation for each facet. Statistics about these two
gold standards are summarized by Table 5.2 , while Table 5.3 presents few examples
of facets from the gold standards.

DBpedia Gold Standard

Following the methodology proposed for the creation of gold standards for table anno-
tation tasks [143, 86, 155], we manually collected 39 facets from the Web, from different

6The reason for using an old version of YAGO is that the state-of-the-art annotated gold standard that
we use to evaluate our approach is built considering this particular version of YAGO [74].
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Table 5.3: Example of facets from the gold standards.

Domain Values Relations

dbpedia-numbers music albums 1967, 1969, 1971, . . . , 2000 relYear, year, releaseDate . . .
dbpedia-entities wines USA, Italy, . . . , Slovenia wineRegion, origin, . . .

yago-explicit wordnet-actor-109765278 1776, California, . . . , Wilson actedIn

yago-ambiguous countries Abu Dhabi, Accra, . . . ,
Zagreb

hasCapital

domains. 32 facets were collected from Wikipedia (non infobox) table columns, while
7 were collected from IMDB, eCommerce and sport statistics websites. For each facet,
we selected from DBpedia KG all the relations whose object matches at least one facet
values, without considering facet domain matching. We presented the gold standard
to a total of 10 human annotators, who rated the similarity of each relation using a
Likert scale from 0 up to 2 (0 = incorrect, 1 = correct, 2 = vital). We presented only a por-
tion of the gold standard to each annotator in order to reduce the cognitive workload,
ensuring that each relation was been rated by at least 3 annotators. We aggregated all
the judgments, manually resolving inconsistencies. We report an average correlation
of 0.42 (Spearman Correlation Coefficient) between annotators. We then partitioned
the gold standard into two disjoint sets of facets: dbpedia-numbers (i.e., facets whose
values are digits) and dbpedia-entities.

YAGO Gold Standard

The gold standard for the YAGO dataset has been used to evaluate several table an-
notation algorithms [74] and consists of tables where cells have been annotated with
entities, columns with types and column pairs with relations (on a total number of
90). We derived 90 facets from all table columns involved in at least one relation anno-
tation, considering the lexicalization of annotated type for the corresponding subject
columns as facet domain, when present. Among these 90 facets, 7 had no correspond-
ing type annotation for the corresponding relation’s subject column and thus were
discarded. We ended up with 83 annotated facets. Observe that, there are no nu-
meric facets. We then created two versions of the YAGO gold standard. Within the
yago-explicit gold standard we used the local name of types (extracted from the type
URI) as facet domains (e.g., wikicategory-American-science-fiction-novels). By consider-
ing the local name of types, we minimize ambiguity in facets domains. Conversely,
in the yago-ambiguous gold standard, we used more general (and thus, ambiguous),
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lexicalizations for facet domains, such as novels.

5.5.3 Algorithms

Most of the state-of-the-art table annotation approaches have been compared to the
majority voting based model [112, 143, 74] (MAJ). Given F , the majority based approach
selects all the relations whose object lexicalizations match at least one facet values and
ranks them by frequency. The maximum likelihood based model [143] (MAX) is based
on the application of the maximum likelihood hypothesis. Given a facet F , the most
similar relation is the one that maximizes the conditional probability of occurrence of
the relation given the facet values. More formally:

ml(P, F ) = Kp ×
∏
v∈V

Pr[ P | v ]

Pr[ P ]
, s.t.

∑
p

ml(P, F ) = 1

where Pr[ P | v ] and Pr[ P ] are computed over the considered KG.

Observe that these two approaches leverage the quasi-relational structure of a ta-
ble. When annotating a pair of columns, they match cells of the first column to relation
subjects and the cells of the other column to relation objects. In a nutshell, they ap-
ply different matching criteria in selecting an appropriate relation extension ∆ so as
to compute the semantic similarity. These matching criteria are tailored to balanced
input, that is relations whose domain and ranges are specified by means of two sets
of values. However, we recall from Section 5.2 that the input of the facet annotation
problem is unbalanced, being the facet domain the lexicalization of a type. In order to
provide a fair comparison, we compare our relation ranking function (i.e., DRC) with
the baselines applied to the extensions ∆F

P induced by facets, computed by matching
both the facet domain and values to relational assertions.

5.5.4 Evaluation Metrics

In our experiments we compare the effectiveness of DRC, MAJ, and MAX using three
different metrics: Normalized Discounted Cumulative Gain (nDCG), Mean Average
Precision (MAP), and Mean Reciprocal Rank (MRR). nDCG metric compares the rank-
ing of relations established by one algorithm with the ideal ranking derived by ratings
specified by human annotators. Intuitively, a higher nDCG value corresponds to a bet-
ter agreement between the results proposed by the facet annotation approach and an
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ideal ordering obtained from human annotators. The nDCG provides a fine-grained
measure of the effectiveness of DRC and the baselines, at different ranks. We use it for
comparison on both the DBpedia and YAGO datasets.

The MAP metric is computed by averaging the precision calculated at the rank of
each correct or vital relation in P (as judged by human annotators) for each facet and
finally averaged over all the facets. MAP takes into account the fact that there exists
more than one similar relation for each facet, and provides a single valued, coarse-
grained measure of effectiveness. We use it to for comparison against the DBpedia
datasets. The MRR metric is an adaptation of the MAP measure to consider facets
for which there exists only one relation. MRR is defined as the multiplicative inverse
of the rank of the vital relation (if present, 0 otherwise), averaged over all the facets.
Intuitively, MRR captures to which extent an high rank is given to the similar relation
by the algorithm, being maximum when the similar relation is always ranked first. We
use it for comparison against the YAGO gold standard.

5.5.5 Experimental Results

DBpedia

We compare DRC with the baselines with respect to MAP computed over the top
20 similar relations. We assumed all relations judged as either correct or vital by hu-
man annotators to be equally similar, because we want to ensure that DRC is able to
discriminate between similar and not similar relations in a boolean fashion. Experi-
mental results, depicted in Figure 5.4a. DRC consistently achieves better effectiveness
in terms of MAP over all the DBpedia datasets. From a more granular point of view,
Figure 5.4b gives an overview of the nDCG obtained at different ranks. DRC is more
effective than MAJ and MAX to capture the similarity at all the ranks from 1 to 20,
achieving a maximum nDCG of 0.81 (at rank 1), compared to 0.77 of MAJ and 0.76 of
MAX. The interesting observation is that the more “naive” MAJ baseline performs bet-
ter than the MAX baseline, at all ranks. These results are compliant the ones provided
by the authors of MAX [143]. In they work, they ultimately composed their approach
with the majority based one (MAJ) to achieve better results. However, both MAJ and
MAX are less effective that DRC in capturing the semantic similarity between facets
and DBpedia relations.

Our interpretation for this behavior is that the baselines are less robust to ambigu-
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Figure 5.4: Evaluation of DRC over the DBpedia dataset.

ity introduced by the unbalanced specification of facets, which potentially results into
an high number of false positive matches between the facet and relational assertions.
The baselines, which are not explicitly designed to cope with this distinctive charac-
teristic of facets, are biased towards relations whose extension induced by the input
facet has an higher cardinality, even if it contains false positive matches. In contrast,
DRC is less sensitive to false positive matches as frequency is weighted by the sim-
ilarity between the facet domain and the subject type. For example, the top ranked
relation computed by DRC for the facet F = < Airports, {Milan,Rome, . . . ,Turin} > is
cityServed, which is ranked only at the fourth place by both MAJ and MAX.

The observation about the robustness of DRC with respect ambiguity of facets is
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Figure 5.5: The effect of the specificity score on the dbpedia-numbers dataset.

confirmed by the nDCG achieved by our approach on the dbpedia-numbers dataset,
depicted in Figure 5.4c. The semantics of digits is ambiguous and is context depen-
dant, as exemplified by the facet F = < Basketball Players, {1948, 1949, . . . , 2012} >.
This facet has been extracted from a Web page that lists NBA basketball players by
their draft year. The semantics of this facet is ambiguous because, besides the draft
year (i.e., the year where a player starts playing for an NBA team as a professional), it
may represent for example the birth or retirement year. However, the draft year is one
of the most noticeable relations of basketball players, while the birth or retirement year
characterize people or athletes in general. Thus, the draft year is specific with respect to
the domain of basketball players. In this setting, the specificity scores implemented by
DRC and in particular the domain specificity is able to boost relations that model the
draft year (e.g., the relation draftYear) over more generic ones (e.g., birthDate). Instead,
MAX and MAJ, which do not capture the specificity of relations, assign an higher rank
to relations such as birthDate or deathDate.

The effect of the specificity score on DRC on the dbpedia-numbers dataset is shown
in Figure 5.5. We compare three different versions of DRC in terms of nDCG: the first
one uses only the frequency score (i.e., freq), the second one uses both the frequency
and the coverage score (i.e., freq+cov), while the third one is the complete DRC rank-
ing function. Experimental results clearly highlight the importance of capturing the
specificity of relations for facet annotation. The specificity score is crucial to provide
high quality annotations for numeric facets. We also study the effect of the speci-
ficity score over the dbpedia-entities dataset and found that it provides an observable,
though slight, improvement of effectiveness. This was therefore expected, as entities
are less ambiguous compared to numbers. We report an higher nDCG at all ranks for
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Figure 5.6: Evaluation of DRC over the YAGO dataset.

DRC compared to freq and freq+cov scores, with an average improvement of around
4.5% and 5%, respectively.

YAGO

We compare DRC with the baselines with respect to MRR computed over the top 5
similar relations for the YAGO dataset. Insights from the previous experiments are
further confirmed: the most similar relation for facets is generally ranked higher by
DRC compared to baselines, as shown in Figure 5.6a.
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Figure 5.7: The effect of the specificity score over the YAGO dataset.

From a more granular point of view, we compare DRC with baselines in terms
nDGC (Figures 5.6b and 5.6c). Our approach is able to provide a better character-
ization of the similarity between a facet and relations also in presence of a single,
well defined type hierarchy and a much smaller number of possibly similar relations
(89 vs 53195 of the DBpedia dataset), making it suitable also for the annotation of
facets with precision oriented KGs. DRC achieves better results at each rank. Ob-
serve that the most noticeable improvement over the baselines is obtained at rank 1.
This is crucial in order to support a fully automatic (and not validated by humans)
facet annotation process. An example of such capability is provided by the facet F =
< Actors, {Blondie Hits the Jackpot,Charlie Chaplin Cavalcade, . . .} >. For this facet, the
top ranked relation computed by DRC for is actedIn, which is ranked at the second
position (after created) by MAJ and ranked at the third position by MAX (after livesIn

and created) by MAX.

As for the DBpedia datasets, in our last experiment we study the effect of the speci-
ficity score on the quality of the annotation for facets of the YAGO datasets. Again, we
compare the complete version of DRC with freq and freq+cov scores. Experimental
results depicted in Figure 5.7 show that the specificity score have a little impact on the
effectiveness of DRC on the YAGO dataset. However, we recall that the YAGO dataset
includes no numeric facets, and thus we expected the specificity score to have little
impact on quality in this particular dataset. Moreover, the subtype graph provided by
the YAGO KG is deeper and more specialized compared to DBpedia subtype graphs.
As a result, the subject and object type sets extracted from the extension of relations
are too sparse compared to ones extracted from extensions induced by facets, thus
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making the specificity score less discriminative. A more deep investigation on how to
better capture the specificity of relations for KGs with similar characteristics to YAGO
represents an interesting extension that we leave for future work.

5.6 Comparison with Prior Art

The facet annotation problem described in this chapter is similar to the problem of
Web table annotation [74, 143, 120, 145, 112, 156, 86, 154, 153, 155]. The general goal of
table annotation approaches is to interpret a table by annotating cells with KG entities,
columns with KG types, and pairs of columns with KG relations. The approaches
that more relevant to ours tackle the problem of relation annotation [74, 143, 145, 86,
155]. Other state-of-the-art table annotation approaches that are less relevant to the
contribution described in this chapter are described in detail in Section 3.2.

Table annotation approaches annotate pairs of columns with relations from a given
KG [74, 143, 145, 86, 155]. As stated in Section 5.2, the main difference between the
specification of a facet and a relation between to table columns is that the first is un-
balanced (i.e., the facet domain is specified differently from the range) while the latter
is balanced. That is, there is a relation holding between values in different columns
whenever they are part of the same row. In contrast, in the facet annotation problem
the facet range is a single set of values and there is no other collection of corresponding
values on which we can rely. Approaches to relation annotation in web tables heavily
rely on the analysis of the reciprocal distributions of values in different columns, but
as part of the same row [143, 155]. Due to the unbalanced specification of facets, this
kind of information is not available, when dealing with the facet annotation problem.
However, approaches to relation annotation in web tables leverage the extensional
semantics of relations specified by a KG.

Venetis et al. [143] build KG mined from Web pages using the TextRunner relation
extraction framework [9]. They apply a maximum likelihood inference model to es-
timate the probability of a KG relation that holds between values from two columns.
The same inference model is leveraged in order to annotate columns with KG types.
The estimation of the maximum likelihood model for relation annotation is based on
computation of the frequencies of relational assertions within the KG of all pairs of
values of the same row, and does not consider any type-based representation of KG
instances. As a result, the approach from Venetis et al. does not allow to quantify
the specificity of a relation with respect to instances of a KG type. We claim that this
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is a crucial feature for a facet annotation approach that deals with the unbalanced
specification of a facet. This claim is substantiated by results of our experiments from
Section A.6, were we compared our proposed approach with the maximum likeli-
hood based approach adapted to consider the unbalanced specification of a facet, and
shown that is less effective in annotating a facet.

Wang et al. [145] annotate web tables using the Probase KG [149]. Probase is a
probabilistic KG and it provides scores that model the plausibility and the ambiguity of
entities being instance of a certain type and characterized by certain relations. Those
scores are computed during the creation of the KG. The approach to table annotation
by Wang et al. [145] is based on the hypothesis that tables often describe real world
entities and thus they consist of column that denotes the main entity (i.e., the subject
column) and multiple relation columns. They interpret a table by identifying the sub-
ject column, annotate it with the most suitable Probase type and then annotate the
remaining columns with the most suitable relations. Their approach is KG dependent,
since they heavily rely on the plausibility and ambiguity scores provided by Probase
in order to compute the overall score of a candidate annotation. In contrast, our ap-
proach is KG agnostic, since we rely solely on types, which are present in any KG.

TableMiner [155] annotates tables with entities, types and relations from the Free-
base KG. One of the main contributions of TableMiner is the usage of contextual in-
formation extracted from the Web page that contains the table (e.g., table caption, sur-
rounding text, RDFa/Microdata annotations). Following the same intuition of Wang
et al. [145], TableMiner starts with identifying the subject column and provides a set
of preliminary entity and type annotations. Those annotations are then jointly re-
fined using an iterative learning procedure. Relation annotations are then computed
based on the result of the refinement phase. This approach can hardly be adapted to
our problem, mainly because in our setting we lack contextual information for facets
being them typically the result of automatic facet extraction approaches (as the one
described in Chapter 4) and thus they do not have any caption nor text directly sur-
rounding them and lack any kind of RDFa/Microformat markup.

5.7 Application to Table Annotation Problems

The approach presented in this chapter tackles the problem of interpreting a facet by
annotating it with relations from a KG. As we highlighted in Section 5.2, solving the
facet annotation problem basically accounts to solving a particular relation annotation
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Figure 5.8: A table with an uninformative subject column.

(i.e., interpretation) problem. Although our approach is tailored to facets, we believe
that it can be applied to solve other types of problems which account to the establish-
ment of a r-to-r mapping (i.e., relation-to-relation, see Section 2.1.3).

As highlighted in Section 5.6, table annotation approaches establish r-to-r map-
pings when annotating a table column with the relation that hold between values in
such column and values in a previously identified subject column. Table annotation
approaches analyze the reciprocal distributions of values in the subject column and the
column to be annotated, when part of the same row, under the assumption that values
in the subject columns can be linked to entities in the KG, for example by matching
their lexicalizations. However, there are tables for which this assumption does not
hold, as for example the table depicted in Figure 5.8. This table includes data about
crimes reported in the city of Chicago, and is publicly accessible through the Chicago
Open Data portal7. The subject column of this table is the ID column that contain a
progressive numerical identifier and, remarkably, says nothing about the entities de-
scribed by the table.

This setting is common, especially when dealing with highly domain specific tab-
ular data released by public institution in the Open Government context. In this sit-

7https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/

ijzp-q8t2 - Accessed on April 2016
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Figure 5.9: A screenshot of the column annotation feature of STAN.

uation, state-of-the-art table annotation approaches are likely to fail in annotating the
non-subject columns with relations from a KG, because they are unlikely to be able
to match values in this column with the lexicalization of KG entities. We believe that
our facet annotation approach can, at least in principle, help to solve this problem. In
fact, our approach does not assumes the presence of two co-ordinate sets of values,
but only the lexicalization of the facet domain and values of the facet range. In the
case of the table depicted in Figure 5.8, a similar representation can be provided for
non-subject columns. For example, the column Primary Type can be represented as a
facet:

< Crime, {Narcotics,Criminal Trespass,Theft,Robbery . . .} >

where the facet domain can be specified by hand by domain experts, or even automat-
ically extracted by leveraging data profiling techniques that identify the general topic
of a table (e.g., [19]).

As a proof of concept, we adapted and included our facet annotation approach in
STAN8: a semantic table annotation tool that supports the annotation of tabular data
with types and relations from a defined KG. Figure 5.9 depicts a screenshot of the
column annotation feature provided by STAN. At the time of writing, STAN supports

8http://stan.disco.unimib.it - https://github.com/brando91/STAN

91

http://stan.disco.unimib.it
https://github.com/brando91/STAN


5. SPECIFICITY-BASED INTERPRETATION OF FACETS

the annotation of a table with the DBpedia KG. Our facet annotation approach is lever-
aged to suggest relations to annotate table columns. Although the application of our
approach to table annotation problems is out of the scope of this dissertation, we be-
lieve that the state-of-the-art can benefit from the insights we got by tackling the facet
annotation problem. This represents an interesting research direction that we plan to
investigate in the near future.

5.8 Summary

In this chapter we presented an automatic facet interpretation approach that allows to
annotate a facet with KG relations. We proposed an approach that is capable to handle
the intrinsic ambiguity of facets, by annotating them with relations that are more spe-
cific with respect to their facet domain. Experiments conducted by annotating facets
with two large KGs (DBpedia and YAGO) confirm the effectiveness of the proposed
approach.
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6
Knowledge Graph Profiling

6.1 Overview

In this chapter we study how to extract, represent and convey information needed by
domain experts in order to supervise and validate the extraction and interpretation
of facets, discussed in the last chapters. In particular, we argue that such information
can be effectively provided by means of a summary of the KG, which allows domain
experts to answer to questions like: what types of instances are described in the KG?
What relations are used to characterize the instances? What types of instances are
linked by a certain relation and how frequently? How many instances have a certain
type and how frequent is the use of a given relation? With such knowledge at hand,
domain experts can properly supervise the extraction and annotation phases and val-
idate their result, deciding for example to annotate a facet with a relation that they
consider more domain specific with respect to automatically suggested ones.

Here we introduce ABSTAT: a framework that is capable to provide a complete and
compact abstract summary of the content of a KG, focusing on KG that are modeled
using the RDF data model. With completeness we refer to the fact that every relation
between types that is not in the summary can be inferred. One distinguishing feature
of ABSTAT is to adopt a minimalization mechanism based on minimal type patterns. A
minimal type pattern is a triple (C, P, D) that represents the occurrences of assertions
P (a, b) in RDF data, such that C is a minimal type of the subject a and D is a minimal
type of the object b. By considering patterns that are based on minimal types we are
able to exclude several redundant patterns from the summary. The ABSTAT1 frame-

1http://abstat.disco.unimib.it
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work supports users to query (via SPARQL), to search and to navigate the summaries
through web interfaces. The remainder of this chapter is organized as follows. The
summarization model is presented in section 6.2. The implementation of the model
in ABSTAT is given in Section 6.3. Experiments conducted in order to validate our
proposed approach to KG summarization are presented in Section 6.4 while we dis-
cuss the related work in Section 6.5. A final summary of the chapter is presented in
Section 6.6.

6.2 Summarization Model

Recall from Section 2.1.1 that a KG is constituted by a terminology (or signature) N , a
set of terminological axioms T and a set of assertions A

K =< N , T ,A > .

The terminology N of the KG contains the set NC of types, the set NP of named rela-
tions and the set of instances N I composed by entities and literals. Consistently with
the used in the rest of the dissertation, we use symbols like C, C ′, ..., and D, D′, ..., to
denote types, symbols P , Q to denote relations, and symbols a, b to denote instances.

Assertions in A are of two kinds: type assertions of form C(a), and relational asser-
tions of form P (a, b), where a is an entity and b is either an entity or a literal. We denote
the sets of type and relational assertions by AC and AP respectively. Assertions can
be extracted directly from RDF data, even in absence of an input signature. Type asser-
tions occur in a KG as RDF triples < x, rdf:type, C > when x and C are URIs, or can be
derived from triples < x,P, yˆˆC > where y is a literal (in this case y is a typed literal),
with C being its datatype. Consistently with definitions from Chapter 2, we say that x
is an instance of a type C, denoted by C(x), either x is an entity or x is a typed literal.
Every resource identifier that has no type is considered to be of type owl:Thing and
every literal that has no type is considered to be of type rdfs:Literal. Observe that a
literal occurring in a triple can have at most one type and at most one type assertion
can be extracted for each triple. Conversely, an instance can be the subject of several
type assertions. A relation assertion P (x, y) is any triple < x,P, y > such that P 6= Q,
where Q is either rdf:type or one of the relations used to model a terminology (e.g.
rdfs:subClassOf).
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Subtype Graph

A subtype graph is a graph

G = (NC ,�)

where NC is the set of types (either concept or datatype) and � is a relation over NC .
We always include two type names inNC , namely owl:Thing and rdfs:Literal, such that
every concept is subtype of owl:Thing and every datatype is subtype of rdfs:Literal. One
type can be subtype of none, one or more than one type.

Abstract Knowledge Pattern

Abstract Knowledge Patterns (AKPs) are abstract representations of Knowledge Pat-
terns, i.e., constraints over a piece of domain knowledge defined by axioms of a logical
language, in the vein of Ontology Design Patterns [129]. For sake of clarity, we will
use the term pattern to refer to an AKP in the rest of the Chapter. A pattern is a triple

(C, P, D)

such that C and D are types and P is a relation. Intuitively, an AKP states that there
are instances of type C that are linked to instances of a type D by a relation P . In
ABSTAT we represent a set of AKP occurring in the KG, which profiles the usage of
the terminology. However, instead of representing every AKP occurring in the KG,
ABSTAT summaries include only a base of minimal type patterns, i.e., a subset of the
patterns such that every other pattern can be derived using the subtype graph.

Pattern Occurrence

A pattern (C, P, D) occurs in a set of assertions A iff there exist some instances x and
y such that

{C(x), P (y), P (x, y)} ⊆ A.

Patterns are also denoted by the symbol π. For KGs that include the transitive closure
of type inference (e.g., DBpedia), the set of all patterns occurring in an assertion set
may be very large and include several redundant patterns. To reduce the number of
patterns we use the observation that many patterns can be derived from other patterns
if we use the subtype graph that represents types and their subtypes.

95



6. KNOWLEDGE GRAPH PROFILING

  

(C, P, D)

(A, P, D)

(A, P, A)

(A, P, F)

(C, P, A)

(C, P, F)

(E, Q, D) (C, Q, D)

(A, Q, A)

(B, Q, A)

(A, Q, F)

(B, Q, F)(E, Q, D)

(C, Q, D)

(E, Q, A)

(E, Q, F)

(C, Q, A)

(C, Q, F)

(B, Q, D)

(A, Q, D)

(E, R, T)
(C, R, T)

(B, R, T)

(A, R, T)

Patterns

Minimal Type Pattern Base

entity literaltype relation

A

B
C

F

D

E

T

a b

c
“s”

P

Q

R

subclassOfsubclassOf

subclassOf
subclassOf

type

type

type

type

typetype

type

type

Figure 6.1: A small KG and corresponding patterns.

Minimal Type Pattern

A pattern (C, P, D) is a minimal type pattern for a relational assertion P (a, b) ∈ A and
a subtype graph G iff (C, P, D) occurs in A and there does not exist a type C ′ such
that C ′(a) ∈ A and C ′ � C or a type D′ such that D′(b) ∈ A and D′ ≺G D.

Minimal Type Pattern Base

A minimal type pattern base for a set of assertions A under a subtype graph G is a set of
patterns Π̂A,G such that π ∈ Π̂A,G iff π is a minimal type pattern for some relational
assertion in A.

Observe that different minimal type patterns (C, P, D) can be defined for an as-
sertion P (a, b) if a and/or b have more than one minimal type. However, the minimal
type pattern base excludes many patterns that can be inferred following the subtype
relations and that are not minimal type for any assertion. In the graph represented in
Figure 6.1, considering the assertion set

A = {P (a, b), C(a), A(a), F (b), D(b), A(b)}

there are six patterns occurring in A:

(C, P, D), (C, P, F ), (C, P, A), (A, P, D), (A, P, F ), (A, P, A).
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The minimal type pattern base for the KG includes the patterns:

(E, Q, D), (E, R, T ), (C, Q, D), (C, R, T ), (C, P, D)

since E and C are minimal types of the instance c, while excluding patterns like
(B, Q, D) or even (A, Q, A) since not B nor A are minimal types of any instance.

Data Summary

A summary of a KG K =< N , T ,A > is a triple

ΣA,T = < G, Π̂A,G, Stat >

such that: G is Subtype Graph, Π̂A,G is a Minimal Type Pattern Base for A under G,
and Stat is a set of statistics about the elements of G and Π. Statistics describe the
occurrences of types, relations and patterns. They show how many instances have
C as minimal type, how many relational assertions use a relation P and how many
instances that have C as minimal type are linked to instances that have D as minimal
type by a relation P .

6.3 Summary Extraction

Our summarization process, depicted in Figure 6.2, takes in input an assertion set
A and a terminology T and produces a summary ΣA,T . First, the typing assertion
set AC is isolated from the relational assertion set AP , while the subtype graph G is
extracted from T . Then, AC is processed and the set of minimal types for each entity
is computed. Finally, AP is processed in order to compute the minimal type patterns
that will form the minimal pattern base Π̂A,G. During each phase we keep track of the
occurrence of types, relations and patterns, which will be included as statistics in the
summary.

Summary Extraction

The subtype graph G is extracted by traversing all the subrelation and subtype re-
lations in T . The subtype graph will be further enriched with types from external
ontologies asserted in AC while we compute minimal types of entities (i.e., external
types).
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Rela%onal	  Asser%ons	  

Minimal	  Types	  

AKPs	  

MusicalArtist (45K) genre (501K) 
MusicGenre(1K) [71K]
MusicalArtist(45K) birthDate (832K) 
xsd:date (1.5M) [27K]

AdrianoCelentano[MusicalArtist, xsd:date]
LionelMessi [SoccerPlayer]
Disco [MusicGenre]

Typing	  Asser%ons	  

AdrianoCelentano a MusicalArtist
AdrianoCelentano a Artist
AdrianoCelentano a Person
…

LionelMessi a SoccerPlayer
LionelMessi a Person 
…	  

Disco a Genre
Disco a MusicGenre
Disco a TopicalConcept
…	  

O
W
L/
RD

FS
	  

Dataset	  

Person	  

MusicalAr8st	  

Ar8st	  

owl:Thing	  

SoccerPlayer	  

Athlete	  

Agent	  

xsd:Integer	  

Literal	  

xsd:String	   xsd:Date	  

TopicalConcept	  

MusicGenre	  

Genre	  

Subtype	  Graph	  

AdrianoCelentano genre Disco 
AdrianoCelentano birthDate 
1957-01-01^^xsd:date
…

Figure 6.2: The summarization workflow.

Given an entity x, we compute the set Mx of minimal types with respect to G.
We first select all the typing assertions C(x) ∈ AC and form the set ACx of typing
assertions about x. We then iteratively process ACx . At each iteration we select a type
C and remove from Mx all the supertypes of C according to G. Then, if Mx does not
contain any C ′ such that C ′ � C, we add C to Mx. Notice that one preliminary step
of the algorithm is to include C in G if it was not included during the subtype graph
extraction phase. If a type C is not defined in the input terminology, is automatically
considered as a minimal type for the entity x. This approach allows us to handle the
types of entities that are not included in the original terminology.

For each relational assertion P (x, y) ∈ AP , we get the minimal types sets Mx and
My. For all C,D ∈ Mx,My we add a pattern (C, P, D) to the minimal type pattern
base. If y is a literal value we consider its explicit type if present, rdfs:Literal otherwise.

Summary Storage and Presentation

Every summary is stored, indexed and made accessible through two user interfaces,
i.e., ABSTATBrowse2 and ABSTATSearch3, and a SPARQL endpoint4. In particular,

2http://abstat.disco.unimib.it
3http://abstat.disco.unimib.it/search
4http://abstat.disco.unimib.it/sparql
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Table 6.1: KGs and summaries statistics.

Relational Typing Assertions Types
(Ext.)

Relations
(Ext.)

Patterns

db2014-core ∼ 40.5M ∼ 29.7M ∼ 70.1M 869 (85) 1439 (15) 171340
db3.9-infobox ∼ 96.3M ∼ 19.7M ∼ 116.4M 821 (58) 62572 (14) 732418
lb ∼ 180.1M ∼ 39.6M ∼ 221.7M 21 (9) 33 (0) 161

ABSTATSearch5 implements a full-text search functionality over a set of summaries.
Types, relations and patterns are represented by means of their local names (e.g.,
“Person”, “birthPlace” or “Person birthPlace Country”), conveniently tokenized, stemmed
and indexed, and retrieved using Lucene Score as ranking model.

6.4 Evaluation

We evaluate our summaries from different, orthogonal perspectives. We measure the
compactness of the summaries obtained by ABSTAT with the one obtained by Loupe [84],
an approach similar to ours that does not use minimalization. We show that our
summaries provide useful insights on the semantics of relations, based on their us-
age within a KG. In this evaluation we use the summaries extracted from three KG:
DBpedia Core 2014 (db2014-core)6, DBpedia 3.9 (db3.9-infobox)7 and Linked Brainz
(lb). db2014-core and db3.9-infobox KGs are based on the DBpedia ontology while
the lb KG is based on the Music Ontology. DBpedia and LinkedBrainz have “comple-
mentary relations and requirements”; and “contain real, large scale data, being chal-
lenging enough to assess the abilities of QA systems” [76]. Finally, a user study has
been carried out to evaluate if our summaries are informative enough to help users to
understand a large KG.

6.4.1 Compactness

Table 6.1 provides a quantitative overview of KGs and their summaries. To evaluate
compactness of a summary we measure the reduction rate, defined as the ratio between
the number of patterns in a summary and the number of assertions from which the

5http://abstat.disco.unimib.it/search
6The DBpedia 2014 version with mapping based relations only
7The DBpedia Core 3.9 version plus automatically extracted relations
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summary has been extracted.

Our model achieves a reduction rate of ∼0.002 for db2014-core, ∼0.006 for db3.9-
infobox, and ∼6.72 ×10−7 for lb. Comparing the reduction rate obtained by our
model with the one obtained by Loupe (∼0.01 for DBpedia and∼7.1×10−7 for Linked
Brainz) we observe that the summaries computed by our model are more compact, as
we only include minimal type patterns. Loupe instead, does not apply any minimal-
ization technique thus its summaries are less compact. The effect of minimalization
is more observable on DBpedia KGs, since the DBpedia terminology specifies a richer
subtype graph and has more typing assertions. We observe also that 85 external types
were added to the db2014-core subtype graph and 58 to db3.9-infobox subtype graph
during the minimal types computation phase as they were not part of the original
terminology, and thus are considered by default as minimal types.

6.4.2 Informativeness

Although data exploration is a complex task [66], we want to evaluate the informa-
tiveness of ABSTAT on specific ones; to provide insights about the semantics of the
relations and to help users formulating SPARQL queries.

Insights About the Semantics of the Relations

Our summaries convey valuable information on the semantics of relations for which
the terminology does not provide any domain and/or range restrictions. Table 6.2
provides an overview of the total number of unspecified relations from the KGs. For
example, around 18% of relations from db2014-core KG have no domain restrictions
while 13% have no range restrictions. Observe that this KG is the most curated sub-
set of DBpedia as it includes only triples generated by user validated mappings to
Wikipedia templates. In contrast for db3.9-infobox KG which includes also triples
generated by Information Extraction approaches, most of the relations (i.e., the ones
from the dbpepdia.org/property namespace) are not specified within the terminology.

In general, underspecification may be the result of precise modeling choices, e.g.,
the relation dc:date from the lb KG. This relation is intentionally not specified in order
to favor its reuse, being the Dublin Core Elements (i.e., dc) a general purpose vocabu-
lary. Another example is the dbo:timeInSpace relation from the db2014-core KG, whose
domain is not specified in the corresponding terminology. However, this relation is
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Table 6.2: Total number of relations with unspecified domain and range in each KG.

Domain (%) Range (%) Domain-Range (%)

db2014-core 259 (∼18%) 187 (∼13%) 48 (∼3.3%)
db3.9-infobox 61368 (∼98%) 61309 (∼98%) 61161 (∼97%)
lb 13 (∼39%) 15 (∼45%) 13 (∼39%)

Figure 6.3: Distribution of the number of minimal types from the domain and range extracted
for not specified relations of the db2014-core KG.

used in a specific way as demonstrated by patterns (dbo:Astronaut, dbo:timeInSpace,
xsd:double) and (dbo:SpaceShuttle dbo:timeInSpace, xsd:double). Gaining such under-
standing of the semantics of the dbo:timeInSpace relation by looking only at the termi-
nology axioms is not possible.

We can push our analysis further to a more fine-grained level. Figure 6.3 provides
an overview of the number of different minimal types that constitute the domain and
range of unspecified relations extracted from the summary of the db2014-core KG.
The left part of the plot shows those relations whose semantics is less “clear”, in the
sense that their domain and range cover a higher number of different minimal types
e.g., the dbo:type relation. Surprisingly, the dbo:religion relation is among them: its
semantics is not as clear as one might think, as its range covers 54 disparate minimal
types, such as dbo:Organization, dbo:Sport or dbo:EthnicGroup. Conversely, the relation
dbo:variantOf, whose semantics is intuitively harder to guess, is used within the KG
with a very specific meaning, as its domain and range covers only 2 minimal types:
dbo:Colour and dbo:Automobile.
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Preliminary User Study

Formulating SPARQL queries requires prior knowledge about the KG, a knowledge
that we want to support with ABSTAT. We designed a user study where we asked
participants to formulate SPARQL queries selected from the Questions and Answering
in Linked Open Data benchmark8 [142] to the db3.9-infobox KG. The selected queries
were taken from logs of the PowerAqua QA system and are believed to be repre-
sentative of realistic information needs [76], although we cannot guarantee that they
cover every possible information need. We provided the participants the query in
natural language and a “template” of the corresponding SPARQL query, with spaces
intentionally left blank for relations and/or concepts. For example, given the natural
language specification Give me all people that were born in Vienna and died in Berlin, we
asked participants to fill in the blank spaces:

SELECT DISTINCT ?uri

WHERE { ?uri . . . <Vienna> . ?uri . . . <Berlin> .}

We selected five queries of increasing length, defined in terms of the number of triple
patterns within the WHERE clause; one query of length one, two of length two and
two of length three. Intuitively, the higher the query length, the more difficult it is
to be completed. We could use a limited number of queries because the tasks are
time-consuming and fatigue-bias should be reduced [102]. Overall 20 participants
with no prior knowledge about the ABSTAT framework were selected and split into
2 groups: abstat and control. We profiled all the participants in terms of knowledge
about SPARQL, data modeling, DBpedia dataset and ontology, so as to create two
homogeneous groups. We trained for about 20 minutes on how to use ABSTAT only
the participants from the first group. Both groups execute SPARQL queries against the
db3.9-infobox KG through the same interface and were asked to submit the results
they considered correct for each query. We measured the time spent to complete each
query and the correctness of the answers. The correctness of the answers is calculated
as the ratio between the number of correct answers to the given query against the
total number of answers. Table 6.3 provides the results of the performance of the
users on the query completion task9. The time needed to perform the 5 tasks from
all participants in average is 38.6m, while the minimum and the maximum time is

8http://qald.sebastianwalter.org/
9The raw data from the user study can be found at http://abstat.disco.unimib.it/

downloads/user-study
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Table 6.3: Results of the user study.

Avg. Completion Time (s) Accuracy

query 1 - How many employees does Google have? - length 1

abstat 358.9 0.9
control 380.6 0.8

query 2 - Give me all people that were born in Vienna and died in Berlin - length 2

abstat 356.3 1
control 346.9 0.8

query 3 - Which professional surfers were born in Australia? - length 2

abstat 476.6 0.6
control 234.24 0.7

query 4 - In which films directed by Gary Marshall was Julia Roberts starring? - length 3

abstat 333.4 0.9
control 445.6 0.9

query 5 - Give me all books by William Goldman with more than 300 pages - length 3

abstat 233.4 1
control 569.8 0.7

18.4m and 59.2m respectively. The independent t-test, showed that the time needed
to correctly answer Q5, the most difficult query, was statistically significant for two
groups. There was a significant effect between two groups, t(16) = 10.32, p < .005,
with mean time for answering correctly to Q5 being significantly higher (+336s) for
the control group than for abstat group. Using 5 tasks to perform the user study is
coherent with other related work which suggest that the user study would have 20-
60 participants, who are given 10-30 minutes of training, followed by all participants
doing the same 2-20 tasks [102].

Observe that the two used strategies to answer the queries by participants from
the control group were: to directly access the public web page describing the DBpedia
entities mentioned in the query and very few of them submitted exploratory SPARQL
queries to the endpoint. Most of the users searched on Google for some entity in the
query, then consulted DBpedia web pages to find the correct answer. DBpedia is ar-
guably the best searchable KG, which is why this exploratory approach was successful
for relatively simple queries. However, this exploratory approach does not work with
other non-indexed KGs (e.g., LinkedBrainz) and for complex queries. Instead, partic-
ipants of the abstat group took advantage of the summary, obtaining huge benefits
in terms of average completion time, accuracy, or both. Moreover, they achieved in-
creasing accuracy over tasks at increasing difficulty, still performing the tasks faster.
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We interpret the latter trend as a classical cognitive pattern, as the participants became
more familiar with ABSTATBrowse and ABSTATSearch web interfaces.

The noticeable exception is query 3. In particular, participants from the abstat
group completed the query in about twice the time of participants from control group.
This due to the fact that the entity Surfing (which is used as object of the relation
dbo:occupation) is classified with no type other than owl:Thing. As a consequence, par-
ticipants from the abstat group went trough a more time consuming trial and error
process in order to guess the right type and relation. Participants from the abstat
group finally came to the right answer, but after a longer time. This issue might
be solved by applying state-of-the-art approaches for type inference on source RDF
data [101] in our model to cope with untyped instances and suggest possible improve-
ments of ABSTAT for example including values for concepts that are defined by closed
and relatively small instance sets.

6.5 Comparison with Prior Art

We compare our work to approaches explicitly proposed to summarize Linked Data
and ontologies, and to extract statistics about the KG. A first body of work has focused
on summarization models aimed at identifying subsets of KGs that are considered to
be more relevant. In [152], terminological axioms are ranked based on their salience to
present to the user a view about the terminology of a KG. RDF Digest [141] identifies
the most salient subset of a KG including the distribution of instances in order to effi-
ciently create summaries. Differently from these approaches, ours aims at providing a
complete summary with respect to the KG.

A second body of work has focused on approaches to describe KGs by reporting
statistics about the usage of the terminology in the data. The most similar approach
to ABSTAT is Loupe [84], a framework to summarize and inspect Linked Data KGs.
Loupe extracts types and relations, along with a rich set of statistics. Similarly to AB-
STAT, Loupe offers a triple inspection functionality, which provides information about
triple patterns that appear in the KG and their frequency. Triple patterns are equiva-
lent to our patterns. However, Loupe does not apply any minimalization technique:
as shown in Section 6.4.1, summaries computed by our model are significantly more
compact.

In [22], authors consider vocabulary usage in the summarization process of an
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RDF KG and use information similar to patterns. A similar approach is also used in
MashQL [51], a system proposed to query a KG without prior knowledge about the
terminology used to characterize instances. Our model excludes several redundant
patterns from the summary through minimalization, thus producing more compact
summaries. Knowledge pattern extraction from RDF KGs is also discussed in [111],
but in the context of domain specific experiments and not with the purpose of defining
a general KG summarization framework. Our summarization model can be applied
to any KG that analyzes the usage of the terminology within the KG and focuses on
the representation of the summary.

Other approaches proposed to describe KGs do not extract connections between
types but provide several statistics. SchemeEx extracts interesting theoretic measures
for large KGs, by considering the co-occurrence of types and relations [61] in the repre-
sentation of instances. A data analysis approach on RDF KGs based on an warehouse-
style analytic is proposed in [29]. This approach focuses on the efficiency of processing
analytical queries which poses additional challenges due to their special character-
istics such as complexity, evaluated on typically very large KGs, and long runtime.
However, this approach differently from ours requires the design of a data warehouse
especially for a RDF KG. Linked Open Vocabularies10, RDFStats [67] and LODStats [4]
provide several statistics about the usage types and relations but they do not represent
the connections between types.

6.6 Summary

Getting an understanding of the shape and nature of the data from large KGs so is
a complex and a challenging task, yet vital to properly supervise data management
tasks for dataspaces. In this chapter, we studied how to profile a KG by proposing
a minimalization-based summarization model to support domain experts in better
understanding the semantics of relations of a KG. Based on the experimentation we
show that our summarization framework is able to provide both compact and informa-
tive summaries for a given KG. We showed that using ABSTAT framework, summaries
are more compact than the ones generated from other models and they also help hu-
mans (or algorithms, as well) to gain insights about the semantics of underspecified
relations in the KG.

10http://lov.okfn.org/
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7
Conclusion

7.1 Summary of the Dissertation

This dissertation studied how to enrich the schema of Knowledge Graphs (KGs) with
domain specific facets extracted from a vast amount of structured sources, providing
interactive methods to domain experts in charge of maintaining a dataspace to ensure
the adequate quality of the data. We focused on data management settings that imply
the incremental integration of independent data sources into a dataspace [39], where a
KG provides a structured machine readable representation of data on top of which
advanced data access features are built, and where the integration process is managed
and supervised by domain experts. This dissertation focuses on two main aspects:

• Domain specificity. This dissertation proposed a facet extraction and interpre-
tation approach that incorporate the notion of domain specificity. We leverage
already established mappings between source and KG types to extract domain
specific facets, and propose an approach to provide a domain specific interpre-
tation of them, by re-using relations already defined in the KG.

• Enhanced Domain Expert Supervision. By mean of the KG summarization ap-
proach presented in this dissertation, domain experts can profile and inspect the
KG to understand the usage of relations in the data. This acquired understand-
ing is crucial in order to properly supervise the approaches presented in this
dissertation.
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Domain Specific Facet Extraction

Chapter 4 introduced an automatic, domain specific facet extraction approach, which
supports domain experts in the definition of significant domain specific facets. Facets
are specialized relations aimed at model the salient characteristics of entities from spe-
cific domains (e.g., news, actors, or wine bottles), and thus the technical problem tack-
led in this contribution accounts to the extraction of salient domain specific relations.
The basic intuition behind the proposed approach is to reuse the representation of
source instances provided by domain specific data sources. In particular, we leverage
mappings established between source and KG types, to suggest meaningful, domain
specific facets for a given KG type, based on Taxonomy Layer Distance (TLD), a novel
metric used as clustering distance metric for grouping together facet values. Through
our approach we are not only able to extract meaningful facets, but also to populate
the KG with the relative faceted assertions about instances, thus supporting the pro-
vision on advanced data access features with an enhanced user-experience.

Specificity-based Interpretation of Facets

Chapter 5 discussed how to interpreting extracted facets by annotating them with rela-
tions holding between KG instances of given domain and facet values. Given a facet,
the proposed approach derives a set of candidate relations from KG and ranks them
considering how much their semantics is similar to the semantics of the facet, focus-
ing on domain specificity. The proposed approach handles the intrinsic ambiguity of
facets by annotating them with relations that are more specific with respect to their
facet domain. Our approach effectively quantifies the specificity of relation by consid-
ering its extensional semantics, that is the usage of the relation in the KG with respect
to the different domains of knowledge conceptualized by KG types.

Knowledge Graph Profiling

Chapter 6 introduced ABSTAT: a KG summarization framework that provides an ab-
stract view of KG relations. ABSTAT is capable to provide an overview of the speci-
ficity of relations of a KG. Such information is crucial to enable a proper supervision
of the extraction and annotation phases by domain experts. Due to the proposed min-
imalization based approach, ABSTAT is able to provide both compact and informative
summaries for a given KG. We showed that using the ABSTAT framework, summaries
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are more compact than the ones generated from other related models and they also
help humans (or algorithms) to gain insights about the semantics of relations in the
KG.

7.2 Future Work

Several future lines of work originate from the contributions presented in this disser-
tation. The rest of the section summarizes the main ones.

“Local” Improvements

The three proposed approaches can be independently extended and improved along
different directions. Firstly, advanced NLP techniques can be used to improve the facet
extraction approach, by normalizing source types considering different lexicalizations
(as discussed in Section 4.5). Secondly, the definition of the specificity of a relation with
respect to a facet domain (discussed in Chapter 5.2) can be adapted to consider KGs
with deep and specialized subtype graphs (as pointed out in Section 5.5). Thirdly, we
plan to conduct the user study described in Section 6.4 in large scale, thus including
more users with different background characteristics in order to analyze in details
which is the target group of users for which ABSTAT is more useful. Also, we plan to
complement our coverage-oriented approach with relevance-oriented summarization
approaches based on connectivity analysis as discussed in Section 6.5.

Table Annotation

As discussed in Section 5.8, the facet annotation approach can in principle be applied
to the problem of relation annotation in tabular data. To this end, a preliminary work
has been done by including an adapted version of the facet annotation approach into
a table annotation tool, namely STAN1. Further investigation and additional experi-
ments are needed, but we believe that this represents one of the most interesting di-
rections of future work originating from the contributions of this dissertation.

1http://stan.disco.unimib.it
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Bring Explicit Feedback into the Picture

The approaches discussed in this dissertation are data-driven, and are conceived to
be included in a workflow where the validation of domain experts at all the stages is
crucial. Explicit feedback gathered from domain experts validation represents an in-
valuable information that can be used to refine the interpretation phase. In particular,
we envision a system that learns how to better capture the domain specificity of KG
relations in the annotation of facets, based on explicit feedback from domain experts
on its past effectiveness. Towards this end, it would be interesting to investigate to
which extent the facet annotation approach can benefit from Schema and Ontology
matching literature, where the development of interactive matching systems based on
explicit feedback loops recently gained attention with the advent of Crowd Sourcing
platforms and paradigms (e.g., [30, 34, 121, 14]).

Consider Data Access Patterns from End-users

The representation of data provided by specialized sources is not the only source
of valuable information that can be leveraged in order to extract domain specific
facets [110]. As the ultimate purpose of DI application is to make integrated data
searchable and accessible to end-users, the understanding of how end-users search
and browse the data may provide useful insights on how to represent dataspace in-
stances. In other words, a domain specific representation may emerge not only from
data, but also from usage. For example, the analysis of full text queries submitted by
users with exploratory information needs (e.g., the full text query “android mobile
phones”), may reveal interesting patterns useful to identify what are the salient char-
acteristics of instances in particular domains (e.g., the operating system for mobile
phones). We believe that our facet extraction approach can gain a huge benefit from
the study of frequent patterns in the access of integrated data. Towards this end, how-
ever, it is crucial to develop effective and efficient methods to analyze big, potentially
noisy data access logs.

Reuse of Summaries

We envision a large scale application of our summarization approach. As ABSTAT fo-
cuses on RDF KGs, we would like to run our summarization framework on KGs of the
Linked Open Data cloud. Such large scale analysis of well known KGs would poten-
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tially unveil commonly used data representation patterns from independent sources.
This would particularly benefit domain experts, especially in providing a domain spe-
cific interpretation of facets. With “global” information about common patterns of use
of relations from shared vocabularies, domain experts will potentially get better in-
sights about their most commonly adopted semantics.

Support for Multilingual Dataspaces

In this dissertation we didn’t consider the case where data provided by the sources
is lexicalized in different languages. The facet extraction approach presented in this
dissertation does not leverage any language-specific feature in the extraction of facets,
and can be easily applied to different languages other than English (see 4.5). From
the other side, the facet interpretation approach presented in Chapter 5 implicitly as-
sumes consistency between the language in which facet values and KG instances are
lexicalized. In order to extend such approach to the multilingual case, one would have
to investigate to which extent our approach can benefit from the literature in Cross-
Lingual Schema and Ontology Matching (e.g., [45, 97]). We believe that this would
particularly benefit the application of the approaches discussed in this dissertation to
scenarios that require the integration of multilingual data, as for example integrating
Open Data released by institutions from different countries.
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A
Product Autocomplete

A.1 Overview

As pointed out in Chapter 2, a rich and domain specific representation allows a DI
application to provide advanced search and browse features over the KG instances.
This chapter describes a case study from the eCommerce domain where KG types and
facets are leveraged in order to provide an advanced Product Autocomplete feature
for eMarketplaces. The Product Autocompletion system, which is named COMMA,
described in this chapter is an example of the impact of the contributions of this dis-
sertation, evaluated on the real world scenario of an Italian eMarketplace.

This chapter is organized as follows: Section A.2 frames the contribution described
in the chapter in the context of the eCommerce domain. The autocompletion problem
and the is discussed in Section A.3; the matching algorithm that constitutes the core of
COMMA and that leverages domain specific representation of instances is described
in Section A.4; details about the implementation and the deployment in a real world
scenario of the proposed Product Autocomplete system are given in Section A.5; ex-
periments carried out to evaluate the system are discussed in Section A.6, and a sum-
mary of the contribution described in this chapter is given in Section A.8.

A.2 Autocomplete Interfaces in eCommerce

An ordinary eMarketplace typically performs a matchmaking activity between
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search queries submitted by the users and a set of products. Maximizing the accu-
racy and coverage of the matchmaking algorithm over search queries is a crucial aim
that a successful eMarketplace must achieve. Providing an autocompletion interface
is a recent but already established approach to improve product search features. For
particular DI applications such as CSE (Comparison Shopping Engines), providing an
autocompletion feature as-a-service to small/medium client eMarketplaces (i.e., data
sources of the dataspace of a CSE, consistently with terminology from Chapter 2),
often characterized by a poor retrieval features, represents an interesting business op-
portunity.

An autocompletion interface can perform two types of autocompletion operations:
it can complete the query that the user is expressing by proposing a set of queries that
are most relevant and reasonable to the query fragment already typed by the user; this
type of autocompletion can be called query-oriented [23, 11, 40, 36]. The autocompletion
interface can instead preview the results of the query fragment that is being typed by
the user; this type of autocompletion can be called result-oriented [12, 25, 52, 125, 80].

Most of the autocompletion interfaces proposed so far in the eCommerce domain
(e.g., Amazon, and Bing, Google and Yahoo Shopping) are based on query-oriented
approaches. In fact, all the above CSEs integrate product offers coming from sev-
eral eMarketplaces, achieving an almost complete coverage of the products available
on the market. Remarkably, the advanced search features provided by such CSE are
based on the structured information provided by their KGs. However, when a query
is submitted to a single small/medium-sized eMarketplace (i.e., a data source of the
CSE), correctly completing a query that would not lead to any or poorly ranked results,
would not be effective. In this cases, result-oriented autocompletion can be highly ef-
fective, by previewing only product offers available in the eMarketplace, and by pro-
viding an insight on the internal working of the search functionality. We focus on
the latter scenario, investigating a novel matching and ranking technique to support
result-oriented autocompletion for small/medium eMarketplaces.

One of the main problems to address for an Autocompletion System (AS) is to
seamlessly handle the different types of query that can be submitted by a user. Au-
tocompletion techniques that adopt string-based matching algorithms and consider
offers’ titles and descriptions, can provide accurate results when users submit queries
targeted to specific products (e.g., “Samsung i7500”), and they can be made error-tolerant
by adopting approximate matching methods [90, 25, 52] over misspelled terms (e.g.,
“Samsong 7500”). However, user queries are often not really aimed at describing a
specific product that is being searched but they are rather aimed at exploring the set of
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available products or offers, looking for products of a given category (e.g., MobilePhone)
or characterized by specific features (e.g., Android as value of the facet operatingSystem).
Sometimes, more targeted and more generic keywords are even mixed in a hybrid type
of query (e.g., “Samsung Android”).

Product types from the KG of the CSE and the most significant product features
(i.e., facets) represent an invaluable source of information for handling exploratory and
hybrid queries. Indexing the terms contained in this representation enables an auto-
completion interface to provide results also for exploratory and hybrid queries but ob-
taining a relatively poor ranking, as shown by experiments discussed later on. For
sake of clarity, we will call semantic techniques any matching technique aimed at
handling this representation (types and facets) in a different way from pure textual
descriptions, in the vein of research carried out in semantic search [79, 139].

A.3 Problem Definition

Consistently with the terminology introduced in Chapter 2, an offer o (i.e., a named
instance of the KG) is associated with one lexicalization lex(o) that shortly describes
it in natural language (e.g., the string “Samsung Galaxy Tab 16 GB Android 2.2”). An offer
is instance of exactly one KG type C (e.g., Tablet) and it is characterized by a set F of
faceted assertions describing the technical features of the offer, which are represented
as

F (o, v)

where v is the facet value (e.g., mp3, which can be for example a value of the faceted
assertion supportedAudio(o,mp3)). An offer is thus represented as a triple

o = < lex(o), C, F >

where lex(o) is the offer’s lexicalization, C is a the type whose o is an instance of, and
F = {F1(o, v1), ..., Fn(o, vn)} is a set of faceted assertions.

The Autocompletion Problem

A result-driven AS presents a set of k results that are most relevant to keyword-based
query typed by the user, by processing the query at each interaction of the user with
the system. Observe that every query fragment (a query where the last keyword typed
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in by the user is a string representing a word fragment, e.g., “smartphone nok”) is con-
sidered an input query by the AS.

In order to be effective and perceived as instantaneous the autocompletion oper-
ation must be completed in a relatively short time span (i.e., maximum 100 ms) [85]:
this constraint represents a serious limit to the possibility of exploiting complex tech-
niques to improve the accuracy and coverage of the autocompletion results. Since
there is an element of distraction caused by User Interface interrupts, which can over-
come the user while typing the query, the high quality of the data retrieved by the AS
must justify the distraction caused to the user by the AS [7]. An AS has therefore to
fulfill both efficiency and effectiveness requirements, and since an improvement in the
latter usually has a negative impact on the former, finding a good trade-off between
efficiency and effectiveness is a major goal for matching algorithms developed in this
context.

Targeted queries (e.g., “samsung galaxy tab”) are submitted by users that look for a
specific product; the keywords used in this case usually point to specific terms used in
offer lexicalization (e.g., brand and model). These queries can be handled using well
known exact (e.g., prefix matching) and approximate matching techniques [90], which
can support provide results also when query terms are misspelled [25, 52]. However,
even approximate matching techniques would be unsuccessful when an exploratory
query is submitted. Consider a query such as "Tablet PC with Office Mobile" which
refers to a class of products rather than to a specific product. In this query, neither the
keywords nor any string approximately matching these keywords occur in the offers’
lexicalization.

Instead, many keywords used in exploratory queries describe product types (e.g.,
TabletPC) and/or technical features. These pieces of information are often available
from types and facet values. Furthermore, the distinction between targeted and ex-
ploratory queries is not sharp; in fact queries such as “samsung tab office mobile” can con-
tain terms referring to specific products as well as to generic facet values; we will
refer to these queries as hybrid queries. Using matching algorithms that specifically
leverage well-structured representation of offers provided by the KG (i.e., semantic
matching) can therefore play a crucial role in effectively answering exploratory (and
hybrid) queries. One of the greatest challenges for a result-driven AS seamlessly pro-
cessing all the above types of queries consists in combining syntactic and semantic
matching so that the capability of handling more types of queries (improving the cov-
erage of AS) does not lower the quality of the results returned when targeted queries
are submitted.
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A.4 COMMA

The autocompletion approach proposed in this chapter and implemented by COMMA
consists of three main phases as sketched in Figure A.1:

• indexing (offline): the structured information from the KG that characterizes the
offers is indexed along three different descriptive dimensions: lexicalizations,
types and faceted assertions;

• filtering (online): given a query fragment q submitted by the user, the matching
algorithm applies three filters, one for each descriptive dimension; one filter se-
lects offers whose lexicalization match with the query (syntactic matching); one
filter selects offers whose types match with the query (semantic matching); one
filter selects offers whose facet values match with the query (semantic matching);
the results of the three filters are combined by means of a set union returning a
final set of matching offers;

• ranking (online): several scoring methods are applied to rank the offers selected
by the filters; local scoring methods evaluate the relevance of each offer to the
query by considering different criteria such as their popularity, the strength of
the syntactic match and the semantic relevance; the local scores are combined
in a final relevance score, which is used to rank the offers and define the list of
top-k relevant offers.

Ranking is applied after filtering because most of the scores applied in ranking
reuse the results of matches discovered during filtering; moreover, this approach al-
lows to limit the number of items to which scoring functions are applied, achieving a
better efficiency.

A.4.1 Indexing

In order to index the lexicalizations, types and faceted assertions associated with each
offer, three inverted indexes are built: I lex, IT and IF respectively denote the lexical-
ization, type and facet indexes. In the facet index IF only facet values (i.e., the objects
of the the domain specific relation conceptualized by the facet) are indexed under the
assumption that the names of the facets are not very significant for searches (e.g., a
user is more likely to search for “samsung phone”, instead of “brand samsung phone”).
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Figure A.1: Overview of the matching algorithm.

All the indexes are built by extracting every term occurring in the indexed string
(respectively the lexicalization, the type identifier and the facets’ values); we tok-
enize the strings representing codes (e.g., from “Nokia c5-03” we extract the three terms
“nokia”, “c5” and “03”); terms are stemmed and stop-words are removed. We call lexi-
calization terms, type terms and facet value terms the elements belonging respectively to
the sets I lex, IT and IF .

A.4.2 Syntactic and Semantic Filtering

Let OqSY N , OqTY PE , and OqFAC be the set of offers whose textual descriptions (lexical-
izations, in our case), types and facet values respectively match a query q. The set Oq

of offers matching a query q can be defined as follows:

Oq = OqSY N ∪O
q
TY PE ∪O

q
FAC .

In other words, all the offers that match the input query along at least one di-
mension are selected in the filtering phase. The rest of this section explains how each
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matching set is obtained.

Syntactic Filters

The set OqSY N of the offers that syntactically match against a query fragment is com-
puted by performing a set union of the results of two filters: a prefix-based (pref ) string
matcher, and an approximate string matcher (asm) based on normalized edit distance
(nedit [90]) and a filtering threshold thasm. We combine the results of these two filters
to handle keyword fragments together with complete keywords with possible mis-
spellings. In fact, using only an asm matcher with a reasonably high threshold would
lead to poor results when matching short prefixes of long terms.

A lexicalization term l ∈ I lex pref-matches an input keyword fragment k, iff k is a
prefix of l; a lexicalization term l ∈ I lex asm-matches an input keyword fragment k,
iff nedit(k, l) ≤ thasm. An offer o pref-matches (asm-matches, respectively) an input
keyword fragment k, iff there is at least a lexicalization term l ∈ o such that l pref-
matches (asm-matches) k. An offer o pref-matches (asm-matches, respectively) a query
q = {k1, ..., kn} if and only if o pref-matches (asm-matches) every keyword ki ∈ q, with
1 ≤ i ≤ n. The set OqSY N of offers syntactically matching an input query q is defined
as the union of of all the offers pref-matching q and all the offers asm-matching q.

Example 1. Suppose to have a query q=“nakia c”, and two offers named “Nokia c5-03”
and “Nokia 5250 Blue”; “Nokia c5-03” syntactically matches q because “nakia” asm-matches
the keyword “Nokia” and “c” asm-matches the keyword fragment “c” (instead, observe
that this is not a pref-match because “nakia” does not pref-match “Nokia”); instead
“Nokia 5250 Blue” does not syntactically match q because there is no term in the offer
lexicalization pref-matching or asm-matching the keyword fragment “c”.

Semantic Filters

The goal of the semantic filter is to identify a set of offers that are potentially relevant
to a query where some type and/or facet value occur as keywords. We define two
semantic filters, one based on type matching (type-matching), and one based on facet
value matching (fac-matching). Before applying semantic filters, stemming and stop-
words removal are applied to a query q submitted by the user, obtaining a new query,
denoted by q to which filters are applied.

Intuitively, the type-matching filter returns all the offers that are instance of some
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type matching a query q. This set OqTY PE is defined as follows. A type C matches
a keyword k iff there exists a type term i ∈ IC associated with C such that i = k

(remember that type names can contain more terms, and that an indexed type term
can be associated with more types); an offer o cat-matches a query q = {k1, ..., kn} iff
its an instance of a type t that matches at least one keyword k ∈ q.

Intuitively, the fac-match filter returns all the offers characterized by some facet
value matching a query q; this set OqFAC is defined as follows. A facet value F (o, v)

matches a keyword k iff there exists a facet value term i ∈ IF associated with v such
that i = k (remember that only facet values are considered in the matching process);
an offer o fac-matches a query q = {k1, ..., kn} iff it is annotated with at least one facet
f that matches at least one keyword k ∈ q (remember that an offer can be character-
ized with several facet values). Given a query q, we also identify the sets T q and Fq,
respectively representing the set of all the types and facet values that match with at
least a keyword of k.

Example 2. Suppose to have a query q=“players with mp3”, which is transformed in the
query q=“player mp3” after stemming and stop-words removal; since the type Mp3Players

matches the query, all the offers that are instances of this type are included in the
OqTY PE set; since the value of several faceted assertions such as compression(o,mp3),
audioFormat(o,mp3), recordingFormat(o,mp3), match q as well, every offer associated
with any of these facets is included in the OqFAC set.

Observe that while an offer is required to syntactically match all the terms in the
query, an offer can semantically match only one keyword in order to be considered
in the semantic matches for that query. The reason for such a difference is that, while
for precise queries targeted to retrieve offers based on their lexicalizations the user
has more control on the precision of the results (under the assumption that the user
knows what he/she is looking for), for exploratory queries containing generic type
and facet terms we want to consider all the offers potentially relevant to these vaguer
terms. Although the semantic match significantly expands the set of matching offers,
the ranking process will be able to discriminate the offers that are more relevant to the
given query.

A.4.3 Ranking and Top-k Retrieval

Several criteria are used to rank the set of matching offers. Each criterion produces
a local relevance score; all the local scores are combined by a linear weighted function
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which returns a global relevance score for every matching offer; the top-k offers ac-
cording to the global score are finally selected and presented to the user.

Basic Local Scores

Three basic local scores are introduced to assess the relevance of an offer with respect
to a query submitted by a user.

Popularity: pop(o) of an offer o is a normalized value in the range [0, 1] that rep-
resents the popularity of an offer o based on the number of views the offer received.
An absolute offer popularity score is assessed offline analyzing log files and it is fre-
quently updated; the absolute popularity score is normalized at runtime by distribut-
ing the absolute popularity of the offers matching the input query into the range [0, 1].

Syntactic relevance: offers retrieved by exact (prefix) matching should be rewarded
with respect to the offers approximately matched (e.g., because the order of digits
makes a difference in technical terms like product codes); we therefore define a syntac-
tic relevance score that discriminates between the offers matched by the two methods.
The syntactic relevance synq(o) of an offer o with respect to a query q assumes a value
m if o is a pref-match for q, n if o is a asm-match for q, and 0 elsewhere, where m > n.

Semantic relevance: semantic relevance is based on the principle that the more
matching facet values occur in an offer, the more relevant this offer is with respect to
the query. Semantic relevance does not consider types because the number of offers
that are instances of specific types is generally high. The semantic relevance semq(o)

of an offer o to an input query q is computed as the number of faceted assertionsFo as-
sociated with o and matching with q, normalized over the total number of the faceted
assertions whose value matches the query Fq, according to the following formula:

semq(o) =
|Fq ∩ Fo|
|Fq|

. (A.1)

Intersection Boost and Facet Salience

When a user submits a targeted query (see Section A.3), the basic local scores intro-
duced above perform quite well. When the matching is driven mostly by syntactic
criteria, the accuracy of the syntactic match and the popularity become key ranking
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factors. However, exploratory queries are usually more ambiguous (each single key-
word can match more types and more facet values at the same time, and matches for
each keyword are combined by means of set union); in these cases, the semantic rele-
vance score based on the matching facet values can be too weak, with matching types
not even considered in the score.

Example 3. All the offers that instances of the type “vacuum cleaner” or annotated with
the faceted assertion typology(o, robot) match the query “robot vacuum cleaners”; how-
ever, some of these offers are about vacuum cleaners having typology(o, robot), while
others are associated with kitchen tools having typology(o, robot). The ranking scores
defined so far do not discriminate among the two kinds of offers because they do
not consider their types; intuitively, offers describing vacuum cleaners of type robot
should be better rewarded because they match on both the type and facet value di-
mensions.

Considering the general case when offers match the query according to more than
one dimension, we define a new local score called Intersection Boost. This local score
aims at rewarding offers that occur in many specific matching sets selected by different
filters. Before formally defining the Intersection Boost score we introduce a new filter
in addition to previously defined ones. In order to better assess the relevance of the
offers, and in particular of the offers that have been matched by semantic filters, we
introduce a filter which is based on of Facet Domain Specificity. Intuitively we define a
special set of offers that consists of the ones characterized by assertions about facets
particularly specific to some types (i.e., domains) matching the query submitted by the
user. A facet is specific to a type if it is highly likely to characterize offers that are
instances of that type.

Formally, the specificity of a facet F to a type C is defined by a function that repre-
sents the conditional probability of the occurrence of a facet F in the set of offers OC

belonging to the type t; given also the set Of of the offers characterized with the facet
F , spec is defined by the following formula:

spec(F,C) =
|OF ∩OC |
|OC |

. (A.2)

The set F̂ q of facets specific to a query q is defined as the set of facets matching with q
whose specificity to at least one type matching q is higher than a given threshold l:

F̂q = {F ∈ Fq | ∃C ∈ Cq : spec(F,C) ≥ l}. (A.3)
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Given a query q, the set OqSPEC of offers specific to q is defined as the set of offers that
fac-match some facet F ∈ F̂q.

Now we can introduce the Boosting with Facet Domain Specificity (BFS) score. Let
M be the set of all the matching filters defined above (i.e., syntactic, type and facet
match and Facet Domain Specificity) and Mo

q ⊆M the subset of all matched filters for
the offer o given the query q; the boostq(o) function can be formally defined as follows:

boostq(o) =
|Mo

q |
|M |

. (A.4)

Example 4. Consider the query q=“robot vacuum cleaner”. Suppose that the offer o1 with
lexicalization lex(o1) = “i-robot roomba”, of type VacuumCleaners and characterized by
a faceted assertion typology(o, robot) is matched by syntactic, type, facet and Domain
Specificity. Therefore, since o1 is matched by 4 out of 4 filters, boostq(o1) = 4/4 =

1. On the other hand, suppose that the offer o2 with lex(o) = “kenwood cooking chef

kitchen machine”, instance of the type KitchenTools characterized by the faceted assertion
typology(o, robot), is only matched by facet filter. Thus, boostq(o2) = 1/4 = 0.25.

Global Matching Score and Ranking

The global scoring function can therefore be defined considering the Intersection Boost
with Domain Specificity. Formally, the global score can be defined by a function scoreq:

scoreq(o) = wpop · pop(o) + wsyn · synq(o)+ (A.5)

+ wsem · semq(o) + wboost · boostq(o)

where all wi with i ∈ pop, syn, sem, boost are in the range [0, 1] and sum up to 1.

Top-k Selection and Presentation

The output of the matching algorithm is a ranked set Oq of offers matching a query
q. To effectively present Oq to a user as result of an autocompletion operation we
need to present a subset of the results, namely Oq,k, selected as the top-k ranked offers
according the global score function defined in Equation A.5. It must be noted that due
to UI constrains, the list of results of the autocompletion operation is necessarily small
and should only contain high quality completions [42, 7].
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Figure A.2: The type grouping strategy.

A straightforward way to present the set Oq,k of the top-k results is to display a
flat list of offers ordered by rank (presentation by rank). However, it has been shown
that grouped presentation of autocompletion results helps users to perform search
tasks more quickly [53, 3]. Thus, we defined a simple and effective presentation by type
strategy that presents offers in Oq,k grouped by type. Offers within each group are
ordered by rank and groups are ordered by the score of their top ranked offer. An
example of the application of this grouping strategy is depicted in Figure A.2.

A.5 Implementation and Deployment

COMMA has been implemented using the Java programming language, exploiting
several functions of the Lucene search engine library1. As shown in Figure A.3, the
system accepts the AJAX2 calls from the client Web page and supplies results of the
matching operation on offers in JSON3 format. This deployment allowed for the pro-
visioning of the autocompletion functionality as a remote service instead of requiring
a deployment on the eMarketplace server. In this deployment configuration the size
of the list of offers presented to the user as results of the autocompletion operation
was set to 7, a good trade-off between compactness and coverage of the suggested

1http://lucene.apache.org/
2http://www.w3schools.com/ajax/default.asp
3http://www.json.org/
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Figure A.3: COMMA evaluation deployment scenario.

results [115].

A.6 Evaluation

We conducted several experiments to evaluate COMMA. In order to investigate the
effectiveness of COMMA we evaluate the accuracy of the matching and ranking algo-
rithms by 1) comparing COMMA with a baseline, defined by a syntactic matching ap-
proach based on the well-known TF-IDF weighting scheme [116] (TF-IDF from now
on), 2) analyzing the behavior of COMMA under different parameter settings, and
3) studying the impact of different results presentation strategies. In order to evalu-
ate the efficiency of COMMA, we investigate whether the AS satisfies the strict time
constraints required by the domain, and to which extent it can scale up to handle a
significant amount of data. Finally, we conducted experiments in a real world sce-
nario, deploying COMMA to an Italian eMarketplace and measuring the impact on
the conversion rate, i.e., the ratio of users that complete a purchase over the users that
visit the eMarketplace.

The experiments were run on an Intel Core2 2.54GHz processor laptop, 4GB RAM,
under the Ubuntu Linux Desktop 12.04 32bit operating system. For the real-world
experiments only, COMMA has been deployed to an Ubuntu Linux Server 10.04 LTS
64bit, 2GB RAM, 2GB storage, virtualized machine.

125



A. PRODUCT AUTOCOMPLETE

A.6.1 Effectiveness

In order to evaluate the effectiveness of our approach we evaluate the accuracy of
the results ranked by COMMA with respect to an ideal rank, adopting the Normal-
ized Discounted Cumulative Gain (nDCG) measure [2]. Discounted Cumulative Gain
(DCG) is a well-known measure of effectiveness for ranking algorithms adopted in
Information Retrieval. The rationale of the measurement is that highly relevant docu-
ments (offers, in this case) should appear in the top positions of the list of results and,
more generally, that the list should be ordered according to the ideal relevance of the
documents to a query. The nDCG measure is obtained by normalizing the DCG mea-
sure according to the ideal DCG measure of the result list. Intuitively, a higher nDCG
value corresponds to a better agreement between the results proposed by the system
and an ideal ordering based on human judgments.

Experimental Setup

To the best of our knowledge there is no available benchmark and dataset defined
to evaluate a result-oriented AS, and in particular considering the types of queries
addressed by COMMA. We used a dataset from a portion of the real KG of the Italian
CSE TrovaPrezzi (see Section 1.1), which contains 5594 offers belonging to 92 different
types and characterized with 463 different facets. The ideal ranks for 30 keyword-
based queries (13 targeted, 13 exploratory and 4 hybrid queries) have been defined by
collecting graded relevance judgments (adopting a 3-point Liker Scale from 0=Bad,
to 2=Excellent) from 10 average users and aggregating the individual judgments into
mean graded relevance scores.

All the queries have been manually constructed, considering frequent types of
queries made by Italian eCommerce users. For example, the query “nakon coolpix”
(notice the misspelling) is classified as targeted, the query “nokia wifi” is classified as
exploratory, and the query “lcd samsung” is classified as hybrid because all the keywords
can refer both to the name and the facets of an offer. For each query the user was asked
to fill in a questionnaire assigning a graded relevance judgment (adopting the previ-
ously introduced scale) to a set of distinct 20 offers from the dataset. This set contained
15 offers selected by a pool of experts and was enriched with the top 5 ranked offers
according to TF-IDF4, which did not appear in the list selected by the experts already.

4An archive containing the dataset used for our experiments, including the questionnaire and the
user judgments can be downloaded from http://www.lintar.disco.unimib.it/COMMA2012/
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Figure A.4: nDCG for the 3 different configurations of COMMA compared to the baseline at
different rank thresholds (all query types).

Comparison with a Baseline

In the first experiment we consider as baseline the naive solution that can be pro-
posed to the problem of responding to both exploratory and targeted queries: lexical-
izations, types and facet values are indexed and the offers that have at least one term
in common with the query (considering also misspellings) are selected and ranked
according to a well-known weighting function. Here we use the result obtained us-
ing TF-IDF. The baseline is compared to three different configurations of COMMA:
simple scoring, that is without ranking improvements (i.e., the Intersection Boost and
Facet Domain Specificity), with Intersection Boost and without Facet Domain Specificity
(COMMA-B), and with both Intersection Boost and Facet Domain Specificity (COMMA-
BFS). Figure A.4 shows that all the configurations of COMMA that include at least
one method for ranking improvement perform better than the baseline, at all the con-
sidered rank thresholds, while TF-IDF approach outperforms the basic COMMA al-
gorithm. In the following we discuss more in depth the behavior of COMMA when
different types of queries are considered.

Using both Intersection Boost and Facet Salience in the global ranking function leads
to significant improvements, especially if we consider the results for exploratory queries,
plotted in Figure A.5a. The accuracy in ranking results in the top positions, which is
noticeable for any type of query, is even more remarkable for exploratory queries; this
behavior is particularly beneficial to an AS, which presents a limited number of re-
sults to the user. Rewarding the offers selected by more than one filter (Intersection

query_set_extended.zip
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(a) Only exploratory queries.
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(b) All query types except hybrid queries.
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(c) Only targeted queries.
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(d) Only hybrid queries.

Figure A.5: nDCG for the 3 different configurations of COMMA compared to the baseline at
different rank thresholds.

Boost), and particularly relevant because of the specificity of their faceted assertions to
the query enables COMMA to be sufficiently selective achieve a high performance for
higher rank thresholds.

In general, the COMMA configuration with simple scoring performs as good as
the baseline when considering both targeted and exploratory queries, as plotted in Fig-
ure A.5b, while both Intersection Boost and Facet Domain Specificity improve the effec-
tiveness of COMMA with negligible impact on performance in responding to targeted
queries, as plotted in Figure A.5c. This can be explained by considering that targeted
queries do not contain keywords referred to types and facet values.

The baseline performs better than COMMA only on hybrid queries, as shown in
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Figure A.5d. The limited performance of COMMA on these queries can be explained
by considering that hybrid queries contain keywords that refer to offer lexicalizations
and keywords that refer to types or facet values. The syntactic filter used in COMMA
is quite restrictive because it selects only offers that match every keyword in the query.
The rationale behind this choice is to favor recall on exploratory queries, without sac-
rificing precision on targeted queries. Therefore given a hybrid query such as “galaxy

mobile phone”, the COMMA syntactic filter does not provide any results; results for this
query, i.e., all mobile phones, are returned by COMMA semantic filters (“mobile phone”
does not occur in offers’ lexicalizations but it does in the lexicalization of types). There-
fore, intersection boost does not reward enough offers such as SamsungGalaxyS3 with
respect to other mobile phones.

Parameters Tuning

In the second experiment, the effect of the weights wboost, wpop, wsyn and wsem on the
overall effectiveness of COMMA is evaluated. Figure A.6a presents the nDCG val-
ues obtained at fixed ranks (1, 10 and 20 respectively) for different configurations of
COMMA, each one with a different assignment to wboost (ranging from 0.1 to 1), and
with an uniform distribution of the other weights according to the formula wpop =

wsyn = wsem = 1−wboost
3 . This experiment shows that the best results are obtained

when wboost is assigned values between 0.6 and 0.9. In other words, the higher the
weight of the Intersection Boost factor is, the better COMMA ranks according to hu-
man judgment, with the exception of wboost = 1. Given the optimal Intersection Boost
weight, the best performing configuration of COMMA is the one that emphasizes the
syntactic score, as depicted in the Figure A.6b. Although several criteria have to be
introduced to refine the overall ranking scores (especially for offers selected by se-
mantic filters, which extend the functionality of the AS) the syntactic score represents
the second most important ranking factor after Intersection Boost.

Effectiveness of Result Presentation

In the last experiment we investigate the effectiveness of the two results presentation
approaches introduced in Section A.4: presentation by rank and presentation by type. The
experiment shows that a grouped presentation of the outcomes of the autocompletion
process does not decrease the effectiveness of COMMA, as depicted in Figure A.7.
Usability tests would be necessary to understand if the presentation by type is actually
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Figure A.6: Normalized DCG for different configurations of COMMA with different weights
at fixed rank values.
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Figure A.7: nDCG at different rank thresholds for COMMA using two different ranking func-
tions.

preferred by users in real world settings.

A.6.2 Efficiency

We remind that the autocompletion operation must take place in a relatively short
time span (100 ms) in order to be perceived as instant by the user. We assess the effi-
ciency of COMMA with respect to time elapsed for the computation of an autocom-
pletion operation. For these experiments we use a dataset of 30725 offers, belonging
to 206 different types, characterized with 936 different facets. In order to analyze the
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Figure A.8: Average execution times with set of offers of different size.

scalability of the COMMA approach, the execution times for completing a query are
evaluated with sets of offers of different size. Test queries for this experiment are taken
from a set of 200 queries of variable length chosen among the most common queries
actually submitted by users of the Italian CSE TrovaPrezzi. All the results of the sin-
gle query computation are merged to a mean elapsed time measure. Results of this
test are shown in Figure A.8: COMMA is compared to the approach based on TF-IDF,
and to other configurations of COMMA that does not include any approximate string
matching algorithm (referred to as “not robust” in Figure A.8).

The results of this experiment show that COMMA is able to respect the strict re-
quirements of an AS, completing the autocompletion operation in less than 25 ms and
leaving a reasonable time for network overhead. A second kind of analysis is related
to the impact of the semantic filters and ranking scores adopted by COMMA on the
overall execution times, which can be estimated by considering the difference between
COMMA and TF-IDF. Within the experimented field, this difference remains quite
limited and it does not grow significantly with the growth of the size of the dataset.
Finally, the computational costs of the approximate string matching algorithms dom-
inate the overall costs of computation. This problem is due to a sub-optimal imple-
mentation of the approximate string matching algorithm in the Lucene framework
used in the experiments; however, an improved implementation has announced to be
included in Lucene, the overall performance of COMMA is expected to significantly
improve.
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Figure A.9: Ratio between users AS result selection and eMarketplace search engine usage.

A.6.3 Real World Experimentation

The experiments in real world scenario were run to evaluate COMMA from a busi-
ness perspective. Two different experiments were run considering two different con-
figurations of COMMA deployed to an Italian eMarketplace dealing with consumer
electronics and photography related goods. The results reported in this section are not
as extensive as the ones previously described due to confidentiality agreements with
the eMarketplace company.

The goal of the first experiment was to evaluate the impact of the addition of the
autocompletion function to the eMarketplace Web site, with particular reference to
the effects on usability of the Web site search feature. The autocompletion function
is a form of site adaptation and we were concerned that it could reduce the overall
site usability. We used Google Analytics5 to gather data about the usage of the auto-
completion function, adopting a purely syntactic configuration of COMMA (we ran
the test in the early phases of the work): results showed that during the test period
(50 days) users increasingly employed the autocompletion function (considering the
frequency of activation of the autocompletion function on the overall number of page
views). Users also increasingly selected offers returned by the AS instead of submit-
ting queries to the eMarketplace, as depicted in Figure A.9. During this experiment
we found also that the 41.21% of the top 200 unanswered autocompletion queries were
exploratory queries.

The percentage of exploratory unanswered queries from the last experiment con-

5http://www.google.com/analytics/
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firms the importance of handling these queries for AS in the eCommerce domain. This
intuition is further confirmed by the second experiment. In a later phase, we evaluated
the impact of the full autocompletion function on the (previously introduced) conver-
sion rate by means of an A/B test [58]6 during a shorter time period (5 days, for a total
of 7,339 visitors): the introduction of this function led to an increase of 6.67% of the
conversion rate.

A.7 Comparison with Prior Art

The problem of developing an effective and efficient AS has been analyzed in the lit-
erature from many different perspectives; nonetheless, AS applications in the eCom-
merce area are rarely described in the scientific literature and they are often protected
by patents (see e.g. [96]). After an analysis of the features of the available commer-
cial AS, we found that the only system that explicitly uses types and facets to support
query-driven autocompletion is Bing Shopping: when a query matches one or more
type the system helps the user to refine the query by adding (i) types (e.g., Mp3Players),
and (ii) constraints over facet values. Also our result-driven approach matches key-
words with relevant types and facet values. However, our approach is fully automatic
and uses these matches to suggest meaningful results instead of suggesting query re-
finements.

In general, autocompletion techniques have been developed both for finding infor-
mation and for helping the user to express search queries. In the field of Data Manage-
ment the autocompletion problem has been interpreted as the problem of matching a
query fragment with searchable data represented by strings, and different techniques
of both exact and approximate string matching [90], such as prefix matching [12] q-
grams [25] and trie based matching [52] have been proposed. Our approach can poten-
tially leverage any of these techniques. However, the experimental results presented
in Section A.6 show that an approach to autocompletion that employs only syntactic
matching is not able to deal with exploratory and hybrid queries in a satisfactory way.

Autocompletion techniques have also been studied in the field of Semantic Search
(see [79]). Hyvönen et al. formalize the autocompletion problem as the problem of
matching a query to KG types [48]. From this perspective, the AS proposed in this
dissertation can be classified as a form of Semantic Autocompletion Search. Autocom-

6The A/B test was carried out using Visual Website Optimizer A/B testing tool. More information
can be found at http://visualwebsiteoptimizer.com/
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pletion in this area have been introduced to suggest types from is-a (or part-of) hier-
archies [125], and to retrieve data characterized using different types [80]. Semantic
autocompletion techniques are significantly related to the approach proposed in this
dissertation, since COMMA exploits two different orthogonal representations of data
to handle several query types. However, the above mentioned approaches to semantic
autocompletion do not deal with the problem of ranking the proposed results (a full
list of matches is returned).

The use of semantics in search-related tasks tasks has been studied by different
research communities [139], as testified by recent workshops hosted by different in-
ternational conferences [54, 8, 140]. In this field large body of work has been devoted
to the so called Entity Search (ES) task, that is the search for instances of a KG. ES
is also known in traditional Information Retrieval community as Ad-Hoc Object Re-
trieval [109]. The goal of ES techniques is to retrieve and rank instances from large
KGs such that they are more relevant to a keyword-based query submitted by users.
The best performing approaches [18, 103] use an adaptation of the BM25F ranking
model [114] that considers different sections of documents representing an entity, each
one characterized by specific relational assertions and assigns different weights de-
pending on the assertion where the terms matching the query appear, (e.g., assertion
of the foaf:name or rdfs:label relations). A more recent approach models the instances
using an improved generative language modeling framework [106] in order to pre-
serve the semantics associated with instances without sacrificing retrieval effective-
ness [94]. Despite being close to our approach, ES techniques do not consider time
efficiency issues, such as those that must be considered when implementing an AS
and do not leverage the co-occurrence of different instance representations (which can
be mapped to facets and types in our domain) to rank results. Moreover, BM25F con-
siders different sections of documents representing an instance, each one defined by
values of specific relations. However, we consider all the faceted assertions (relational
assertions in a ES context) and we do not assign different weights to specific relations.

The task of helping user in formulating queries to search engines has been also
studied in the Interactive Query Expansion (IQE) research area. In this context auto-
completion is interpreted as the problem of retrieving the terms that, when added to
the already expressed query, improve the precision and recall of the results. The sug-
gested terms can be retrieved considering their conditional probability of belonging
to the same topic that the previously specified terms belong to [36]. Other ways to
determine a set of terms to suggest is to consider reciprocal semantic relations such
as synonymy, hyponymy or hypernymy [40] or to consider user behaviour in submitting
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multiple queries [23]. A more recent approach, acknowledging the limits of purely
syntactic approaches, uses query logs to evaluate the similarity between query con-
texts [11]. A query context consists of all the query terms previously stated by the user
plus the initial letters of the term that the user is currently typing. All of these ap-
proaches are intrinsically different from the COMMA approach, since they all suggest
queries (not results). Moreover COMMA deals with structured data instead of textual
documents.

A.8 Summary

This appendix introduced COMMA, an approach for exploiting type and domain
specific facets for result-oriented autocompletion. The presence of the domain spe-
cific representation is crucial in order to support the elaboration of exploratory queries,
without decreasing the precision in the management of precise queries. The approach
is formally described and evaluated according both to its effectiveness and efficiency,
both in experimental and real world scenarios. The results show that COMMA outper-
forms purely syntactic approaches to autocompletion in presence of exploratory queries
without causing a significant increase in computational costs. COMMA is example of
how crucial a rich and domain specific representation of KG instances is, when pro-
viding advanced data access features to data of a dataspace.
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