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Let C be an algebraic smooth complex curve of genus g > 1. The object of this paper
is the study of the birational structure of certain moduli spaces of vector bundles and
of coherent systems on C and the comparison of different type of notions of stability
arising in moduli theory. Notably we show that in certain cases these moduli spaces are
birationally equivalent to fibrations over simple projective varieties, whose fibers are GIT
quotients (Pr−1)rg//PGL(r), where r is the rank of the considered vector bundles. This
allows us to compare different definitions of (semi-)stability (slope stability, α-stability,
GIT stability) for vector bundles, coherent systems and point sets, and derive relations
between them. In certain cases of vector bundles of low rank when C has small genus,
our construction produces families of classical modular varieties contained in the Coble
hypersurfaces.
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1. Introduction

Let C be a genus g > 1 smooth complex algebraic curve, if g �= 2 we will also
assume that C is non-hyperelliptic.

Let UC(r, 0) be the moduli space of rank r semi-stable vector bundles on C with
degree zero determinant and let us denote as usual by SUC(r) the moduli subspace
given by vector bundles with trivial determinant. These moduli spaces appeared
first in the second half of the last century thanks to the foundational works of
Narasimhan and Ramanan [27] and Mumford and Newstead [26] and very often
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their study has gone along the study of the famous theta-map

θ : SUC(r) ��� |rΘ|;

E �→ ΘE := {L ∈ Picg−1 |h0(C, E ⊗ L) �= 0}.

While we know quite a good deal about θ for low genera and ranks, as the rank
or the genus grows our knowledge decreases dramatically, see Sec. 2 for a complete
picture of known results. The question of the rational type of these varieties is
even more daunting. When rank and degree are coprime the situation is completely
settled [23] but when the degree is zero (or degree and rank are not coprime) the
open problems are still quite numerous. It is known that all the spaces SUC(r)
are unirational but the rationality is clear only for r = 2, g = 2, when in fact the
moduli space is isomorphic to P

3, [27]. Some first good ideas about the birational
structure for g = 2 were developed in [2]. Then the r = 2 case was analyzed in any
genus by Alzati and Bolognesi in [1] with the help of polynomial maps classifying
extensions in the spirit of [6]. In this paper we give a description for the higher rank
cases via a new construction.

Our approach consists in studying the birational structure of UC(r, 0) and
SUC(r) via a study of similar moduli spaces of augmented vector bundles, notably
the moduli space of coherent systems. By a coherent system on a curve we mean
a vector bundle together with a linear subspace of given dimension of its space
of global sections. Coherent systems come with a notion of stability that depends
on a real parameter α, that leads to a finite family of moduli spaces depending
on the value of α. Hence typically one will write Gα(r, d, k) for a moduli space of
coherent systems, where α is the real parameter, r is the rank of vector bundles,
d their degree and k the prescribed dimension of the space of sections (see Sec. 4
for details). It turns out that for α > g(r − 1) the moduli space Gα(r, rg, r) has a
natural structure of a fibration and, moreover it is birational to UC(r, 0). The first
main theorem of this paper is then the following.

Theorem 1.1. Let C be a smooth complex curve of genus g > 1, non-hyperelliptic
if g > 2, and let α > g(r − 1). Then Gα(r, rg, r) is birational to a fibration over
C(rg) whose fibers are GIT quotients (Pr−1)rg//PGL(r).

Of course, since if α > g(r−1), Gα(r, rg, r) is birationally equivalent to UC(r, 0),
a corresponding result holds also for UC(r, 0). Notably, if we consider the moduli
subspace SUC(r) ⊂ UC(r, 0) of vector bundles with fixed trivial determinant we get
the following.

Theorem 1.2. The moduli space SUC(r) is birational to a fibration over P
(r−1)g

whose fibers are GIT quotients (Pr−1)rg//PGL(r).

Theorem 1.2 allows us to give a more precise explicit description of the projective
geometry of the fibration of SUC(r) in the case r = 3, g = 2. In fact SUC(3) is
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a double covering of P
8 branched along a hypersurface of degree six C6 called the

Coble–Dolgachev sextic [25]. Our result is the following.

Theorem 1.3. The Coble–Dolgachev sextic C6 is birational to a fibration over
P

4 whose fibers are Igusa quartics. More precisely, C6 contains a four-dimensional
family of Igusa quartics parametrized by an open subset of P

4.

We recall that an Igusa quartic is a modular quartic hypersurface in P
4 that is

related to some classical GIT quotients (see e.g. [15]) and moduli spaces. Its dual
variety is a cubic three-fold called the Segre cubic, that is isomorphic to the GIT
quotient (P1)6//PGL(2).

If r = 2 and g = 3, then SUC(2) is embedded by θ in P
7 as a remarkable quartic

hypersurface C4 called the Coble quartic [27]. Our methods also allow us to give a
quick proof of the following fact.

Proposition 1.1. The Coble quartic C4 is birational to a fibration over P
3 whose

fibers are Segre cubics. There exists a three-dimensional family of Segre cubics con-
tained in C4.

We underline that the cases of C4 and C6 are particularly interesting because
one can interpret explicitly the beautiful projective geometry of the Igusa quartic
and the Segre cubic in terms of vector bundles on C (see Sec. 6). We hope that
these results could help to shed some new light on the question of rationality of
SUC(r) and on the properties of the theta map.

On the other hand, a side result of Theorem 1.1 and of its proof is that we get
a bijection between the general vector bundle (or coherent system) and a set of rg

points in P
r−1. It then makes perfect sense to compare the GIT stability of a set

of points in (Pr−1)rg//PGL(r) with the slope stability of vector bundles and the
α-stability of coherent systems. This is discussed in Sec. 6.

A little caution: in some points of the paper it is important to distinguish a
vector bundle E from its S-equivalence class [E]. We have tried to keep the two
distinguished notations when it is necessary, using just the vector bundle one when
it has no importance, even if this sometimes may offend the good taste of the reader.

Description of contents. In Sec. 2 we collect a few results on the theta map.
In Sec. 3 we outline the relation between theta maps and theta-linear systems by
introducing the theta divisor of a vector bundle with integral slope. In Sec. 4 we
introduce generically generated coherent systems and their moduli spaces plus some
properties of the evaluation and the determinant map for a coherent system of any
rank. In Sec. 5 we introduce the fundamental divisor of a coherent system. This
definition allows us to define the fundamental map in Sec. 6, the fibers of this
map give us the fibration we look for. Then we prove Theorem 1.1 and discuss
briefly the relation between α-stability of coherent systems, slope stability of vector
bundles and GIT stability of point sets in the projective space. Finally, in Sec. 7 we
restrict our analysis to moduli of vector bundles. Notably we apply our results to
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the cases g = 2, r = 3 and g = 3, r = 2 and construct explicit families of invariant
hypersurfaces contained in the moduli spaces.

2. The Theta Map

Let C be a smooth complex algebraic curve of genus g ≥ 2, we assume that it is non-
hyperelliptic if g > 2. Let Picd(C) be the Picard variety parametrizing line bundles
of degree d on C, Pic0(C) will often be denoted by J(C). Let Θ ⊂ Picg−1(C) be
the canonical theta divisor

Θ := {L ∈ Picg−1(C) |h0(C, L) �= 0}.

For r ≥ 2, let SUC(r) denote the coarse moduli space of semi-stable vector
bundles of rank r and trivial determinant on C. It is a normal, projective variety of
dimension (r2 −1)(g−1). It is well known that SUC(r) is locally factorial and that
Pic(SUC(r)) = Z [16], generated by a line bundle L called the determinant bundle.
On the other hand, for E ∈ SUC(r) we define

ΘE := {L ∈ Picg−1(C) |h0(C, E ⊗ L) �= 0}.

This is either a divisor in the linear system |rΘ| or the whole Picg−1(C). For E

a general bundle ΘE is a divisor, the theta divisor of E. This means that one can
define the rational theta map of SUC(r):

θ : SUC(r) ��� |rΘ| (2.1)

sending E to its theta divisor ΘE. The relation between the theta map and the
determinant bundle is given by the following fundamental result.

Theorem 2.1 ([5]). There is a canonical isomorphism |rΘ| ∼→ |L|∗ which identi-
fies θ with the rational map ϕL :SUC(r) ��� |L|∗ associated to the determinant line
bundle.

The cases when θ is a morphism or finite are of course very appealing. Notably,
θ is an embedding for r = 2, [10, 21, 27] and it is a morphism when r = 3 for
g ≤ 3 and for a general curve of genus g > 3, [4, 36]. Finally, θ is generically finite
for g = 2, [4, 11] and we know its degree for r ≤ 4, [25, 35]. There are also good
descriptions of the image of θ for r = 2, g = 2, 3 [28, 34], r = 3, g = 2 [29, 31],
r = 2, g = 4 [33]. Moreover, it has recently been shown in [12] that if C is general
and g 	 r then θ is generically injective.

3. Vector Bundles and Theta Linear Systems

The notion of theta divisor can be extended to vector bundles with integral slope,
in this paper we will consider bundles with slope g = g(C). Let UC(r, rg) be the
moduli space of semi-stable vector bundles as above. The tensor product defines a
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natural map:

t :SUC(r) × Picg(C) → UC(r, rg);

(E,OC(D)) �→ E ⊗OC(D),

which is étale, Galois, with Galois group J(C)[r], the group of r-torsion points of
the Jacobian of C.

Moreover, if one restricts t to SUC(r) × OC(D) this yields an isomorphism
tD :SUC(r) → SUC(r,OC(rD)), where the latter is the moduli space of rank r

semi-stable vector bundles with determinant OC(rD).

Definition 3.1. Let F ∈ UC(r, rg), then we define the theta divisor of F as follows:

ΘF := {L ∈ Pic1(C) |h0(C, F ⊗ L−1) �= 0}.

Let E ∈ SUC(r) and OC(D) ∈ Picg(C). If F = E ⊗OC(D), then we have that
ΘF = OC(D) − ΘE , thus ΘF is a divisor if and only ΘE is a divisor. We define

ΘD : = {L ∈ Pic1(C) |h0(OC(D) ⊗ L−1) ≥ 1}. (3.1)

Then, for any r ≥ 1, we have a natural isomorphism σD : |rΘ| → |rΘD| given
by the translation M �→ OC(D) − M ; moreover, if OC(rD1) 
 OC(rD2), then
|rΘD1 | = |rΘD2 |. So we conclude that if F ∈ UC(r, rg) admits a theta divisor, then
ΘF ∈ |rΘD|, for any line bundle OC(D) ∈ Picg(C) which is an rth-root of detF . In
this way we obtain a family of theta linear systems over the Picard variety Picrg(C),
as the following shows.

Lemma 3.1. There exists a projective bundle T over Picrg(C):

p : T → Picrg(C),

whose fiber over OC(M) ∈ Picrg(C) is the linear system |rΘD|, where OC(D) ∈
Picg(C) is any rth-root of OC(M).

Proof. Remark first that the linear system |rΘD| is well-defined since it does not
depend on which rth-root OC(D) of OC(M) we choose. Let us now consider the
following map:

δ : Picg(C) × Pic1(C) → Picg−1(C);

(OC(D), L) �→ OC(D) ⊗ L−1.

For any OC(D) ∈ Picg(C), we have: δ∗rΘ|OC(D)×Pic1(C) 
 OPic1(C)(rΘD). Let
p1 : Picg(C) × Pic1(C) → Picg(C) be the projection onto the first factor. Con-
sider the sheaf F := p1∗OPicg(C)×Pic1(C)(δ∗(rΘ)). It is locally free and its fiber at
OC(D) ∈ Picg(C) is canonically identified with the following vector space

H0(Pic1(C),OPic1(C)(rΘD)).

Let T̃ be the projective bundle P(F) on Picg(C).
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Moreover the vector bundle F is J [r](C)-equivariant, hence by easy descent
theory (see [37, Theorem 4.46]) it passes to the quotient by J [r](C), i.e. the image
of the cover ρ : Picg(C) → Picrg(C) given by taking the rth power of each L ∈
Picg(C). The projectivization of the obtained bundle is the projective bundle T we
are looking for. We denote by p : T → Picrg(C) the natural projection on the base
of the projective bundle.

The previous arguments allow us to define the rational theta map of
UC(r, rg):

θrg :UC(r, rg) ��� T ; (3.2)

F �→ ΘF . (3.3)

Finally, let us denote by θD the restriction of θrg to SUC(r,OC(rD)). Then we
have the following commutative diagram:

SUC(r)
tD ��

θ

���
�
�

SUC(r,OC(rD))

θD

���
�
�

|rΘ| σD �� |rΘD|

since tD and σD are isomorphisms, we can identify the two theta maps. Finally
remark that the composed map p◦θrg is precisely the natural map which associates
to each vector bundle F its determinant line bundle det(F ).

4. Generically Generated Coherent Systems

A pair (F, V ) is a coherent system of type (r, d, k) on the curve C if F is a vector
bundle of rank r and degree d on C and V ⊆ H0(F ) is a linear subspace of dimension
k. A coherent system (F, V ) is generically generated if the evaluation map

evF,V : V ⊗OC → F, (s, x) → s(x)

has torsion cokernel. A proper coherent subsystem of (F, V ) is a pair (G, W ) where
G is a nonzero sub-bundle of F and W ⊆ V ∩ H0(F ), with (G, W ) �= (F, V ).

For any real number α, we define the α-slope of a coherent system (F, V ) of
type (r, d, k) as follows:

µα(F, V ) =
d

r
+ α

k

r
.

Definition 4.1. A coherent system (F, V ) is α-stable (respectively, α-semi-stable)
if for any proper coherent subsystem (G, W ) of (F, V ) we have:

µα(G, W ) < µα(F, V ) (respectively ≤).
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Every α-semi-stable coherent system (F, V ) admits a Jordan–Hölder fibration:

0 = (F0, V0) ⊂ (F1, V1) ⊂ · · · ⊂ (Fn, Vn) = (F, V ),

with µα(Fj , Vj) = µα(F, V ), ∀ j = 1, . . . , n and such that each coherent quotient
system

(Gj , Wj) =
(Fj , Vj)

(Fj−1, Vj−1)

is α-stable. This defines the graded coherent system:

gr(F, V ) =
n⊕

j=1

(Gj , Wj).

Finally, we say that two α-semi-stable coherent systems are S-equivalent if and
only if their graded coherent systems are isomorphic.

Let Gα(r, d, k) be the moduli space parametrizing α-stable coherent systems of
type (r, d, k), its compactification Ḡα(r, d, k) is a projective scheme parametrizing
S-equivalence classes of α-semi-stable coherent systems of type (r, d, k), see [22] for
details. For k ≥ 1, it follows easily from the definitions that, if Ḡα(r, d, k) �= ∅, then
α ≥ 0 and d ≥ 0; if Gα(r, d, k) �= ∅, then α > 0.

Definition 4.2. A positive real number α is said to be a virtual critical value for
coherent systems of type (r, d, k) if it is numerically possible for a system (F, V ) to
have a proper subsystem (G, W ) of type (r′, d′, k′) such that µα(F, V ) = µα(G, W )
with k

r �= k′
r′ . If there is a coherent system (F, V ) and a subsystem (F ′, V ′) such

that this actually holds, we say that α is an actual critical value.

It is well known ([9, Secs. 2.1 and 4]) that, for coherent systems of type (r, d, k),
the actual critical values form a finite set:

0 = α0 < α1 < · · · < αL,

and that within the interval (αi, αi+1) the property of α-stability of a pair is inde-
pendent of α. This means that Gα(r, d, k) is isomorphic to Gα′(r, d, k) whenever α

and α′ are contained in the same open interval (αi, αi+1). The same isomorphism
holds for the respective compactifications. It is customary to call GL(r, d, k) the
terminal moduli space, i.e. the one that comes within the range (αL, +∞).

In this paper we will consider coherent systems of type (r, rg, r). The following
properties hold, thanks to [9, Theorems 4.4, 4.6 and 5.6].

Proposition 4.1. Let r ≥ 2. For α > g(r − 1) the moduli spaces Gα(r, rg, r)
stabilize, i.e. we have:

Gα(r, rg, r) = GL(r, rg, r), if α > g(r − 1).

The moduli space GL(r, rg, r) is a smooth quasi-projective variety of dimension
r2(g − 1) + 1 and its compactification ḠL(r, rg, r) is irreducible. Moreover, after
g(r − 1), each α-semi-stable (F, V ) is generically generated.
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One relation between the stability of a coherent system and that of the under-
lying vector bundle is given by the following the lemma.

Lemma 4.1. Let (F, V ) be a coherent system of type (r, rg, r), which is generically
generated. Then we have the following properties:

(1) If F is semi-stable, then (F, V ) is α-semi-stable for any α ≥ 0;
(2) If F is stable, then (F, V ) is α-stable for any α > 0;
(3) If α > g(r − 1), then either (F, V ) is α-semi-stable or there exists a subsystem

(G, W ) of type (s, d, k) with s = k and d
s > g.

Proof. Let (G, W ) be a proper coherent subsystem of (F, V ) of type (s, d, k):

1 ≤ s ≤ r, 0 ≤ k ≤ r, (G, W ) �= (F, V ).

We show that (F, V ) generically generated implies k
s ≤ 1. We can consider the map

evF,W : W ⊗OC → F , its image is a subsheaf Im(evF,W ) of F . The inclusion W ⊂ V

implies Im(evF,W ) has generically rank k. Finally, W ⊂ H0(G) so Im(evF,W ) is a
subsheaf of G, which implies k ≤ s.

(1)–(2) Suppose that F is semi-stable. Since for any proper coherent subsystem
(G, W ) of type (s, d, k) we have k

s ≤ 1 then for any α we have: µα(G, W ) ≤
µα(F, V ). In particular, if F is stable, then it is easy to see that (F, V ) is α-stable
if α > 0.

(3) Let (G, W ) be a coherent subsystem of type (s, d, k) which contradicts the
α-semi-stability of (F, V ). As we have seen, k

s ≤ 1. If k
s = 1, then d

s > g. If F

is not semi-stable and (F, V ) is not α-semi-stable. If k
s < 1, then F

G is generically
generated too, hence deg(F

G) ≥ 0. This implies d ≤ rg. So we have:

g + α <
d

s
+ α

k

s
≤ rg

s
+ α

k

s
,

which implies:

α <
g(r − s)
s − k

≤ g(r − 1).

Lemma 4.2. There is a natural birational map b :UC(r, rg) ��� ḠL(r, rg, r).

Proof. Let Ur,rg ⊂ UC(r, rg) be the subset of stable points [F ] satisfying the
following properties:

(1) h0(F ) = r;
(2) the determinant map dF :∧rH0(F ) → H0(detF ) is not the zero map.

The conditions that define the set Ur,rg ⊂ UC(r, rg) are clearly open; we prove
that Ur,rg is not empty. Let F0 = L1 ⊕ L2 ⊕ · · · ⊕ Lr, with Li a line bundle of
degree g and h0(Li) = 1 for any i = 1, . . . , r. Then F0 satisfies (1) and (2). Let Ft

be a stable deformation of F0 along a one parameter family T . For a generic t̄ ∈ T ,
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Ft̄ satisfies (2). Moreover, by semicontinuity h0(Ft̄) ≤ r and by Riemann–Roch
h0(Ft̄) ≥ r, so Ft̄ satisfies (1) too, hence [Ft̄] ∈ Ur,rg.

Let [F ] ∈ Ur,rg. The pair (F, H0(F )) is a coherent system of type (r, rg, r), by
Property (2) it is generically generated and by Lemma 4.1(2) it is α-stable. So we
have a morphism

b :Ur,rg → ḠL(r, rg, r); (4.1)

[F ] → [(F, H0(F ))], (4.2)

it is easy to see that it is an isomorphism onto the image. Since dimUC(r, rg) =
dim ḠL(r, rg, r) and ḠL(r, rg, r) is irreducible, we conclude that b induces a bira-
tional map between the moduli spaces UC(r, rg) and ḠL(r, rg, r).

5. The Fundamental Divisor of a Coherent System

Let (F, V ) be an α-stable coherent system of type (r, rg, r) on the curve C. Assume
that it is generically generated, then the map evF,V : V ⊗OC → F is a generically
surjective map between two vector bundles of the same rank, so its degeneracy locus
is an effective divisor on the curve C:

D(F,V ) ∈ | detF |.

Moreover, let us consider the restriction to ∧rV of the determinant map of F

dF,V :∧rV → H0(C, det F );

s1 ∧ s2 · · · ∧ sr �→ (x �→ s1(x) ∧ s2(x) ∧ · · · ∧ sr(x)).

This is not zero so its image is a line generated by a nonzero global section σ of
H0(detF ):

dF,V (∧rV ) = Span(σ), σ ∈ H0(C, det F ).

It is easy to see that D(F,V ) = Zeros(σ).

Definition 5.1. We call D(F,V ) the fundamental divisor of (F, V ).

Let (F, V ) = (F1, V1) ⊕ (F2, V2), assume that for i = 1, 2, the pair (Fi, Vi)
is an α-stable coherent system, which is generically generated too. Then we have
D(F,V ) = D(F1,V1) + D(F2,V2).

Definition 5.2. Let [F, V ] be the S-equivalence class of an α-semi-stable coherent
system (F, V ). We define the fundamental divisor of [F, V ] as

D[F,V ] := Dgr(F,V ).

Note that if (F, V ) is α-stable, then gr(F, V ) = (F, V ), so that D[F,V ] = D(F,V ).
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Every coherent system (F, L) ∈ ḠL(r, rg, r) is generically generated (see Proposi-
tion 4.1), hence we can define the following map:

Φ : ḠL(r, rg, r) → C(rg), (5.1)

[F, V ] �→ Dgr(F,V ). (5.2)

Definition 5.3. We call Φ the fundamental map of generically generated coherent
systems of type (r, rg, r).

6. The Fundamental Map and Its Fibers

The aim of this section is the description of the fibers of Φ. We start by showing
some basic properties of the map Φ itself.

Theorem 6.1. For any r ≥ 2, Φ : ḠL(r, rg, r) → C(rg) is a surjective morphism.

Proof. Let (F ,V) be a flat family of α-semi-stable generically generated coherent
systems of type (r, rg, r) over a scheme S. Then F is a rank r vector bundle on
C × S, F|C×s = Fs is a vector bundle of rank r and degree rg on C. Let p1 and
p2 be the natural projections of C × S onto its factors, V ⊂ (p2)∗F is a vector
bundle of rank r on S, with fiber Vs at the point s. Finally, (Fs, Vs) is a generically
generated coherent system of type (r, rg, r) on the curve C, which is α-semi-stable,
for any s ∈ S. Let µ : S → ḠL(r, rg, r) be the morphism defined by the family,
sending s → (Fs, Vs).

Let Ev : (p1)∗V → F be the natural evaluation map, note that it is a map
between two vector bundles of the same rank, moreover for any s ∈ S we have:
Ev |C×s = evFs,Vs . This implies that the degeneracy locus of Ev is a relative divisor
D on C over S of relative degree rg. For any s ∈ S we have D|C×s = DFs,Vs . This
induces a morphism ΦS : S → C(rg), sending s → DFs,Vs , such that ΦS = Φ ◦ µ.
This proves that Φ is a morphism.

Let us come to surjectivity. Let G be a point set in C(rg), note that G can be
written as the sum of r effective divisors of degree g:

G = G1 + G2 + · · · + Gr.

For any i = 1, . . . , r, let σi ∈ H0(OC(Gi)) be a nonzero global section such
that Gi = Zeros(σi) and let Vi = Span(σi) ⊂ H0(OC(Gi)). Now let us define the
following pair:

F : =
r⊕

i=1

OC(Gi), V : =
r⊕

i=1

Vi.

Then (F, V ) is a generically generated coherent system of type (r, rg, r) on C and
F is semi-stable. By Lemma 4.1(1), (F, V ) is α-semi-stable and DF,V = G. This
implies that Φ([F, V ]) = G and proves the surjectivity.
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Let (Pr−1)rg//PGL(r) denote the GIT quotient of (Pr−1)rg with respect to the
diagonal action of PGL(r). We recall that the notion of GIT stability of a point
set v ∈ (Pr−1)rg has a nice geometric formulation in terms of the dimension of the
linear span in P

r−1 of subsets of v (see [15, Theorem 1, p. 23]).

Proposition 6.1. The point set v = (v1, . . . , vrg) ∈ (Pr−1)rg is GIT semi-stable
(respectively stable) if and only if for any subset {v1, . . . , vk} of v we have

dim(Span(v1, . . . , vk)) ≥ k

g
(respectively >).

The first important feature of the map Φ is the following.

Theorem 6.2. The general fiber of Φ is isomorphic to (Pr−1)rg//PGL(r).

Proof. Let B ∈ C(rg), we assume that B is not contained in the big diagonal ∆,
that is

B =
rg∑

i=1

xi, xi �= xj , ∀ i �= j, xi ∈ C, ∀ i.

Then the fiber of Φ at B is the following:

Φ−1(B) = {[(F, V )] ∈ ḠL(r, rg, r) |Dgr(F,V ) = B}.

Let [F, V ] ∈ Φ−1(B), from now on we will write for simplicity gr(F, V ) := (Fg, Vg).
Since B is the degeneracy locus of the evaluation map evFg,Vg , by dualizing we find
the following exact sequence:

0 → F ∗
g → V ∗

g ⊗OC → OB → 0. (6.1)

Hence, up to the choice of a basis of Vg, F ∗
g is the kernel of a surjective morphism

vFg,Vg ∈ Hom(V ∗
g ⊗OC ,OB):

vFg,Vg = (v1, . . . , vrg), vi �= 0, vi ∈ Hom(V ∗
g ⊗OC ,Oxi) 
 Vg .

This means that (Fg, Vg) defines a point (that we will still denote by vFg,Vg ) in the
product space (P(Vg))rg ∼= (Pr−1)rg, and PGL(r) acts diagonally on this space via
the choice of the basis of Vg.

Claim 1. vFg,Vg ∈ (Pr−1)rg is GIT semi-stable with respect to the diagonal action
of PGL(r). If (Fg, Vg) is α-stable then vFg,Vg is GIT stable.

Proof. Let w = {v1, . . . , vd} be a subset of vFg,Vg , set W := Span(v1, . . . , vd). Let
xi be the point of B that corresponds to vi, for i = 1, . . . , d. Then W ⊂ Vg, so we
get a commutative diagram as follows:

0 �� F ∗
g

��

�� V ∗
g ⊗OC

��

vFg,Vg �� OB

��

�� 0

0 �� G∗ �� W ∗ ⊗OC
w �� ⊕d

i=1Oxi
�� 0
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for some vector bundle G∗ with rk(G∗) = dim(W ) = s. Note that the pair (G, W )
is a coherent system of type (s, d, s), which is a proper subsystem of (Fg , Vg). Since
this is α-semi-stable, we have:

µα(G, W ) =
d

s
+ α ≤ µα(Fg , Vg) = g + α,

which implies s ≥ d
g , which gives the GIT semi-stability of vFg ,Vg . The stable case

is described in the same way but with strict inequalities.

Let V be a vector space of dimension r and P(V ) the associated projective space.
By mimicking sequence (6.1), we can construct a flat family of coherent systems
of type (r, rg, r) on C over (P(V ))rg. Let v = (v1, . . . , vrg) ∈ P(V )rg, v defines a
surjective morphism of sheaves V ∗ ⊗ OC → OB as follows: it is the zero map out
of the support of B and it is obtained by taking one lift of vi to V ∗ and applying it
on the fiber of V ∗ ⊗OC over xi ∈ B. The morphism depends on the choice of the
lift but the kernel of the sequence

0 → ker(v) → V ∗ ⊗OC
v→ OB → 0, (6.2)

is well defined over P(V )rg. This implies that Fv := ker(v)∗, for v ∈ P(V )rg, is
a family of rank r vector bundles on C with determinant OC(B). Note that Fv

is generically generated by a linear subspace of H0(C, Fv) of dimension r: we will
denote it by Vv. The pair (Fv, Vv) is a coherent system of type (r, rg, r), generically
generated and DFv,Vv = B. Moreover the family (Fv, Vv) is invariant under the
diagonal action of PGL(r) on P(V )rg.

Claim 2. Let v ∈ P(V )rg be GIT semi-stable (respectively stable), then the pair
(Fv , Vv) is α-semi-stable (respectively stable) for α > g(r − 1), hence [Fv, Vv] ∈
ḠL(r, rg, r).

Proof. Let α > g(r − 1). Since (Fv , Vv) is generically generated, we can apply
Lemma 4.1(3): either (Fv , Vv) is α-semi-stable, or there exists a proper subsystem
(G, W ) of type (s, d, k) with s = k and d

s > g. Then (G, W ) is generically generated
too, and we have a commutative diagram:

0 �� W ⊗ OC

��

�� G

��

vG,W�� ⊕d
i=1Oxi

��

�� 0

0 �� V ⊗OC
�� Fv

v=vFv,V �� O̧B
�� 0

Let vG,W = (v1, . . . , vd) and Span(v1, . . . , vd) ⊂ W ⊂ V with dim W = s. Since
v ∈ P(V )rg is GIT semi-stable then we have that dim W ≥ d

g , which contradicts
the hypothesis. This proves that (Fv, Vv) is α-semi-stable.

Suppose now that we have a stable point set v, and that there exists
a proper coherent subsystem (G, W ) ⊂ (Fv, Vv) of type (s, d, k) such that
µα(G, W ) = µα(Fv, Vv). Since α is not a critical value, k

s = 1, and thus s = d
g
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(see Definition 4.2). But, keeping the same notation of the first part of the proof,
if v is stable, then dim(W ) = s > d

g . Hence (Fv, Vv) is α-stable.

If α > g(r − 1), Claim 2 and the fact that the family of coherent systems over
P(V )rg is PGL(r)-invariant allow us to define a morphism

P(V )rg//PGL(r) → Φ−1(B).

Indeed, the family over P(V )rg induces a morphism from the semi-stable
locus to ḠL(r, rg, r). This morphism is PGL(r)-invariant hence it factors through
P(V )rg//PGL(r). Furthermore, by construction its inverse is the map sending each
system [F, V ] �→ [vFg,Vg ] (see Claim 1). Hence we conclude that the general fiber of
Φ is isomorphic to P(V )rg//PGL(r).

Let us denote α1 > 0 the smaller positive critical value for coherent systems
of a given type (n, d, k). The stability condition induced by values of α such that
0 < α < α1 is called 0+-stability (see [8, pp. 4–5]). It is well known that if a coherent
system (F, V ) is 0+-stable then the underlying vector bundle F is slope-semistable.
On the other hand, if the underlying vector bundle F is stable, then (F, V ) is 0+-
stable. In the following example, we suppose r = 2 and g(C) > 3. We produce a
coherent system on C of type (2, 2g, 2) which comes from a GIT stable point and is
α-semi-stable for any α ≥ 1, but the underlying vector bundle is unstable, i.e. the
coherent system is not 0+-semi-stable.

Example 6.1. Let C be a smooth curve of genus g > 3. Let L1 be a special line
bundle of degree g − 1 with h0(C, L1) = 2. Let {t1, t2} be a basis of H0(C, L1).
We can assume that the zeros of t1 are all simple and distinct. By definition,
given a scalar λ, one may find at most a finite set (possibly empty) of points
x ∈ C such that t1(x) = λt2(x). Hence we are allowed to choose a set of g + 1
distinct points z1, . . . , zg+1 such that: t1(zi) �= 0, t1(zi) = λit2(zi), with λi �= λj for
1 ≤ i �= j ≤ g + 1 and λi �= 0. Let M := z1 + · · ·+ zg+1, L2 := OC(M) and let s be
a nonzero global section of H0(C, L2) such that M = Zeros(s). Now let us consider
the coherent system (F, V ) of type (2, 2g, 2) defined as follows:

F : = L1 ⊕ L2 V := 〈t1, t2 + s〉.

Note that the evaluation map

evF,V : V ⊗OC → F,

is generically surjective, degenerating on the divisor B := Zeros(t1) + Zeros(s).
We show that (F, V ) ∈ ḠL(r, rg, r), hence (F, V ) ∈ Φ−1(B), but the underlying

vector bundle is not semi-stable: in fact L2 ⊂ F is a destabilizing sub-bundle.
Notably, we prove that (F, V ) is α-semi-stable for any α ≥ 1. Let (G, W ) be a
coherent subsystem of type (s, d, k). It is easy to see that µα(G, W ) > µα(F, V )
implies that s = 1, d = g + 1, k = 0 and α < 1. Note that α = 1 is a critical value
for coherent systems of type (2, 2g, 2).
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Finally, let v = (v1, v2, . . . , v2g) ∈ P(V )2g be the point set defined by the pair
(F, V ), as in the proof of Theorem 6.2. By the assumptions we made choosing M and
the sections ti and s, the point set v has the following shape: for i = 1, . . . , g − 1,
xi ∈ Zeros(t1), so [vi] = [1 : 0]; for i = g, . . . , 2g, xi ∈ Zeros(s), so we have:
[vi] = [λi : 1], with λi �= 0. Such a point set v ∈ P(V )2g is clearly stable.

As the reader may expect, given the birationality result between the moduli
space UC(r, rg) and GL(r, rg, r), the fundamental map gives information also on
the geometry of UC(r, rg) and of the theta map.

Theorem 6.3. Let b be the birational map defined in (4.1):

b : UC(r, rg) ��� ḠL(r, rg, r), [F ] → [(F, H0(F ))].

Let bD be its restriction to SUC(r,OC(rD)) and let θrg be the theta map of
UC(r, rg) defined in (3.2) and θD its restriction to SUC(r,OC(rD)), then we have
the following commutative diagrams of rational maps

UC(r, rg) b �����

θrg

���
�
� ḠL(r, rg, r)

Φ

��
T a∗

�������� C(rg)

SUC(r,OC(rD))
bD �����

θD

���
�
�

bD(SUC(r,OC(rD)))

Φ

��
|rΘD| a∗

���������� |OC(rD)|

where a∗ is the pull-back of theta divisors via the Abel map a : C → Pic(1)(C).
Notably, the restricted map

πe = a∗||rΘD| : |rΘD| → |OC(rD)|

is a linear projection with center Le := {M ∈ |rΘD| : a(C) ⊂ M}.

Proof. Let [F ] ∈ UC(r, rg). Then [F ] is contained in the regular locus of θrg if and
only if [F ] admits a theta divisor

ΘF = {L ∈ Pic(1)(C) |h0(C, F ⊗ L−1) ≥ 1}.

Furthermore, the divisor ΘF lies in the regular locus of a∗ if it does not contain
the image of C via a. Remark in fact that in this case, the pull back of ΘF via a∗

is an effective divisor of degree rg. We have:

a∗(ΘF ) = {x ∈ C |h0(C, F ⊗OC(−x)) ≥ 1}.

This implies that h0(F ) = r and the evaluation map evF,H0(F ) : H0(F )⊗OC →
F is generically surjective, hence b([F ]) is defined. In order to show that the two
diagrams commute it is enough to remark that if x ∈ D(F,H0(F )) then there exist
at least one nonzero section in h0(C, F ⊗ OC(−x)), hence D(F,H0(F )) and a∗(ΘF )
coincide.

1250037-14



2nd Reading

February 22, 2012 11:45 WSPC/S0129-167X 133-IJM 1250037

Coherent Systems and Subvarieties of SUC(r)

As a corollary of the results of this section we have the following theorem.

Theorem 6.4. For any r ≥ 2 and g ≥ 2, the moduli space UC(r, rg) is birational
to a fibration over C(rg) whose fibers are (Pr−1)rg//PGL(r) and the moduli space
SUC(r,OC(rD)) is birational to a fibration over P

(r−1)g = |OC(rD)| whose fibers
are (Pr−1)rg//PGL(r).

7. Application to the Coble Hypersurfaces

As Example 6.1 showed, in the case of vector bundles we cannot expect any iso-
morphism between the fibers of Φ and GIT quotients. Nevertheless, for low rank
and genus, the geometry of moduli spaces of vector bundles is simple enough that,
by taking the closure of the fibers, we still find, at least as projective varieties, fam-
ilies of GIT quotients contained in moduli spaces of vector bundles. This section is
devoted to the construction and study of such families of projective varieties.

When the genus of C is 2 or 3 and the rank is small enough, the moduli spaces
SUC(r) have very nice explicit descriptions related to certain hypersurfaces, called
the Coble hypersurfaces. The main theorems of this section show how these hyper-
surfaces contain large families of projective classical modular varieties related to
invariant theory, namely the Segre cubic and the Igusa quartic.

We know a purely vector bundle-theoretic construction (i.e. without the use of
the theta map) of such families, but it is rather involved and, in our opinion, less
instructive. For this reason and for the beauty of the objects of study, we have
preferred to give a construction that relies on the theta map and the projective
geometry of the Coble hypersurfaces.

7.1. The Coble sextic

In this subsection we assume that C is a curve of genus 2 and we consider the
moduli space SUC(3) of semi-stable vector bundles on C with rank 3 and trivial
determinant. The theta map

θ : SUC(3) → |3Θ| 
 P
8

is a finite morphism of degree 2 and the branch locus is a sextic hypersurface C6,
called the Coble–Dolgachev sextic [25]. The Jacobian variety J(C) is embedded in
|3Θ|∗ as a degree 18 surface, and there exists a unique cubic hypersurface C3 ⊂ |3Θ|∗
whose singular locus coincides with J(C): the Coble cubic, [13]. It was conjectured
by Dolgachev, and subsequently proved in [31] and independently in [29], that C6

is the dual variety of C3.
Let us consider the moduli space SU(3, 3KC) and let

ΦKC : SU(3, 3KC) ��� |3KC |,

be the rational map sending [F ] to Dgr(F ),H0(gr(F )). It is the composition of bKc

with the fundamental map Φ. By Theorem 6.3, we have the following result.
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Proposition 7.1. The map ΦKC is the composition of the theta map

θKC : SU(3, 3KC) → |3ΘKC |,

with the linear projection πe : |3ΘKC | ��� |3KC |, whose center Le 
 P
3, is the linear

subsystem of theta divisors corresponding to decomposable bundles of type E ⊕KC ,

with E ∈ SUC(2, 2KC).

Proof. Since dim|3KC | = 4, the center of the projection πe is a three-dimensional
linear subspace Le, which is the image by the theta map of the indeterminacy
locus of ΦKC . Let us consider the subset I ⊂ SU(3, 3KC) of semi-stable bundles
[F ] = [E ⊕ KC ], [E] ∈ SUC(2, 2KC). Note that I 
 SUC(2, 2KC) 
 P

3 [28].
Moreover, since h0(gr(E ⊕ KC)) ≥ 4, then I is contained in the indeterminacy
locus of ΦKC . Finally, let h be the hyperelliptic involution on C, it defines the
involution

σ : SU(3, 3KC) → SU(3, 3KC);

F �→ h∗F ∗;

which is associated to the 2:1 covering given by θKc . Then I is contained in the
fixed locus of σ, [29, Secs. 3 and 4]. The image via θKC of this locus is Le 
 P

3 and
it is actually the center of the projection.

By Theorem 6.3, a general fiber of ΦKC is birational to the quotient
(P2)6//PGL(3). This is a degree two covering of P

4 branched along a Σ6-invariant
quartic hypersurface I4 ⊂ P

4. I4 is known as the Igusa quartic, it is the Satake com-
pactification of the moduli space A2(2) of principally polarized abelian surfaces with
a level two structure [20], embedded in P

4 by fourth powers of theta-constants. The
involution that defines the covering is the Gale transform (also called association,
for details see [15, 17]), which is defined as follows.

Definition 7.1 ([17, Definition 1.1]). Let r, s ∈ Z. Set γ = r + s + 2, and let
Γ ⊂ P

r, Γ′ ⊂ P
s be ordered nondegenerate sets of γ points represented by γ×(r+1)

and γ×(s+1) matrices G and G′, respectively. We say that Γ′ is the Gale transform
of Γ if there exists a nonsingular diagonal γ×γ matrix D such that GT ·D ·G′ = 0,
where GT is the transposed matrix of G.

The Gale transform acts trivially on the sets of 6 points in P
2 that lie on a smooth

conic. The branch locus of the double covering is then, roughly speaking, the moduli
space of 6 points on a conic and henceforth a birational model of the moduli space
of 6 points on a line. One can say even more, in fact the GIT compactification of
the moduli space of 6 points on a line is a cubic three-fold in P

4, called the Segre
cubic, and its projectively dual variety is the Igusa quartic (see [18, 24] for details).
From the projective geometry point of view the singular locus of I4 is an abstract
configuration of lines and points that make up a 153 configuration. This means the
following: there are 15 distinguished lines and 15 distinguished points. Each line
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contains 3 of the points and through each point pass 3 lines (see [14, Sec. 9] for
more). Moreover I4 is the only hypersurface with such a singular locus in the pencil
of Σ6-invariant quartics in P

4 (see [19, Example 7]).
Now let us recall some results from the literature about SU(3,OC). Of course

the twist by KC is an isomorphism and it is easy to understand the analogous result
for SUC(3, 3KC). Since P

8 is smooth, the image of the singular locus of SU(3,OC)
and the singular locus of the branch locus coincide, i.e. Sing(C6) = θ(Sing(SU(3))).
On Pic1(C) we have the involution λ : L �→ KC ⊗ L−1 that leaves Θ invariant.
Hence λ induces an action on all the powers of Θ and in particular, on |3Θ|. The
linear system |3Θ| decomposes in two eigenspaces, respectively four- and three-
dimensional. We call P

4
e the four-dimensional eigenspace. It turns out that it cuts

out on C6 a reducible variety given by a double P
3 (which is indeed contained

in Sing(C6)) and a quartic hypersurface I ⊂ P
4. After the twist by KC , the first

component is precisely Le, whereas the quartic three-fold is an Igusa quartic.

Lemma 7.1. The intersection of the closure of the general fiber of πe with Sing(C6)
is a 153 configuration of lines and points.

Proof. Recall that Sing(C6) is the locus of theta divisors corresponding to decom-
posable bundles, we will prove the claim by constructing explicitly these bundles.
Let us denote by ∆3KC the closed subset of |3KC | given by the intersection with
the big diagonal of C(6). Let us take G = q1 + · · ·+ q6 ∈ |3KC | −∆3KC , and let us
consider the fiber of ΦKC over G. In order to guarantee the semi-stability of the
vector bundles, the only totally decomposable bundles in the fiber of G are all the
15 obtained by permuting the qi’s in OC(q1 + q2) ⊕ OC(q3 + q4) ⊕ OC(q5 + q6). Let
us now consider the bundles that decompose as the direct sum of a line bundle L

and a rank two indecomposable bundle. By the previous argument of semi-stability
then L must be of the type OC(qi + qj) for some i, j ∈ {1, . . . , 6} and E should
have fundamental divisor DE =

∑
k �=i,j qk. Call F the line bundle OC(

∑
k �=i,j qk) ≡

3KC−qi−qj . It is easy to see that SUC(2, F ) ∼= SUC(2,OC) ∼= P
3, the isomorphism

being given by the tensor product by a square root F ′ of F . Now we recall from
[7] the following description of the fundamental map ΦF ′ : SUC(2, F ) ��� |F |. The
linear system |F | is a P

2 and the fibers of ΦF ′ are just lines passing through D ∈ |F |
and the origin [OC ⊕OC ]. Now the composition of the following embedding

ζ : SUC(2, F ) ↪→ SUC(3, 3K), (7.1)

[E] �→ [OC(qi + qj) ⊕ E], (7.2)

with the theta map is linear. In fact ζ(SUC(2, F )) is contained in the branch locus
and the associated 3Θ divisors form a three-dimensional linear subsystem isomor-
phic to |2Θ|. Then the image of ζ intersects the closure Φ−1

KC
(G) of the fiber over

G exactly along the fiber of ΦF ′ over the divisor
∑

k �=i,j qk ∈ |F |. By [7] we know
that this is a line and it is not difficult to see that it contains 3 of the 15 totally
decomposable bundles. On the other hand each totally decomposable bundle with
fundamental divisor G is contained in three lines of this kind.
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Remark 7.1. When the divisor G is taken in ∆3KC then the 153 configuration
degenerates because some of the points and some of the lines coincide.

Theorem 7.1. The closure of the general fiber of ΦKC is the GIT quotient
(P2)6//PGL(3).

Proof. We recall that Le is contained in Sing(C6) and in particular scheme-
theoretically it is contained twice in C6. Since ΦKC factors through the projection
with center Le, then Φ−1

KC
(G), for G ∈ |3KC | − ∆3KC , is a degree two cover of

P
4
G := π−1

e (G) ramified along the intersection of C6 with P
4
G which is residual to

2Le. This intersection is then a quartic hypersurface in P
4
G. Notably, since Le ⊂ P

4
e,

there exist a point T ∈ |3KC| such that π−1
e (T ) ∩ C6 is an Igusa quartic (see

[32, Proposition 5.2] or [30, Sec. 4]).
Let us now blow up |3Θ| along Le and call the resulting variety P̃

8. This contains
canonically the blown up Coble sextic, which we denote by C̃6. Then the rational
map πe resolves in a proper, flat map π̃e as in the following diagram.

P̃
8

��

eπe

����
��

��
��

�

|3Θ| πe ����� |3KC |

This says that the restriction of π̃e to C̃6 is a flat family of quartic three-folds over
|3KC | and for any B ∈ |3KC | we have an isomorphism π−1

e (B)∩C6
∼= π̃−1

e (B)∩ C̃6.
Hence also one fiber of π̃e| eC6

is an Igusa quartic. Since the ideal of the singular
locus of I4 is generated by the four polar cubics ([18, Lemma 3.3.13]) then the
Igusa quartic has no infinitesimal deformations, i.e. it is rigid. This implies that the
generic member of the flat family of quartics over |3KC | is an Igusa quartic. This
in turn implies that the closure of the generic fiber of ΦKC is (P2)6//PGL(3).

Corollary 7.1. The Coble sextic C6 is birational to a fibration over P
4 whose fibers

are Igusa quartics.

Corollary 7.2. Along the generic fiber of ΦKC , the involution of the degree two
covering SU(3,OC) → |3Θ| coincides with the involution given by the association
isomorphism on (P2)6//PGL(3).

The fact that the intersection of Sing(C6) with the fibers over the open set
|3KC | − ∆3KC is precisely a 153 configuration makes us argue that |3KC | − ∆3KC

should be the open locus where by rigidity the family of quartic three-folds is
isotrivially isomorphic to the Igusa quartic. As already seen in Remark 7.1, if B

is an effective divisor out of this locus, then π−1
e (B) ∩ Sing(C6) is a degenerate

153 configuration, in the sense that some of the 15 points and lines coincide. We
are not able to prove the following, but it is tempting to say that this is all the
singular locus of the special quartic three-folds over ∆3K . These would give very
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interesting examples of degenerate Igusa quartics. It would be interesting to study
projective properties of these fibers such as the relation with the Segre cubics or
with the Mumford–Knudsen compactification M0,6 of the moduli space of 6 points
on a line. For instance, do they come from linear systems on M0,6? If it is so, what
linear systems on M0,6 do they come from?

The rational dual map of the Coble sextic has been thoroughly studied and
described in [29, 31]. Let us denote by X0, . . . , X8 the coordinates on P

8 ∼= |3Θ|
and by F (X0 : · · · : X8) the degree six polynomial defining C6. Then the dual map
is defined as follows:

D6 : C6 ��� C3;

x �→
[

∂F

∂X0
: · · · :

∂F

∂X8

]
.

The polar linear system is given by quintics that vanish along Sing(C6). Now
fix a general divisor B ∈ |3K| and let IB be the Igusa quartic defined by (C6 ∩
π−1

e (B)) − 2Le. Let us consider the restriction of D6 to IB ⊂ π−1
e (B) =: P

4
B and

denote by A the 153 configuration of points and lines in P
4
B. Now let H be the class

of Le in Pic(P4
B) and consider the four-dimensional linear system |IA(3) + 2H | on

IB. We can show the following proposition.

Proposition 7.2. The restricted dual map D6|IB
is given by a linear system |DIB |

that contains |IA(3) + 2H | as a linear subsystem.

Remark that this means that for the general fiber IB, there exists a canonical
way to project the image D(IB) ⊂ C3 to a P

4
B where the image of IB is a Segre

cubic. This is summarized in the following corollary.

Corollary 7.3. The Coble cubic is birational to a fibration in Segre cubics over P
4.

Remark 7.2. The birationality in itself is trivial, since C3 is birational to C6 which
is birational to a fibration in Igusa quartics (which are in turn all birational to the
Segre cubic) over P

4. The projections on the linear systems |IA(3) + 2H | give a
constructive canonical way to realize it.

7.2. The Coble quartic

In this subsection we assume that C is a curve of genus 3 and we consider the moduli
space SU(2,OC). We recall that the Kummer variety Kum(C) := J(C)/ ± Id of C

is contained naturally in the 2Θ-linear series, whereas the moduli space SU(2,OC)
is embedded by θ in P

7 ∼= |2Θ| as the unique quartic hypersurface C4 singular along
Kum(C). This hypersurface is called the Coble quartic. It is also known [34] that
the Coble quartic is projectively self dual.

Now we recall some properties of the Segre cubic. This is a nodal (and hence
rational) cubic three-fold S3 in P

4 whose singular locus is given by ten double points.
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There is a natural action of Σ6 on this projective space and S3 is invariant with
respect to this action. S3 is in fact the GIT quotient (P1)6//PGL(2) [15]. Moreover,
S3 realizes the so-called Varchenko bound, i.e. it has the maximum number of double
points (ten) that a cubic three-fold with isolated singularities may have and this
property identifies the Segre cubic in a unique way, up to projective equivalence.
As already stated it is the projective dual variety of the Igusa quartic.

Our construction allows us to give a simple proof of the following result from [1].

Proposition 7.3. The moduli space SU(2,OC) is birational to a fibration over P
3

whose fibers are Segre cubics.

Proof. First of all we twist all vector bundles by a degree 3 divisor D, thus
obtaining the isomorphic moduli space SU(2,OC(2D)). Let ΦD :SU(2,OC(2D)) →
|OC(2D)| ∼= P

3 be the composition of bD and the fundamental map Φ. By
Theorem 6.3, since θD is an embedding, we can identify SU(2,OC(2D)) with
its image C4 ⊂ P

7 and ΦD with the linear projection onto |2D|. The center
of the projection is the linear span of the locus of vector bundles E such that
h0(C, E ⊗OC(D)) > 2. Suppose E is stable. Since it has rank 2 and trivial deter-
minant, then E ∼= E∗ and by an easy Riemann–Roch computation we find that
h0(C, E ⊗OC(D)) > 2 if and only if h0(C, E ⊗OC(K −D)) > 0. This is equivalent
to the fact the E lies in the P

3 ∼= |3K−2D|∗ ⊂ C4 that parametrizes vector bundles
E that can be written as an extension of the following type

0 → OC(D − K) → E → OC(K − D) → 0.

Let us denote by P
3
c this projective space. C4 contains P

3
c with multiplicity one.

This implies that the closure of any fiber of the projection ΦD : C4 ��� |2D| is
a cubic three-fold contained in the P

4 spanned by P
3
c and a point of |2D|. Let us

denote as usual by ∆D the intersection of the large diagonal with the linear system
|2D| ⊂ C(6). Then suppose we fix a B ∈ |2D|−∆D. Let us consider the intersection
of the fiber of ΦD over B with the strictly semi-stable locus. By semi-stability it is
easy to see that these points correspond to the partitions of the 6 points of B in
complementary subsets of 3 elements each. We have ten of them. As stated above,
a cubic three-fold cannot have more than ten ordinary double points and the Segre
cubic is uniquely defined by this singular locus up to projective equivalence.

Also in this case, if B ∈ ∆D then the intersection Φ−1
D (B) ∩ Kum(C) is set-

theoretically a finite set of points of cardinality strictly smaller then 10: the singular
locus seems to degenerate. It is tempting, as in the case of Igusa quartics, to say that
some of these points have multiplicity bigger than one and we obtain degenerate
Segre cubics over ∆D.

As we have already remarked, in the case of C4 the polar map is also well known
and described. Let Yi be the coordinates on P

7 ∼= |2Θ| and G(Y0 : · · · : Y7) the
quartic equation defining C4, then the (self) polar rational map of C4 is defined in
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the following way.

D4 : C4 ��� C4;

x �→
[

∂G

∂Y0
: · · · :

∂G

∂Y7

]
.

Let B ∈ |2D| −∆D and let P
4
B be the linear span of the point corresponding to

B and of P
3
c . It turns out that the restriction of D4 to P

4
B behaves in a way very

similar to the case of the sextic (see Proposition 7.2). Let S3B ⊂ P
4
B be the Segre

cubic such that C4 ∩ P
4
B = S3B ∪ P

3
c . We denote by J the set of 10 nodes of S3B .

Then the linear series |IJ (2)| on S3B is the polar system of the Segre cubic.

Proposition 7.4. The restricted dual map D4|S3B
is given by a linear system |DS3 |

that contains |IJ (2) + H | as a linear subsystem.

As in the case of C6 this implies that we have a canonical way to construct the
birational map of the following corollary via the polar map D4.

Corollary 7.4. The Coble quartic is birational to a fibration in Igusa quartics
over P

3.
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