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Haantjes Manifolds

F Magri

Dipartimento di Matematica ed Applicazioni, Università di Milano Bicocca, 20125 Milano,
Italy

E-mail: franco.magri@unimib.it

Abstract. The aim of this paper is to introduce a new category of manifolds, called Haantjes
manifolds, and to show their interest by a few selected examples.

1. Introduction
Many years ago, at the first conference in this series held in Lecce in 1979, I had the occasion
to present a simple model of integrable systems, henceforth called bihamiltonian systems. They
were defined on manifolds called bihamiltonian manifolds. In this conference I wish to present
an evolution of the concept of bihamiltonian manifold called Haantjes manifold. I believe that
the study of the new class of manifolds may enlight a range of topics even outsides the domain
of the theory of integrable systems. Among them I list:

• Topological Field Theories

• Frobenius manifolds

• Singularity Theory

• Quantum cohomology

• Coisotropic deformations of associative algebras

• Quasi-Hamiltonian systems of hydrodynamic type

• Whitham equations

• Orthogonal coordinates in Rn .

In this paper the focus is on the relation between Haantjes manifolds and the theory of
singularities.

To introduce the concept of Haantjes manifold, I need to recall that a bihamiltonian system
is a vector field X on a bihamiltonian manifold M which admits two compatible Hamiltonian
decompositions

X = Pdh = Qdk.

If one of the Poisson bivectors P and Q is invertible, say Q, this decomposition endows the
manifold M with three distinguished geometrical objects: the vector field X, the 1-form θ = dh,
and the recursion operator K = PQ−1. These geometrical objects satisfy five basic conditions

• Torsion(K) = 0

• dθ = 0
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• dKθ = 0

• LieX(K) = 0

• LieX(θ) = 0.

Acting on the vector field X and the 1-form θ, the tensor field K generate two infinite chains of
vector fields and 1-forms respectively :

θk+1 = Kθk, θ0 = θ,

Xk+1 = KXk, X0 = X.

They are called the Lenard chains associated with the given bihamiltonian system. Owing to
the five conditions listed above, these chains enjoy the remarkable property that the 1-forms θk
are closed, and that the vector fields Xk commute. Locally the 1-forms θk are the differentials
of certain functions Ik. These functions turn out to be in involution with respect to both the
Poisson brackets associated with the Poisson bivectors P and Q. Consequently the vector fields
Xk and the functions Ik are symmetries and integrals of motion of X. They are the additional
informations which permit to integrate the given bihamiltonian vector field X .

The concept of Haantjes manifold arises when one accepts to slighty modify the previous
scheme, allowing the recursion operator to possess torsion but in a controlled manner. This idea
has been presented two years ago at the conference on Geometrical Methods in Mathematical
Physics organized by Boris Dubrovin in Moscow. In that occasion I suggested to replace the
conditions of the classical theory of bihamiltonian manifolds by the new conditions

• Haantjes(K) = 0

• dθ = 0

• dKθ = 0

• θ(Torsion(K)) = 0

• LieX(K) = 0

• LieX(θ) = 0,

on the basis of their significance for the theory of Frobenius manifolds and WDV V equations
[1]. In this conference I wish to continue the exploration of the new geometrical setting. In
particular, I am interested to describe the changes which are undergone by the theory of Lenard
chains .

First I collect the definitions which are relevant to the present discussion.

Definition 1. (Haantjes manifold) A manifold M is a Haantjes manifold if it is endowed
with a distinguished 1-form θ and with a distinguished vector-valued 1-form K which satisfy the
four conditions

• Haantjes(K) = 0

• dθ = 0

• dKθ = 0

• θ(Torsion(K)) = 0.

If moreover there exists a vector field X obeying the conditions

• LieX(K) = 0

• LieX(θ) = 0.

the manifold is said to be a Haantjes manifold with symmetry.
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On a Haantjes manifold there are two distinguished tensor fields of type (1, 1): the identity
maps Id and K. They form the core of a Lenard chain. Any family of tensor fields which
prolong this elementary core and enjoy the same properties of Id and K is a Lenard chain of
the Haantjes manifold.

Definition 2. (Lenard chain) A Lenard chain of lenght p on a Haantjes manifold of dimension
n is a family of p vector-valued 1-forms Kj which contains K0 = Id and K1 = K, and satisfies
the conditions

• Haantjes(Kj) = 0

• [Kj ,Kl] = 0

• dKjθ = 0

• θ(Torsion(Kj)) = 0.

This extension of the concept of Lenard chain, from the case of bihamiltonian manifolds to the
case of Haantjes manifolds, is of great use, since it enlarges significantly the field of application
of these chains, but it has a cost. In the case Torsion(K) = 0 there was a simple and general
rule to construct the family of tensor fields Kj : to take the powers of K. This rule is lost
on Haantjes manifolds. In the new setting, the family of tensor fields Kj must be constructed
in each example according to a rule which accounts for the specific form of the torsion of K.
Despite this difficulty, Lenard chains on Haantjes manifolds are still quite worth of interest. This
is due to a subtle property enjoyed by them, which I will describe next. I need two preliminary
remarks.

Lemma 1. Consider two tensor fields K1 and K2 on a manifold M (not necessarily a Haantjes
manifold), and assume that they commute, that their Haantjes tensors vanish, and that their
eigenvalues αj and βj are real and distinct. Then any 1-form θ which annihilates the torsion of
K1 and K2 separately, annihilates the torsion of K1 +K2 as well (or of any linear combination
λ1K1 + λ2K2 with real coefficients).

Lemma 2. On a manifold M (not necessarily a Haantjes manifold) consider a closed 1-form θ
and a tensor field K, possibly with non vanishing Haantjes tensor. Assume that θ annihilates
the torsion of K, and that K maps θ into a closed 1-form. Then, the 1-form K2θ is closed as
well.

Let make a comment on the last Lemma. By assumption the 1-forms θ and Kθ are closed ,
as always in the theory of Lenard chains. The condition θ(Torsion(K)) = 0 then entails that
the 1-form K2θ is closed as well. But if one try to go a step further, one fails. The next 1-form
K3θ is, usually, not longer closed. So the Lenard chain breaks at the third iteration , and cannot
be further prolonged. This is the difference between the case of bihamiltonian manifolds with
respect to the case of Haantjes manifolds. The triple of 1-forms (θ,Kθ,K2θ) will be referred to
as the short Lenard chain generated by θ and K.

Proof. I will omit the proof of the second Lemma, which is a rephrasing of the concept of
Nijenhuis torsion. To prove the first Lemma, I make use of the concept of canonical coordinates.
It is well-known that the vanishing of the Haantjes torsion of K1, combined with the assumption
that its eigenvalues αj are real and distinct , entails the existence of a special system of
coordinates (u1, u2, . . . , un) which diagonalize K1 [2]. In these coordinates the torsion of K1

has the following simple form

TK1

(
∂

∂uj
,
∂

∂uk

)
= (αj − αk)

(
∂αk

∂uj

∂

∂uk
− ∂αj

∂uk

∂

∂uj

)
.
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Therefore, the 2-form θ(Torsion(K1)) has components

θ(Torsion(K1))j,k = (αj − αk)

(
∂αk

∂uj
θk −

∂αj

∂uk
θj

)
,

where θk are the components of the 1-form θ. Since the eigenvalues of K1 are distinct, the 1-form
θ verifies the condition θ(Torsion(K1)) = 0 iff

∂αk

∂uj
θk −

∂αj

∂uk
θj = 0.

The same condition holds for K2:

∂βk
∂uj

θk −
∂βj
∂uk

θj = 0.

Let us now compute the 2-form θ(Torsion(K1 +K2)). It vanishes iff

(βj − βk)

(
∂αk

∂uj
θk −

∂αj

∂uk
θj

)
+ (αj − αk)

(
∂βk
∂uj

θk −
∂βj
∂uk

θj

)
= 0.

This condition is manifestly a linear combination of the conditions verified separately by K1

and K2. Therefore, if θ annihilates the torsion of K1 and K2, and if K1 and K2 have distinct
eigenvalues and satisfy the Haantjes condition, θ annihilates also the torsion of K1 +K2.

The important consequence of this result comes to light when, on a Haantjes manifold
endowed with a Lenard chain Kj of lenght p, one considers the second generation of iterared
1-forms

θjl = KjKlθ.

This family is referred to as the square associated to the Lenard chain of 1-forms.

Proposition 1. All the forms of the square are closed . So, any Lenard chain of lenght p on a
Haantjes manifold of dimension n generates a square of 1/2p(p+ 1) locally exact 1-forms.

Proof. Consider the linear pencil K(λ) = λ1K1+ · · ·+λpKp of all the tensor fields of the Lenard
chain. By the first Lemma its torsion is annihilated by the 1-form θ. By the second Lemma
the 1-form K(λ)2θ is closed for any possible choice of the parameters of the pencil. This form
depends quadratically on the parameters. Hence the coefficient of the product of λj and λk
must vanish. This coefficient is the exterior differential of the form θjl of the square. Therefore,
under the assumptions listed above, all the 1-forms of the square are closed.

The case of major interest is, of course, the case when p equals the dimension of the manifold
M. One can show that this case is related to WDV V equations [1] and to the concept of
(dispersionless) Hirota tau-function. The study of this case is, however, outside the scopes of
this note. In this paper I will limit myself to show, in a concrete example, that Lenard chains
are related to the theory of singularities of type E6.
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2. Two examples of Haantjes manifolds
In 1951 Albert Nijenhuis [3] noticed that the eigenvalues αj of a tensor field K with vanishing
torsion

Torsion(K) = 0

may be used as canonical coordinates for K in the domain where they are real, distinct, and
functionally independent. Thus

K
∂

∂αj
= αj

∂

∂αj

in this domain. If instead of the eigenvalues αj one uses the coefficients of the characteristic
polynomial

Q(α) = αn + anα
n−1 + · · · + a1

as coordinates, one finds for K the cyclic representation

K
∂

∂a1
=

∂

∂a2
,

K
∂

∂a2
=

∂

∂a3
,

...

K
∂

∂an−1
=

∂

∂an
,

K
∂

∂an
= −

(
a1

∂

∂a1
+ a2

∂

∂a2
+ · · · + an

∂

∂an

)
.

The idea pursued in this section is to look for tensor fields K verifying the weaker condition

Haantjes(K) = 0

inside the class of tensor fields defined by the equations

K
∂

∂a1
=

∂

∂a2
,

K
∂

∂a2
=

∂

∂a3
,

...

K
∂

∂an−1
=

∂

∂an
,

K
∂

∂an
= −

(
A1

∂

∂a1
+A2

∂

∂a2
+ · · · +An

∂

∂an

)
,

inspired by the example studied by Nijenhuis. This class depends on the choice of n arbitrary
functions (A1, A2, · · · , An) of the cyclic coordinates (a1, a2, · · · , an). Since these functions are
the coefficients of the characteristic polynomial of K

Q(α) = αn +Anα
n−1 + · · · +A1,

the new class may be tought of as a gentle deformation of the tensor field of Nijenhuis. The
deformation process changes the characteristic polynomial of K, but keeps unchanged the cyclic
coordinates. The vector field

A = A1
∂

∂a1
+ · · · +An

∂

∂an
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is accordingly referred to as the characteristic vector field of K. In the example of Nijenhuis the
characteristic vector field is the Euler vector field

A = −
(
a1

∂

∂a1
+ a2

∂

∂a2
+ · · · + an

∂

∂an

)
.

The study of the Haantjes torsion of K shows that there are other two elementary solutions
of the Haantjes condition besides that found by Nijenhuis. They are selected by demanding that
the components of the characteristic vector field A depend linearly on the cyclic coordinates.
These new solutions are :

A = − 1

n+ 1

[
a2

∂

∂a1
+ 2a3

∂

∂a2
+ · · · + (n− 1)an

∂

∂an−1

]
,

B = − 1

n− 1

[
−a1

∂

∂a1
+ a3

∂

∂a3
+ · · · + (n− 3)an−1

∂

∂an−1
+ (n− 2)an

∂

∂an

]
.

The corresponding tensor fields will be denoted by L and M respectively. They inherit several
interesting properties from the tensor field of Nijenhuis. A few of these properties will be pre-
sented below.

Eigencovectors. I notice first that the 1-form

η = λ(da1 + αda2 + α2da3 + · · · + αn−1dan)

is an eigencovector of K, corresponding to the eigenvalue α, for any choice of the arbitrary
function λ . This property follows from the cyclic form of K, and holds for any choice of the
arbitrary functions Aj .The function λ serves to normalize the eigencovector . When the Haantjes
torsion of K vanishes, and when the eigenvalues αj are real and distinct, the function λ may be
chosen so that the 1-form η is exact :

η = du.

The function u is the canonical coordinate associated with the eigenvalue α. The construction
of the canonical coordinates is usually a difficult problem. It becomes simpler when the tensor
field K has symmetries. The following result is stated without proof.

Lemma 3. Let X be a symmetry of K, and demand that

η(X) = 1.

Then the 1-form η is exact.

This result is used to select the normalization factor λ.

Canonical coordinates. To find the symmetries of L and M , I look first at the symmetries
of the corresponding characteristic vector fields. Since the coordinates a1 and a2 are cyclic for
A and B respectively, the conclusion is that the vector fields

X =
∂

∂a1
, Y =

∂

∂a2

are symmetries of L and M respectively. Let us use these symmetries to normalize the
eigenvector forms. The normalization rule leads to

λL = 1 and λM = α−1,
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so that the normalized eigencovectors are

ηL = da1 + αda2 + α2da3 + · · · + αn−1dan,

ηM = α−1da1 + da2 + α1da3 + · · · + αn−2dan.

The canonical coordinates follow then in two steps. A simple integration by parts allows to write
immediately η as a total differential up to a multiple of the differential dα of the eigenvalue α.
The extra term is subsequently eliminated by means of the characteristic polynomial of K. One
arrives in this way to the following expressions

uL = a1 + a2α+ · · · + anα
n−1 + αn+1,

uM = a1α
−1 + a2 + a3α+ · · · + anα

n−2 + αn−1,

for the canonical coordinates of L and M respectively. These coordinates are special
deformations of the canonical coordinates

u = αn

of the tensor field studied by Nijenhuis. They are called miniversal deformations of type An and
Dn respectively.

Torsion and annihilating 1-form . The tensors fields L and M have torsion, but their
torsion is very mild since they are gentle deformations of the torsionless tensor field considered
by Nijenhuis. For L one finds that all the components of the torsion vanish except

TL

(
∂

∂aj
,
∂

∂an

)
=

∂

∂aj
,

for j = 1, 2, · · · , n− 1. Similarly , for M one finds that all the components of the torsion vanish
except

TM

(
∂

∂aj
,
∂

∂an

)
=

∂

∂aj+1

for j = 1, 2, · · · , n− 1. These outcomes make it simple to construct the 1-forms annihilating the
torsion of L and M respectively. They are:

θL = dan, θM = da1.

These forms are exact and invariant along the the symmetry vector fields X and Y introduced
above.

Haantjes manifolds with symmetry. To check the last condition, that is that the 1-forms
LθL and MθM are exact, it is expedient to pass to represent the cyclic tensor fields K on the
dual basis daj . The equations

Kdan = dan−1 +Andan,

Kdan−1 = dan−2 +An−1dan,

...

Kda2 = da1 +A2dan,

Kda1 = A1dan
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hold for any tensor field of the class considered at the beginning of this section. By inserting in
these equations the explicit form of the characteristic vector fields of L and M respectively, one
may check that the required property holds in both cases. The conclusion is that among the
deformations of the bihamiltonian manifold studied by Nijenhuis in 1951 there are two Haantjes
manifolds with symmetry. The canonical coordinates of these manifolds are the miniversal
deformations of singularities of type An and Dn respectively [4].

This is a first instance of the connection between Haantjes manifolds and the Singularity
Theory. The outcome of this example may be deepened by pursuing the study of Lenard chains.
The second example dealt with in the next section goes one step in this direction. It is meant to
suggest that the geometrical framework of Haantjes manifolds is sufficiently wide to encompass
the Frobenius structure of the orbit spaces of Coxeter groups [5].

3. An example of Lenard chain
The class of tensor fields studied in the previous section depended on a single characteristic
vector field. The obvious extension is to consider now a class of tensor fields depending on two
characteristic vector fields. This class is defined by the equations

L
∂

∂a1
=

∂

∂a2
,

L
∂

∂a2
=

∂

∂a3
,

...

L
∂

∂an−1
=

∂

∂an
,

L
∂

∂an
= A,

L
∂

∂an+1
=

∂

∂an+2
,

L
∂

∂an+2
=

∂

∂an+3
,

...

L
∂

∂an+m−1
=

∂

∂an+m
,

L
∂

∂an+m
= B,

where A and B are unspecified vector fields to be properly determined afterward. The new class
will be referred to as the gluing of two Nijenhuis operators (for a different but related notion of
gluing see [6]).

In this section I sketch the study of this type of tensor fields on a manifold of low dimension.
Specifically, I consider the class of tensor fields defined by the equations

L
∂

∂a1
=

∂

∂a2
, L

∂

∂a2
=

∂

∂a3
, L

∂

∂a3
= A,

L
∂

∂a4
=

∂

∂a5
, L

∂

∂a5
=

∂

∂a6
, L

∂

∂a6
= B,

on a manifold of dimension six. The aim is to construct a concrete example of Lenard chain.
The process is rather articulate, and I split it in seven steps for convenience.
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The intertwining tensor M. In view of the study of the spectral properties of the tensor
field L it is quite useful to introduce a second tensor field M , called the intertwining tensor
field associated with L. It is defined as the unique tensor field which commute with L, and that
intertwines the generator ∂

∂a1
of the first cyclic chain of L to the generator ∂

∂a4
of the second

cyclic chain. On the basis associated with the cyclic coordinates aj , this tensor field admits the
following representation:

M
∂

∂a1
=

∂

∂a4
, M

∂

∂a2
=

∂

∂a5
, M

∂

∂a3
=

∂

∂a6
,

M
∂

∂a4
= C, M

∂

∂a5
= D, M

∂

∂a6
= E.

The three vector fields (C,D,E), referred to as the characteristic vector fields of M , are well
determined rational functions of the characteristic vector fields (A,B) of L. I omit to give their
explicit representation here, since later on we shall have the occasion to characterize them in a
more effective way.

Eigencovectors of L. Since the characteristic vector fields (A,B) determine completely the
tensor fields L and M , they fix their eigenvalues αj and βj as well. The study of the eigenvalue
problems

Lη = αη, Mη = βη,

leads to two important conclusions. The first is that the eigenvalues of L and M are related to
their characteristic vector fields through the equations

(A1 + αA2 + α2A3) + β(A4 + αA5 + α2A6) = α3,

(B1 + αB2 + α2B3) + β(B4 + αB5 + α2B6) = α3β,

(C1 + αC2 + α2C3) + β(C4 + αC5 + α2C6) = β2,

(D1 + αD2 + α2D3) + β(D4 + αD5 + α2D6) = αβ2,

(E1 + αE2 + α2E3) + β(E4 + αE5 + α2E6) = α2β2.

The second is that the eigencovector η related to the generic pair of eigenvalues α and β is given
by

η = λ(da1 + αda2 + α2da3 + βda4 + αβda5 + α2βda6).

It is defined, as usual, up to the arbitrary scaling factor λ. Having in mind to study the Haantjes
condition for the tensor fields L and M , it is worth to notice that the correspondance between
characteristic vector fields and eigenvalues is bijective , at least generically in an open dense
domain. This property allows to introduce a second representation of L and M in terms of their
eigenvalues, conceived as arbitrarily functions of the cyclic coordinates.

Haantjes conditions on the eigenvalues. To impose the Haantjes conditions upon the
tensor fields L and M amounts to choose the normalizing factor λ and the eigenvalues α and β
in such a way to make the 1-form η exact. This problem is easily solved by an integration by
parts. Choose λ = 1 and write η in the form

η = d(a1 + αa2 + α2a3 + βa4 + αβa5 + α2βa6)−(a2+2αa3+βa5+2αβa6)dα−(a4+αa5+α
2a6)dβ.

To make this form exact it is sufficient to impose the constraints

−(a2 + 2αa3 + βa5 + 2αβa6) = α3,

−(a4 + αa5 + α2a6) = β2.
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on the eigenvalues of L and M . This is the form of the Haantjes conditions on the eigenvalues.
Haantjes conditions on the characteristic vector fields. The final form of the Haantjes

conditions is on the characteristic vector fields , seen as functions of the cyclic coordinate instead
than as functions of the eigenvalues. This final form is attained by a process of elimination. One
has to eliminate the eigenvalues α and β among the five equations which give the characteristic
vector fields as functions of the eigenvalues , and the two equations which give the eigenvalues
as functions of the cyclic coordinates. It is convenient to split the process of elimination in two
parts. First I give the explicit representation of the characteristic vector fields A and C, which
depend quite simply from the cyclic coordinates. Their form is:

• Field A :

A1 = −a2, A2 = −2a3, A3 = 0,

A4 = −a5, A5 = −2a6, A6 = 0;

• Field C :

C1 = −a2, C2 = −2a3, C3 = 0,

C4 = 0, C5 = 0, C6 = 0.

Then I give the expression of the components of the other characteristic vector fields as functions
of the components of A and C. The expression are a little more cumbersome:

• Field B :

B1 = A4C1 +A5(0 +A1C3), B2 = A4C2 +A5(C1 +A2C3),

B3 = A4C3 +A5(C2 +A3C3), B4 = A1 +A4A5C3,

B5 = A2 +A5A5C3, B6 = A3;

• Field D :

D1 = 0 +A1C3, D2 = C1 +A2C3,

D3 = C2 +A3C3, D4 = A4C3,

D5 = A5C3, D6 = A6C3;

• Field E :

E1 = A1C2 + C3(0 +A1A3), E2 = A2C2 + C3(A1 +A2A3),

E3 = A3C2 + C3(A2 +A3A3) + C1, E4 = A4C2 + C3(A4 + 0),

E5 = A5C2 + C3(A4 +A5), E6 = A6C2 + C3(A5 + 0).

Canonical coordinates. At this point we dispose of all the informations concerning the
tensor fields L and M . This allows to compute, for instance, their canonical coordinates. From
the final form of the eigencovector η one may see that the canonical coordinate associated with
the pair of eigenvalues α and β of L and M is

u = a1 + αa2 + α2a3 + βa4 + αβa5 + α2βa6 + 1/4α4 + 1/3β3.

This formula shows that the tensor field L is related to the theory of singularities of type E6 [4].
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The Haantjes manifold. To complete the construction of the Haantjes manifold it remains
to find a 1-form θ which is exact and annihilates the torsion of L, and such that the iterated
1-form Lθ be furthermore a second exact 1-form. A look at the action of L on the dual basis
daj provides quickly this form. Indeed the 1-form

θ = da6

verifies all the required conditions. So the pair (L, θ) defines a Haantjes manifold of dimension
six.

The Lenard chain. Let us set, as usual, K0 = Id and K1 = L. To construct a Lenard chain
one has to find, inside the ring of tensor fields commuting with L and M , other four tensor
fields (K2,K3,K4,K5) satisfying the same conditions verified by K0 and K1. One looks for
polynomials in L and M , and one selects these polynomials by imposing the conditions dKθ = 0
and dK2θ = 0 characteristic of the theory of short Lenard chains. I omit the details of the
computation, giving only the final result. The Haantjes manifold defined by the pair (L, θ) is
endowed with a Lenard chain formed by the tensor fields:

K0 = Id,

K1 = L,

K2 = M − 1/24a26Id,

K3 = L2 + 1/4a6M + (1/4a3 + 1/144a36)Id,

K4 = LM + 1/12a26L− 1/12a5a6Id,

K5 = L2M − 1/8a26L
2 + (1/4a3 + 1/288a36)M − 1/2a5a6L+

+ (−1/12a4a6 + 1/96a3a
2
6 − 1/24a25 + 1/3456a56) Id.

It is a special Lenard chain, since it possesses an additional symmetry. Indeed the tensor fields
Kj and the 1-form θ are invariant along the vector field ∂

∂a1
which served as starting point of

the present construction. It is therefore a Lenard chain with symmetry. This property has far
reaching consequences, but their study go outside the limits of the present paper.
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