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1 INTRODUCTION 

 

The selection of the primary “outcome measure” or “endpoint” is a crucial step in the design of a 

clinical trial, whose aim is to demonstrate the presence of the treatment effect on such endpoint. 

Two major criteria for endpoint selection should be followed: sensitivity to treatment effects and 

clinical relevance (Fleming 1996). 

It is often evident, however, that it might be difficult in a clinical trial to use the “true” endpoint, 

or rather the most sensitive and relevant clinical endpoint. This might be due to several reasons, 

including the high costs of the true endpoint evaluation, the difficulty of measurement, a long 

follow-up time requirement, or a large sample size due to a low incidence of the event 

(Burzykowski  T., Molenberghs G., Buyse M. 2005). In such cases, the use of a true endpoint 

increases the complexity and/or the duration of research. To overcome these problems, a 

seemingly attractive solution is to replace the true endpoint with another one, which is measured 

earlier, more conveniently or more frequently. Such “replacement” endpoint is termed “surrogate” 

and has the purpose of evaluating the effect of a specific treatment for a specific disease. 

An endpoint should be characterized by precise properties to be defined as a potential surrogate. 

The first property is that the surrogate endpoint must be on the causal pathway of the disease 

process and not otherwise. The second property is that the surrogate endpoint must be associated 

to the true endpoint. Nevertheless, these properties are not sufficient to make it a surrogate 

endpoint, and it is clear from this definition that surrogacy is disease as well as treatment dependent 

(Buyse M. 2009). Once a candidate surrogate is identified, several formal methods are available 

for the validation of the surrogate endpoint, depending on the number of trials performed. 

The first formal statistical approach dates back to 1989, when Prentice proposed a definition of 

surrogate endpoint and four criteria to validate it. The most important criterion among these is 

called “The Prentice’s Criterion”, which implies that “the full effect of treatment upon the true 

endpoint is captured by the surrogate” (Prentice 1989). Subsequently, the Prentice’s approach was 

strengthened by Freedman, who introduced the proportion of treatment explained (PE), aimed at 

measuring the proportion of the treatment effect mediated by the surrogate (Freedman 1992). This 

proposal was important since it shifted the interest in the validation of surrogate endpoints from 

significance testing to estimation, but it is in itself surrounded with difficulties (Burzykowski T., 

Molenberghs G., Buyse M. 2005). Buyse and Molenberghs showed that PE can be decomposed in 

two different quantities: the Relative Effect (RE) and the adjusted association (ρZ). The first 

measure relates to the capability of the surrogate to predict the treatment effect on the clinical 

endpoint at a population level; the second measure describes its capability to predict the outcome 



5 
Ausiliatrice Lucenti | Corso di Dottorato in Epidemiologia e Biostatistica XXVIII ciclo 

of the clinical endpoint by describing the subject-specific association between the surrogate and 

true endpoint. 

Since earlier methods relied on data coming from a single trial, they lacked treatment effect 

replication; to solve this problem, a meta-analytic approach to the validation of a surrogate 

endpoint was proposed by a group of Dutch statistician: Buyse M., Burzykowski T. and 

Molenberghs G.. It consists in estimating associations at two different levels: the association 

between the surrogate and the clinical endpoint, called the “individual-level association”, and the 

association between the effects of treatment on the surrogate and the clinical endpoint, called “trial-

level association” (Burzykowski et al. 2005). A clinical endpoint can be reliably estimated from 

the biomarker in an individual patient if a strong individual-level association is present, whereas a 

strong trial-level association implies that the effect of treatment on the clinical endpoint can be 

reliably estimated from the effect of treatment on the biomarker. A good surrogate is one that has 

biologic plausibility and is showed, statistically, to have strong individual-level and trial-level 

associations with the final endpoint. This meta-analytic approach was first developed to deal with 

continuous endpoints, but it has now many extensions to cover situations where the candidate 

surrogate and the clinical endpoint are not continuous or they are of a different nature, for instance, 

when both are binary, when one of them is a time to event outcome and the other is categorical or 

when both endpoints are repeatedly measured over time, and so on.  

 

The aim of my PhD thesis is the evaluation of Minimal Residual Disease (MRD) as surrogate 

endpoint in acute lymphoblastic leukaemia (ALL). In fact MRD has not yet been formally 

validated as a surrogate endpoint, whilst it is a well-established prognostic biomarker in ALL. The 

challenge has now evolved to the qualification of early MRD as an efficacy-response biomarker 

in the assessment of new drugs for the treatment of paediatric ALL. In addition, as methods on the 

validation of a continuous surrogate for a failure time endpoint are lacking, a proposal was made 

here. In line with the meta-analytic framework, a copula based approach was implemented and 

translated in a SAS macro dealing with two different copulas. 

Specifically, the main goal of the present study is to assess whether MRD evaluated at the end of 

the induction treatment can be considered a surrogate for Event Free Survival (EFS) in childhood 

B-lineage ALL patients who were treated (after randomization) with Dexamethasone or 

Prednisone. A secondary aim is to explore if Event Free Survival can be considered a surrogate 

for Overall Survival (OS). For this purpose a very large database with data from three randomized 

clinical trial performed in different European countries and in the USA have been used. 
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This thesis is organized as follows: a brief overview of the statistical methods used in the clinical 

application is presented in chapter 2, together with the proposal developed specifically for the 

validation of a continuous surrogate for a failure time endpoint. The motivating clinical context is 

illustrated in chapter 3, where details on MRD and on the ALL childhood protocols are reported. 

The results of the analyses are descripted in chapter 4, which contains a section dedicated to the 

validation of MRD as surrogate of EFS, and a second section devoted to the validation of EFS as 

surrogate for OS. Some final remarks are given in chapter 5.  
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2 METHODS 

 

A significant feature regarding a potential surrogate endpoint is that it must present some peculiar 

properties. First of all, the surrogate endpoint must be on the causal pathway of the disease process 

(Figure 2.1), and not otherwise, as shown in the four cases of Figure 2.2a-d. A surrogate endpoint 

might not be involved in the same pathophysiologic process that results in the clinical outcome 

(Figure 2.2a), and even when it does, it is likely that some disease pathways are causally related 

to the clinical outcome and not to the surrogate endpoint (Figure 2.2b-d). Of the disease pathways 

affecting the true clinical outcome, the intervention may only affect the pathway mediated through 

the surrogate endpoint (Figure 2.2b), or the pathway or pathways independent of the surrogate 

endpoint (Figure 2.2c). Most important, the intervention might also affect the true clinical outcome 

by unintended mechanisms of action that are independent of the disease process (Figure 2.2d) 

(Fleming and DeMets 1996). The surrogate endpoint must be associated to the true endpoint, and 

this is the second property which it presents. However, the existence of such properties is thought 

not to be sufficient for using the former as a surrogate. Also, we shall call surrogate a biomarker 

or endpoint that is able to replace a clinical endpoint for the purpose of evaluating the effect of a 

specific treatment for a specific disease. Note that this definition comprises both the disease 

dependency as well as the treatment dependency characterizing surrogacy (Buyse M. 2009). Once 

a candidate surrogate is identified, several formal methods for the validation of surrogate endpoints 

are available depending on the number of trials performed.  

 

 

Figure 2.1: The setting that provides the greatest potential for the surrogate endpoint to be valid 

(Fleming and DeMets 1996) 
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Figure 2.2a-d: Cases in which the surrogate isn’t on the causal pathway of the disease process 

(Fleming and DeMets 1996) 

 

The following notation will be adopted throughout this report: T and S are random variables 

denoting the true and surrogate endpoints, respectively, and Z is an indicator variable for treatment. 

This notation will be expanded by using two indices: i=1,..,N for trials/units and j=1,…,ni for 

subjects within trials/units. The trial-specific effects of treatment Z on the two endpoints in trial i 

will be αi and βi. 

 

 

2.1 SINGLE-TRIAL VALIDATION FRAMEWORK 

 

It was in 1989 that Prentice published a paper in which the validation process for continuous 

endpoints was put within a statistical framework. Four operational criteria to check were proposed 

in his work that used data from a single trial. These criteria require: 

(1) a significant impact of treatment on the surrogate endpoint (α);  

(2) a significant impact of treatment on the true endpoint (β); 

(3) a significant impact of the surrogate endpoint on the true endpoint (γ); 

(4) the full effect of treatment upon the true endpoint is captured by the surrogate (βS). 

The latter criterion is also known as “The Prentice’s Criterion”. 
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Tests of significance on parameters α, β, γ can be used to verify the first three operational criteria 

in the following models:  

 Sj = µS + αZj + εSj ⇔ 𝑓(𝑆|𝑍) ≠ 𝑓(𝑆) (1) 

 Tj = µT + βZj + εTj ⇔ 𝑓(𝑇|𝑍) ≠  𝑓(𝑇) (2) 

 Tj = µ + γSj + εj ⇔ 𝑓(𝑇|𝑆) ≠  𝑓(𝑇) (3) 

 Tj = µ̃T + βSZj + γZSj + ε̃Tj  ⇔ 𝑓(𝑇|𝑆, 𝑍) =  𝑓(𝑇|𝑆) (4) 

where βS =  β − σTSσSS
−1α , γZ = σTSσSS

−1 and 𝜎𝑆𝑇, 𝜎𝑆𝑆, 𝜎𝑇𝑇 are the elements of the variance-

covariance matrix of the error terms of (1) and (2) (See Figure 2.3). 

 

Figure 2.3: The associations between treatment (Z), a surrogate endpoint (S), and a true endpoint (T) 

are caracterized by the three parameters α, β and γ. Parameter βS characterizes the effect of Z on T 

after adjustment for S, while γZ characterizes the effect of S on T after adjustment for Z (Buyse and 

Molenberghs, 1998). 

 

These operational criteria are are informative and will tend to be fulfilled for valid surrogate 

endpoints, but they should not be regarded as strict criteria. They are necessary and sufficient to 

establish the validity of binary surrogate endpoint, but not for more complex surrogate endpoint 

(Burzykowski et al. 2005). Also, the criterion (4) might be useful to reject a poor surrogate 

endpoint, but it is inadequate to validate a good surrogate endpoint, for failing to reject the null 

hypothesis due merely to insufficient power (Freedman, L.S., Graubard, B.I., and Schatzkin, A., 

1992). 

Given that it cannot be proven that the effect of treatment upon the true endpoint is fully captured 

by the surrogate (4), a more direct approach for the estimation of the proportion of the exposure 

effect, that is explained by the surrogate endpoint, was designed by Freedman, Graubard, and 

Schatzkin (1992). A surrogate which explains a large proportion of that effect is to be considered 

a valid one, and for this reason it follows that the natural estimate of the “Proportion Explained” 

is 
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𝑃𝐸(𝑇, 𝑆, 𝑍) = 1 −

𝛽𝑆
𝛽

 
(5) 

where β and 𝛽𝑆 are the estimates of the effect of Z on T, respectively, without and with adjustment 

for S. 

Freedman’s PE shares with the Prentice’s Criteria the following criticism: if there is an interaction 

term between Z and S in (4), PE ceases to have a single interpretation and the validation process 

would have to stop (Freedman, Graubard, and Schatzkin (1992). Furthermore, if the number of 

observation is not large and the effect treatment upon the true endpoint is small, confidence limits 

tend to be wide and there will be substantial uncertainty about the proportion of the effect that is 

mediated by surrogate (Burzykowski et al. 2005). Even when large numbers of observations are 

available, however, the denominator of the proportion explained will be estimated with little 

precision, and the need for a surrogate endpoint would no longer exist. Therefore, the proportion 

explained will generally be too poorly estimated to be of much practical value. This conclusion 

has been supported by the results obtained by Freedman (2001) who reported that, to achieve 80% 

power for a test of the hypothesis that the surrogate explains more than 50% of treatment effect, 

the ratio 𝛽/𝑆𝐸(�̂�) should equal 5 or more. As noted by Freedman (2001), this requirement makes 

the use of PE practically infeasible. Moreover, the estimated proportion would be equal to 1 in the 

case of a perfect surrogate, but PE cannot be considered a true proportion ranging from 0 to 1 

because it might assume values larger than 1 (Burzykowski et al. 2005). 

 

Buyse and Molenberghs (1998) suggested to calculate two other quantities for the validation of a 

surrogate endpoint. The first quantity is the relative effect 

 𝑅𝐸(𝑇, 𝑆, 𝑍) =
𝛽

𝛼
 (6) 

Intuitively, RE can be interpreted as the slope of a regression line between β and α. If the 

multiplicative relation (6) could be assumed, and if RE were known exactly, it could be used to 

predict the effect of Z on T based on an observed effect of Z on S. In practice, RE will have to be 

estimated, and the precision of the estimation will be relevant for the precision of the prediction. 

RE associates the effects of Z on T and on S averaged over all subjects and it will be equal to 1 if 

the effects of Z on T and on S are of identical magnitude. It will tend to be less than 1 if the true 

endpoint is more difficult to be affected than the surrogate endpoint. The second measure 

quantifies the association between S and T after adjustment for the treatment Z: 

 𝜌𝑍 =
𝜎𝑆𝑇

√𝜎𝑆𝑆𝜎𝑇𝑇
 (7) 
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where 𝜎𝑆𝑇, 𝜎𝑆𝑆 and 𝜎𝑇𝑇 are elements of variance-covariance matrix of the error terms of (1) and 

(2). 

If ρZ is large (i.e. ρZ =1 for normal endpoint) it means that the surrogate and the true endpoints are 

very similar and there is a deterministic relationship between S and Z. The pair of measures ρZ and 

RE usefully complements the PE. Indeed, ρZ describes the subject-specific association between 

the surrogate and true endpoints, while RE links them at the population-averaged level. A perfect 

surrogate is one which has a large ρZ (the surrogate is perfect at the individual level) and RE =1 

(the surrogate is perfect at the population level). 

Buyse and Molenberghs (1998) noted that the use of RE and ρZ to validate surrogate endpoints is 

also complicated by a few problems. The two major limitations of RE are that its confidence limits 

may be too wide to permit clinically useful predictions and that its value may depend on the value 

of α. In other words, since RE is the slope of a regression line between α and β, the linearity of this 

regression may be questioned. RE might change with, the strength of the association between Z 

and the outcomes themselves. Also, estimate of RE is based on the strong assumption that the 

relationship between the treatment effects on the surrogate and true endpoints is multiplicative, an 

assumption that may be too strong to hold and unverifiable. This difficulty is more fundamental 

than the limited precision of  RE that will typically be obtained in trials of small or moderate size 

(Buyse and Molenberghs 1998). 

The methods presented in this section are summarized in Table 2.1. 

 

Table 2.1: The quantities of interest for the validation of surrogate endpoint in a single trial (Buyse 

and Molenberghs, 1998). 
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2.2 META-ANALYTIC VALIDATION FRAMEWORK 

 

The idea of validating surrogate endpoints through a meta-analytic approach has been first 

theoretically conceived and developed by Buyse et al. (2000a) by considering the case of two 

normally distributed endpoints in a multiple-trial setting, even if the general strategy was 

advocated by other authors earlier (Boissel et al. 1992, Freedman et al. 1992, Lin et al. 1997, 

Bycott et al. 1998). 

This approach is essentially based on the estimation of associations at two levels: the association 

between the surrogate and the clinical endpoint, called the “individual-level association”, and the 

association between the effects of treatment on the surrogate and the clinical endpoint, called “trial-

level association”. When a strong individual-level association is present, then the clinical endpoint 

can be reliably estimated from the biomarker in individual patient, whereas when a strong trial-

level association exists, this implies that the effect of treatment on the clinical endpoint can be 

reliably estimated from the effect of treatment on the biomarker. A surrogate that has biologic 

plausibility and is showed, statistically, to have strong individual-level and trial-level associations 

with the final endpoint is to be regarded as a good one. 

The specific methods used to validate a surrogate for a clinical endpoint will clearly depend on the 

nature of the variables involved in the problem at hand. Unlike for continuous outcomes, where 

the multivariate normal distribution and the linear mixed model provide a natural paradigm for 

model development, as shown in the first part of this section for contrast, other situations are 

addressed by bivariate models. In this perspective, the key aspect in the methods proposed by 

Burzykowski et al (2005), is the use of the copula, a general class of multivariate models that can 

be implemented starting by particular marginal models assumed for the surrogate and the true 

endpoint. 

In the application on childhood acute lymphoblastic leukemia, the implemented methods are based 

on: a time to event endpoint and an ordinal or a continuous surrogate and two time to event 

endpoints. The sections that follow are devoted to a brief description of the methods available from 

the literature, while the proposal made on the evaluation of a continuous surrogate for a time to 

event endpoint will be more extensively illustrated. 

All the analyses were done in SAS (version 9.2) and some of them were based on macros provided 

by Buyse et all. (Burzykowski  T., Molenberghs G., Buyse M. 2005) and available on 

http://ibiostat.be/software/surrogate, while others were specifically implemented as part of this 

PhD project and reported in Appendix. 

 

http://ibiostat.be/software/surrogate
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2.2.1 Two continuous endpoints 

 

To evaluate two continuous endpoints that are assumed to be jointly normally distributed, a two 

level hierarchical model with trial level effects, either random or fixed, is postulated.  

In the two-stage fixed-effects representation, models at both levels are fitted separately. The first 

stage is based on trial-specific models:  

 Sij = µSi + αiZij + εSij (8) 

 Tij = µTi + βiZij + εTij (9) 

while at the second stage it is assumed that (µ𝑆𝑖, µ𝑇𝑖, 𝛼𝑖 , 𝛽𝑖)′ follows a normal distribution with 

mean (µ𝑆, µ𝑇 , 𝛼, 𝛽)′ and with an unstructured covariance matrix that is: 

 𝐷 =

(

 

𝑑𝑆𝑆 𝑑𝑆𝑇 𝑑𝑆𝑎 𝑑𝑆𝑏
𝑑𝑇𝑇 𝑑𝑇𝑎 𝑑𝑇𝑏

𝑑𝑎𝑎 𝑑𝑎𝑏
𝑑𝑏𝑏)

 . (10) 

The coefficient of determination 𝑅𝑖𝑛𝑑𝑖𝑣
2  (11) that regards the distribution of Tij conditional on Sij, 

defines the association between the surrogate and the final endpoints, after adjustment for the effect 

of treatment. This coefficient is a measure of the precision with which we may predict the value 

of Tij for an individual patient on the basis of the observed value of Sij and the treatment 

assignment. 

 𝑅𝑖𝑛𝑑𝑖𝑣
2 =

𝜎𝑆𝑇
2

𝜎𝑆𝑆𝜎𝑇𝑇
 (11) 

The coefficient of determination, 𝑅𝑡𝑟𝑖𝑎𝑙
2  (12), is a natural quantity  used to assess the quality of a 

surrogate at the trial level that pertains to the distribution of βi conditional on µSi and αi. 

 
𝑅𝑡𝑟𝑖𝑎𝑙
2 =

(
𝑑𝑆𝑏
𝑑𝑎𝑏
)
𝑇

(
𝑑𝑆𝑆 𝑑𝑆𝑎
𝑑𝑆𝑎 𝑑𝑎𝑎

)
−1

(
𝑑𝑆𝑏
𝑑𝑎𝑏
)

𝑑𝑏𝑏
 

(12) 

This coefficient measures how precisely we may predict the effect of treatment on the true endpoint 

on the basis of previous data and the observed treatment effect on the surrogate endpoint from a 

new trial. If 𝑅𝑡𝑟𝑖𝑎𝑙
2 = 1, then the treatment effect on the clinical endpoint can be predicted without 

error using the treatment effect on the surrogate, whereas 𝑅𝑡𝑟𝑖𝑎𝑙
2 = 0 implies that both treatment 

effects are independent and no meaningful prediction is possible (Burzykowski  T., Molenberghs 

G., Buyse M. 2005).  
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2.2.2 An ordinal (or binary) surrogate and a time to event endpoint 

 

To provide validation measures when the true endpoint is a failure-time random variable and the 

surrogate is a categorical variable with K ordered categories, Burzykowski et all. (2004) used at 

the first stage a bivariate copula model for the true endpoint and a latent variable underlying the 

surrogate endpoint (�̃�) 

 𝐹𝑇𝑖𝑗,�̃�𝑖𝑗(𝑡, 𝑠; 𝑧) = 𝐶𝜃 [𝐹𝑇𝑖𝑗(𝑡; 𝑧), 𝐹�̃�𝑖𝑗(𝑠; 𝑧), 𝜃] (13) 

where 𝐹�̃�𝑖𝑗(𝑠; 𝑧) and 𝐹𝑇𝑖𝑗(𝑡; 𝑧) are the marginal cumulative distribution function of �̃�𝑖𝑗 and Tij 

given Zij = z, respectively, and Cθ is a one parameter (θ) copula function (See Appendix A for 

details), i.e. a bivariate distribution function on [0,1]2 with uniform margins, describing the 

association between T and �̃�. 

Specifically, the proportional odds model with K ordered categories is used to model S:  

 𝑙𝑜𝑔𝑖𝑡{𝑃(𝑆𝑖𝑗 ≤ 𝑘|𝑍𝑖𝑗)} = 𝜂𝑖𝑘 + 𝛼𝑖𝑍𝑖𝑗 (14) 

and a proportional hazard model is used to model T: 

 𝜆(𝑡|𝑍𝑖𝑗) = 𝜆𝑖(𝑡)𝑒𝑥𝑝(𝛽𝑖𝑍𝑖𝑗) (15) 

where λi (t) is the trial specific baseline hazard function. 

At the first stage estimates of the parameter θ and of the trial specific treatment effects  𝛼𝑖 and 𝛽𝑖 

are obtained by maximising the likelihood of (13). Noticeably, the estimation of the parameter in 

the proportional odds model (14) requires that in each trial unit all the K response levels are 

observed. In the case this assumption is not fulfilled, the trial units need to be modified or, in 

alternative, the model in (14) needs to be reparametrized as in (16): 

 𝑙𝑜𝑔𝑖𝑡{𝑃(𝑆𝑖𝑗 ≤ 𝑘|𝑍𝑖𝑗)} = 𝜂𝑘
0 + 𝜂𝑖 + 𝛼𝑖𝑍𝑖𝑗 (16) 

where the model assumes a fixed set of cutpoints 𝜂𝑘
0, … , 𝜂𝑖 , but allows for trial-specific shifts 𝜂𝑖 of 

the set. 

At the second stage, it is assumed to use the trial level model: 

 (

𝜂𝑖
𝛼 𝑖
𝛽𝑖
) = (

𝜂
𝛼
𝛽
) + (

𝑒𝑖
𝑎 𝑖
𝑏𝑖
) (17) 

where (𝜂𝑖 , 𝛼𝑖, 𝛽𝑖)′ follows a normal distribution with mean (𝜂, 𝛼, 𝛽)′ and with an unstructured 

covariance matrix.  

We can appraise the quality of the surrogate at the individual trial level, which is a measure of the 

association between �̃�𝑖𝑗 and Tij, on the basis of the copula parameter θ. When the bivariate Plackett 

copula is used (1965), θ takes the form of a (constant) global odds ratio:  
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(18) 

Thus, it can be interpreted as the (constant) ratio of the odds for surviving beyond time t given 

categories higher than k to the odds of surviving beyond time t given categories at most k. For a 

binary surrogate (k=2), it is just the odds ratio for a category versus the other, as the model in (14) 

reduces to a regression logistic model.  

On the basis of the coefficient of determination 𝑅𝑡𝑟𝑖𝑎𝑙
2 , that pertains to the distribution of 𝛽𝑖 

conditional on the set of trial specific parameters including 𝛼𝑖 and 𝜂𝑖, we can assess the quality of 

the surrogate at the trial level. 

 

 

2.2.3 Two failure-time endpoints 

 

Taking into consideration the case in which both the surrogate and the true endpoints are failure-

time variables, Burzykowski et al. (2001) proposed a copula model that assumed the following 

joint survival function of (Sij, Tij): 

 𝐹(𝑠, 𝑡) = 𝑃(𝑆𝑖𝑗 ≥ 𝑠, 𝑇𝑖𝑗 ≥ 𝑡) = 𝐶𝜃{𝐹𝑆𝑖𝑗(𝑠), 𝐹𝑇𝑖𝑗(𝑡)}    𝑠, 𝑡 ≥ 0 (19) 

where FSij and FTij denote the marginal survival functions and Cθ is a copula (Clayton 1978, 

Hougaard 1986, Plackett 1965). To model the effect of treatment on the marginal distributions of  

Sij and Tij, two proportional hazards models are introduced: 

 𝐹𝑆𝑖𝑗(𝑠) = 𝑒𝑥𝑝 {−∫ 𝜆𝑆𝑖(𝑥)𝑒𝑥𝑝(𝛼𝑖𝑍𝑖𝑗)𝑑𝑥
𝑠

0

} (20) 

 𝐹𝑇𝑖𝑗(𝑡) = 𝑒𝑥𝑝 {−∫ 𝜆𝑇𝑖(𝑥)𝑒𝑥𝑝(𝛽𝑖𝑍𝑖𝑗)𝑑𝑥
𝑡

0

} (21) 

where 𝜆𝑆𝑖 and 𝜆𝑇𝑖 are trial-specific marginal baseline hazard functions and 𝛼𝑖 and 𝛽𝑖 are trial-

specific effects of treatment Z on the endpoints. 

An remarkable feature of model (19) is that the margins do not depend on the choice of the copula 

function. Theorically, in model (19) any copula function can be used. For sake of simplicity, 

Burzykowski et al. (2001) considered primarily one-parameter families. In practical applications, 

they resorted to the Clayton (1978), the Hougaard (Gumbel, 1960) and the Plackett (1965) copula 

functions. 
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At the second stage it is assumed that: 

 (
𝛼𝑖
𝛽𝑖
) = (

𝛼
𝛽) + (

𝑎𝑖
𝑏𝑖
) (22) 

where (𝛼𝑖, 𝛽𝑖)′ follows a normal distribution with mean (𝛼, 𝛽)′ and with an unstructured 

covariance matrix.  

The individual level association for two failure time endpoints is generally assessed by the 

Kendall’s τ, an index that depends only on the copula function Cθ and it is independent of the 

marginal distributions of Sij and Tij (Burzykowski et al. 2005): 

 𝜏 = 4∫ ∫ 𝐶𝜃(𝑢, 𝑣)𝐶𝜃(𝑑𝑢, 𝑑𝑣) − 1
1

0

1

0

 (23) 

The Kendall’s τ represents the strength of association between the two endpoints remaining after 

adjustment, through the marginal models, for trial- and treatment effects. 

The quality of the surrogate at the trial level is assessed on the basis of the coefficient of 

determination 𝑅𝑡𝑟𝑖𝑎𝑙
2 , obtained from the model at the second stage. 

 

 

2.2.4 A continuous surrogate endpoint versus a true failure-time endpoint  

 

Specific methods dealing with the validation of a continuous surrogate for a true failure-time 

endpoint are not available in the methodological literature. We propose here an approach that is 

mediated from the previous ones and is, thus, based on the copula models. 

Similarly to the case of an ordinal surrogate, at the first stage we have a bivariate copula model: 

 𝐹𝑇𝑖𝑗,𝑆𝑖𝑗(𝑡, 𝑠; 𝑧) = 𝐶𝜃 [𝐹𝑇𝑖𝑗(𝑡; 𝑧), 𝐹𝑆𝑖𝑗(𝑠; 𝑧), 𝜃] (24) 

where 𝐹𝑆𝑖𝑗(𝑠; 𝑧) and 𝐹𝑇𝑖𝑗(𝑡; 𝑧) are the marginal cumulative distribution function of 𝑆𝑖𝑗 or Tij, given 

Zij = z, respectively.  

A linear model for the continuous surrogate S is assumed: 

 Sij = µSi + αiZij + εSij (25) 

and a proportional hazard model for the true time to event endpoint T: 

 𝜆(𝑡|𝑍𝑖𝑗) = 𝜆𝑖(𝑡)𝑒𝑥𝑝(𝛽𝑖𝑍𝑖𝑗). (26) 

At the second stage it is assumed that: 

 (

µ𝑖
𝛼 𝑖
𝛽𝑖
) = (

µ
𝛼
𝛽
) + (

𝑒𝑖
𝑎 𝑖
𝑏𝑖
) (27) 
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where the vector (𝜇𝑖, 𝛼𝑖 , 𝛽𝑖)′ follows a multivariate normal distribution with mean (µ, 𝛼, 𝛽)′ and 

with an unstructured covariance matrix:  

 𝐷 = (

𝑑𝑆𝑆 𝑑𝑆𝑎 𝑑𝑆𝑏
𝑑𝑎𝑎 𝑑𝑎𝑏

𝑑𝑏𝑏

). (28) 

The quality of the surrogate at the trial level can be assesses on the basis of the coefficient of 

determination 𝑅𝑡𝑟𝑖𝑎𝑙
2 .  

 
𝑅𝑡𝑟𝑖𝑎𝑙
2 =

(
𝑑𝑆𝑏
𝑑𝑎𝑏
)
𝑇

(
𝑑𝑆𝑆 𝑑𝑆𝑎
𝑑𝑆𝑎 𝑑𝑎𝑎

)
−1

(
𝑑𝑆𝑏
𝑑𝑎𝑏
)

𝑑𝑏𝑏
 

(29) 

Since the correlation between S and T depends on the shape of the marginal function, we make 

use of a Copula function to estimate individual association at the first stage. For sake of simplicity, 

we first postulated a normal distribution for S, but different assumptions can actually be made. In 

the following sections the procedures based on Clayton and the Hougaard Copulas were described 

in details. 

 

 

2.2.4.1 Copulas and their likelihood 

 

The copula approach is a useful method for deriving a joint distribution given the marginal 

distributions and it is used to describe the dependence structure between two variables throught a 

proper association parameter. As the copula model splits the problem in two, with the marginal 

functions and an association parameter, a two-stage estimation procedure can be used by first 

jointly estimating the margins and then using the estimated margins to obtain the association 

parameter. Hougaard (1987) first suggested this two stage estimation procedure, which was also 

studied by Shih and Louis (1995) who examined the case in which each margin was modelled 

separately.  

A remarkable feature of the copula is that the marginal models and the association model can be 

selected without constrains. Using the joint distribution function (24) with a proportional hazard 

model (26) and a fixed effect linear model (25) as marginal models, the corresponding likelihood 

function for the observed data can be identified for this specific situation, as described below. 

The starting point is the general joint distribution copula function in (24), specified in terms of the 

cumulative distribution function (F) of the marginal models, that is now expressed in terms of the 

corresponding survival function: S=1-F: 
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 𝑃(𝑆𝑖𝑗 > 𝑠, 𝑇𝑖𝑗 > 𝑡) = 𝐶𝜃(𝑢, 𝑣) = 𝐶𝜃 (𝑆𝑠(𝑠𝑖𝑗), 𝑆𝑇(𝑡𝑖𝑗))

= ∫ ∫ 𝑓(𝑆𝑖𝑗,𝑇𝑖𝑗)(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣
∞

𝑡

∞

𝑠

 

(30) 

where: 

𝑢: 𝑆(𝑠) = 1 − Ф(µ, 𝛼)𝑆 (31) 

𝑣: 𝑆(𝑡) =  𝑒−(𝜆𝑇𝑖𝑒
𝛽𝑖𝑗𝑧𝑖𝑗𝑡)𝑝𝑖

 (32) 

As the likelihood for a generic density f(T;λ) in the presence of censoring is expressed as 

 𝐿(𝜆; 𝑡) =∏[𝑓(𝑡𝑖)]
𝛿𝑖[𝑆(𝑡𝑖)]

1−𝛿𝑖

𝑛

𝑖=1

 (33) 

we have for f(S,T; 𝜇𝑖, 𝛼𝑖 , 𝜎𝑖
2, 𝜆𝑖, 𝛽𝑖, 𝜌𝑖) the following expression: 

𝐿(𝜇𝑖, 𝛼𝑖 , 𝜎𝑖
2, 𝜆𝑖 , 𝛽𝑖, 𝜌𝑖) =∏∏[𝑓(𝑆𝑖𝑗,𝑇𝑖𝑗)(𝑆𝑖𝑗, 𝑇𝑖𝑗)]

𝛿𝑇
[−

𝜕

𝜕𝑠𝑖𝑗
𝐶𝜃 (𝑆𝑠(𝑠𝑖𝑗), 𝑆𝑇(𝑡𝑖𝑗))]

1−𝛿𝑇
𝑛𝑖

𝑗=1

𝑐

𝑖=1

 (34) 

where the bivariate density is equal to: 

 𝑓(𝑆𝑖𝑗,𝑇𝑖𝑗)(𝑆𝑖𝑗, 𝑇𝑖𝑗) =
𝑑2

𝑑𝑠𝑖𝑗𝑑𝑡𝑖𝑗
𝐶𝜃 (𝑆𝑠(𝑠𝑖𝑗), 𝑆𝑇(𝑡𝑖𝑗)) = (35) 

 =
𝑑

𝑑𝑡𝑖𝑗
[
𝜕

𝜕𝑠𝑖𝑗
𝐶𝜃 (𝑆𝑠(𝑠𝑖𝑗), 𝑆𝑇(𝑡𝑖𝑗))] =

𝑑

𝑑𝑡𝑖𝑗
[
𝑑𝐶(𝑢, 𝑣)

𝑑𝑢

𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑠𝑖𝑗
] =  

   

 =
𝑑2𝐶𝜃(𝑢, 𝑣)

𝑑𝑢 𝑑𝑣
 
𝑑𝑆𝑇(𝑡𝑖𝑗)

𝑑𝑡𝑖𝑗

𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑠𝑖𝑗
  

Based on these results, we can write the likelihood as: 

 𝐿(𝜇𝑖, 𝛼𝑖 , 𝜎𝑖
2, 𝜆𝑖 , 𝛽𝑖, 𝜌𝑖) =∏∏[

𝑑2𝐶𝜃(𝑢, 𝑣)

𝑑𝑠𝑖𝑗𝑑𝑡𝑖𝑗
]

𝛿𝑇

[−
𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑠𝑖𝑗
]

1−𝛿𝑇𝑛𝑖

𝑗=1

𝑐

𝑖=1

 (36) 

while the log-likelihood can be expressed as: 

𝑙𝑜𝑔𝐿(𝜇𝑖, 𝛼𝑖 , 𝜎𝑖
2, 𝜆𝑖 , 𝛽𝑖, 𝜌𝑖) = (37) 

∑∑{𝛿𝑇 log [
𝑑2𝐶𝜃 (𝑆𝑠(𝑠𝑖𝑗), 𝑆𝑇(𝑡𝑖𝑗))

𝑑𝑠𝑖𝑗𝑑𝑡𝑖𝑗
] + (1 − 𝛿𝑇)log [−

𝜕𝐶𝜃 (𝑆𝑠(𝑠𝑖𝑗), 𝑆𝑇(𝑡𝑖𝑗))

𝜕𝑠𝑖𝑗
]}

𝑛𝑖

𝑗=1

𝑐

𝑖=1

  

Of the different copula functions that can be used, we concentrated on the Clayton and on 

Hougaard copulas. This was mainly motivated by the fact that  in these two cases the association 

parameters are easy to interpret and to compute. 

The estimation process of both the copulas we considered was implemented in a SAS IML macro. 

The log Likelihood estimates are obtained by using the Newton-Raphson algorithm available in 
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the SAS routine NLPNRR. Standard errors of the parameters were constructed via delta method, 

using the inverse of the Hessian Matrix, which was obtained using the SAS routine NLPFDD. The 

codes for the Clayton and Hougaard copulas are available in Appendix B and C, respectively. 

 

 

2.2.4.2 The Clayton copula 

 

The Clayton Copula (Clayton, 1978) takes the form 

 𝐶𝜃(𝑢, 𝑣) =  (𝑢
1−𝜃 + 𝑣1−𝜃 − 1)

1
1−𝜃 (38) 

where u and v are the marginal cumulative distribution function and θ the dependence parameter 

(with θ>1). As θ approaches one, the marginal become independent. Replacing the marginal 

cumulative distribution function  in the Clayton Copula, we obtain. 

 𝐶𝜃(𝑢, 𝑣) =  ((1 − Ф(𝑠))
1−𝜃 + 𝑆(𝑡)1−𝜃 − 1)

1
1−𝜃 (39) 

Based on (39), we can write the log likelihood function for the Clayton Copula by computing the 

following derivatives: 

 
𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢
=

1

1 − 𝜃
(𝑢1−𝜃 + 𝑣1−𝜃 − 1)

1
1−𝜃

−1
(1 − 𝜃)𝑢−𝜃 = (40) 

 = (𝑢1−𝜃 + 𝑣1−𝜃 − 1)
𝜃
1−𝜃𝑢−𝜃 = {𝐶𝜃(𝑢, 𝑣)}

𝜃𝑢−𝜃  

 

 
𝑑2𝐶𝜃(𝑢, 𝑣)

𝑑𝑢 𝑑𝑣
=

1

1 − 𝜃
(𝑢1−𝜃 + 𝑣1−𝜃 − 1)

1
1−𝜃

−1
(1 − 𝜃)𝑣−𝜃𝑢−𝜃 = (41) 

 = 𝜃(𝑢1−𝜃 + 𝑣1−𝜃 − 1)
2𝜃−1
1−𝜃 𝑣−𝜃𝑢−𝜃 = 𝜃{𝐶𝜃(𝑢, 𝑣)}

2𝜃−1𝑣−𝜃𝑢−𝜃  

 

 
𝑑𝑆𝑇(𝑡𝑖𝑗)

𝑑𝑡𝑖𝑗
= 
𝑑 (1 − 𝐹(𝑡)) 

𝑑𝑡𝑖𝑗
= −

𝑑 𝐹(𝑡) 

𝑑𝑡𝑖𝑗
= −𝑓𝑇(𝑡) (42) 

 

 
𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑠𝑖𝑗
=
𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢

𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑠𝑖𝑗
= (43) 

 =
𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢
 
𝑑 (1 − Ф(𝑠)) 

𝑑𝑠𝑖𝑗
=
𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢
(− 𝜑(𝑠))  

 

therefore: 

 −
𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑆𝑖𝑗
= {𝐶𝜃(𝑢, 𝑣)}

𝜃𝑢−𝜃𝜑(𝑠) 
 



20 
Ausiliatrice Lucenti | Corso di Dottorato in Epidemiologia e Biostatistica XXVIII ciclo 

 

 
𝑑2𝐶𝜃(𝑢, 𝑣)

𝑑𝑠𝑖𝑗𝑑𝑡𝑖𝑗
= 𝜃{𝐶𝜃(𝑢, 𝑣)}

2𝜃−1𝑣−𝜃𝑢−𝜃(− 𝜑(𝑠))(−𝑓𝑇(𝑡)) (44) 

The log-likelihood with the Clayton Copula can thus be expressed as: 

𝑙𝑜𝑔𝐿(𝜇𝑖, 𝛼𝑖 , 𝜎𝑖
2, 𝜆𝑖 , 𝛽𝑖, 𝜌𝑖) = (45) 

∑∑{𝛿𝑇 log[𝜃{𝐶𝜃(𝑢, 𝑣)}
2𝜃−1𝑣−𝜃𝑢−𝜃(− 𝜑(𝑠))(−𝑓𝑇(𝑡))] + (1 − 𝛿𝑇)log [{𝐶𝜃(𝑢, 𝑣)}

𝜃𝑢−𝜃𝜑(𝑠)]}

𝑛𝑖

𝑗=1

𝑐

𝑖=1

 

 

that can be extended to: 

𝑙𝑜𝑔𝐿(𝜇𝑖, 𝛼𝑖 , 𝜎𝑖
2, 𝜆𝑖 , 𝛽𝑖, 𝜌𝑖) = (46) 

∑∑{𝛿𝑇 [log 𝜃 + (
2𝜃 − 1

1 − 𝜃
) 𝑙𝑜𝑔((𝑆(𝑠)1−𝜃 + 𝑆(𝑡)1−𝜃 − 1) − 𝜃 log 𝑆(𝑠) − 𝜃𝑙𝑜𝑔𝑆(𝑡) + 𝑙𝑜𝑔𝜑(𝑠) + 𝑙𝑜𝑔𝑓𝑇(𝑡)] +

 

𝑛𝑖

𝑗=1

𝑐

𝑖=1

+ (1 − 𝛿𝑇) [
𝜃

1 − 𝜃
𝑙𝑜𝑔((𝑆(𝑠)1−𝜃 + 𝑆(𝑡)1−𝜃 − 1) − 𝜃𝑙𝑜𝑔 𝑆(𝑠) + 𝑙𝑜𝑔𝜑(𝑠)]} 

 

 

2.2.4.3 The Hougaard copula 

 

Tha Hougaard copula (Hougaard 1986) is given by 

 𝐶𝜃(𝑢, 𝑣) =  𝑒𝑥𝑝 {− [(− ln 𝑢)
1
𝜃 + (− ln 𝑣)

1
𝜃]
𝜃

} (47) 

and to obtain the corresponding log-likelihood function, we need the following derivates  

 𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢
=  𝐶𝜃(𝑢, 𝑣) {−𝜃 [(−𝑙𝑛 𝑢)

1
𝜃 + (−𝑙𝑛 𝑣)

1
𝜃]}

𝜃−1

[
1

𝜃
(−𝑙𝑛 𝑢)

1
𝜃
−1] (−

1

𝑢
) (48) 

 

 𝑑2𝐶𝜃(𝑢, 𝑣)

𝑑𝑢 𝑑𝑣
= (49) 

 
𝐶𝜃(𝑢, 𝑣) {−𝜃 [(−𝑙𝑛 𝑢)

1
𝜃 + (−𝑙𝑛 𝑣)

1
𝜃]}

𝜃−1

[
1

𝜃
(−𝑙𝑛 𝑣)

1
𝜃
−1] (−

1

𝑣
)  

 
{−𝜃 [(−𝑙𝑛 𝑢)

1
𝜃 + (−𝑙𝑛 𝑣)

1
𝜃]}

𝜃−1

[
1

𝜃
(−𝑙𝑛 𝑢)

1
𝜃
−1] (−

1

𝑢
) +  

 
+𝐶𝜃(𝑢, 𝑣) {−𝜃(𝜃 − 1) [(−𝑙𝑛 𝑢)

1
𝜃 + (−𝑙𝑛 𝑣)

1
𝜃]}

𝜃−2

[
1

𝜃
(−𝑙𝑛 𝑣)

1
𝜃
−1] (−

1

𝑣
)  

 
[
1

𝜃
(−𝑙𝑛 𝑢)

1
𝜃
−1] (−

1

𝑢
)  
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 𝑑𝑆𝑇(𝑡𝑖𝑗)

𝑑𝑡𝑖𝑗
= 
𝑑 (1 − 𝐹(𝑡)) 

𝑑𝑡𝑖𝑗
= −

𝑑 𝐹(𝑡) 

𝑑𝑡𝑖𝑗
= −𝑓𝑇(𝑡) (50) 

 

 𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑠𝑖𝑗
=
𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢

𝑑𝑆𝑠(𝑠𝑖𝑗)

𝑑𝑠𝑖𝑗
=  (51) 

 
=
𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢
 
𝑑 (1 − Ф(𝑠)) 

𝑑𝑠𝑖𝑗
=
𝑑𝐶𝜃(𝑢, 𝑣)

𝑑𝑢
(− 𝜑(𝑠))  

The log-likelihood function can be written as: 

 𝑙𝑜𝑔𝐿(𝜇𝑖, 𝛼𝑖 , 𝜎𝑖
2, 𝜆𝑖 , 𝛽𝑖, 𝜌𝑖) = (52) 

 
∑∑{𝛿𝑇 [𝑙𝑜𝑔{𝐶𝜃(𝑢, 𝑣)} + (𝜃 − 2)𝑙𝑜𝑔 ((− ln 𝑢)

1
𝜃 + (− ln 𝑣)

1
𝜃)

𝑛𝑖

𝑗=1

𝑐

𝑖=1

+ 𝑙𝑜𝑔 (((− ln 𝑢)
1
𝜃 + (− ln 𝑣)

1
𝜃)
𝜃

−
𝜃 − 1

𝜃
)

+
1

𝜃 − 1
log(− log 𝑆(𝑠)) − log 𝑆(𝑠) +

1

𝜃 − 1
𝑙𝑜𝑔(− log 𝑆(𝑡)) − 𝑙𝑜𝑔 𝑆(𝑡)

+ 𝑙𝑜𝑔𝜑(𝑠) + 𝑙𝑜𝑔𝑓𝑇(𝑡)]

+ (1 − 𝛿𝑇) [𝑙𝑜𝑔{𝐶𝜃(𝑢, 𝑣)} + (𝜃 − 1)𝑙𝑜𝑔 ((− ln 𝑢)
1
𝜃 + (− ln 𝑣)

1
𝜃)

+
1

𝜃 − 1
𝑙𝑜𝑔(− log 𝑆(𝑠)) + 𝑙𝑜𝑔𝜑(𝑠)]} 

 

 

 

2.2.5 Choice of the trial units 

 

A fundamental step of the meta-analytic method is the choice of the units involved in the analysis, 

for example, trials, centers, or investigators. Practical considerations, such as the information 

available in the data, the experts consideration on the most appropriate unit for a specific problem, 

the amount of replication at a potential unit’s level, and the number of patients per unit, may 

determine this choice. From a technical point of view, the optimal situation is the one in which the 

number of trials and the number of patients per unit are sufficiently large (Cortiñas et al. 2004).  

The meta-analytic approach was originally formulated taking trials as the level of replications, but 

when the trials are few, this approach is not applicable, thus suggesting the use of countries, 
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treating centers or investigators, as the units of analysis. This effectively should imply the 

extension to a three (or higher) level model.  

Omitting one lever of hierarchy in the analysis can induce different consequences on the estimation 

of the strength of association, depending on various factors (e.g., the sample size and the magnitude 

of the variability present at different levels). Cortiñas et al (2004) investigated through simulations 

the choice of replacing one level of replication with another one and the consequences of replacing 

a truly higher level model by a gross lower level structure, e.g. trial, center and patient levels 

replaced by center and patient levels.  

The strategy of analysis we adopted for this particular project recognizes the hierarchy of the data 

and considers a structure based on two level of observation: the trial and the geographical area. As 

an example, in assessing a time to event endpoint, we considered a model that produces, for each 

geographical area, separated treatment effects for each endpoint, but the baseline hazards are 

assumed to be constant within trial.  

 

 

 

  



23 
Ausiliatrice Lucenti | Corso di Dottorato in Epidemiologia e Biostatistica XXVIII ciclo 

3 THE CASE-STUDY 

 

Over the past few decades a better understanding of the biological bases of ALL was made and 

Minimal Residual Disease has been accepted for routine clinical use worldwide. MRD is now 

considered so relevant that it has become essential to study whether graduate it to the status of 

clinical endpoint. We addressed this issue considering individual data from three large phase III 

studies performed in Europe and in the USA.  

The clinical context that motivated this work was introduced in this chapter, first focusing on MRD 

and then to the synthesis of the protocols that were considered. Space has also been reserved to 

the description of the trial units choice. 

 

 

3.1 MINIMAL RESIDUAL DISEASE 

 

Minimal Residual Disease (MRD) defines small numbers of leukemic cells that circulate in the 

patient during the treatment period, or after treatment, even when the patient is classified in 

remission, e.g. with no symptoms or signs of disease. MRD is used to diagnose the disease, since 

it is characterized by a high sensitivity, and it is helpful to monitor the disease and to identify the 

presence of tumour cells after therapy or determine the best timing for a stem cells transplantation. 

Multiple reports suggest that the detection of MRD at an early time point of the treatment protocol 

(during/following Induction or Consolidation therapy) is a powerful and independent predictor of 

prolonged Event Free Survival in children and adults with acute lymphoblastic leukaemia 

(Reviewed in Campana, 2010; Cazzaniga et al., 2011 and Pui et al., 2015).  

As a prognostic biomarker, MRD has had a profound impact world-wide on the design and conduct 

of clinical trials in ALL for all known risk groups of patients, currently defined by longstanding, 

accepted clinical and biological prognostic factors. It has being used to risk stratify patients on 

therapeutic trials designed to adapt treatment for individual patients relative to their risk for 

treatment failure (Campana, 2009). Conter et al. (2010) and Schrappe et al. (2011) have shown 

that MRD-based treatment strategies improve outcome in BCP-ALL and T-ALL childhood 

patients, and Vora et al. (2013) demonstrated that treatment can be reduced in MRD-based low-

risk patient. 

Sensitive methods (1 leukemic cell in 10,000 to 100,000 normal cells in a clinical sample) for the 

detection of MRD uses assays based on the real time quantitative polymerase chain reaction (RQ-

PCR) and/or flow cytometry (FCM). In the United States, FCM is the most common technique, 
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while in Europe PCR is used. The two methods are quite standard, but each has its own advantages: 

FCM is less expensive, can often report quantitative results within a day and has a larger evidence 

base (having been used in most US based trials), while PCR is more sensitive. 

These two methods for MRD evaluation were compared in childhood LLA by Basso et al. (2009) 

and Gaipa et al. (2012). Basso et al. (2009) concluded that FCM is more powerful to predict 

relapses at day 15, the concordance between methods was very high at day 15 and 78 of induction 

therapy, lower at day 33, at the end of induction therapy. Gaipa et al. (2012) compare the methods 

at day 15, 33 and 78 and they found that concordance rates between FCM and PCR largely depend 

on the time point of the analyses and most discordances occur at the lowest levels of MRD. In 

particular, the concordance rates were 87%, 72% and 89% for the three time points, respectively. 

Recently, PCR and FCM were also compared for MRD evaluation in Multiple Myeloma and 

Chronic Lymphocytic Leukemia also (Puing et al 2014; Raponi et al 2014) and they show that 

these methodologies are both valid, but PCR is favored by a slightly higher sensitivity, whereas 

FCM is significantly more applicable. 

Nowadays, there is also an emerging technique that is the “next-generation sequencing”. It has 

greater sensitivity than PCR, but it works on the same principle amplifying all possible sequences 

in the gene region of interest. At diagnosis, patients get a signature for that particular leukemia 

that can be screened for in subsequent tests. This methodology can become the future of MRD 

detection, but it is confined to the research areas and there are still hurdles to be overcome before 

it is used in the clinical practice. 

MRD is considered a well-founded prognostic biomarker in ALL, but still not reliable as a clinical 

endpoint. For example, an open-label randomized trial comparing the effect of mitoxantrone with 

idarubicin in children with first relapse of ALL found that, although the mitoxantrone-treated 

patients had a lower relapse rate, there was no apparent difference in MRD between the two drugs 

in the intermediate-risk group. This finding induced researchers to believe that the decrease in 

relapse was unrelated to the kinetics of disease clearance therefore MRD is not a surrogate for 

efficacy (Parker, 2010). The hope was that in presence of no difference in MRD levels one month 

after treatment initiation, there would also be no difference in EFS, but evidence did not support 

this hypothesis. Another research (Bassan, 2009), which tends to agree that MRD can be an early 

indicator for Relapse in adult patient, found that MRD analysis during early post-remission therapy 

improve risk definitions and help improve risk-oriented treatment strategies. Patients who were 

MRD-negative had five-year overall survival and disease-free survival rates of 0.75 and 0.72, 

respectively, compared with rates of just 0.33 and 0.14 in MRD-positive patients. Presence of 

MRD, then, was the most significant risk factor for relapse, with a hazard ratio of 5.22.  



25 
Ausiliatrice Lucenti | Corso di Dottorato in Epidemiologia e Biostatistica XXVIII ciclo 

MRD in childhood ALL has the potential to be a surrogate clinical endpoint, but no formal 

validation has been performed yet. The use of MRD as a clinical endpoint is recognized as a 

burning issue also by the regulatory agencies for the purpose of accelerated approval of new drugs.  

 

 

3.2 DESCRIPTION OF THE CLINICAL PROTOCOLS 

 

The clinical project was planned to include three randomized multicentre phase III studies that 

were performed in different European countries and in the USA, namely: AIEOP-BFM-ALL2000, 

EORTC and AALL0232. Among the objectives of these trials, the comparison between 

dexamethasone (DXM) and prednisone (PDN), used in the induction phase of the treatment of 

children with acute lymphoblastic leukaemia, was carried out in a randomized fashion.  

These protocols had a complex structure and involved the great majority of the newly diagnosed 

cases of ALL observed in the study period in the different country (except for COG that is one of 

the few collaborative groups in the USA and is represented here with a protocol for high risk 

patients). They were different in many aspects and, in particular, they were not completely 

homogenous also in the process of MRD monitoring, but they had in common a time point of 

observation around one month from treatment start.  

We included in the analysis all patients randomized either to DXM or PDN with diagnosis of B-

cell immunophenotype (for the purpose of the secondary aim) and with complete info on MRD 

one month after randomization (for the primary aim). 

A brief description of the protocols of the trials that we will analyse follows. 

 

AIEOP-BFM-ALL2000 

This is a collaborative trial, with the Italian (Associazione Italiana Ematologia e Oncologia 

Pediatrica – AIEOP) and the German (Berlin-Frankfort-Münsterx – BFM) groups sharing the same 

clinical protocols (Clin.Gov. registration codes are: NCT00613457 and NCT00430118 for the 

AIEOP and the BFM group, respectively). The AIEOP-BFM ALL 2000 study enrolled children 

between 1 and 18 years of age with Philadelphia negative ALL from September 1, 2000 to July 

31, 2006. Randomization was stopped in 2005 for patients who were ≥10 years old because 

dexamethasone resulted more aggressive than PDN. 

Diagnosis of ALL was performed using cytomorphology and cytochemistry when ≥ 25% of 

lymphoblastic cells were present in the bone marrow. All the enrolled patients entered the 

induction phase and were given a pre-phase of 7 day treatment, including steroid therapy 
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(prednisone) and one intrathecal dose of methotrexate, followed by induction protocol IA and 

induction consolidation protocol IB. On day 8, patients were randomized to continue steroid 

treatment with either prednisone (60 mg/m2 per day) or dexamethasone (10 mg/m2 per day) until 

day 28 with subsequent tapering doses. At the end of IA and IB phase, i.e. on day 33 (time point 

one – TP1) and 78 (time point two - TP2), MRD was evaluated with RQ-PCR method and the risk 

stratification was obtained. Patients were defined at MRD standard risk (MRD-SR) if MRD was 

found negative at both time points, using at least 2 molecular targets with a sensitivity of ≤10-4. If 

MRD levels differed between the 2 markers, the highest MRD level was chosen for the final MRD 

assessment. Patients were considered at intermediate risk (MRD-IR) when MRD was positive at 

one or both TPs, but at a level <10-3 at TP2 with at least 2 markers. If MRD levels differed between 

the 2 markers, the highest MRD level was chosen for the final MRD classification, provided that 

the selected markers had a sensitivity of at least 10-3. Patients with MRD ≥10-3 at TP2 were 

classified at MRD-HR, independently of the sensitivity and the number of markers (provided that 

at least 1 marker had a sensitivity of 10-3). The treatment schemas by risk stratification based on 

MRD are summarized in Figure 3.1. MRD was measured through PCR, and available in 

continuous for AIEOP, while it was categorical for BFM. For the purpose of the analysis, we 

referred to MRD on day 33, that is the end of induction IA. 

Other randomized questions were applied in the subsequent phase of this protocol, as shown in 

Figure 3.1. In short, 22 weeks after diagnosis, patients classified at Standard Risk were randomized 

to receive the standard reinduction protocol (II) or a less intensive treatment (III), while Medium 

Risk patients received a double reintensification with twice block III vs. one block II. The 

polychemiotherapy treatments in the standard and the medium risk groups are similar and less 

intense than the treatment in the high risk group. In fact, patients who did not achieve CR at the 

end of induction phase IA (or have translocations t(9,22)/t(4,11) or were PDN poor responders at 

day 7) were treated with phase IB of protocol I, and 3 subsequent high-risk (HR) blocks. Finally, 

specific indications to Bone Marrow Transplantations were set up in the protocol, which were also 

based on the MRD evaluated at TP1 or TP2. 
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Figure 3.1: AIEOP-BFM experimental schema 

 

 

The total number of AIEOP-BFM ALL patients randomized in 6 years of recruitment was 3655, 

1192 were from AIEOP and 2463 from BFM. Excluding 493 not B-ALL precursor and 207 

children with MRD missing at TP1, a final set of 2955 randomized patients was considered (Figure 

2.2). Therefore, for the validation of MRD as surrogate for EFS, we analyzed 2955 patients for the 

AIEOP-BFM trial, while for the validation of EFS as surrogate of OS, 3162 patients were 

considered for the analysis. 

Follow-up was uniformly updated as of September 2011. 

Figure 3.2 AIEOP-BFM patients selection 

 

AIEOP-BFM

N=3655
N=3162 N=2955

N=207

MRD missingN= 493

NO B-cells
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AALL0232  

AALL0232 is the Children’s Oncology Group (COG) phase III study designed for NCI high risk 

ALL and B-precursor ALL patients from 1-30 years of age. The study utilized a 2 x 2 factorial 

design with an augmented intensity BFM backbone. Patients were randomized upfront to receive 

high dose methotrexate (5 gm/m) versus Capizzi escalating methotrexate during Interim 

Maintenance I. A second randomization compared dexamethasone 10 mg/m/day for 14 days 

versus prednisone 60 mg/m/day for 28 days during Induction. Based upon an increased rate of 

osteonecrosis (ON) observed in patients ≥10 years of age randomized to receive dexamethasone 

during Induction, an amendment restricted the Induction steroid randomization to patients 1-9 

years of age, with older patients non-randomly assigned to prednisone during Induction therapy. 

MRD in peripheral blood was detect at day 29 (end of the induction) with Flow Cytometry and it 

was available as a continuous variable. Patients with negative MRD at day 29 and with M1 were 

classified as rapid early responders (RER) and received one Delayed Intensification course. Those 

with MRD at day 29 major of 1% (positivity status) and no M1 were classified as slow early 

responders (SER) and received two Delayed Intensification courses. The treatment protocols by 

risk stratification is summarized in Figure 3.3. 

The AALL0232 protocol counts 2909 B-precursor patients enrolled in 7 years, from 2004 to 2011. 

We analysed 2023 patients because 782 children aged ≥10 years were not randomized (they 

received Prendisone by default) and 104 did not have the MRD value available (Figure 3.4). For 

the secondary aim, i.e. evaluate if EFS is a surrogate of OS, from 2127 subjects we excluded 34 

patients who had data on Complete Remission missing, thus considering a total of 2093 patients. 

Having AALL0232 a 2 x 2 factorial design with a quantitative interaction (results are not yet 

published), we considered patients treated with high dose methotrexate and Capizzi separately in 

our analysis. 

Follow-up was uniformly updated to December 2014. 
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Figure 3.3 COG experimental schema 

 

 

Figure 3.4 COG patients selection 

*There was no exclusion related to the criteria on immunophenotype as the protocol enrolled exclusively B-ALL patients. 

 

 

EORTC 

The European Organization for Research and Treatment of Cancer (EORTC) is a non-profit 

Belgian research organization. In 1998, EORTC started a randomized trial in ALL where patients 

under 18 years of age with previously untreated ALL were eligible. Concerning the randomization 

AALL0232

N=2909*
N=2127 N=2023

N=104

MRD missing

Not randomized

(Age>=10 after 01/04/2008)

N=782
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dexamethasone versus prednisolone, the patients were randomly assigned either before the 

beginning of the pre-phase (day 1), or at the beginning of protocol IA (day 8), at the investigator’s 

discretion. In the latter case, prednisolone was used throughout the pre-phase. All patients had to 

receive dexamethasone (6 mg/m/day) or prednisolone (60 mg/m/day), orally, in two divided doses 

throughout the pre-phase (day 1 to day 7) and induction therapy (day 8 to day 35, including a 

tapering down period of 8 days). Minimal residual disease was evaluated at the end of induction 

(day 35) and was based on RQ-PCR method that returned data in categories. 

Patients were assigned to different risk groups mostly depending on clinical features and also on 

MRD: very low risk (VLR), average risk (AR) and very high risk (VHR). VLR was defined as B-

lineage ALL with no VHR criteria, with WBC counts below 10x109/L, and with hyperdiploid 

karyotype or DNA index >1.16 and <1.5, in the absence of CNS and gonadal involvement. VHR 

criteria consisted of blast count in peripheral blood ≥ 1x109/L at completion of the pre-phase (day 

8), presence of t(9;22), t(4;11) or another MLL rearrangement, near-haploidy, acute 

undifferentiated leukaemia (AUL), MRD>10-2 (positivity cut off ) at completion of induction (day 

35) or failure to achieve complete remission (CR). AR patients had no VLR and VHR 

characteristics. Patients with B-cell lineage ALL, with WBC <100x109/L and without gonadal and 

CNS involvement were AR1. The others, including T-cell lineage, were classified as AR2. Patients 

with CNS-2 or with haemorrhagic cerebrospinal fluid becoming negative on day 4 of the pre-phase 

were included in AR1 group whereas non-equivocal CNS involvement at diagnosis or any CNS 

involvement on day 4 were considered as AR2. The treatment protocols by risk stratification is 

summarized in Figure 3.5 (Domenech et al. 2014). 

One thousand and four hundred randomized patients from the 1947 initial subjects enrolled in 9 

years from 1999 to 2008: 297 were excluded because they were not B-ALL precursors and 250 

because MRD was missing (Figure 3.6). To analyze the surrogacy of EFS, we considered 1650 

patients, while the surrogacy of MRD was evaluated based on 1400 patients. 

Follow-up was uniformly updated to February 2011. 
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Figure 3.5: EORTC experimental schema 

 

 

Figure 3.6: EORTC patients selection 

 

 

The characteristics of the two treatments of interest and the main MRD features are summarized 

in Table 3.1. Dosing and duration are more homogeneous for PDN than DXM, while the time 

point for MRD evaluation differs in the three protocols. Another important difference is that in the 

COG only (NCI) high risk patients were randomized and MRD was detected with Flow Cytometry, 

not with PCR, as in AIEOP-BFM and EORTC. 

Our point of view is that these differences are not a limitation, but represent an added value of the 

meta-analytic approach in terms of the generalizability of the results to future clinical trials and 

treatments. 

 

EORTC

N=1947
N=1650 N=1400

N=250

MRD missing

N=297

NO B-cells
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Table 3.1: Characteristics of the two induction phase treatments and MRD features 

TRIAL 

TREATMENT  MRD 

DXM  PDN  Timing 

(days from 

random) 

Assay 
Dose 

Duration 

(days) 
 Dose 

Duration 

(days) 

 

AIEOP-

BFM 
10mg/mq/die 8-28  60mg/mq/die 8-28 

 
+33 PCR 

COG 10 mg/mq/die 1-14  60mg/mq/die 1-28  +29 FCM 

EORTC 
6mg/mq/die 

(bid) 
1/8-35  60mg/mq/die (bid) 1/8-35 

 
+35 PCR 

 

 

3.3 ENDPOINT DEFINITIONS 

 

The time to event endpoints of the study are defined as follows: 

- Event Free Survival (EFS) is the time from randomization to first failure or last follow up, 

which over occurred first. The event we considered are: resistance, relapse at any site, 

development of a second malignant neoplasm (SMN) or death during remission.  

- Overall Survival (OS) is the time from randomization to death from any cause or last 

follow-up, whichever occurred first. 

As for MRD, we aimed at the evaluation of three ordered categories, with MRD full stratification 

as follows: 

MRD class MRD stratification 

0 Negative 

0-5x10-4 Low positive 

≥5x10-4 Positive 
 

In the Italian and the American clinical protocol, MRD was collected in continuous, while we had 

only partial information from the German and the Belgian clinical trials, since it was available 

categorized. Specifically, BFM used a 7 ordered categories classification: Negative (MRD=0), 10-

6, 10-5, 10-4, 10-3, 10-2, 10-1, where for example, the 10-3 category consist in the 5x10-3<MRD<5x10-

2 interval. 

Unlike the BFM group, EORTC had a very different categorization of MRD (Table 3.2). We tried 

to harmonize the data considering two MRD cut-points for positivity, (i.e. ≥5x10-4  and ≥5x10-3). 

It resulted in a unsatisfactory classification that completely missed patients with MRD negativity. 
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Table 3.2: Description of the attempt to match EORTC and BFM MRD classification 

EORTC classification   Cut-points in agreement with BFM 

MRD classes  Positivity: ≥5x10-4 Positivity: ≥5x10-3 

10-3-5x10-3  NK NK 

<5x10-3  Positive Positive 

<10-3  NK Not Positive 

5x10-3-10-2  NK Not Positive 

<10-2  Positive Positive 

>10-2  Positive Not Positive 
 

For this reason, we excluded EORTC from the validation of MRD while we used the data from 

this trial only to validate EFS for OS. 

 

 

3.4 CHOICE OF THE TRIAL UNITS 

 

Being this application on three trials only, the regions/states of the four participant Countries were 

considered as statistical units, as suggested in Burzykowski T. et al. (2005). We first considered 

the treating center, but since it is mandatory for the analysis that at least two categories of the 

ordinal surrogate and one event of the time to event endpoint should be present in each treatment 

group, centers were grouped according to geographical areas. Where the sample size was very 

limited, we aggregated regions/states based on proximity. 

A total of 46 units were included in the analysis and these will be mentioned henceforth as “trial 

units”. A description of the trial units within trial is reported in Table 3.3. We had 10-11 trial units 

in each trial except for EORTC, and heterogeneous sample sizes. The peculiarity of EORTC is 

related to the fact that we only had available the information on the countries involved, i.e. 

Belgium, France and Portugal. 
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Table .3.3: Description of the trial units within trials 

 

 

 

N of trial-units 

TRIAL 

Overall 
AIEOP BFM 

COG-

C* 

COG-

HD* 
EORTC 

10 11 11 11 3 46 

MRD vs EFS 

Median pts/unit 109 143 92.5 91.4 349 104 

Min-Max 

pts/unit 
76-222 54-343 46-147 52-158 93-958 46-958 

EFS vs OS 

Median pts/unit 115 148 96 95 407 114 

Min-Max 

pts/unit 
80-240 58-369 47-156 57-167 121-1122 47-1122 

* COG-C= COG-Capizzi    COG-HD= COG-High Dose     

 

The detailed list of the trial units is shown in Table 3.4, where it can be noticed that the units varied 

considerably in size, ranging from 46 (0.7%) to 958 (15%) (or 353 excluding the EORTC) patients. 

In Figures 3.7a-c the geographical distributions of the units in each country are represented. 
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Table 3.4: Detailed list of the trial units within trials 

Trial  Center ID Trial Units 
MRD vs EFS 

 
EFS vs OS 

n %  n % 

A
IE

O
P

 

1 Emilia Romagna 76 1.19  80 1.16 

2 Campania 138 2.16  152 2.20 

3 Lazio 114 1.79  122 1.77 

4 Liguria/toscana 128 2.01  133 1.93 

5 Lombardia 222 3.48  240 3.48 

6 Marche/Abruzzo/Umbria 89 1.40  93 1.35 

7 Piemonte 104 1.63  108 1.56 

8 Puglia/Calabria 93 1.46  96 1.39 

9 Sicilia/Sardegna 146 2.29  162 2.35 

10 Veneto/Trento 82 1.29  89 1.29 

B
F

M
 

11 Austria 219 3.43  232 3.36 

12 Baden-Württemberg 262 4.11  279 4.04 

13 Bayern 197 3.09  205 2.97 

14 Brandenburg/Berlin 143 2.24  148 2.14 

15 Mecklenburg-Vor/Schleswig-Hols 58 0.91  62 0.90 

16 Niedersachsen 128 2.01  140 2.03 

17 Nordrhein-Westfalen 343 5.38  369 5.34 

18 Rheinland-Pf/Hessen/Saarland 201 3.15  215 3.11 

19 Sachsen 54 0.85  61 0.88 

20 Sachsen-Anhalt/Thüringen 54 0.85  58 0.84 

21 Switzerland 104 1.63  118 1.71 

C
O

G
 –

 H
IG

H
 D

. 

22 H CA 136 2.13  138 2.00 

23 H DE/MD/NJ/PA 89 1.40  93 1.35 

24 H FL/AL/MS/GA/SC 88 1.38  95 1.38 

25 H ID/NV/OR/WA/CANADA 114 1.79  119 1.72 

26 H IL/IN/OH/WI/MI 158 2.48  166 2.40 

27 H KS/MO/OK/AR/HI/TX/LA 115 1.80  118 1.71 

28 H Miscellanea 72 1.13  74 1.07 

29 H ND/SD/MN/IA/NE 54 0.85  56 0.81 

30 H NY/VT/NH/ME/MA/CT 61 0.96  62 0.90 

31 H TN/NC/VA/KY/WV 66 1.03  68 0.98 

32 H UT/CO/NM/AZ 52 0.82  54 0.78 
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Trial  Center ID Trial Units 
MRD vs EFS 

 
EFS vs OS 

n %  n % 
C

O
G

 -
 C

A
P

IZ
Z

I 

33 C CA 147 2.30  153 2.22 

34 C DE/MD/NJ/PA 92 1.44  94 1.36 

35 C FL/AL/MS/GA/SC 99 1.55  103 1.49 

36 C ID/NV/OR/WA/CANADA 106 1.66  110 1.59 

37 C IL/IN/OH/WI/MI 146 2.29  152 2.20 

38 C KS/MO/OK/AR/HI/TX/LA 123 1.93  125 1.81 

39 C Miscellanea 61 0.96  62 0.90 

40 C ND/SD/MN/IA/NE 50 0.78  51 0.74 

41 C NY/VT/NH/ME/MA/CT 64 1.00  67 0.97 

42 C TN/NC/VA/KY/WV 84 1.32  86 1.25 

43 C UT/CO/NM/AZ 46 0.72  47 0.68 

E
O

R
T

C
 44 Belgium 349 5.47  407 5.89 

45 France 958 15.02  1122 16.25 

46 Portugal 93 1.46  121 1.75 

 

 

 

Figure 3.7a: EORTC trial units 
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Figure 3.7b: COG trial units 
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Figure 3.7. C: AIEOP-BFM trial units 
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4 RESULTS  

 

A brief description of the data involved in this project and the results of the validation process of both 

MRD and EFS as surrogate endpoints in the context of ALL are reported in this chapter. While the 

meta-analytic approach was used both for MRD and EFS, applying all the methods described in 

chapter 2, the traditional, yet controversial, assessment mainly based on Prentice Criteria was mainly 

considered as explorative for the validation of MRD.  

 

 

4.1 DESCRIPTION OF THE DATA 

 

The total number of patients screened from the selection process described in section 3.2 to be 

(potentially) included in the analyses are 6378 and 6905 for the primary and secondary objective of 

this thesis, respectively. The description that follows is shown by group and overall, and it is focused 

on the set of 6378 patients eligible for MRD validation. The results on the larger sample of 6905 

patients eligible for EFS validation are not reported here, but are very similar.  

From Table 4.1 it can be seen that the AIEOP-BFM group is the most represented and that DXM and 

PDN are uniformly distributed in each protocol. The global median follow-up time is 8.01 years, with 

a minimum observation of 6.77 years for EORTC to a maximum of 9.10 years for AIEOP-BFM.  

Table 4.1: Distribution of patients and median Follow up within trials 

Trial N of patients Median 

Follow-up (y)  DXM PDN  Total 

AIEOP-BFM 1460 1495  2955 9.10 

COG 995 1028  2023 6.89 

EORTC 699 701  1400 6.77 

TOTAL 3154 3224  6378 8.01 

 

The main clinical features reported in Table 4.2 are well balanced in the two treatment groups within 

each trial. Of note, AIEOP-BFM and EORTC patients are similar, while those from COG are older 

and with higher level of WBC, in line with the fact that the protocol was directed to NCI high risk 

ALL patients. 

 

As anticipated in the previous chapter (see Section 3.2), we used individual data from different trials 

depending on the objective of the analysis. MRD validation was performed on 2 out of the 3 groups 
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we considered (i.e. AIEOP-BFM and COG), due to the impossibility to harmonize MRD data from 

EORTC, while EFS validation was done including also EORTC. 

Ultimately, to assess whether MRD evaluated at the end of induction can be considered a surrogate 

for EFS, 4978 childhood B-lineage ALL patients, who were treated in induction with Dexamethasone 

or Prednisone, were considered, while, to explore if Event Free Survival can be used as a surrogate 

for Overall Survival, 6905 childhood B-lineage ALL patients were involved in the analysis. 
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Table 4.2: Clinical and biological features within trials 

Characteristics 
AIEOP-BFM 

N=2955 

COG 

N=2023 

EORTC 

N=1400 

Total 

N=6378 

 DXM PDN DXM PDN DEXA PDN  

N 

 

%  N % N % N % N % N % N % 

Total 1460 49.4 1495 50.6 995 49.2 1028 50.8 699 49.9 701 50.1   

Sex               

Male 804 55.1 757 50.6 534 53.7 554 53.9 371 50.2 368 49.8 3388 53.1 

Female 656 44.9 738 49.4 461 46.3 474 46.1 328 49.6 333 50.4 2990 46.9 

Age, y               

1-9 1256 86.0 1277 85.0 448 45.0 451 43.9 556 50.5 546 49.5 4534 71.1 

>=10 204 14.0 218 15.0 547 55.0 577 56.1 143 48.0 155 52.0 1844 28.9 

Age,y; mean (SD) 5.6 (3.7) 5.8 (3.8) 9.7 (5.8) 9.9 (5.7) 6.1 (4.1) 6.4 (4.2) 7.1 4.9 

WBC count, x109/L               

Lower than 50 1252 85.8 1283 85.8 457 45.9 478 46.5 595 85.1 615 50.8 4680 73.4 

50 or higher 208 14.2 212 14.2 538 54.1 550 53.5 104 14.9 86 45.3 1698 26.6 

WBC count, x109/L 

median (min,max) 
9.4 (0.4-567) 9.8 (0.1-875) 54.3 (0.3-1132) 53.8 (0.3-1306) 7.7 (0.4-424) 7.5 (0.5-480) 12.3 (0.1-1306) 
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4.2 VALIDATION OF MRD FOR EFS 

 

Of the total sample of 4978 patients actually included in the analysis on MRD, 2455 (49%) and 2533 

(51%) were randomized to DXM and PDN, respectively.  

The distribution of the MRD stratification is shown in Table 4.3 by treatment within trial unit. When 

possible the description was done considering the trial units, otherwise a less detailed summary 

included the three groups/protocols, namely AIEOP-BFM and COG, with this latter separated in 

COG-Capizzi and COG-High Dose (see Section 3.2). The ID number in column 2 has been used in 

the graphical representation of the results to identify the trial units.  

In general, a gradient seems to be present in the MRD distribution, with a negative MRD observed 

more frequently and a positive MRD less observed. This pattern can be consistently seen in all the 

trial units. Peculiarly, the Piemonte (ID=7) and Veneto/Trento (ID=10) units presented a very low 

percentage of MRD Positive patients in the DXM group, while in the Sachsen unit (ID=19) the 

percentage is zero. The MRD profiles in the two treatment groups are very heterogeneous. 

 

 

Table 4.3: Decsription of MRD classification by treatment and trial unit 

Trial ID Trial Unit Treatment 

Total 
MRD 

Negative Low Positive Positive 

N % % % 

A
IE

O
P

 

1 Emilia R. 
PDN 38 44.74 39.47 15.79 

DXM 38 44.74 36.84 18.42 

2 Campania  
PDN 73 53.42 26.03 20.55 

DXM 65 50.77 33.85 15.38 

3 Lazio  
PDN 72 45.83 25.00 29.17 

DXM 42 33.33 45.24 21.43 

4 Liguria/Toscana  
PDN 62 50.00 33.87 16.13 

DXM 66 53.03 28.79 18.18 

5 Lombardia 
PDN 103 40.78 33.01 26.21 

DXM 119 44.54 36.97 18.49 

6 Marche/Abruzzo/Umbria  
PDN 45 46.67 35.56 17.78 

DXM 44 52.27 27.27 20.45 

7 Piemonte  
PDN 56 37.50 39.29 23.21 

DXM 48 52.08 41.67 6.25 

8 Puglia/Calabria  
PDN 51 43.14 27.45 29.41 

DXM 42 35.71 33.33 30.95 

9 Sicilia/Sardegna  
PDN 74 43.24 40.54 16.22 

DXM 72 52.78 31.94 15.28 

10 Veneto/Trento  
PDN 39 38.46 30.77 30.77 

DXM 43 69.77 27.91 2.33 
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Trial ID Trial Unit Treatment 

Total 
MRD 

Negative Low Positive Positive 

N % % % 

B
F

M
 

11 Austria  
PDN 112 34.82 45.54 19.64 

DXM 107 44.86 41.12 14.02 

12 Baden-Württemberg  
PDN 127 52.76 24.41 22.83 

DXM 135 54.07 28.89 17.04 

13 Bayern  
PDN 87 55.17 20.69 24.14 

DXM 110 60.00 25.45 14.55 

14 Brandenburg/Berlin  
PDN 69 44.93 30.43 24.64 

DXM 74 41.89 39.19 18.92 

15 Mecklenburg-Vor/Schleswig-Hols 
PDN 28 46.43 28.57 25.00 

DXM 30 63.33 23.33 13.33 

16 Niedersachsen  
PDN 67 49.25 29.85 20.90 

DXM 61 45.90 24.59 29.51 

17 Nordrhein-Westfalen  
PDN 185 52.97 31.35 15.68 

DXM 158 55.06 31.01 13.92 

18 Rheinland-Pf/Hessen/Saarland  
PDN 94 53.19 24.47 22.34 

DXM 107 53.27 36.45 10.28 

19 Sachsen  
PDN 28 60.71 21.43 17.86 

DXM 26 69.23 30.77 . 

20 Sachsen-Anhalt/Thüringen  
PDN 33 45.45 30.30 24.24 

DXM 21 42.86 33.33 23.81 

21 Switzerland  
PDN 52 57.69 26.92 15.38 

DXM 52 51.92 28.85 19.23 

C
O

G
 H

IG
H

 D
. 

22 H CA  
PDN 73 57.53 21.92 20.55 

DXM 63 74.60 9.52 15.87 

23 H DE/MD/NJ/PA  
PDN 49 65.31 20.41 14.29 

DXM 40 60.00 15.00 25.00 

24 H FL/AL/MS/GA/SC  
PDN 45 68.89 13.33 17.78 

DXM 43 53.49 25.58 20.93 

25 H ID/NV/OR/WA/CANADA  
PDN 47 68.09 14.89 17.02 

DXM 67 64.18 16.42 19.40 

26 H IL/IN/OH/WI/MI  
PDN 78 62.82 10.26 26.92 

DXM 80 71.25 11.25 17.50 

27 H KS/MO/OK/AR/HI/TX/LA  
PDN 62 62.90 16.13 20.97 

DXM 53 71.70 9.43 18.87 

28 H Miscellanea  
PDN 38 63.16 10.53 26.32 

DXM 34 73.53 14.71 11.76 

29 H ND/SD/MN/IA/NE  
PDN 25 64.00 12.00 24.00 

DXM 29 55.17 20.69 24.14 

30 H NY/VT/NH/ME/MA/CT  
PDN 37 78.38 16.22 5.41 

DXM 24 37.50 29.17 33.33 

31 H TN/NC/VA/KY/WV  
PDN 31 64.52 22.58 12.90 

DXM 35 62.86 17.14 20.00 

32 H UT/CO/NM/AZ  
PDN 27 66.67 14.81 18.52 

DXM 25 48.00 28.00 24.00 
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Trial ID Trial Unit Treatment 
Total 

MRD 

Negative Low Positive Positive 

N % % % 

C
O

G
 C

a
p

iz
zi

 

33 C CA  
PDN 79 64.56 13.92 21.52 

DXM 68 55.88 17.65 26.47 

34 C DE/MD/NJ/PA  
PDN 45 62.22 22.22 15.56 

DXM 47 51.06 23.40 25.53 

35 C FL/AL/MS/GA/SC  
PDN 56 55.36 21.43 23.21 

DXM 43 46.51 23.26 30.23 

36 C ID/NV/OR/WA/CANADA  
PDN 54 61.11 14.81 24.07 

DXM 52 67.31 11.54 21.15 

37 C IL/IN/OH/WI/MI  
PDN 73 69.86 12.33 17.81 

DXM 73 54.79 21.92 23.29 

38 C KS/MO/OK/AR/HI/TX/LA  
PDN 60 55.00 21.67 23.33 

DXM 63 55.56 28.57 15.87 

39 C Miscellanea  
PDN 35 65.71 11.43 22.86 

DXM 26 73.08 11.54 15.38 

40 C ND/SD/MN/IA/NE  
PDN 23 82.61 8.70 8.70 

DXM 27 40.74 25.93 33.33 

41 C NY/VT/NH/ME/MA/CT  
PDN 26 57.69 19.23 23.08 

DXM 38 57.89 23.68 18.42 

42 C TN/NC/VA/KY/WV  
PDN 43 74.42 16.28 9.30 

DXM 41 48.78 24.39 26.83 

43 C UT/CO/NM/AZ  
PDN 22 59.09 22.73 18.18 

DXM 24 58.33 25.00 16.67 

  
Total 

PDN 1641 56.92 22.43 20.66 

  DXM 1574 55.72 24.52 19.76 

  



45 
 

 

The distribution of the events that defines EFS are similar in the three protocols, as reported in table 

4.4. DXM seems to better control the relapse occurrence, except for COG-Capizzi, where the rate of 

relapse is similar in the two treatment groups, with a slight advantage of PDN over DXM.. 

 

Table 4.4: Distribution of the events by trial and treatment 

EFS events by treatment 

  DXM PDN Total 

Group Event type N % N % N % 

A
IE

O
P

-B
F

M
 Resistant 13 0.9 16 1.1 29 1.0 

Relapses 159 10.9 239 16.0 398 13.5 

Deaths 17 1.2 20 1.3 37 1.3 

SMN 21 1.4 16 1.1 37 1.3 

Alive in CCR 1250 85.6 1204 80.5 2454 83.0 

Total  1460 100 1495 100 2955 100 

C
O

G
 -

 C
A

P
IZ

Z
I 

 

Resistant 9 1.8 12 2.3 21 2.1 

Relapses 96 19.1 85 16.5 181 17.8 

Deaths 14 2.8 22 4.3 36 3.5 

SMN 2 0.4 9 1.7 11 1.1 

Alive in CCR 381 75.9 388 75.2 769 75.5 

Total  502 100 516 100 1018 100 

C
O

G
 -

  

 H
IG

H
 D

. 

Resistant 10 2.0 11 2.1 21 2.1 

Relapses 61 12.4 89 17.4 150 14.9 

Deaths 14 2.8 17 3.3 31 3.1 

SMN 3 0.6 9 1.8 12 1.2 

Alive in CCR 405 82.2 386 75.4 791 78.7 

Total  493 100 512 100 1005 100 
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4.2.1 ONE-TRIAL APPROACH 

 

We first explore here, in the first step for the evaluation of MRD surrogacy, if the four Prentice 

Criteria described in section 2.1 are satisfied. This kind of analysis is not a prerequisite for the meta-

analytic approach. It is not a must and more importantly the meta-analytic approach can be applied 

regardless of the results of the analysis based on the Prentice Criteria (Burzykowski et al. 2015).  

The results of the analyses on the 4 Prentice criteria below has been described point by point: 

1. treatment affects the surrogate;  

2. treatment affects the clinical end-point; 

3. surrogate and clinical end-point are associated; 

4. treatment effect disappears when adjusted by the surrogate. 

1) TREATMENT AFFECTS THE SURROGATE  

The first Prentice criteria is that there should be a significant impact of treatment on the surrogate 

endpoint (see model 1 in Section 2.1). We verified this criterion for each trial with a χ2 test of 

association to assess whether the surrogate distribution differs in the two treatment groups and we 

quantified the level of association with a cumulative OR (higher vs lower level of MRD) obtained 

from a Proportional Odds model. In Table 4.5 is reported the MRD stratification by trial and 

treatment.  

Table 4.5: MRD distribution by trial and treatment 

Group 
 

MRD Proportional Odds model χ2 test 

  

p-value Negative 
Low 

Positive 
Positive OR* (95% CI) p-value 

N % % % DXM vs PDN  

AIEOP-

BFM 

Pdn 1495 47.8 30.8 21.4 
0.83 (0.72-0.95) 0.006 0.001 

Dxm 1460 51.1 32.8 16.1 

COG 
Pdn 1028 64.3 16.3 19.5 

1.19 (1.003-1.42) 0.046 0.10 
Dxm 995 59.7 18.8 21.5 

COG 

Capizzi 

Pdn 516 63.8 16.7 19.6 
1.37 (1.07-1.74) 0.012 0.02 

Dxm 502 55.4 21.5 23.1 

COG 

High Dose 

Pdn 512 64.8 15.8 19.3 
1.03 (0.80-1.33) 0.790 0.97 

Dxm 493 64.1 16.0 19.9 

*Odds of Higher vs Lower MRD levels from a Proportional Odds model 
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In the AIEOP-BFM group the lower MRD categories are more represented (51.1% and 32.8 vs 47.8 

and 30.8 for DXM and PDN, respectively) than the class with Positive MRD (16.1 vs 21.4). The test 

of association is significant and the OR was 0.83 (Table 4.5), indicating that DXM affect MRD 

positivity more than PDN. The opposite is seen in the COG group, where we have observed a higher 

percentage of lower MRD in PDN than in DXM (OR=1.19). When the analysis was performed in the 

Capizzi and High Dose separately, the difference in the MRD was driven by the Capizzi protocol 

(OR=1.37), while in the High Dose protocol the MRD distributions were very similar (OR=1). Thus, 

the first Prentice Criteria is satisfied for AIEOP-BFM and COG-Capizzi only, with the treatment 

effect pointing in two different directions. 

 

 

2) TREATMENT AFFECTS THE CLINICAL END-POINT 

The second Prentice Criteria, stating that a significant impact of treatment on the true endpoint is 

needed (see model 2 in section 2.1), was tested with a Log-rank test comparing the survival profile 

in the two treatment groups. Table 4.6 shows that in the AIEOP-BFM protocol, treatment has a 

significant effect on EFS with an HR of 0.71, indicating that DXM is better than PDN at least in 

preventing relapses (see also Table 4.4). This is illustrated in Figure 4.1, which represents the Kaplan-

Meier (K-M) estimates of the EFS curves. In the COG-Capizzi trial, the two K-M curves are 

overlapping (Table 4.6 and Figure 4.2), whereas are significantly separated(p-values=0.01) in the 

COG-High Dose protocol, with a superiority of DXM. The second Criterion is thus satisfied for 

AIEOP-BFM and COG High Dose, but not for COG-Capizzi. 

 

Table 4.6: EFS estimated at 5 years from randomization by trial and treatment 

Group 
EFS at 5y (95% CI) Log-rank test 

p-value 

HR (95% CI) 

DXM PDN DXM vs PDN 

AIEOP-BFM 0.88 (0.86-0.89) 0.83 (0.81-0.84) 0.0002 0.71 (0.60-0.86) 

COG 0.80 (0.77-0.82) 0.77 (0.74-0.79) 0.03 0.82 (0.70-1.98) 

COG-Capizzi 0.77 (0.73-0.81) 0.77 (0.73-0.80) 0.65 0.95 (0.73-1.21) 

COG-High Dose 0.83 (0.79-0.86) 0.77 (0.73-0.80) 0.01 0.70 (0.54-0.92) 
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Figure 4.1: AIEOP-BFM - Event Free Survival curves by treatment 

 

 

Figure 4.2: COG-Capizzi - Event Free Survival curves by treatment 
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Figure 4.3: COG-High Dose - Event Free Survival curves by treatment 

 

 

 

3) SURROGATE AND CLINICAL END-POINT ARE ASSOCIATED 

The third Prentice Criterion, stating that a significant impact of the surrogate endpoint on the true 

endpoint (see model 3 in section 2.1), must be present, was verified by means of the Log-rank test 

(Table 4.7). The three Kaplan-Meier curves estimates of EFS reflecting MRD full stratification are 

represented for each protocol in Figures 4.4-4.6. Minimal Residual Disease significantly affected EFS 

in all the protocols, with a gradient that reflected the MRD pattern: patients with negative MRD had 

the best prognosis, while those with positive MRD had the worst prognosis. 

 

Table 4.7: True endpoint (EFS) estimated at 5 years from diagnosis by trial and MRD classification 

Group 

Event Free Survival at 5y (95% CI) 

Log-

Rank test 

p-value 

HR 

(95% CI) 

Low Positive 

vs Negative 

MRD 

HR 

(95% CI) 

Positive vs 

Negative 

MRD 

Negative 

MRD 

Low Positive 

MRD 

Positive 

MRD 

AIEOP-BFM 
0.93 

(0.92-0.94) 

0.85 

(0.83-0.87) 

0.64 

(0.60-0.68) 
<0.001 2.0 (1.6-2.5) 5.4 (4.3-6.7) 

COG 
0.87 

(0.85-0.89) 

0.77 

(0.72-0.81) 

0.54 

(0.49-0.59) 
<0.001 1.7 (1.3-2.3) 4.4 (3.4-5.4) 

COG-Capizzi 
0.86 

(0.83-0.89) 

0.75 

(0.68-0.80) 

0.54 

(0.47-0.60) 
<0.001 1.8 (1.3-2.6) 4.0 (3.1-5.3) 

COG-High Dose 
0.87 

(0.85-0.90) 

0.80 

(0.73-0.86) 

0.55 

(0.48-0.62) 
<0.001 1.6 (1.1-2.4) 4.8 (3.6-6.4) 
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Figure 4.4: AIEOP-BFM – Event Free Survival curves by MRD 

 

 

Figure 4.5: COG-Capizzi - Event Free Survival curves by MRD 
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Figure 4.6: COG-High Dose - Event Free Survival curves by MRD 
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4) TREATMENT EFFECT DISAPPEARS WHEN ADJUSTED BY THE SURROGATE 

The last and most important criterion states that the full effect of treatment upon the true endpoint has 

to be captured by the surrogate (see model 4 in section 2.1). To graphically check this statement the 

EFS curves by MRD stratification and treatment were depicted in Figures 4.7-4.9 and they were 

compared, within each level of MRD, with a Log-rank test.  

In the AIEOP-BFM trial, only the Low Positive MRD captures the treatment effect, as the curves are 

very close and the Log-rank test is not significant. The same situation is depicted in the COG-High 

Dose group that is characterized by more marked differences in the curves. The only trial that satisfies 

the fourth criterion, based on the test of significance, is COG-Capizzi. However, the levels of the two 

curves and their distances in both the negative and positive MRD classes are similar to those observed 

in the AIEOP-BFM trial, but resulted non significant probably due to a lower sample size. 

 

Figure 4.7: AIEOP-BFM - EFS curves by treatment and MRD stratification (thick line for DXM and 

thin line for PDN) 
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Figure 4.8: COG-Capizzi - EFS curves by treatment and MRD stratification (thick line for DXM and 

thin line for PDN) 

 

Figure 4.9: COG-High D - EFS curves by treatment and MRD stratification (thick line for DXM and 

thin line for PDN) 
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4.2.2 MULTI-TRIAL APPROACH 

 

As indicated in section 2.2.2, the Cox proportional hazard model with a Weibull trial specific baseline 

hazard function was considered for the estimation of the trial unit specific treatment effects on the 

EFS (15), while the Proportional Odds model was used for MRD (14). The bivariate model was 

defined according to the Plackett copula (13). 

Results considering both a model with no adjustment and after adjustment with age and WBC at 

diagnosis are reported in Table 4.8. The resulting estimate of the individual level association can be 

interpreted as a global (constant) odds ratio: for example the odds of surviving beyond time t given 

Negative or Low Positive MRD is at least 4.08 times higher than the odds for those with Positive 

MRD, or, in other hand, there is a 4.08-fold greater odds of surviving any specified time t for patients 

whose MRD is lower as compared to higher MRD levels. This suggests that there is a considerable 

association between MRD and the EFS time at individual level, after adjusting for treatment. 

Table 4.8: Individual level association and Trial level association 

 Patient-level Association Trial-level association 

Model 𝜃𝑖𝑛𝑑𝑖𝑣
2  95% CI 𝑅𝑡𝑟𝑖𝑎𝑙

2  95% CI 

No adjustment 4.08 (3.53-4.63) 0.15 (0-0.35) 

With adjustment* 3.77 (3.26-4.28) 0.14 (0-0.34) 

*age and WBC at diagnosis 

 

The results of the second stage analysis in terms of trial level association are also reported in Table 

4.8. The 95% confidence intervals for 𝑅𝑡𝑟𝑖𝑎𝑙
2  were obtained by finding values of these parameters, for 

which the corresponding estimates were equal to 2.5% and 97.5% quantiles of the cumulative 

distribution function of R2 (Fisher 1928, Algina 1999). Contrary to the patient level evaluation, at the 

trial level the effects of the treatment on MRD and on EFS were poorly correlated (𝑅𝑡𝑟𝑖𝑎𝑙
2 =0.15), 

meaning that MRD does not permit a reliable prediction of treatment effect on EFS.  

The low association between the estimated trial-specific treatment effect for EFS and MRD can be 

observed in Figures 4.10-4.11, without and with adjustment, respectively. The circles represent the 

trial units and their size is proportional to their sample size, while the line is the prediction line from 

an estimated weighted regression analysis, with weights equal to the trial size. In the majority of the 

trial units DXM induced an advantage in EFS, but this seems not to be related with the benefit 

obtained on the MRD control (i.e. less MRD positivity), in the sense that only a part of the trial units 

presented a negative OR. Noticeably, almost all the trial units presenting with positive log(HR), which 

means that PDN performs better than DXM in terms of EFS, are from the COG-Capizzi protocol. 
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When the information on prognostic factors was taken into account, allowing for adjustment in the 

marginal models, the estimates of 𝜃𝑖𝑛𝑑𝑖𝑣
2  𝑎𝑛𝑑 𝑅𝑡𝑟𝑖𝑎𝑙

2  changed at the individual level, but not at the trial 

level. 

 

Figure 4.10: Treatment effects on MRD (categorical) vs treatment effect on EFS. Model with no 

adjustment 

 

Figure 4.11: Treatment effects on MRD (categorical) vs treatment effect on EFS. Model with 

adjustment 
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4.2.2.1 Sensitivity analyses 

 

In order to evaluate how sensitive are the results with respect to patients selection, we considered two 

different analysis excluding: 

1) high risk patients 

2) older patients. 

 

1) NO HIGH RISK PATIENTS 

Of the 607 patients that we did not consider in this analysis, 293 were from AIEOP-BFM, 105 from 

COG-Capizzi and 105 (21%) from COG-High Dose. In addition, a trial unit of 104 patients was 

excluded because there was no EFS event in one treatment group (Campania from AIEOP-BFM). 

The results obtained on 4371 patients are reported in Table 4.9 and Figures 4.12-4.13 and indicated 

that the level of both the individual and the trial association decreased as compared to the global 

analysis. The final message on MRD surrogacy does not change much, also considering a more 

homogeneous group of ALL patients that excludes subjects with negative clinical feature at diagnosis 

(or based on MRD). A wider heterogeneity is observed in the treatment effects on MRD estimated by 

means of the copula model, with trial-units 40 (C ND/SD/MN/IA/NE) and 30 (H 

NY/VT/NH/ME/MA/CT) much separated. 

Table 4.9: Individual level association and Trial level association 

 Patient-Level Association Trial-Level association 

Model 𝜃𝑖𝑛𝑑𝑖𝑣
2  95% CI 𝑅𝑡𝑟𝑖𝑎𝑙

2  95% CI 

No adjustment 2.96 (2.51-3.40) 0.08 (0-0.23) 

With adjustment* 2.83 (2.40-3.25) 0.08 (0-0.23) 

*age and WBC at diagnosis 
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Figure 4.12: Treatment effects on MRD (categorical) vs treatment effect on EFS. Model with no 

adjustment 

 

 

 

Figure 4.13: Treatment effects on MRD (categorical) vs treatment effect on EFS. Model with adjustment 
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2) NO OLDER PATIENTS 

The second exploratory analysis excluded 1621 patients: 1546 due to the age indication (>10 years) 

and 75 patients from three trial units  without at least one EFS event for each treatment arm (C 

NY/VT/NH/ME/MA/CT, H NY/VT/NH/ME/MA/CT, H Miscellanea). In the analysis on 3357 

patients, while the patient level association increased to 4.28 as compared to the global analysis, the 

trial level association was approximately zero (Table 4.10). This absence of correlation is evident in 

Figure 4.14 where we can also observe a more wide variability of the estimated treatment effects, 

both in terms of HR and OR. 

The model with adjustment is not reported because it did not converge. 

Table 4.10: Individual level association and Trial level association 

 Patient-Level Association Trial-Level association 

Model 𝜃𝑖𝑛𝑑𝑖𝑣
2  95% CI 𝑅𝑡𝑟𝑖𝑎𝑙

2  95% CI 

No adjustment 4.28 (3.53-5.03) 0.02 (0-0.10) 

With adjustment*     

*WBC at diagnosis 

 

 

Figure 4.14: Treatment effects on EFS versus effect on category MRD – No older patient - Model with 

no adjustment 

 

  

E
ff

e
c
t 

o
n

 l
o

g
-H

a
z
a
rd

 (
E

F
S

 e
v
e
n

ts
)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Effect on log-odds of MRD high

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Treatment effects on EFS versus effect on category MRD

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

31

3233

34

35

36

37
38

39

40

42

43



59 
 

4.2.3 ANALYSIS ON MRD IN CONTINUOUS 

 

We made an attempt to evaluate MRD in continuous as a surrogate of EFS with a meta-analytic 

approach that was developed ad-hoc for this clinical application. The overall distribution of the MRD 

on the natural scale is shown in Figure 4.15a, where a skewed behaviour is evident with a marked 

peak on zero. The horizontal axis was set at 3,thus excluding a certain number of extreme 

observations. 

Different transformations were tested in order to make the distribution more regular and the best one 

was the logarithm. The log-transformed MRD measures are shown in Figure 4.15b (from the observed 

minimum and maximum), with zero values of MRD that were set by default equal to 0.0000021 

(minimum observed). This graphic clearly suggest a mixture of a point distribution at zero and a 

continuous (normal) distribution on the right side. For simplicity, we analysed the log transformed 

MRD assuming a gaussian distribution; other situations will be evaluated in the future by means of 

different Copula models based on particular marginal distributions.  

 

Figure 4.15a-b: MRD distribution on the original scale (a) and on the logarithm scale (b) 

a b 

  
 

The analysis was conducted on the 3215 patients from the AIEOP and COG groups who had the 

measure of MRD available, using the macro implemented in SAS for the Clayton and Hougaard 

Copulas. The estimates of the individual level association θ is near 1 for both the Clayton and the 

Hougaard Copulas, indicating that MRD and EFS are not associated at the individual level. The 

performance is not good also at the trial level as a 𝑅𝑡𝑟𝑖𝑎𝑙
2 =0.17 was obtained. 

The lack of association at the individual level is not in line with the results obtained so far, and this 

can be justified by the fact that we made a very strong assumption that does not capture the peak at 

0. More complex models should be developed for this at the cost of considerable computational 

challenges. 
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4.3 VALIDATION OF EFS FOR OS 

 

The second aim of this study is to analyse if EFS can be considered a surrogate for OS in LLA. As 

anticipated in section 3.2, individual data on 6905 patients from different trials were evaluated, 

including also the 1400 EORTC patients in the three big trial units that identify: Belgium, Portugal 

and France. 

The distribution of the EFS events by trial/group and treatment group is reported in Table 4.11. No 

marked difference with respect to the patients used for the primary analysis on MRD was observed 

in this augmented sample. The pattern of events in EORTC is very similar to AIEOP-BFM childhood 

patients. 

Table 4.11: Distribution of the EFS events by Trial and Treatment 

  Treatment  

  DXM PDN Total 

Group Events type N % N % N % 

A
IE

O
P

-B
F

M
 

Resistant 46 2.9 33 2.1 79 2.5 

Relapses 176 11.2 256 16.1 432 13.7 

Deaths 22 1.4 21 1.3 43 1.4 

SMN 21 1.3 17 1.1 38 1.2 

Alive in C-CR 1306 83.2 1264 79.5 2570 81.3 

Total  1571 100 1591 100 3162 100 

C
O

G
 -

 C
A

P
IZ

Z
I 

 Resistant 11 2.1 13 2.5 24 2.3 

Relapses 99 18.9 88 16.7 187 17.8 

Deaths 14 2.7 22 4.2 36 3.4 

SMN 2 0.4 9 1.7 11 1.0 

Alive in CCR 398 75.9 394 74.9 792 75.4 

Total  524 100 526 100 1050 100 

C
O

G
 -

  

 H
IG

H
 D

. 

Resistant 10 1.9 11 2.1 21 2.0 

Relapses 72 14.0 90 17.1 162 15.5 

Deaths 14 2.7 19 3.6 33 3.2 

SMN 3 0.6 9 1.7 12 1.2 

Alive in CCR 417 80.8 398 75.5 815 78.1 

Total  516 100 527 100 1043 100 

E
O

R
T

C
 

Resistant 16 1.9 11 1.3 27 1.6 

Relapses 99 12.0 118 14.3 217 13.2 

Deaths 11 1.3 12 1.5 23 1.4 

SMN 3 0.4 3 0.4 6 0.4 

Alive in CCR 697 84.4 680 82.5 1377 83.5 

Total  826 100 824 100 1650 100 
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4.3.1 MULTI-TRIAL APPROACH 

 

For EFS to be considered as a valid surrogate for OS with respect to DXM and PDN, two preliminary 

conditions must be met. The first condition requires that EFS and OS are correlated, while the second 

condition requires that the treatment effects evaluated on both the time to event endpoints are also 

correlated. The strength of the correlations reflects the quality of the surrogate, with a perfect 

surrogate that is expected to induce a correlation coefficient equal to 1. 

The first condition was tested by performing a weighted linear regression analysis (WLRA) between 

trial unit specific Kaplan-Meier estimates of OS versus EFS evaluated in different time points. Data 

for each trial unit were weighted by the effective sample size at the time point considered for 

estimation. WLRA was performed with EFS at 3 years versus OS at 5 years (Figure 4.16 and Table 

4.13) and EFS at 5 years versus OS at 7 years (Figure 4.17 and Table 4.13). For the trial specific 

Kaplan-Meier estimates of OS5y and EFS3y, the WLRA equation was OS5y= 0.32 + 0.68*EFS3y with 

a coefficient of determination of R2=0.58, indicating that about more than half of the variance could 

be explained by the linear regression. Similarly, for the trial specific Kaplan-Meier estimates of OS 

at 7 years versus EFS at 5 years, the WLRA equation was OS7y = 0.26 + 0.77*EFS5y with R2=0.59. 

These results suggest that condition one can be considered reasonably satisfied. In Figures 4.16-4.17, 

each trial unit is represented with two circles, one for each treatment: orange indicates 

Dexamethasone, while green Prednisone. 

Table 4.13: Results of the Weighted Linear Regression 

Equation R2 

OS5y= 0.32 + 0.68*EFS3y 0.58 

OS7y = 0.26 + 0.77*EFS5y 0.59 

 

Also the second condition was tested by fitting a weighted linear regression model on the treatment 

effects in terms of Hazard Ratio (log-transformed) estimated on both EFS and OS by means of Cox 

proportional hazard models. The WLRA fitted equation was log(HROS) = 0.21+0.96*log(HREFS) with 

a coefficient of determination R2=0.44, indicating that 44% of the variance could be explained by the 

linear regression (Figure 4.18). 
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Figure 4.16: Kaplan Meier estimates of EFS (3y) versus OS (5y) by treatment (in orange DXM, in green 

PDN) 

 

 

Figure 4.17: Kaplan Meier estimates of EFS (3y) versus OS (5y) by treatment (in orange DXM, in green 

PDN) 
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Figure 4.18: Treatment effect on OS versus effect on EFS. 

 

 

 

The results of the meta-analytic approach to validation in terms of the degree of association at 

individual and trial level is reported in Table 4.14.  

Table 4.14: Individual level association and Trial level association 

 Patient-Level Association Trial-Level association 

Model τ 95% CI R2
trial 95% CI 

No adjustment 0.94 (0.93-0.95) 0.62 (0.44-0.79) 

With adjustment* 0.93 (0.928-0.94) 0.65 (0.48-0.81) 

*age and WBC at diagnosis 

 

The Kendall concordance coefficient τ, which is the copula association parameter, is 0.94 and 0.93 

in the non-adjusted and adjusted analysis, respectively. These values indicate that the degree of 

association between EFS and OS, at the level of the individual patient, is very high: each patient there 

is an approximately 94% chance to observe a short OS given a short EFS. The R2
trial ranges from 0.62 

to 0.65 for the adjusted and non-adjusted analysis, as it is possible to observe in Figures 4.19-4.20, 

showing the estimated treatment effects on EFS (log HR) and OS (log HR) (see also Table 4.15 for 

the estimated WLRM). 
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Table 4.15: Results of the Weighted Linear Regression 

Model Equation 

No adjustment Log HR(OS)= 0.08 + 1.18* Log HR(EFS) 

With adjustment* Log HR(OS)= 0.07 + 1.20* Log HR(EFS) 

 

The log(HR) estimated from the Cox model applied to each single trial unit in Figure 4.18 and those 

obtained from the proportional hazard model in the copula (Figure 4.19) are quite different due to the 

fact that the latter analysis accounts for the hierarchical structure of the data that consider the trial 

units within each protocol/group.  

Of note is the behavior of the trial unit 40 (C ND/SD/MN/IA/NE) that, while presenting with a slight 

effect of PDN on EFS, it is characterized by a marked benefit on survival that points in favor of DXM. 

However, this seems not to influence much the analysis. 

In conclusion, EFS can be considered a valid surrogate for OS . 

 

Figure 4.19: Treatment effect on OS versus effect on EFS. Model with no adjustment 
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Figure 4.20: Treatment effect on OS versus effect on EFS. Model with adjustment 

 

 

4.3.1.1 Sensitivity analysis 

 

Two sensitivity analyses were also performed in this context on a selection of more homogeneous 

patients, thus excluding 1) high risk and 2) older  patients. 

1) NO HIGH RISK PATIENTS 

Considering the 6152 patients presenting without negative clinical features at diagnosis, we obtained 

a marginal improvement both in τ and R2
trial (Table 4.16 and Figure 4.21-4.22), despite the presence 

on the trial unit 40 (C ND/SD/MN/IA/NE), which seems to be more influential here than in the global 

analysis of the previous section. Of note, in this trial unit there is a change in the direction of the 

treatment effect on EFS, which now became coherent with the one observed on OS. In general, the 

estimated treatment effect in this subpopulation of patients are more marked as compared to the ones 

combined in the general population. 

Table 4.16: Individual level association and Trial level association 

 Patient-Level Association Trial-Level association 

Model τ 95% CI R2
trial 95% CI 

No adjustment 0.96 (0.96-0.97) 0.67 (0.51-0.83) 

With adjustment* 0.96 (0.96-0.96) 0.67 (0.51-0.82) 

*age and WBC at diagnosis 
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Figure 4.21: Treatment effect on OS versus effect on EFS – No HR. Model with no adjustment 

 

 

Figure 4.22: Treatment effect on OS versus effect on EFS – No HR. Model with adjustment 
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2) NO OLDER PATIENTS 

Considering a more restrictive condition on age, we selected 4899 ALL patients with age <10y that 

mainly involved patients from the COG-groups. The analysis confirmed a high level of individual 

association, with τ similar to that obtained in the global assessment (Table 4.17), while the 

performance at the trial level strongly worsened, as the R2
trial halved. This can be confirmed by the 

graphical representation of the Copula based estimates in Figure 4.23: the points around the regression 

line are much more spread than those obtained in the global analysis. The model with adjustment is 

not reported because it did not converge. 

 

Table 4.17: Individual level association and Trial level association 

 Patient-Level Association Trial-Level association 

Model τ 95% CI R2
trial 95% CI 

No adjustment 0.95 (0.945-0.958) 0.35 (0.12-0.57) 

With adjustment* - - - - 

*WBC at diagnosis 

 

Figure 4.23: Treatment effect on OS versus effect on EFS – No older patients. Model with no 

adjustment 
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5 DISCUSSION 

 

The monitoring of minimal residual disease (MRD) has become a routine clinical practice in frontline 

treatment of childhood ALL and it is crucial in refining the individual risk class. MRD evaluated 

early in the course of the disease has proven to be one of the strongest prognostic factor in ALL and 

this has encouraged clinicians to define it also as surrogate endpoint. Indeed, the two concept are very 

different, a prognostic factor is a measurement that is associated with the clinical outcome in the 

absence of therapy or with the application of a standard therapy that patients are likely to receive 

(Clark 2006); a surrogate endpoint is a biomarker that is intended to substitute a clinical endpoint 

when specific treatments are applied. A surrogate endpoint is expected to predict the clinical outcome. 

In this work, we have assessed if MRD, measured at the end of the induction, can be qualified as 

surrogate for EFS in childhood B-precursor ALL patients treated with DXM and PDN in the induction 

phase. To do this we have considered data from three of the most important groups in the world that 

conduct innovative research in this field, and a statistical meta-analytic approach to validation that is 

now considered the gold standard. An important issue related to this approach is the minimal number 

of trials involved in the multi-trial analysis. One common solution to the problem of too few similar 

trials consists in performing trial-level surrogacy analyses on trial sub-units (e.g., centers within 

trials), thereby artificially increasing the trial-level sample size. In our case, we had three trials at 

disposal, which were not sufficient to implement the meta-analytic approach and for this reason the 

treating centers were aggregated according to geographical areas. 

The included trials are different in some aspects, e.g. enrolled patients, characteristics of the induction 

treatment, post induction therapies and schedules. The presence of these diversities, which might be 

seen as additional sources of heterogeneity in the analysis, is indeed a strength that can be defended 

on the ground of generalizability of the results of the validation process to future clinical trials and 

treatments. More importantly, the methods used for the measurement of MRD are different (PCR in 

Europe and FCM in the USA) and also the way in which MRD is collected (continuous for AIEOP 

and COG; categorical in the BFM and EORTC groups, with classes that cannot be harmonized). We 

thus performed the analysis considering MRD as an ordinal surrogate endpoint, defining the three 

MRD ordered classes as closely to the clinical practice (i.e. MRD Negative, Low Positive and 

Positive). We also focused on the analysis of the subset of MRD data in continuous, and for this 

purpose we developed an ad-hoc method (implemented in a SAS macro) as no specific approach was 

available in the statistical literature to validate a continuous surrogate for a time to event endpoint. In 

this extension, the explicit use of the copula models, which is one of the hallmark of the meta-analytic 

approach, allows the joint modelling of different types of endpoints and this broaden the range of 
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possible models that can be formulated. An additional advantage is that the meta-analytic method 

fully captures the two dimensions of the validation of a proposed surrogate, exploring both the 

individual and the trial level association. 

We implemented the meta-analytic approach, using the analyses based on the Prentice’s Criteria as 

explorative, and we found that MRD, no matter how it is measured (in categories or in continuous), 

is a poor surrogate for EFS at the trial level and this does not allow reliable prediction of the treatment 

effects on EFS. In contrast, there is a strong association between MRD and EFS time for individual 

patients, after adjusting for treatment. The results are confirmed also in the subgroup of the patients 

that excluded high risk patients and those < 10 years old. This seemingly contradictory findings can 

coexist as they refers to different areas of competence. The individual level surrogacy quantify the 

attitude of the two measurements to co-vary in the same subject, whereas the trial level surrogacy is 

related to the joint behaviour of the subjects within a trial, based on their treatment allocation. The 

clinical trialist or the statistician will primarily be interested in the trial level surrogacy, while the 

treating clinician will consider the individual level surrogacy as the more relevant quantity because 

he will be interested in predicting the behaviour of a given patient. 

In this analysis we have not completely addressed an important issue related to the complex 

interaction between the potential surrogate and the true endpoint. In principle, MRD should lie on the 

causal pathway of the treatment, but in the reality, treatment decisions that might affect the true 

endpoint are made after observing the surrogate. MRD is observed after the induction phase of the 

treatment, while the true endpoint is observed under subsequent therapies that may confound the 

effect of DXM or PDN on the true endpoint. What we have assumed here is that the randomized post-

induction treatments have limited impact on the analyses since they are similar in the final outcome, 

based on the results of the different study protocols (Conter et al. 2000, Domenech et al. 2014, 

Borowitz MJ et al. 2015). 

Finally, the results on the appropriateness of EFS as surrogate endpoint for OS are more promising, 

even if the results of the sensitivity analysis suggested that EFS is not deemed acceptable as surrogate 

in the subset of younger patients, probably due to the imprecision of the trial-units estimates. 

In conclusion, in a trialist perspective, MRD (detected early) cannot be used as a clinical endpoint 

that replaces EFS in trials involving traditional induction therapies in B-ALL children. On the 

contrary, we can maintain EFS as primary endpoint in substitution of OS that is considered the hard 

endpoint in cancer. 
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SUPPLEMENT 

 

Appendix A: Bivariate copula 

 

Some general definitions and properties of the bivariate copula models that were used in section 2.2 are 

reported here. An introduction to this topic that discuss also the more general multivariate copula can be found 

in Nelsen (1999). 

 

Definition 1: A bivariate copula C is a function from [0,1]×[0,1] into [0,1] such that: 

1. For every u, v in [0,1], C(u,0) = C(0,v) = 0, C(u,1) = u and C(1,v) = v. 

2. For every u1 ≤ u2 and v1 ≤ v2 in [0,1], 

C(u2,v2) - C(u2,v1) - C(u1,v2) + C(u1,v1) ≥ 0 

It follows from this definition that a copula is a bivariate distribution function with uniform margins. 

In case of independence of the two margins, the so-called product copula is obtained: 

CP(u,v)=uv 

 

Theorem 1: Let X1 and X2 be random variables with F, F1 and F2 the joint distribution function and the 

marginal respectively. There exists a copula function Cx1x2 such that 

F(x1,x2) = Cx1x2 {F1(x1), F2(x2)}. 

If F1 and F2 are continuous, then Cx1x2 is unique, otherwise Cx1x2 is uniquely determined on Ran(F1) × Ran 

(F2), as before. 

We can interpret a copula as a function that establishes a particular dependence structure on two given random 

margins. The following theorem formalizes this fact. 

 

Theorem 2: : Let X1 and X2 be continuous random variables with margins F1 and F2 ; respectively. The 

variables X1 and X2 are independent if and only if the corresponding copula Cx1x2 equals the product copula 

Cx1x2≡Cp. 

 

We present some examples of copula functions used in this work, i.e. Clayton, Placket and Hougaard. 

 Clayton Copula 

𝐶𝜃(𝑢, 𝑣) =  (𝑢
1−𝜃 + 𝑣1−𝜃 − 1)

1
1−𝜃 

with 

θ ϵ [-1, +∞) and θ≠0 

C0(u,v)=uv 

C-1= max(u+v-1,0) 
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C+∞= min(u,v) 

 Placket Copula 

𝐶𝜃(𝑢, 𝑣) =  
[1 + (𝜃 − 1)(𝑢 + 𝑣)] − √[1 + (𝜃 − 1)(𝑢 + 𝑣)]2 − 4𝑢𝑣𝜃(𝜃 − 1)

2(𝜃 − 1)
 

with 

θ ϵ (0, +∞) and θ≠1 

C1(u,v)=uv 

C0= max(u+v-1,0) 

C+∞= min(u,v) 

 Gumbel-Hougaard Copula 

𝐶𝜃(𝑢, 𝑣) =  𝑒𝑥𝑝 {− [(− ln 𝑢)
1
𝜃 + (− ln 𝑣)

1
𝜃]
𝜃

} 

with 

θ ϵ [1, +∞) and θ≠1 

C1(u,v)=uv 

C1= max(u+v-1,0) 

C+∞= min(u,v) 
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Appendix B –  

SAS MACRO for the evaluation of a continuous surrogate for a time to event endpoint: Clayton 

Copula 

/*These input are necessary: 

- file "dataset" containing one record for each patient with measurements for both the true and the surrogate 

endpoint, with variables: 

cens - measurement of the failure-time endpoint; 

time - censoring indicator (1=event, 0=censoring); 

surr - measurement of the continuous (normally distributed) surrogate; 

treat - treatment indicator (0 or 1); 

center - center/trial number (consecutive numbers: 1, 2, 3, ...). 

- file "estab" containing estimated center/trial-specific coefficients for the linear regression model for the 

continuous surrogate, with variables: 

intercept - estimated intercept; 

effect      - estimated treatment effect (difference in means); 

center - center/trial number (consecutive numbers: 1, 2, 3, ...). 

- file "estt" containing estimated center/trial-specific coefficients effects for the Weibull model for the true 

endpoint (as 

obtained by PROC LIFEREG), with variables: 

intercept - estimated intercept; 

treat     - estimated treatment effect (difference in means); 

SCALE - estimated scale parameter ; 

center - center/trial number (consecutive numbers: 1, 2, 3, ...). 

*/ 

proc iml; 

reset log; 

 

/*1 - define loglikelihood function*/ 

 

start L_lik(param) /*define param*/ 

                 global(time,cens,surr,treat,numcents,center); 

lik=0; 

        theta=exp(exp(param[,1])); /*exp(exp) - to constrain to be  >1 (from definition clayton copula)*/ 

 

do c=1 to numcents; 

 

        sigma=exp(param[,2+(c-1)#6]); 

        mu=param[,3+(c-1)#6]; 

        alpha=param[,4+(c-1)#6]; 

        lambda=exp(param[,5+(c-1)#6]); /*exp because the parameter can have only positive values */ 

        p=param[,6+(c-1)#6]; 

        beta=(param[,7+(c-1)#6]); 

 

        t=time[loc(center=c),]; 

            delta=cens[loc(center=c),]; 

        s=surr[loc(center=c),]; 

        z=treat[loc(center=c),]; 

 

*       f1=logsdf('NORMAL',s,mu+alpha#z,sigma);/*log S(s)*/ /*I didn't use it*/ 
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        f2=-lambda#exp(beta#z)#(t##p); /*log S(t)*/ 

        f6=exp(-lambda#exp(beta#z)#(t##p)); /*S(t)*/ 

        f4=p#lambda#exp(beta#z)#(t##(p-1))#f6; /*f(t)--> Surv#Hazard – SAS parameterization*/ 

        f3=pdf('NORMAL',s,mu+alpha#z,sigma); /*f(s)*/ 

        f5=sdf('NORMAL',s,mu+alpha#z,sigma); /*S(s)*/ 

*    print f2 f3 f4 f5 f6; 

 

        /*define log-likelihood*/ 

 

        cop=(f5)##(1-theta)+(f6)##(1-theta)-1; 

        a=log(theta)+((2#theta-1)/(1-theta))#log(cop)-theta#log(f5)-theta#log(f6)+log(f3)+log(f4); 

        b=(theta/(1-theta))#log(cop)-theta#log(f5)+log(f3); 

        likc=sum(delta#a+(1-delta)#b); 

        lik=lik+likc; 

end; 

 

  return(lik); 

finish L_lik; 

 

/*2 - dataset*/ 

use dataset; 

read all var{time} into time; 

read all var{cens} into cens; 

read all var{surr} into surr; 

read all var{treat} into treat; 

read all var{center} into center; 

close dataset; 

 

cents=unique(center)`; 

numcents=nrow(cents); 

 

print cents numcents; 

 

use estsab; 

read all var{intercept} into Intercepts; 

read all var{effect} into effects; 

read all var{center} into centers; 

close estsab; 

params=Intercepts||effects||centers; 

 

print params; 

 

use estt; 

read all var{Intercept} into Interceptt; 

read all var{treat} into treatt; 

read all var{_SCALE_} into _SCALE_t; 

read all var{center} into centert; 

close estt; 
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paramt=Interceptt||treatt||_SCALE_t||centert; 

 

print paramt; 

 

use Covparm; 

read all var{residual} into residual; /*Residual*/ 

close Covparm; 

 

/*3 - subroutine*/ 

 

        x=J(1,1+6#numcents,.); /*J(nrow,ncol,value);*/ 

 

*        mattrib x colname={'Theta' 'Sigma' 'Mu' 'Alpha' 'Lambda' 'p' 'Beta'}; 

 

        x[,1]=-9; 

 

do c=1 to numcents; 

 

        x[,2+(c-1)#6]=0.5#log(residual[c,]); /*0.5#LOG(Residual)*/ 

        x[,3+(c-1)#6]=Intercepts[c,];/*intercept*/ 

        x[,4+(c-1)#6]=effects[c,]; /*Effect of treat on S*/ 

        x[,5+(c-1)#6]=-(Interceptt[c,]/_SCALE_t[c,]); /* -(intercept/scale)*/ 

        x[,6+(c-1)#6]=1/_SCALE_t[c,]; /*1/scale*/ 

        x[,7+(c-1)#6]=-(treatt[c,]/_SCALE_t[c,]); /* -(regression coeffincient/scale)*/ 

 

end; 

 

        xopt=J(1,3,.); 

        xopt[,1]=1; /*indicates whether the problem is minimization or maximization: 1=specifies a 

maximization problem*/ 

        xopt[,2]=2; /*specifies the amount of printed output. 4=the approximate covariance matrix of parameter 

esti- mates is printed if opt[3] is set*/ 

        xopt[,3]=0; /*Selects a scaling for the Hessian matrix, G: default for NLPNRR is 0= No scaling is done*/ 

        /*The other options are not for NLPNRR*/ 

 

        print x ; 

        print xopt; 

    maxiter=150; 

    termin=maxiter||J(1,12,.); /*why 12?*/ 

    termin[1,4]=0; 

    termin[1,6]=0.001; 

 

call nlpnrr(rc,est,"L_lik",x,xopt,,termin); 

/*CALL NLPNRR( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);*/ 

/*"Ridge" value should be zero, if not, the hessian is negative and the procedure don't converge. 

        Solution? Change number of interation in subroutine, example in our case:"maxiter"*/ 

 

print est; 
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sigma=J(1,numcents,.); 

mu=J(1,numcents,.); 

alpha=J(1,numcents,.); 

lambda=J(1,numcents,.); 

p=J(1,numcents,.); 

beta=J(1,numcents,.); 

 

theta=exp(exp(est[,1]));  

 

do c=1 to numcents; 

 

        sigma[,c]=exp(est[,2+(c-1)#6]); 

        mu[,c]=est[,3+(c-1)#6]; 

        alpha[,c]=est[,4+(c-1)#6]; 

        lambda[,c]=exp(est[,5+(c-1)#6]);  

        p[,c]=est[,6+(c-1)#6]; 

        beta[,c]=est[,7+(c-1)#6]; 

 

end; 

 

 print theta ; 

 print sigma; 

 print mu; 

 print alpha; 

 print lambda; 

 print p; 

 print beta; 

 param_s=theta||sigma||mu||alpha||lambda||p||beta; 

 

/* Standard Error - "Delta method" */ 

 

call nlpfdd(f,g,h,"L_lik",est); 

/*CALL NLPFDD( f, g, h, "fun", x0, <,par, "grd">);*/ 

 

* print h; /*Hessian matrix*/ 

 

var=inv(-h);  

se=t(sqrt(vecdiag(var))); /*standard error*/ 

 

* print var; 

print (t(se)); 

 

se_est=J(1,1+6#numcents,.); 

 

se_est[,1]=(exp(exp(est[,1]))#exp(est[,1]))#se[,1]; /*theta*/ 

 

do c=1 to numcents; 
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se_est[,2+(c-1)#6]=exp(est[,2+(c-1)#6])#se[,2+(c-1)#6]; /*sigma*/ 

se_est[,3+(c-1)#6]=se[,3+(c-1)#6]; /*mu*/ 

se_est[,4+(c-1)#6]=se[,4+(c-1)#6]; /*alpha*/ 

se_est[,5+(c-1)#6]=exp(est[,5+(c-1)#6])#se[,5+(c-1)#6]; /*lambda*/ 

se_est[,6+(c-1)#6]=se[,6+(c-1)#6]; /*p*/ 

se_est[,7+(c-1)#6]=se[,7+(c-1)#6]; /*beta*/ 

 

end; 

 

print (t(param_s)) (t(se_est)); 

 

/*Confidence Intervals*/ 

 

lo_sigma=J(1,numcents,.); 

up_sigma=J(1,numcents,.); 

lo_mu=J(1,numcents,.); 

up_mu=J(1,numcents,.); 

lo_alpha=J(1,numcents,.); 

up_alpha=J(1,numcents,.); 

lo_lambda=J(1,numcents,.); 

up_lambda=J(1,numcents,.); 

lo_p=J(1,numcents,.); 

up_p=J(1,numcents,.); 

lo_beta=J(1,numcents,.); 

up_beta=J(1,numcents,.); 

 

lo_theta=exp(exp(est[,1]-2#se[,1])); 

up_theta=exp(exp(est[,1]+2#se[,1])); 

 

do c=1 to numcents; 

 

lo_sigma[,c]=exp(est[,2+(c-1)#6]-2#se[,2+(c-1)#6]); 

up_sigma[,c]=exp(est[,2+(c-1)#6]+2#se[,2+(c-1)#6]); 

lo_mu[,c]=est[,3+(c-1)#6]-2#se,3+(c-1)#6]; 

up_mu[,c]=est[,3+(c-1)#6]+2#se[,3+(c-1)#6]; 

lo_alpha[,c]=est[,4+(c-1)#6]-2#se[,4+(c-1)#6]; 

up_alpha[,c]=est[,4+(c-1)#6]+2#se[,4+(c-1)#6]; 

lo_lambda[,c]=exp(est[,5+(c-1)#6]-2#se[,5+(c-1)#6]); 

up_lambda[,c]=exp(est[,5+(c-1)#6]+2#se[,5+(c-1)#6]); 

lo_p[,c]=est[,6+(c-1)#6]-2#se[,6+(c-1)#6]; 

up_p[,c]=est[,6+(c-1)#6]+2#se[,6+(c-1)#6]; 

lo_beta[,c]=est[,7+(c-1)#6]-2#se[,7+(c-1)#6]; 

up_beta[,c]=est[,7+(c-1)#6]+2#se[,7+(c-1)#6]; 

 

end; 
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ic=lo_theta||up_theta||lo_sigma||up_sigma||lo_mu||up_mu||lo_alpha||up_alpha||lo_lambda||up_lambda||lo_p||up

_p||lo_beta||up_beta; 

 

print (t(lo_theta)) (t(up_theta)); 

print (t(lo_sigma)) (t(up_sigma)); 

print (t(lo_mu)) (t(up_mu)); 

print (t(lo_alpha)) (t(up_alpha)); 

print (t(lo_lambda)) (t(up_lambda)); 

print (t(lo_p)) (t(up_p)); 

print (t(lo_beta)) (t(up_beta)); 

 

quit; 
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Appendix C –  

SAS MACRO for the evaluation of a continuous surrogate for a time to event endpoint: 

Hougaard Copula 

 

/*These input are necessary: 

- file "dataset" containing one record for each patient with measurements for both the true and the surrogate 

endpoint, with variables: 

cens - measurement of the failure-time endpoint; 

time - censoring indicator (1=event, 0=censoring); 

surr - measurement of the continuous (normally distributed) surrogate; 

treat - treatment indicator (0 or 1); 

center - center/trial number (consecutive numbers: 1, 2, 3, ...). 

- file "estab" containing estimated center/trial-specific coefficients for the linear regression model for the 

continuous surrogate, with variables: 

intercept - estimated intercept; 

effect      - estimated treatment effect (difference in means); 

center - center/trial number (consecutive numbers: 1, 2, 3, ...). 

- file "estt" containing estimated center/trial-specific coefficients effects for the Weibull model for the true 

endpoint (as 

obtained by PROC LIFEREG), with variables: 

intercept - estimated intercept; 

treat     - estimated treatment effect (difference in means); 

SCALE - estimated scale parameter ; 

center - center/trial number (consecutive numbers: 1, 2, 3, ...).*/ 

 

 

proc iml; 

 

reset log; 

 

/*1 - define loglikelihood function*/ 

 

start L_lik(param) /*define param*/ 

                 global(time,cens,surr,treat,numcents,center); 

lik=0; 

        theta=exp(param[,1])/(1+exp(param[,1])); /* Hougaard 0<theta<1 */ 

 

do c=1 to numcents; 

 

        sigma=exp(param[,2+(c-1)#6]); 

        mu=param[,3+(c-1)#6]; 

        alpha=param[,4+(c-1)#6]; 

        lambda=exp(param[,5+(c-1)#6]); /* exp because the parameter can have only positive values */ 

        p=param[,6+(c-1)#6]; 

        beta=(param[,7+(c-1)#6]); 

 

        t=time[loc(center=c),]; 

            delta=cens[loc(center=c),]; 

        s=surr[loc(center=c),]; 

        z=treat[loc(center=c),]; 
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*       f1=logsdf('NORMAL',s,mu+alpha#z,sigma);/*log S(s)*/ /*I didn't use it*/ 

        f2=-lambda#exp(beta#z)#(t##p); /*log S(t)*/ 

        f6=exp(-lambda#exp(beta#z)#(t##p)); /*S(t)*/ 

        f4=p#lambda#exp(beta#z)#(t##(p-1))#f6; /*f(t)--> Surv#Hazard – SAS parameterization */ 

        f3=pdf('NORMAL',s,mu+alpha#z,sigma); /*f(s)*/ 

        f5=sdf('NORMAL',s,mu+alpha#z,sigma); /*S(s)*/ 

*    print f2 f3 f4 f5 f6; 

 

        /*define log-likelihood*/ 

 

        cop0=((-log(f5))##(1/theta))+((-log(f6))##(1/theta)); 

        cop=exp(-cop0##theta); 

 

        b=log(cop)+(theta-1)#log(cop0)+(1/theta-1)#log(-log(f5))-log(f5)+log(f3); 

 

        a=log(cop)+(theta-2)#log(cop0)+log(cop0##theta-(theta-1)/theta)+(1/theta-1)#log(-log(f5))-

log(f5)+(1/theta-1)#log(-log(f6))-log(f6)+log(f3)+log(f4); 

        likc=sum(delta#a+(1-delta)#b); 

 

        lik=lik+likc; 

end; 

 

  return(lik); 

 

finish L_lik; 

 

/*2 - dataset*/ 

use dataset; 

read all var{time} into time; 

read all var{cens} into cens; 

read all var{surr} into surr; 

read all var{treat} into treat; 

read all var{center} into center; 

close dataset; 

 

cents=unique(center)`; 

numcents=nrow(cents); 

 

print cents numcents; 

 

use estsab; 

read all var{intercept} into Intercepts; 

read all var{effect} into effects; 

read all var{center} into centers; 

close estsab; 

params=Intercepts||effects||centers; 
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print params; 

 

use estt; 

read all var{Intercept} into Interceptt; 

read all var{treat} into treatt; 

read all var{_SCALE_} into _SCALE_t; 

read all var{center} into centert; 

close estt; 

paramt=Interceptt||treatt||_SCALE_t||centert; 

 

print paramt; 

 

use Covparm; 

read all var{residual} into residual; /*Residual*/ 

close Covparm; 

 

/*3 - subroutine*/ 

 

        x=J(1,1+6#numcents,.); /*J(nrow,ncol,value);*/ 

 

*        mattrib x colname={'Theta' 'Sigma' 'Mu' 'Alpha' 'Lambda' 'p' 'Beta'}; 

 

        x[,1]=-1; 

 

do c=1 to numcents; 

 

        x[,2+(c-1)#6]=0.5#log(residual[c,]); /*0.5#LOG(Residual)*/ 

        x[,3+(c-1)#6]=Intercepts[c,];/*intercept*/ 

        x[,4+(c-1)#6]=effects[c,]; /*Effect of treat on S*/ 

        x[,5+(c-1)#6]=-(Interceptt[c,]/_SCALE_t[c,]); /* -(intercept/scale)*/ 

        x[,6+(c-1)#6]=1/_SCALE_t[c,]; /*1/scale*/ 

        x[,7+(c-1)#6]=-(treatt[c,]/_SCALE_t[c,]); /* -(regression coeffincient/scale)*/ 

 

end; 

 

        xopt=J(1,3,.); 

        xopt[,1]=1; /*indicates whether the problem is minimization or maximization: 1=specifies a 

maximization problem*/ 

        xopt[,2]=2; /*speci?es the amount of printed output. 4=the approximate covariance matrix of parameter 

esti- mates is printed if opt[3] is set*/ 

        xopt[,3]=0; /*Selects a scaling for the Hessian matrix, G: default for NLPNRR is 0= No scaling is done*/ 

        /*The other options are not for NLPNRR*/ 

 

        print x ; 

        print xopt; 

    maxiter=150; 

    termin=maxiter||J(1,12,.); /*why 12?*/ 

    termin[1,4]=0; 
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    termin[1,6]=0.001; 

 

call nlpnrr(rc,est,"L_lik",x,xopt,,termin); 

/*CALL NLPNRR( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);*/ 

/*"Ridge" value should be zero, if not, the hessian is negative and the procedure don't converge. 

        Solution? Change number of interation in subroutene, example in our case:"maxiter"*/ 

 

print est; 

 

sigma=J(1,numcents,.); 

mu=J(1,numcents,.); 

alpha=J(1,numcents,.); 

lambda=J(1,numcents,.); 

p=J(1,numcents,.); 

beta=J(1,numcents,.); 

 

theta=exp(est[,1])/(1+exp(est[,1])); 

 

do c=1 to numcents; 

 

        sigma[,c]=exp(est[,2+(c-1)#6]); 

        mu[,c]=est[,3+(c-1)#6]; 

        alpha[,c]=est[,4+(c-1)#6]; 

        lambda[,c]=exp(est[,5+(c-1)#6]); 

        p[,c]=est[,6+(c-1)#6]; 

        beta[,c]=est[,7+(c-1)#6]; 

 

end; 

 

 print theta; 

 print sigma; 

 print mu; 

 print alpha; 

 print lambda; 

 print p; 

 print beta; 

 param_s=theta||sigma||mu||alpha||lambda||p||beta; 

 

/*Standard Error*/ 

 

call nlpfdd(f,g,h,"L_lik",est); 

/*CALL NLPFDD( f, g, h, "fun", x0, <,par, "grd">);*/ 

 

*print h; /* Hessian matrix*/ 

 

var=inv(-h);  

se=sqrt(vecdiag(var)); /*standard error*/ 
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*print var; 

print se; 

 

/*Delta Method*/ 

 

se_est=J(1,1+6#numcents,.); 

 

se_est[,1]=sqrt(theta#(1-theta))#se[1,]; /*theta*/ 

 

do c=1 to numcents; 

 

se_est[,2+(c-1)#6]=exp(est[,2+(c-1)#6])#se[2+(c-1)#6,]; /*sigma*/ 

se_est[,3+(c-1)#6]=se[3+(c-1)#6,]; /*mu*/ 

se_est[,4+(c-1)#6]=se[4+(c-1)#6,]; /*alpha*/ 

se_est[,5+(c-1)#6]=exp(est[,5+(c-1)#6])#se[5+(c-1)#6,]; /*lambda*/ 

se_est[,6+(c-1)#6]=se[6+(c-1)#6,]; /*p*/ 

se_est[,7+(c-1)#6]=se[7+(c-1)#6,]; /*beta*/ 

 

end; 

 

print (t(param_s)) (t(se_est)); 

 

/*Confidence Intervals*/ 

 

lo_sigma=J(1,numcents,.); 

up_sigma=J(1,numcents,.); 

lo_mu=J(1,numcents,.); 

up_mu=J(1,numcents,.); 

lo_alpha=J(1,numcents,.); 

up_alpha=J(1,numcents,.); 

lo_lambda=J(1,numcents,.); 

up_lambda=J(1,numcents,.); 

lo_p=J(1,numcents,.); 

up_p=J(1,numcents,.); 

lo_beta=J(1,numcents,.); 

up_beta=J(1,numcents,.); 

 

lo_theta=exp(est[,1]-2#se[1,])/(1+exp(est[,1]-2#se[1,])); 

up_theta=exp(est[,1]+2#se[1,])/(1+exp(est[,1]+2#se[1,])); 

 

do c=1 to numcents; 

 

lo_sigma[,c]=exp(est[,2+(c-1)#6]-2#se[2+(c-1)#6,]); 

up_sigma[,c]=exp(est[,2+(c-1)#6]+2#se[2+(c-1)#6,]); 

lo_mu[,c]=est[,3+(c-1)#6]-2#se[3+(c-1)#6,]; 

up_mu[,c]=est[,3+(c-1)#6]+2#se[3+(c-1)#6,]; 

lo_alpha[,c]=est[,4+(c-1)#6]-2#se[4+(c-1)#6,]; 

up_alpha[,c]=est[,4+(c-1)#6]+2#se[4+(c-1)#6,]; 
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lo_lambda[,c]=exp(est[,5+(c-1)#6]-2#se[5+(c-1)#6,]); 

up_lambda[,c]=exp(est[,5+(c-1)#6]+2#se[5+(c-1)#6,]); 

lo_p[,c]=est[,6+(c-1)#6]-2#se[6+(c-1)#6,]; 

up_p[,c]=est[,6+(c-1)#6]+2#se[6+(c-1)#6,]; 

lo_beta[,c]=est[,7+(c-1)#6]-2#se[7+(c-1)#6,]; 

up_beta[,c]=est[,7+(c-1)#6]+2#se[7+(c-1)#6,]; 

 

end; 

 

ic=lo_theta||up_theta||lo_sigma||up_sigma||lo_mu||up_mu||lo_alpha||up_alpha||lo_lambda||up_lambda||lo_p||up

_p||lo_beta||up_beta; 

 

print (t(lo_theta)) (t(up_theta)); 

print (t(lo_sigma)) (t(up_sigma)); 

print  (t(lo_mu)) (t(up_mu)); 

print (t(lo_alpha)) (t(up_alpha)); 

print (t(lo_lambda)) (t(up_lambda)); 

print (t(lo_p)) (t(up_p)); 

print (t(lo_beta)) (t(up_beta)); 

 

quit; 
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