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Introduction

Phase change materials are a class of chalcogenide compounds employed for data storage
applications. They are at the basis of commonly used opticalmemories (e.g. DVD-RW and
Blue-Rays) and in the last few years they had been under scrutiny for the development of new
electronic non volatile memories known as phase change memories (PCM) [1, 2]. Originally
designed as a replacement for NOR Flash memories in recent years PCMs have widened their
application range. It has been demonstrated that PCMs are promising candidates for the real-
ization of the so called “storage class memories”, non-volatile memories with an access speed
comparable to that of the volatile DRAMs [3], and in applications for neuromorphic computing
[4, 5]. Both optical disks and PCMs are based upon a fast and reversible transitions between
the crystalline and an amorphous phases, that correspond tothe two states of the memory, i.e.
the 0 and 1 bits. The two states can be discriminated thanks toa large difference in their optical
and electronic properties, the crystal being roughly speaking metallic and the amorphous phase
being insulating. The phase transition is induced by heating, produced by a laser pulse in DVD’s
and by Joule effect in PCMs.

A PCM device consists of a resistor made of a thin film of a phasechange material between
a metallic contact and a resistive electrode that heats up the active layer. The programming op-
erations are performed by applying a bias of few Volts, enough to have a sufficient current flow
to induce either the melting of the crystal and subsequent amorphization or the recrystallization
of the amorphous phase.

Thermal properties of phase change materials greatly influence almost every key figure of
merit of PCMs such as the programming current, scalability and reliability [6–8]. For this rea-
son quantities like thermal conductivity and thermal boundary resistance in PCMs have been
largely studied from an experimental point of view. Most of these data, however, still need to be
fully understood and explained into a theoretical picture.Just to mention one issue we remark
that the hexagonal phase of Ge2Sb2Te5 (GST), one of the most popular material for PCMs ap-
plications, presents an unusually low lattice thermal conductivity of just 0.5 W/m K [9] which
is in the range of thermal conductivities of glass-like materials and not of crystals.

This thesis is devoted to the study of phonons and thermal transport of phase change mate-
rials of interest for applications in PCMs. To this aim we used atomistic simulations based on
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density functional theory (DFT) and molecular dynamics simulations suitably designed inter-
atomic potentials. After a general introduction on the properties of phase change memories and
materials given in chapter 1, we report a description of the computational detail in chapter 2.

In chapter 3 we report the results the thermal conductivity of three widely used phase change
materials such as the aforementioned hexagonal Ge2Sb2Te5, amorphous and crystalline GeTe
and InSbTe alloys. The thermal conductivity of GST and crystalline GeTe has been computed
solving the Boltzmann transport equation on the basis of harmonic and anharmonic force con-
stants calculated with ab initio methods [10]. As a cross validation, and to directly evaluate the
role of defects, thermal conductivity of crystalline GeTe has been computed also with a molec-
ular dynamics(MD) approach [11] using a neural network interatomic potential developed in
our group [12]. The same MD technique was also applied to studying amorphous GeTe, while
a simplified model, known as minimum thermal conductivity model, was employed to estimate
the thermal conductivity in InSbTe.

In chapter 4 we addressed the problem of estimating the thermal boundary resistance (TBR)
between GST, GeTe and the materials commonly used as dielectrics or metallic contacts in
memory devices. TBR can reach sizable values [9] in PCMs and their knowledge is essential
for a complete electrothermal modeling of PCM cells. By meanof DFT calculations we have
been able to identify the different contributions to the TBRof several interfaces of interest for
PCMs

In the last few years the research on phase change materials expanded from the bulk materials
to nanowires and superlattices.

Superlattices have recently attracted a considerable interest after the proposal of the so called
“interface phase change memories” (iPCM) [13]. These memories rest on the transition among
different crystalline phases in GeTe-Sb2Te3 superlattices without melting. This transition is ex-
pected to be produced by just a small movement in the Ge sublattice and requires thus far less
energy than an amorphization-recrystallization process.

Although the effectiveness of superlattices in the realization of low power phase change mem-
ory has been demonstrated [13] the switching mechanism and even the actual crystal structure
are still matter of debate. Among the different proposals, it has been suggested that the switch-
ing stems from a change in the topologically protected interface states that originates at the
interface between the topological insulator Sb2Te3 and the normal insulator GeTe. The same
states, appearing also at the surface of Sb2Te3, have been proposed to affect the dispersion re-
lations of surface phonons. To address this issue, we computed surface phonons at the (0001)
surface of Sb2Te3 and of the similar Bi2Se3 for sake of comparison as reported in chapter 5.
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The vibrational properties of GeTe-Sb2Te3 superlattices are reported in chapter 6. Since the
different structures proposed for these superlattices feature different bonding geometries in the
GeTe blocks one would expect specific vibrational signatures of the different crystal structures.
Would this be the case, one should also be able to identify thestructures, monitor the switching
process and perhaps also identify intermediate states by micro-Raman measurements. To this
end we computed the Raman spectra for the most likely structures. Since no experimental data
are available on these superlattices we first used Ge1Sb2Te4 as a reference system to assess the
reliability of our theoretical framework. The realizationof precise and highly controlled iPCMs
structures requires an accurate control of the growth process that can be achieved by molecular
beam epitaxy (MBE). The MBE growth of GeTe multilayers is a first step towards this goal.
Moreover GeTe multilayers are of great interest for they ownproperites like a giant Rashba
splitting [14] and the possibility of a ferroelectric switching [15]. In chapter 7 we present the
calculations of the Raman spectra of GeTe multilayers aimedat explaining the evolution of the
peaks observed during their growth on Sb-passivated silicon surfaces.

Nanowires are otherwise promising systems to obtain defect-free crystal structures and over-
come the size limitations imposed by lithographic processes pushing further the scaling limits
of PCMs. Furthermore, nanowires in the form of core-shell systems are considered among the
best candidates for the realization of multibit memories [16].

In chapter 8 we studied the energetic of the surfaces of Sb2Te3 nanowires, in order to explain
the peculiar morphology and crystal structure observed. Finally, in chapter 9 we report about the
fitting of an extend version of the neural network potential for bulk GeTe developed in Ref.[12]
able to properly treat surfaces and nanowires and we presenta first application of this potential
in the calculation of the thermal conductivity of GeTe crystalline nanowires.

The theoretical activity of this thesis has been stimulatedby collaborations with experimental
groups mostly within the FP7-EU Project Synapse.





1 Phase change materials and memories

1.1 General features

Phase change materials are compounds of great technological relevance since they are nowa-
days commonly employed in the well established technology of optical memories (e.g. DVD-
RW and Blue-Rays) and in a novel emerging class of electronicnon volatile memories (NVM)
known as Phase Change Memory (PCM) [1, 2]. Both applicationsrely on the fast and reversible
transition between the crystalline and the amorphous phase, induced by heating produced either
by a laser pulses (DVDs) or by Joule effect (PCMs) [17]. The crystalline and amorphous phases
show large differences in both reflectivity and resistivity, exploited to store information in opti-
cal memories and PCMs.

The first material showing phase change properties was discovered back in the 60’s by J.F.
Dewald [18] and S. R. Ovshinsky [19], but the crystallization speed of this first alloy was too
low for any practical application. Phase change materials were rediscovered in the ’90, when
the search for faster rewritable optical discs led to the discover of new and more performing
phase change compounds based on chalcogenides alloys.

In particular, the family of the pseudobinary compounds (GeTe)x(Sb2Te3)y whose phase dia-
gram is shown in Fig.1.1, represents a prototypical system.The Ge8Sb2Te11 is the composition
actually used in Blue-Ray disks [2] while in PCM Ge2Sb2Te5 (GST) has been the material of
choice so far thanks to its high transformation speed and thehigh stability of the metastable
amorphous phase [17]. Many other alloys, containing also Inand Ga, have been studied for
particular purposes such as application at high temperature in automotive electronics [20].

A 64 Mbits PCMs prototype was realized by Samsung back in 2004. In 2012 Micron reached
the mass production scale and commercialized the first 45 nm PCM device for mobile applica-
tions [21, 22] as replacement for NOR Flash memories.

In past few years the technological interest for PCMs shifted towards their possible use in the
realization of the so called storage class memories: non-volatile memories with an access speed
comparable to that of the volatile DRAMs [3].
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Figure 1.1: Sketch of the Ge Sb Te ternary phase diagram. Composition intervals of interest for
applications in optical disks are highlighted (Ref. [17]).

In 2014 Western Digital announced a prototype of a PCM based storage disk with a reading
speed 100 faster than state-of-the art solid state hard drives and a comparable writing speed. In
July 2015 Intel and Micron have announced the release of a new“3D Xpoint” crossbar tech-
nology suitable to fabricate storage class memories [23]. Although no information has been
released on the details of this new technology, it is common believe that PCMs are a leading
contender for the realization of such storage class memories.

Although many different architectures have been developedover the years, the most common
one is the so called “mushroom cell” shown in Fig.1.2. The single cell is composed by a tran-
sistor that acts as a selector that modulates the current pulse in the read and write operations,
while the resistor is made by a thin film of phase change material sandwiched between a metal-
lic contact and a resistive electrode, usually TiN, that operates as a heater.

There are two different operations in the programming process of the cell (Fig.1.3): SET and
RESET. In the RESET the active material switches from the conductive crystalline phase to the
amorphous insulating phase with a resistance of the order offew MΩ, while in the first process
the chalcogenide switches back from the amorphous to the crystalline phase.

In the RESET operation, the temperature of the active layer is briefly raised over the melting
temperature Tm using a short and intense current pulse after which a small dome of melted active
material experiences a fast (30-50 ns) cooling in which the liquid freezes into the amorphous
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Figure 1.2: a-b) Architectures of a PCM cell in the so called “mushroom” configuration (Ref.
[1]). c) SEM image of the programming region of the cell indicating the amorphous and the
crystalline part.

Figure 1.3: RESET a,b) and SET c) process typically used in PCM programming. The same
concepts apply to the programming of optical memories basedon phase change materials like
e.g. DVD-RAM and Blu-Ray disks.
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phase. To revert the transformation the material is heated up, with a longer and less intense
pulse, to a temperature higher than the glass transition temperature Tg (or crystallization tem-
perature) at which the atomic mobility is high enough to allow the recrystallization on the time
scale of approximately 100 ns.

The Joule heating of the amorphous phase in the SET process isenabled by a peculiar elec-
tronic behavior of the amorphous phase, which shows a high electrical resistivity at low voltages
(mV), by increasing the applied bias above a threshold voltage (Vth ) of the order of few Volts,
it undergoes a purely electronic transition to a less resistive state ( a process known as threshold
switching) which allows for a sufficient current flow.

The current-voltage characteristic of the amorphous phasedisplaying the threshold switching
is shown in Fig. 1.4. The crystal has instead a simple Ohmic behavior as also shown in Fig. 1.4.
The reading of the memory is performed applying a voltage lower than Vth.

A key factor for the application of phase change materials inmemory devices is their very
high crystallization speed and in particular their very high nucleation rate. Over the years many
proposals have been raised to explain this peculiar property.

Figure 1.4: Typical current-voltage characteristic of a phase change device. When the applied
voltage is low, a very low current flows through the amorphousmaterial, while, by applying
a bias above a threshold voltage of about 0.7 V, the resistance drops and the current intensity
increases (threshold switching) allowing Joule heating and recrystallization. The crystalline
phase is metallic with a low ohmic resistance [17].
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On the basis of Extended X-Ray absorption fine structure (EXAFS) spectra [24–26], Kolobov
et al.[27, 28] proposed that the crystallization consists of a small movement of Ge atoms that
change their coordination from a tetrahedral geometry in the amorphous to the octahedral ge-
ometry of the crystal, which has been thus called “umbrella flipping” model.

Ab-initio molecular dynamic (MD) simulations have later proposed a different model for
the amorphous phase in which only 1/3 of Ge atoms are in tetrahedral configuration while the
majority is in a defective octahedral bonding geometry withbonding angles typical of the octa-
hedral environment of the crystal but a coordination numberlower than six [29, 30, 33].

Hegedus and Elliott [31] further recognized that the network topology in the amorphous phase
consists of mostly four-membered rings which are also the building block of the crystalline
rocksalt phase. They suggested that the phase transition occurs thanks to a fast realignment of
four-membered rings [32–34] present in both the amorphous and crystalline phases.

More recently, however, it has been realized that the crystallization during the SET operation
actually occurs at temperatures well above the glass transition which implies that high speed
of crystallization actually depends on the properties of the supercooled liquid. Recent ultra-fast
differential scanning calorimetry (DSC) measurements on GST [35] and MD simulations [36]
actually ascribed the fast crystallization of these materials to the fragility of the liquid phase.

The fragility of a liquid is defined on the basis of the temperature dependence of the viscosity
η. Strong liquids show an Arrhenius behavior ofη as a function of temperature T in the range
between the melting temperature Tm and the glass transition temperature Tg. Fragile liquids,
instead, are characterized by a super-Arrhenius behavior of η as shown in Fig.1.5.

For fragile liquids,η can be very low down to temperatures close to Tg resulting in a high
atomic diffusivity which can boost the crystallization speed as predicted classical nucleation
theory. Moreover it has been proved both experimentally [35] and theoretically [37] that another
factor that boost the crystallization speed in phase changematerials is the breakdown of the
Stokes-Einstein relation (SER). The SER, that relates the viscosityη with the diffusivityD as:

D =
kBT

6πηrp
(1.1)

wherekB is the Boltzmann constant andrp the dimension of the particles, is strictly valid
in the hydrodynamic regime, but it is often not satisfied in fragile liquids where both a high
diffusivity and a large viscosity can be present.
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Figure 1.5: Behavior of the viscosity as a function of the reduced temperature for different
supercooled liquids. In strong liquids the viscosity follows an Arrhenius behavior, while a super-
Arrhenius behavior is observed for fragile liquids. The blue (green) curve represent the viscosity
η values estimated in Ref. [35] for Ge2Sb2Te5 from ultra-fast DSC assuming (or not) the Stoks-
Einstein relation to hold.

In phase change materials a very high diffusivity, that allows for a fast structural reorgani-
zation, has been indeed observed even at temperature very close to the glass transition where
the viscosity becomes high. This effect further contributes to speed up the crystallization. The
breakdown of the Stokes-Einstein relation has been studiedin details in GeTe [37] where it has
been ascribed to the presence of a dynamical heterogeneity,i.e. localized regions where atoms
move with a higher speed and regions where atoms move slower.

1.2 Thermal transport in phase change materials

Thermal properties of phase change materials recently attracted a considerable interest. Ther-
mal design and engineering in fact play an important role in optimizing the performance of both
optical and PCM devices. In PCMs in particular, thermal properties influence almost every rel-
evant parameter for technological applications such as theprogramming current, scalability,
reliability, and cross talk among neighboring cells.[6–8]Several device studies indicated that
increasing interfacial [38, 39] and volumetric[40, 41] thermal resistances can reduce program-
ming current and improve reliability [38, 42]. Furthermore, beside their application as phase
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change materials, chalcogenide have also attracted much attention as candidates for thermo-
electric power conversion applications [43, 44].

Experimental measurements of lattice and electronic thermal conductivity and of the resis-
tance at the interface between two materials due to the partial heat carrier transmission (thermal
boundary resistance or TBR), have been performed mainly on thin chalcogenide films using
different techniques such as the 3ω method, optical transient thermoreflectance (TTR) and op-
tical time domain thermoreflectance (TDTR). Commonly, for samples below 100 nm, 3ω and
TTR can only access effective thermal properties, spatial averages which include both the effect
of bulk and interfacial resistance, while only TDTR has in principle the temporal resolution to
potentially resolve the TBR and intrinsic thermal properties uniquely in a single measure.

In the 3ω method a microfabricated metal line is used as both a heater and thermometer to
measure the thermal response of the underlying thin films and/or substrate. A current, Iω , at
frequencyω is used to induce heat generation at frequency 2ω in the metal line. The linear
thermal transfer function of the thin films and substrate relates the 2ω heating to the 2ω temper-
ature rise in the metal line. The metal line resistance varies linearly with temperature, causing
resistance oscillations, R2ω , at 2ω, and voltage oscillations at 3ω (due to the product of Iω and
R2ω) which is measured and used to determine the thermal transfer function [45]. Since phase
change materials are electrically conductive they need to be isolated from the metal line with
a passivation layer. The measured thermal impedance include thus also the contribution of the
interface resistance and multiple measurements with different film thickness are necessary to
decouple the TBR from the intrinsic material properties.

Several authors report the thermal conductivity of PCM materials using the thin film 3ω
method [46–49]. Fallica et al.[9] reported measurements ofthe total thermal conductivity for
two crystalline phases of GST (hexagonalκ=1.13 W/m K and rocksaltκ=0.55 W/m K ) and
amorphous GST (κ=0.21 W/m K) and an estimate of the thermal boundary resistance between
these three phases and silica ( 94, 72 and 159 m2 K GW−1 respectively). In another work [51]
a total thermal conductivity ofκ=3.08 W/m K was reported for crystalline GeTe andκ=0.23
W/m K for its amorphous phase.

Optical thermometry techniques (TTR and TDTR) measure the transient change in reflectance
to probe the thermal response of a thin film stack. In contrastto the 3ω technique, optical tech-
niques are noncontact and do not require electrical passivation layers. In thermoreflectance mea-
surements, a high-intensity laser pulse causes a temperature excursion in the sample. A probe
beam samples the temperature of a metal transducer via its relative reflectance change. In time
domain thermoreflectance the reflectivity is measured with respect to time, with a resolution
down to 10 ps, and the data received can be matched to a model which contain coefficients that
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correspond to thermal properties [53].

Recent TDTR measurements [54] provided further data on the thermal conductivity of GST
(κ=1.32 W/m K of which 0.73 W/m K due to electronic contributionfor the crystalline hexag-
onal phase,κ=0.45 W/m K for the rocksalt phase andκ=0.23 W/m K for the amorphous). GST
has thus a glass-like thermal conductivity also in the crystalline phase due to different types
of disorder. Moreover the thermal boundary resistance between GST and TiN was measured
leading to a much lower value (12 m2 K GW−1 for the hexagonal-GST/TiN interface and 24
m2 K GW−1 for cubic-GST/TiN interface) than the previous measurements for the GST/silica
interface.

From a theoretical point of view thermal conductivity in phase change materials has been ad-
dressed so far only with simplified models. The lattice thermal conductivity has been estimated
with good results [47, 55] in amorphous and rocksalt GST (which is characterized by a strong
disorder on Ge/Sb sublattice) using the minimum thermal conductivity model. This model at-
tributes all the thermal conductivity to the acoustic modesand assumes a mean free path of the
phonons of the same order of magnitude of the interatomic distances, an approximation that can
hold in highly anharmonic systems or systems characterizedby a large scattering contribution
from disorder or vacancies.

In the case of electrically conducting phase change materials, electron contribution to the
thermal conductivity has been commonly estimated on the basis of electrical conductivity mea-
surements and the application of the Wiedemann-Franz-Lorenz rule that links the electron con-
tribution to the thermal conductivityκe to the electrical conductivityσ asκe/σ = LT whereL
is the Lorenz number (2.45× 10−8 W Ω K−2) and T is the temperature.

Thermal boundary resistance in phase change materials can have different contributions. At
the interface between any two materials is present a TBR termwhich originates from the imper-
fect transmission of phonons through the interface. This term has been estimated in literature for
PCMs with varying degrees of success [9, 54] using acoustic mismatch model (AMM) [56] and
diffuse mismatch model (DMM) [57, 58] that in their simplestform predict interfacial phonon
transmission and reflection rates on the basis of the mismatch between the sound velocities in
the two media.

A second contribution to the TBR may rise when electrons contribute significantly to the ther-
mal conductivity of one or both contacting materials, sincethey also affect interfacial transport.
Electron-electron contribution to the TBR has been estimated for phase change materials using
the so called interfacial Wiedemann-Franz-Lorenz (which states that electron-electron term of
thermal boundary resistance is equal to the electric interface resistance divided by theLT factor)
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but is usually considered to have a negligible effect at the interfaces relevant for PCMs.

Finally an interesting case might be represented by the interface among a conductor and an
insulator where electrons and phonons must interact to transport heat across the boundary. A
general theory that describe such an interface has been developed Majumdar and Reddy [59]
but the problem has never been addressed in literature for PCMs.

As briefly summarized in the introduction we have addressed some of these issues on thermal
properties by means of atomistic simulations. In chapter 3 we report on the atomistic calcula-
tions of thermal conductivity in bulk GeTe, GST and Sb2Te3 to address the role of different
type of disorder while in chapter 4 we studied the different contributions to the TBR of GST
and GeTe with metals and dielectrics.

1.3 Novel architectures for phase change memories

In recent years several new possibility of development for phase change materials emerged
in the form of new applications, new materials and new scaling perspectives. In the next para-
graphs we will briefly present two of them, addressed to some extent in the present thesis. We
will discuss first the possible realization of multi-bit memories cells in bulk and especially in
nanowires and then a new class of PCMs, called “Interfacial phase change memories” realized
in (GeTe)2Sb2Te3 superlattices and particularly promising for low power applications.

1.3.1 Multi-bit phase change memories and nanowires

The realization of a multi-bit memory represent an effective way to significantly increase the
storage density of a memory device. The realization of multi-bit memory based on phase change
materials was already proposed in 1995 by Ovshinsky and co-workers [60] exploiting the pos-
sibility to create intermediate-resistance states by controlling the dimensions of the amorphized
region within the active layer and exploiting the large spanof resistivity (up to three order of
magnitude) between the amorphous and crystalline phases.

Multi-bit memories have been realized using the classical “mushroom” configuration using
nitrogen doped GST [61]. Moreover it has been demonstrated that up to 16 intermediate resis-
tance levels can be realized in this architecture by using a read-verify-write algorithm [62, 63].
In this method several writing pulses are applied on a cell toreach a target resistance level.
The shapes of the pulses are adjusted at each iteration on thebasis of the distance of the actual
resistance from the target value.
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Multi-bit memories have also been fabricated or with stack of three layers of a phase change
material with three heaters of different sizes as shown in Fig.1.6 that induce a layer-by-layer
transformation [64–66].

Figure 1.6: Scheme of a stacked 2-bits (00, 01, 10, 11) phase change memory cell and the
relative R-V characteristic.

However, the realization of complex multi-stack devices using a standard top-down approach
based on the deposition of thin films and subsequent lithographic steps is an extremely deli-
cate process and could easily bring to uncontrollable structural defects and ultimately limit the
scalability. For this reason an alternative promising technique technology is represented by the
multi-bit memories realized with core-shell nanowires (CS-NW). Nanowires present the advan-
tage of a defect-free crystal structure and sublithographic dimensions (ideally down to 10 nm)
which can result in a lower power consumption compared to conventional PCMs as already
demonstrated for single-level memories based on GeTe or In2Se3 [67]. Multi-level devices can
be realized by using CS-NW where the two phase change alloys of the core and shell have a
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different melting or crystallization temperatures. Programming can be carried out by applying
current pulses of different intensity in order to induce a sequential melting of the shell and the
core and reach intermediate values of resistance.

Multi-level memories with CS-NW made of Ge2Sb2Te5 (core) and GeTe (shell) have recently
been realized [16] managing to obtain three well separated resistance levels (cf. Fig. 1.7). The
cell has the lowest resistance when both the GST and GeTe are in the crystalline phase. By ap-
plying a current pulse of 1.2 mA, the GST core melts and amorphize, while GeTe remains crys-
talline obtaining an intermediate value for the resistance. The higher resistive state is reached
when both GST and GeTe are in the amorphous phase.

Figure 1.7: Variation of resistance of a core/shell GST/GeTe nanowire device as a function of
current pulses with varying amplitudes. The three different resistive states (low, intermediate,
and high) achieved with application of current pulses are clearly distinct. The schematic repre-
sents the cross section of the core/shell nanowire at each stage of transition, where color change
corresponds to the phase transition: light orange represents crystalline phase, and dark orange
is amorphous. Blue line refers to an initially amorphous nanowire, while red line to a nanowire
initially in the crystalline phase [16]

In this thesis we addressed the various issues on the properties of nanowires that arised within
a collaboration with an experimental team in the joint FP7-EU project Synapse. In particular we
studied the morphology of Sb2Te3 nanowires and the thermal conductivity of GeTe nanowires.
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Finally it is worth noticing that the continuous transitionbetween resistance levels in a PCM
used in an analog manner, can mimic the behavior of a biological synapse. A phenomenon called
spike-timing-dependent plasticity (a biological processwhere the strength of connections be-
tween neurons are adjusted during learning) has also been demonstrated in PCM devices using
specific programming schemes [68]. PCMs are thus under scrutiny as active elements for the de-
sign of neuromorphic computers with electronic hardware that resembles the functions of brain
elements. Image recognition using a neural network of PCM devices was also demonstrated
[4, 5].

1.3.2 Interfacial phase change memories

Recently, a new type of phase change memory device called ’interfacial phase change mem-
ory’ (iPCM) has been proposed and is attracting considerable interest since the SET-RESET
phase switching energy was demonstrated to be far smaller than that in conventional GST al-
loys and could thus play an important role in low power devices.

The iPCMs consist of hexagonal (GeTe)n-(Sb2Te3)m superlattices deposited by sputtering
along a growth direction corresponding to thec axis of rhombohedral Sb2Te3. The precise
structure of the crystalline phases involved is, nowadays still matter of debate.

Although the effectiveness of iPCM based cells has been proven, the mechanism of phase
transition, that can be induced by a nanosecond electrical pulse, is still unclear. It is believed
that the transformation involves small displacements of a subset of atoms without melting and
subsequent amorphization. Thus in the case of iPCMs, ratherthan a transformation between an
amorphous and a crystalline phase the transition is betweentwo different crystalline structures
with distinct conductive properties.

An example of two possible crystal structures representinga SET and a RESET state and
their relative band structure is reported in Fig.1.8.

On the basis of high resolution transmission electron microscope (TEM) images of (GeTe)2-
Sb2Te3 superlattices, it was proposed [13] that the SET state corresponds to a ferroelectric ar-
rangement of the (GeTe)2 blocks and that the RESET state could be obtained by a displacement
along the superlattice axis (c) of a layer of Ge atoms in order to form Ge-Ge bonds. (Switched
Inverted Petrov)

The RESET state has been later proposed [69] to correspond tothe so-called inverted Petrov
structure ideally obtained by switching Ge and neighboringTe atoms in the crystalline structure
of Ge2Sb2Te5 proposed by Petrov et al. [70]. The Inverted-Petrov structure is lower in energy
than the Switched-Ferro configurations. A switch between the Petrov (SET) and the Inverted-
Petrov (RESET) configurations has also been proposed [71]. In a recent paper, calculations
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Figure 1.8: In panel a) are sketched the crystalline structures of two possible superlattices
named Inverted Petrov and Switched Inverted Petrov together with the theoretical band struc-
tures calculated in Ref.[69] and the TEM images for the stuctures. In panel b) is reported the
evolution of the resistivity during the switching process.

based on Density Functional Theory have shown that the Ferro→ Inverted-Petrov transforma-
tion involves both a vertical displacement of one Ge plane and a lateral displacement and a
lateral displacement of GeTe layer [72].

More controlled methods to grow chalcogenide superlattices such as Molecular Beam Epi-
taxy (MBE) are under scrutiny to gain insights on the behavior of iPCMs. As a first step mul-
tilayers of GeTe have been grown. In this thesis we contributed to the understanding of the
behavior of GeTe multilayers by means of DFT calculations asdiscussed in chapter 7.





2 Computational Methods

In this thesis, phonons and thermal conductivity have been computed for several systems by
different means. For crystalline systems with a relativelysmall unit cell we used fully ab-initio
methods based on density functional theory (DFT see Sec.2.1) and density functional perturba-
tion theory (DFPT, Sec.2.2). The full solution of the Boltzmann transport equation from DFT
anharmonic force constants has then been obtained (Sec.2.3).

For large or disordered systems such as nanowires and amorphous materials we performed
molecular dynamics (MD) simulations (Sec.2.4) by using a non-equilibrium scheme (Sec.2.5)
and an interatomic potential generated with a Neural Network method (Sec. 2.6).

The DFT calculations have been performed with the Quantum-Espresso suite of programs
[73] while the Neural Network molecular dynamics simulations have been performed with the
proprietary code RuNNer [74] and the DLPOLY code as a MD driver [75].

2.1 Density functional theory

The quantum mechanical behavior of electrons in solids is described by the many-particle
Schroedinger equation. This equation contains all the available physical information but except
few very special and simple cases is far too complex to be solved exactly. Several models to sim-
plify the complexity of the many-particle problem has been studied, such as the Free Electron,
nearly Free Electrons and Tight-Bindings model [76]. None of these models treat the elecron-
electron interaction explicitly. An early approach where the electrostatic interaction between
electrons is taken into account is the Hartree equation. A further step in increasing accuracy
is represented by the Hartree-Fock method that extends the Hartree approximation including
also the effects of exchange interaction. The Hartree-Fockmethod gives good results in sys-
tems where the effects of exchange are much more important than the correlation effects. The
attempts to include also correlation effects, that for a realistic material are impossible to treat
exactly, lead to Density Function Theory (DFT) that, includes both exchange and correlation
interactions.
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Density functional theory is based on the Hohenberg and Kohntheorem [77]. This theorem
states that two different potentials acting on electrons can not give rise to the same ground state
electronic charge densityn(r). Using this property and the Rayleight-Ritz variational principle.
It can be shown that a universal functional of the electron charge densityF[n(r)] exists such
that the energyE

E[n] = F[n]+
∫

n(r)V(r)dr (2.1)

is minimized by the electron charge density of the ground state corresponding to the external
potentialV(r), under the constrain ∫

n(r)dr = N (2.2)

where N is the number of the electrons in the system. Furthermore, the value of the minimum
coincides with the ground-state energy. The conceptual simplification introduced by this the-
orem is enormous: the problem of determining the ground state energy and charge density is
now reduced to the minimization of a functional of n(r ),which depends only on three variables,
while the wave functions depend on 3N variables. The major problem of this formulation is that
the form of the functional F[n] is unknown. Kohn and Sham [78]had the idea to recast this
functional separating out of it a term,T0[n], defined as the kinetic energy of a non interacting
system with the same ground states density n(r ) of the interacting one, and a Hartree term that
represents the classical electrostatic interaction between electrons:

F [n] = T0[n]+
1
2

∫
n(r)n(r ′)
|r − r ′| drdr ′+Exc[n] (2.3)

We use here atomic units. Now all our ignorance is confined to the exchange-correlation energy
Exc[n]. The variation of the total energy functional with respect to n(r ) with the constraint of
a fixed number of electrons, leads formally to the same equation of a system of noninteracting
electrons subject to an effective potential, called the self-consistent field (SCF) potential, given
by

VSCF(r) =V(r)+
∫

n(r ′)
| r − r ′ |dr ′+vxc(r) (2.4)

where

vxc(r) =
δExc

δn(r)
(2.5)

is the functional derivative of the exchange-correlation energy, called exchange-correlation po-
tential. The advantage of this formulation is that if one knew vxc, the problem for noninteracting
electrons could be easily solved. To this end, one should solve the one-electron Schroedinger
equation [

−∇2

2
+VSCF(r)

]
Ψi(r) = εiΨi(r) (2.6)
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The ground state charge density distribution would then be given by

n(r) = 2∑
i
|Ψi(r) |2 θ(εi− εF) (2.7)

where the Fermi energyεF is defined by the condition on the number of electrons Eq 2.2 and the
single-particle orbitals satisfy the orthonormality constrain

∫
Ψ∗i (r)Ψ j(r)dr = δi, j . The ground

state energy can now be equivalently expressed in terms of the Kohn-Sham eigenvalues:

E[n] = 2
N/2

∑
i=1

εi−
1
2

∫
n(r)n(r ′)
| r − r ′ | drdr ′+Exc[n]−

∫
n(r)vxc(r)dr (2.8)

Is worth noting that for electrons in a crystal the external potentialV(r) is generated by ionic
cores:

V(r) =Vion(r) =−Z∑
R

1
| r −R | (2.9)

whereR indicates ions coordinates. Moreover to the energy functional E[n] one had to add the
ion-ion interaction energy

EN =
1
2 ∑

I 6=J

ZI ZJ

|RI −RJ |
(2.10)

2.1.1 Exchange-correlation functionals

The Kohn-Sham scheme constitutes a useful way to implement density-functional theory,
provided an accurate and reasonably easy-to-use approximation is available for the exchange-
correlation energyExc[n] whose exact form is unknown. Two of the most used approximations
for the exchange-correlation energy are the local density approximation (LDA) [79] and the
generalized gradient approximation (GGA) [80]. Within LDAthe exchange-correlation energy
of the electronic system is constructed by assuming that theexchange-correlation energy per
electron at a pointr is equal to exchange-correlation energy per electron in a homogeneus
electron gas with an electron density as at the pointr

ELDA
xc [n(r)] =

∫
n(r)εxc(n(r))dr (2.11)

The LDA is exact in the limit of high density or of a slowly varying charge-density distribution.
Appreciably good results using LDA approximation were obtained for semiconductors and sim-
ple metals. On the other hand LDA is well-known to considerably overstimate crystal cohesive
and molecular binding energies. A generalization of the LDAapproximation is the GGA that
includes also the gradient of the electron density. The GGA exchange-correlation functional
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depends on both the electron density and its gradient as:

EGGA
xc [n(r)] =

∫
n(r)εxc(n(r),∇n(r))dr (2.12)

In general GGA gives better results than LDA. In this thesis we mostly used the GGA functional
developed by Perdew, Burke and Ernzerhof (PBE) [81], for fewsystems the LDA functional was
also used.

2.1.2 Plane waves and pseudo-potentials

In order to accurately describe the Kohn-Sham single-particle wave functions of a system, it
is necessary to choose a suitable set of basis functions overwhich the electron wave functions
can be expanded. Several approaches exist. One is to consider the most natural basis functions
from real space viewpoint, that is atomic-like basis functions. Alternatively, one could employ
a basis set more suitable for a momentum space description ofthe material, that is the plane
waves basis set particularly suitable for periodic systems. This is the basis employed in the
Quantum-Espresso program that we used for our simulations.According to Bloch’s theorem, in
a periodic system, each single particle electronic wave function can be written as a product of a
cell-periodic part and a wave like part,

Ψn,k = un,k(r)e
ik·r (2.13)

Using a basis set consisting of a set of plane waves, we can expand the cell-periodic part of the
wave function in terms of reciprocal lattice vectors,

un,k(r) = ∑
G

cn,k+GeiG·r (2.14)

Thus we have
Ψn,k(r) = ∑

G
cn,k+Gei(k+G)·r (2.15)

For pratical reasons the plane wave basis set has to be truncated by choosing a kinetic energy
cutoff through the condition;

1
2
| k+G |≤ Ecut (2.16)

Plane waves offer important advantages: they are simpler touse because calculations can be
simply checked for convergence by increasing the size of thebasis set, they are orthonormal by
construction and they are not biased by atomic positions. Onthe other hand, they present also
some drawback like the dependence of the basis set from volume shape and size and a uniform
spatial resolution particularly unsuited to describe boththe strongly localized core states and
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the delocalized valence states. Plane waves are used in conjunction with pseudopotentials. The
electrons in a solid can be divided into two categories, coreand valence electrons. The core
electrons organize them self into closed shells which screen the positively charged nucleus,
while the valence electrons take part in the bonding betweenatoms. The wave functions that
describe the core electrons and the valence electrons oscillate rapidly close to the nuclei. Using
plane-waves as a basis set one would need a large number of expansion coefficients to describe
this region with a good accuracy. Fortunately, the core electrons on different atoms are almost
inert and only the valence electrons participate in the interactions between atoms. Hence, the
core electrons may be assumed to be fixed and a pseudo potential may be constructed which
takes into account the effects of the nucleus and the core electrons on valence electrons. A pseu-
dopotential is a fictitious electron-ion interaction potential, acting on valence electrons only, that
mimics the interaction with the inner electrons, which are supposed to be frozen in the core, as
well as the effective repulsion exerted by the latter on the former due to their mutual orthogonal-
ity. The constructed pseudo potential should coincide withthe true potential at and beyond some
given cut-off radiusrc . At the cut-off radius and beyond, the pseudo wave functionsmust match
the corresponding true wave function, while within the coreregion the pseudo wave functions
are constructed to be smoother than the true wave functions.Actual normconserving pseudopo-
tentials are determined uniquely by the properties of the isolated atom, while the requirement of
norm conservation ensures transferability, i.e. the ability of a pseudopotential to provide results
whose quality is to a large extent independent on the local chemical environment. A second
property, in order to have optimum transferability, is thatthe logarithmic derivatives of the true
and pseudo wave functions agree at the cut-off radius. The smoothness of a pseudopotential is
essential in plane wave calculations because it allows to reduce the number of expansion coef-
ficients. To improve this feature in 1990 Vanderbilt introduced ultrasoft pseudopotentials [82].
In this scheme, the orbitals are allowed to be as soft as possible in the core region; this comes
at the price of giving up both the norm conservation and the standard orthonormality condition.
Orthonormality is recovered by introducing a generalized overlap operator which depends on
the ionic positions. The full electron density in obtained by adding to the square modulus of the
orbitals an augmentation charge localized in the core regions.

2.1.3 Brillouin zone sums

Many quantities like the charge density or the total energy involves integrals overk in the
Brillouin Zone.

〈P〉= ΩBZ

(2π)3 ∑
n occ

∫
BZ

Pn(k)d3k (2.17)
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wheren the band index andΩBZ is the volume of the Brillouin Zone. In practice one does not
perform an integral but a sum over a finite numberNk of k-points,

〈P〉= 1
Nk

∑
n occ

∑
k∈BZ

Pn(k) (2.18)

Only points in the irreducible brillouin zone (IBZ) with appropriate weightsf can be considered
in the sum as:

〈P〉= 1
Nk

∑
n occ

∑
k∈IBZ

Pn(k) f (k) (2.19)

For metals at T=0, Eq.2.17 corresponds to an integral over all wave-vectors contained within the
Fermi surface. For the highest band there is a sharp discontinuity in k-space between occupied
and unoccupied states and many k-point are needed to reproduce it accurately. To avoid such a
problem usually in metals the sharp step function at the Fermi level is replaced with a smoother
function. For example one can use a gaussian smearing: the step function is thought as the
integral of aδ function and theδ function is replaced with a smooth gaussian with a varianceσ
gives rise to an occupation function

f (E) =
1
2

[
1−er f

(
E−EF

σ

)]
(2.20)

2.1.4 Forces

The calculation of the forces is the basis of geometry optimization and is also the starting
point for phonon calculation as we will see in the next chapter. Forces can be calculated thanks
to Hellman-Feynman theorem:

FI =−
∂E
∂RI

=−∂〈Ψ | H |Ψ〉
∂RI

=−〈Ψ | ∂H
∂RI
|Ψ〉 (2.21)

WhereRI represent the position of theI th-ion andΨ represents the ground state function. An
important consequence of the variational character of DFT is that the Hellmann-Feynman form
for forces, Eq.2.21 is still valid in a DFT framework. In fact, the DFT expression for forces
contains a term coming from the explicit derivation of the energy functional E[n] with respect
to atomic positions, plus a term coming from its implicit dependence via the derivative of the
charge density:

FDFT
I =−

∫
n(r)

∂V(r)
∂RI

dr − ∂EN

∂RI
−

∫ δE[n]
δn(r)

∂n(r)
∂RI

dr (2.22)

For the ground state charge density the last term in Eq.2.22 vanish and thusFDFT
I = FI . The

geometry optimization allows to obtain the atomic positions that minimize the total energy. At
each optimization step the Schroedinger equation for the electronic system is solved and the
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forces acting on each atom are calculated. Different algorithms are available to move atoms
according to the forces such as the BFGS [83, 84] and damped dynamic [85] methods which
allow a fast convergence toward the local energy minimum.

2.1.5 DFT-D semiempirical correction for long range dispersion forces

One of the drawback of DFT with current GGA exchange and correlation functionals is that it
can not describe long-range electron correlations that areresponsible for van der Waals forces.
S.Grimme [86] proposed a method, the DFT-D, that provides a semiempirical correction to
compensate for such deficiency. In DFT-D the total energy is written as

EDFT−D = EDFT +Edisp (2.23)

whereEDFT is the self consistent energy as obtained from the usual DFT method andEdisp is

Edisp=−
Nat−1

∑
i=1

Nat

∑
j=i+1

Ci j
6

R6
i j

fdamp(Ri j ) (2.24)

Here,Nat is the number of atoms in the system, C6 denotes the dispersion coefficient for atom
pair ij, andRi j is the interatomic distance. The functionfdamp is given by

fdamp(Ri j ) =
s6

1+e−d(Ri j /Rr−1)
(2.25)

whereRr is the sum of the VdW radii of the two atoms obtained from ab initio results ands6 is
a global scaling factor that only depends on the functional used.Ci j

6 is given by

Ci j
6 =

√
Ci

6C
j
6 (2.26)

and
Ca

6 = 0.05NIa
pαa (2.27)

where N has the value 2,10,18,36,54 for atoms from rows 1-5 ofthe periodic table,Ia
p is the

ionization potential andα is the static dipole polarizability. Recently an improvement of this
method, called DFT-D3, has been proposed [87]. In this new approach theC6 parameters are
calculated as

Ci j
6 =

3
π

∫ ∞

0
αi(iω)α j(iω)dω (2.28)
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whereαi(ω) is the frequency-dependent polarizability of the atom i calculated using time de-
pendent density functional theory (TDDFT) and the damping function is given by

fdamp=
1

1+6(Ri j/(sRr))−γ (2.29)

wheres is a constant that depends on the functional andγ=14

2.2 Density Functional Perturbation Theory

As described in the previous chapter, DFT can provide information such as the ground state
electron structure of a material or Hellmann-Feynman forces between atoms. However, many
interesting features are related to higher order derivatives of the ground state energy. For ex-
ample vibrational modes in a crystal are determined by the second derivative of the total en-
ergy with respect to ionic displacements. Many approaches have been developed to study the
lattice dynamics from first principle calculations such as frozen-phonon, molecular-dynamics
and density functional perturbation theory. Within the frozen-phonon method a suitable choice
of atomic displacement is made in order to determine force constants from differences of
Hellmann-Feynman forces calculated as a function of atomicdisplacement, small but finite,
from equilibrium positions. A frozen-phonon calculation for a lattice vibration at a generic vec-
tor q requires a super-cell havingq as a reciprocal lattice vector. This obviously turns out to be a
significant limitation for calculations at smallq because they would require large super-cells. In
molecular-dynamics (MD) simulations [88], the finite-temperature dynamics of atoms which vi-
brate about their equilibrium position are studied. The harmonic approximation can be applied,
for low enough temperatures, to describe the atomic trajectories from the classical equations
of motions. The Hellmann-Feynman forces have to be essentially the exact derivatives of the
total energy in order to obtain accurate trajectories and correct phonon density of states from
the Fourier transform of the velocity-velocity autocorrelation function. As in the frozen-phonon
method MD requires large super-cells in order to describe large wavelength phonons (smallq).
The approach of DFPT [89–93] is based on the response of the atoms to arbitrary infinitesimal
displacements and the corresponding changes of the ionic effective one-electron potential as
calculated within linear response theory as we will see in the next sections. DFPT can provide
phonon dispersion relations over the whole BZ.

2.2.1 Linear response

Within the Born-Oppenheimer adiabatic approximation it has been shown that an explicit
expression for interatomic force constants (FC) can be obtained by differentiating the Hellman-
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Feynman force constants with respect to ionic coordinates

∂2E[n]
∂RI ∂RJ

=
∫ ∂n(r)

∂RJ

∂V(r)
∂RJ

dr +δIJ

∫
n(r)

∂2V(r)
∂RI ∂RJ

dr +
∂2EN

∂RI ∂RJ.
(2.30)

The FC can thus be calculated from the charge density and the linear response to a distortion
of the nuclear geometry∂n(r)/∂RI . The charge-density linear response can be evaluated by
linearizing Eqs.2.33-2.31 that leads to

∂n(r)
∂RI

= 4Re
N/2

∑
i=1

Ψ∗i (r)
∂Ψi(r)

∂RI
(2.31)

The derivatives of Kohn-Sham orbitals are obtained from linearization of equation 2.6 and 2.31

(HSCF− εi)
∂Ψi(r)

∂RI
=−

(
∂VSCF(r)

∂RI
− ∂εi

∂RI

)
Ψi(r) (2.32)

where
∂VSCF(r)

∂RI
=

∂V(r)
∂RI

+
∫

1
| r − r ′ |

∂n(r ′)
∂RI

dr ′+
∫ δvxc(r)

δn(r ′)
δn(r ′)
∂RI

dr ′ (2.33)

and
∂εi

∂RI
= 〈Ψi |

∂VSCF

∂RI
|Ψi〉 (2.34)

The equations eq.2.31-2.33 form a set of self-consistent equations for the perturbed system
completely analogous to the Kohn-Sham equations in the unperturbed case. Efficient iterative
algorithms such as conjugate gradient methods can be used for the solution of the linear system.

2.2.2 Phonons

Phonons are normal mode of the harmonic lattice. Within the adiabatic approximation, the
lattice dynamics can be studied as if the ions were classicalcharges moving in an effective
potential determined by the ground-state electronic energy. In the previous sections we indicated
atomic positions with a single generalized index I that we make explicit asI = l ,swherel is the
index of unit cell ands the index of the atom inside the unit cell. The position of theIth atom is
thus

RI = Rl + τs+us(l) (2.35)

HereRl is the position of thel th unit cell in the Bravais lattice,τs is the equilibrium position
of thes atom in the unit cell, andus(l) indicates the deviation from equilibrium of the nuclear
position. For small displacements of atoms around their equilibrium positions the total energy
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of the crystal can be expanded up to the second order as:

Etot(us(l)) = Etot
0 +

1
2 ∑
(l ,s)(m,t)

∂2Etot

∂us(l)∂ut(m)
us(l)ut(m) (2.36)

The harmonic oscillations around equilibrium positions are governed by the equation of motion:

Msü
α
s (l) =−

∂Etot

∂uαs(l)
=− ∑

m,t,β
Cαβ

st (l ,m)uβ
m(m) (2.37)

where the greek superscripts indicates Cartesian components.

Cαβ
st (l ,m) =

∂2E

∂uα
s (l)∂uβ

t (m)
=Cαβ

st (Rl −Rm) (2.38)

The Fourier transform ofCαβ
st (R) with respect ofR, Cαβ

st (q) si defined by:

Cαβ
st (q) = ∑

R
e−iq·RCαβ

st (R) =
1
Nc

∂2E

∂uα
s (q)∂uβ

t (q)
(2.39)

whereNc is the number of unit cells in the crystal, and the vectorus(q) is defined by the
distortion pattern

RI [us(q)] = Rl + τs+us(q)eiq·Rl (2.40)

Phonon frequenciesω(q) are the solution of the secular equation

det

[
1√

MsMt
Cαβ

st (q)−ω2(q)
]
= 0 (2.41)

The quantity
1√

MsMt
Cαβ

st (q) = Dαβ
st (q) (2.42)

is called dynamical matrix. Translational invariance imply that a lattice distortion of wave vector
q does not induce a force response in the crystal at wave vectorq′ 6= q. Because of this property,
interatomic force constants are more easily calculated in reciprocal space and, where needed in
direct space, can be obtained by a Fourier transform. The reciprocal-space expression for the
matrix of interatomic force constants is the sum of an electronic and ionic contribution:

Cαβ
st (q) =

el Cαβ
st (q)+

ionCαβ
st (q) (2.43)

where
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elCαβ
st (q) =

1
Nc

[∫ ( ∂n(r)
∂uα

s (q)

)
∂Vion(r)

∂uβ
s(q)

dr +
∫

n(r)
∂2Vion(r)

∂uα
s (q)∂uβ

t (q)
dr

]
(2.44)

and
Vion(r) = ∑

ls

vs[r −Rl − τs−us(l)] (2.45)

wherevs is the ionic pseudopotential. All derivatives are calculated for us(q) = 0. The ionic
contribution comes from the ion-ion interaction and it doesnot depend on the electronic struc-
ture. An explicit expression of this term can be found in Ref.[93] Since phonon frequencies
are usually rather smooth functions of the wave vector a complete phonon dispersion can be
obtained using interpolation techniques. Fourier analysis show that the smoother the phonon
dispersion, the shorter is the range of real-space interatomic constants:

Cαβ
st (R) =

1
Nc

∑
q

eiq·RCαβ
st (q) (2.46)

Real-space interatomic force constants can thus be obtained by Fourier analyzing a set of force-
constant matrices calculated over a uniform grid of points in reciprocal space.

For some materials in this thesis the vdW corrections discussed in Sec.2.1.5 turned out to
be necessary to reproduce the experimental phonon spectra.Therefore the dynamical matrix in
Eq.2.43 had to include the contributions from the interatomic vdW potential of Eq.2.28. To this
end we developed a post-processing tool interfaced with theQuantum-Espresso program. As a
benchmark calculation we studied the phonon dispersion relations in the bulk and at the surface
of crystalline Xe which is a typical vdW solid. We do not discuss here the details for which we
refer to Ref.[94].

2.3 Thermal conductivity from ab-initio calculations

The determination of the intrinsic lattice thermal conduction in a crystal requires the knowl-
edge of the harmonic phonon energies and anharmonic phonon-phonon scattering coefficients.
As we have seen in the previous section phonons can be efficiently calculated by using DFPT.
The anharmonic scattering coefficients can be determined bythe third-order derivative of the
energy with respect to three phonon perturbations, corresponding to wave vectorsq,q’ and q”.
For the thermal transport problem, it is necessary to know these derivatives with respect to three
arbitrary wave vectors satisfying the conditionq+q’+q”=G whereG is a reciprocal lattice vec-
tor. In principle, these coefficients can be obtained withinDFPT [95] by using the so-called
“2n + 1” theorem as formulated in Ref.[96]. This theorem allows to access the third derivative
of the total energy by using only the first derivative of ground-state density and wave func-
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tions; without the need to perform expensive supercell calculations. The knowledge of phonons
and phonon-phonon scattering coefficients, however, represents only the starting point for the
calculation of thermal conductivity.

A microscopic description of the thermal conductivity has been formulated in 1929 by Peierls
and it is known as Boltzmann transport equation (BTE). This equation involves the unknown
perturbed phonon population and it describes how the perturbation due to a gradient of tem-
perature is balanced by the change in the phonon population due to scattering processes. The
calculation of the thermal conductivity requires the solution of this equation and thus the de-
termination of the perturbed phonon populations. The exactsolution of the BTE equation is a
difficult task due to the complexity and the mutual interconnection of the scattering terms. The
BTE equation is commonly solved within the so called single mode relaxation time approxi-
mation (SMA) in which is assumed that the phonon scattering processes can be described by
frequency-dependent relaxation times. However, a method to solve exactly the BTE equation
within DFPT has recently been developed. In what follows we give a brief overview of this
method following this recent work [10].

The fundamental heat equationQ =−κ∇T, whereQ is the heat flux,κ the thermal conduc-
tivity tensor andT the temperature, can be written for a crystal as

1
N0Ω ∑

q, j
~ωq, jcq, jnq, j =−k

∂T
∂x

(2.47)

whereωq, j is the angular frequency of the phonon mode with wavevectorq and branch index
j, cq, j is the group velocity,nq, j the perturbed phonon population andΩ is the volume of the
unit cell andk is theκxx component of the thermal conductivity tensorκ. The sum runs over
a uniform mesh ofN0 q-points and we assumed without loss of generality that the tempera-
ture gradient and the heat flux are both along the x direction.The knowledge of the perturbed
phonon population allows heat flux and subsequently thermalconductivity to be evaluated. The
Boltzmann transport equation represents a balance equation for the unknown perturbed phonon
population and can be written as

−cq, j
∂T
∂x

(
∂nq, j

∂T

)
+

∂nq, j

∂t
|scatt= 0 (2.48)

where the first term indicating the phonon diffusion due to the temperature gradient and the
second term the scattering rate due to all the scattering processes.

For small perturbations from equilibrium, the temperaturegradient of the perturbed phonon
population is replaced with the temperature gradient of theequilibrium phonon population
∂nq, j/∂T = ∂nq, j/∂T wherenq, j = (exp~ωq, j/kBT−1)−1; while the scattering terms are expanded
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about its equilibrium value in terms of a first-order perturbation f EX that can be written as

nq, j ≈ nq, j +nq, j(nq, j +1)
∂T
∂x

f EX
q, j . (2.49)

The linearized BTE can thus be written in the form:

−cq, j

(
∂nq, j

∂T

)
= ∑

q′ j ′,q′′ j ′′
[Pq′′ j ′′

q′ j ′,q j

(
f EX
q j + f EX

q′ j ′− f EX
q′′ j ′′

)

+
1
2

Pq′ j ′,q′′ j ′′
q j

(
f EX
q j − f EX

q′ j ′− f EX
q′′ j ′′

)
]

+∑
q′ j ′

Pisot
q j ,q′ j ′

(
f EX
q j − f EX

q′ j ′

)
+Pbe

q j f EX
q j (2.50)

where the sum overq′ andq′′ is performed over a uniform grid over the whole BZ and where
the EX superscript denotes the exact solution of the linearized BTE.

The four components at the right side of Eq.2.50 represent the four different scattering pro-
cesses shown in Fig.2.1

Figure 2.1: Phonon scattering processes in an anharmonic crystal in presence of isotopic impu-
rities Pisot and boundary scatteringPbe.

In particular the first termPq′′ j ′′

q′ j ′,q j is the scattering rate at equilibrium of a process in which a
phonon modeq j scatters by adsorbing another phononq′ j ′ to give rise to a third phononq′′ j ′′ .
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The second termPq′ j ′,q′′ j ′′
q j represents the opposite process where a phononq′ j ′ decays into two

phononq′′ j ′′ andq j . The third termPisot
q j ,q′ j ′ represents the scattering on an isotopic impurity

while the last thermPbe
q j is the scattering from the boundaries in a finite system.

The first two scattering rates have the form:

Pq′′ j ′′

q′ j ′,q j =
2π

N0~
2 ∑

G
|V3(q j,q′ j ′,−q′′ j ′′) |2

×nq jnq′ j ′(nq′′ j ′′+1)δq+q′−q′′,G

×δ(~ωq j +~ωq′ j ′−~ωq′′ j ′′) (2.51)

and

Pq′′ j ′′

q′ j ′,q j =
2π

N0~
2 ∑

G
|V3(q j,−q′ j ′,−q′′ j ′′) |2

×nq j(nq′ j ′+1)(nq′′ j ′′+1)δq−q′−q′′,G

×δ(~ωq j −~ωq′ j ′−~ωq′′ j ′′) (2.52)

whereV(3) are the third derivatives of the total energy of the crystalEtot, with respect to the
atomic displacementsXq

V3(q j,q′ j ′,q′′ j ′′) =
∂3Ecell

∂Xq j∂Xq′ j ′∂Xq′′ j ′′
(2.53)

whereEcell is the energy per cell and the quantitiesXq j are defined as:

Xq j =
1

N0
∑
l ,s,α

√
2Msωq j

~
zsα∗
q j uα

s (Rl )exp−iq·Rl (2.54)

According to Ref.[97] the rate of the elastic scattering with isotopic impurities can be written
in the form

Pisot
q j ,q′ j ′ =

π
2N0

ωq jωq′ j ′

[
nq jnq′ j ′+

nq j +nq′ j ′

2

]

×∑
s

gs
2 |∑

α
zsα∗
q j ·zsα

q′ j ′ |2 δ(ωq j −ωq′ j ′) (2.55)
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with

gs
2 = ε(1− ε)

| ∆Ms |
〈Ms〉

(2.56)

whereε is the concentration of the minority isotope,∆Ms the mass difference of the two
isotopes and〈Ms〉= Ms+ ε∆Ms.

The last term, according to literature [98, 99] can be written as

Pbe
q j =

cq j

LF
nq j(nq j +1) (2.57)

whereL is the Casimir length andF a correction factor which depends on the width-to-length
ratio of the boundary.

After linearization, the BTE can be written as a linear system in matrix form

AfEX = b (2.58)

with bν′ =−cν′~ωnu′nν′(nν′+1) and

Aν,ν′ =

[

∑
ν′′,ν′′′

(
Pν′′

ν,ν′′′+
Pν

ν′′′,ν′′

2

)
+∑

ν′′
Pisot

ν,ν′′+Pbe
ν

]
δν,ν′

−∑
ν′′

(
Pν′

ν,ν′′−Pν′′
ν,ν′+Pν

ν′,ν′′
)
+Pisot

ν,ν′ (2.59)

where we used the contracted indexν instead ofq j. In this form the matrixA can be decom-
posed asA = Aout+A in where

Ain
ν,ν′ =−∑

ν′′

(
Pν′

ν,ν′′−Pν′′
ν,ν′+Pν

ν′,ν′′
)
+Pisot

ν,ν′ (2.60)

and

Aout
ν,ν′ =

nν(nν′+1)

τT
ν

δν,ν′ (2.61)

and whereτT
ν is the phonon-phonon relaxation time defined as
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(τT
ν )
−1 = (τν)

−1+(τbe
ν )−1+(τisot

ν )−1 (2.62)

where

(τq j)
−1 = 2Γq j =

π
~2N0

∑
q′ j ′, j ′′

|V3(q j,q′ j ′,q′′ j ′′) |2

×[2(nq′ j ′−nq′′ j ′′)δ(~ωqs+~ωq′ j ′−~ωq′′ j ′′)

+(1+nq′ j ′+nq′′ j ′′)δ(~ωqs−~ωq′ j ′−~ωq′′ j ′′)] (2.63)

while the boundary and isotopic relaxation timesτbe
ν andτisot

ν are

(τbe
q j)
−1 =

cq j

LF
(2.64)

(τisot
q j )

−1 =
π

2N0
ω2

q j ∑
q′ j ′

δ(ωq j −ωq′ j ′)

×∑
s

gs
2 |∑

α
zsα∗
q j zsα

q′ j ′ |2 (2.65)

The Aout diagonal matrix describes the depopulation of phonon states due to the scattering
mechanisms while theAin matrix describes their repopulation due to the incoming scattered
phonons.

All the complexity of the solution of the BTE lies in the process of inverting the largeA
matrix as

fEX =
1
A

b (2.66)

for which the thermal conductivity can be evaluated as

k=
1

N0ΩkBT2b · fEX =− ~

N0ΩkBT2 ∑
ν

cνωνnν(nν +1) f EX
ν (2.67)

It is worth noticing that if theAin term is neglected, the inversion of theAout term is rather
trivial and the solution correspond to the single mode approximation
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fSMA=
1

Aoutb (2.68)

kSMA= λb · fSMA=
~

2

N0ΩkBT2 ∑
ν

c2
νω2

νnν(nν+1)τT
ν (2.69)

The solution of the exact equation 2.66 includingAin can be addressed with a variational
approach as in Ref.[10]. In particular, it can be shown [100,101] that the solution of the BTE is
the vectorfEX which makes stationary the quadratic form

F(f) =
1
2

f ·Af −b · f (2.70)

It can be shown [10] that the convergence can be speeded up if instead of directly minimize
Eq.2.70, the minimization is carried out with respect to therescaled variable

f̃ =
√

Aoutf (2.71)

which defines the functional

F̃ (̃f) =
1
2

f̃ · Ãf̃− b̃ · f̃ (2.72)

where

Ã =
1√
Aout

A
1√
Aout

(2.73)

and

b̃ =
1√
Aout

b = f̃
SMA

(2.74)

The minimization of thẽF (̃f) functional is carried out with a conjugate-gradient method. For
the details on the variational solution we refer to the original paper Ref.[10].

2.4 Molecular Dynamics

Molecular dynamics is a technique that allows calculating the time evolution of a system of
atoms, considered as classical particles, once the initialconditions of positions, velocities and
the interaction potential between particles at timet0 are known. Position and velocity of all the
particles at any time subsequentt0 are calculated by integrating the Newton’s equations of mo-
tion. The accuracy and the computational cost of the calculation depends on the nature of the
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interaction potential.

In classical molecular dynamics, the interatomic potential is generally described by analytical
expressions that contains empirical parameters obtained from the fitting of experimental data or
ab-initio results. This approach has a low computational cost which scales linearly with the
number of atoms for short range potentials and allows the simulation of very large systems (up
to 107 atoms) for a long time (several ns). Accurate results, however, are likely to be obtained
only in conditions similar to those at which the parameters of the potential were fitted.

In ab-initio molecular dynamics, ions are still treated as classical particles but electrons are
treated at a quantum level. The forces acting on the ions can be obtained from the solution of
the electronic problem, commonly using DFT, within the adiabatic approximation as described
in Sec.2.1.4. This method ensures a better accuracy and a great flexibility with respect to clas-
sical MD, but it is computationally expensive, scales as thesquare of the number of atoms and
thus can allow only the simulation of small systems (at most several hundred atoms) for few
hundreds of ps.

Once the forces acting on the ions have been computed, the time evolution is given by the
classical Newton’s equation:

MI R̈I = FI (2.75)

whereFI is the force on theI -th nucleus andMI andR̈I are the nuclear mass and acceleration,
respectively. The numerical integration of the equation ofmotion (2.75) is performed by finite
difference methods discretizing the time in steps∆t according to different algorithms [102–105].

One of the most simple and stable algorithm is the Velocity Verlet algorithm [104, 105]. In
this method, positionsRI and velocitiesvI at timet+∆t can be obtained from the values at time
t from

RI (t +∆t) = RI (t)+vI(t)∆t+
F({RI(t)})

2MI
(∆t)2

vI(t +∆t) = vI (t)+
FI ({RI(t)})+FI({RI (t+∆t)})

2MI
∆t. (2.76)

The knowledge of atomic trajectories allows computing equilibrium observablesA which can
be expressed as a function of ions positions and velocities.Under the assumption of ergodicity,
A is obtained as a time average over the trajectories

〈A〉ens= 〈A〉exp= lim
τ→∞

1
τ

∫ τ

0
A({RI(t)},{vI(t)})dt. (2.77)
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2.5 Thermal conductivity from non-equilibrium molecular

dynamics simulations

We computed the thermal conductivity from molecular dynamics simulations using the Re-
verse Non-Equilibrium Molecular Dynamics scheme (RNEMD) developed by Muller-Plathe
in Ref.[11]. Among the different methods to evaluate the thermal conductivity from MD cal-
culations, such as the Green-Kubo method based on the autocorrelation function of the heat
flux Q(t) [106] or the direct gradient method, the RNEMD offers a faster convergence with a
comparable accuracy. By assuming the heat flux and the temperature gradient both along the
x direction, the thermal conductivity componentk = κxx can be simply obtained from a MD
calculation in terms of temporal averages

κ = lim
∂T/∂x→0

lim
t→∞
− 〈Qx(t)〉
〈∂T/∂x〉 (2.78)

The most natural way to obtain the thermal conductivity, in analogy to what is done experi-
mentally, would be to impose a temperature gradient using two thermostats at the extremes of
the sample and to calculate the heat fluxQx(t) parallel to the gradient. This method, however,
is rather inefficient because the quantityQx(t) is subject to large oscillations and consequently
its average converges very slowly.

The RNEMD scheme proceeds in the opposite direction, instead of imposing a temperature
gradient and waiting for the average ofQx(t) to converge, the heat flux is imposed on the
system while the temperature gradient is measured from the simulation. Since the temperature
is averaged over time as well as over a considerable number ofparticle is less subject to large
fluctuation with respect toQx(t) and its gradient converge much faster.

In order to impose a heat flux and to calculate a temperature profile, the simulation box is
divided intoN slabs perpendicular to the x direction (cf. Fig.2.2).

Figure 2.2: Simulation box for a RNEMD calculation.
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A slab at one edge of the box is defined as the cold source while another slab, positioned
at the center of the simulation box acts as the hot source. Alternatively the two sources can be
placed at the opposite edges of the simulation box and the periodic images can be decoupled by
interposing a slab of fixed atoms.

The heat flux is generated by exchanging the velocity vectorsof an atom in the cold slab and
one in the hot slab in such a way that the temperature increases in the hot slab and decreases
and the cold slab. This procedure leaves the total linear momentum, the total kinetic energy,
and the total energy unchanged. Since the kinetic energy exchange is known, the heat flux can
be calculated exactly at each step. Within this scheme the thermal conductivity can be simply
computed as

κ =−∑trans f ers
m
2 (v

2
h−v2

c)

2tLyLz〈∂T/∂x〉 (2.79)

where the sum is taken over all transfer events during the simulation time t,vh andvc are the
velocities in the hot and cool source exchanged at each iteration,Ly andLz are the dimension of
the simulation box perpendicular to the heat flux and〈∂T/∂x〉 is the thermal gradient computed
in the simulation.

2.6 Neural Network interatomic potential

In order to obtain a reliable potential with an accuracy close to the ab initio calculations but
with a computational cost and scalability comparable to classical potential, an interatomic po-
tential for GeTe has been developed in our group by fitting a database of DFT energies [12]
with the Neural Network (NN) method proposed by Behler and Parrinello [107].

Neural networks are a class of algorithms, inspired by the structure and mechanism of the
brain, widely used in machine learning, classification problems such as speech [108] and pattern
recognition. Moreover, they proved to be an efficient fittingalgorithm, in particular for real-
valued non-linear functions in many variables [109, 110] where usual fitting methods fails.

This latter application makes neural nterworks particularly useful in material simulations. An
interatomic potential is essentially an approximation of the potential energy surface (PES) of
the system which in turn is a continuous real-valued function, usually of high dimensionality.

A non-linear multivariable function (in our case a potential energy surface) can be seen as
a combination of single-variable non-linear functions (called activation function in the contest
of NN) generated by a feed-forward neural network, a type of NN schematically represented in
Fig.2.3, formed by different layers where the information can move in one direction, from the
input layer to the output layer and never goes backwards.
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Figure 2.3: Schematic representation of a simple feed-forward NN topology with two hidden
layers.

A feed-forward NN is a mathematical object characterized bydifferent layers and different
nodes on each layer. The numbers of input nodes, hidden layers and nodes of each hidden layer
fix the topology of the network. Each node of the network acts like a neuron in a biological
system. The flexibility of the NN can be increased by increasing the number of hidden layers or
the number of nodes in the hidden layers and hence the number of fitting parameter on which
the function depends.

These fitting parameters can be considered as “weights” thatconnect the nodes in a layer
with the nodes in the next one. In Fig. 2.3 the parameter that weighs thei node in thek layer
connecting it with thej node in thel layer is indicated bywkl

i j . Moreover, the hidden layers can

be linked with a bias layer with weightsb j
i which allows a rigid shift of the activation functions.

In order to calculate the output of the neural network, each point xi of the fitting dataset is
assigned to a different node in the input layer and the outputvaluesy1

j of the first hidden layer
are calculated through two steps. In the first step the input values are linearly combined with the
weightsw01

i j and a bias valueb1
j is added

χ1
j = b1

j +
4

∑
i

w01
i j ·xi. (2.80)
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Then, a highly non-linear functionf 1
j is applied to theχ1

j values

y1
j = f 1

j (χ
1
j ). (2.81)

In a similar way, the values of the nodes of the next layers andof the output can be obtained
from the values calculated in the previous layers. The output of the NN may be an array of values
or a single number calculated by summing up the results of thehidden layers as exemplified by
the equation

E = f 3
1

(
b3

1+
3

∑
i=1

w23
i1 + f 2

i

(
b2

i +
4

∑
j=1

w12
ji f 1

j −
(

b1
j +

3

∑
k=1

w01
k j xk

)))
(2.82)

that describe the procedure sketched in Fig. 2.3.
Within the Neural Network, an activation functionf is applied to the nodes in each hidden
layer. Thef function is generally a non-linear function that asymptotically converges to a finite
value for very large and very small arguments, while in between it displays a non-linear behav-
ior to emulate the threshold-like behavior of biological neurons. Different types of activation
functions can be used, a common choices are the sigmoid function

f (x) =
1

1+e−x , (2.83)

the hyperbolic tangent or Gaussian functions.

Generally, from the last hidden layer to the output layer, the activation functions are linear in
order to avoid any constraint in the range of output values.

In order to determine the values of the fitting parameters, anerror functionΓ, that describes
how far is thei-th output value of the NN Ei,NN from a reference value Ei,re f of the dataset, must
be defined:

Γ =
1

2N

N

∑
i=1

(
Ei,NN−Ei,re f

)2
(2.84)

whereN is the number of points in the dataset.

If the activation functions in the neural network are differentiable, also the output of the NN
will be differentiable with respect to both input variablesand weights and hence the error func-
tion Γ is a differentiable function of the weights. The error functions can thus be minimized
by finding the roots of the partial derivatives of the error function with respect to the weights
through a minimization procedure. The algorithm for evaluating the derivatives of the error
function is known as “back propagation”, since it corresponds to a propagation of errors back-
wards through the NN. The process by which the weights are iteratively improved until they
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provide a reasonable approximation of the underlying function is called ”training” or ”learn-
ing”, and each iteration of this process is known as ”epoch” in the NN context.

2.6.1 Neural Network potential energy surfaces for atomistic simulations

Neural networks have been successfully used in the past to build the potential energy surface
of small molecules (5-10 atoms) [111] or isolated gas molecules interacting with a surface [112].

In this systems the input parameter are typically the atomicinternal coordinates of the molec-
ular system. The use of a single NN for all the atoms is easy to implement, the training of the
network does not pose particular problems since the number of weights is small.

However, this approach suffers important limitations the most crucial being that the resulting
potential have a very little transferability since it cannot be applied to systems with a different
number of atoms. In fact, the number of input nodes, and hencethe values of the weights, is
fixed and assigned by the number of degrees of freedom of the system. Moreover the number of
degrees of freedom of the system must be necessarily small since when the NN tool is applied
to systems of thousands of atoms, the fitting procedure gets longer and it would not be feasible
to generate a different NN potential for each system size. Therefore a straightforward extension
of this approach to larger systems is not possible.

A first NN scheme designed to deal with a large number of degrees of freedom and indepen-
dent on the system size was proposed by Hobdayet al. [113] for carbon and C-H systems. In
this scheme, the atomic positions are not directly used as input parameter for the NN but the
chemical environment of each bond in the model was decomposed into a variable number of
input vectors characterizing three-atom chains, which allhave the same dimensionality.

In a conceptually new approach to NNs, the total energy of thesystem has been written as sum
of the atomic energies, each obtained from a single atomic NN[114]. Each of these individual
NNs has an input vector with a fixed number of elements that describe the local environment of
the atom and returns as output an atomic energy.

A further improvement to this approach was developed in 2007by Behler and Parrinello
[107]. In this work the total energy is still considered as sum of the atomic energies

Etot =
N

∑
i=1

Ei({r}). (2.85)

but the architecture of the NN is fixed for a given chemical element allowing to use a standard
NN for each atom (cf. Fig. 2.4). Only one input vector of fixed dimensionality is needed per
atom to describe its local chemical environment, which is considered up to a certain cutoff ra-
dius.
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Figure 2.4: Sketch of a neural network according to the scheme proposed by Behler and Par-
rinello [107].

In order to decouple the number of input nodes from the numberof neighbours of each
atom, the environment is described not in terms of Cartesianfunctions, but through special
types of many-body descriptors called “symmetry functions”. The symmetry functions provide
information on the radial and angular arrangement of neighbours for each atom in the system.

The symmetry functions must be chosen in order to ensure the invariance of the energy with
respect to symmetry operations such as translations and rotations of the whole system and the
exchange of two atoms of the same species.

A vector of the symmetry function values{Gi}, each of them depending on the coordinates
of all the atoms of the environment within the cut-off, is used as input values of a single-atom
NN. For a given atomic species, the architecture and the fitting parameters of the NN are fixed,
ensuring the invariance of the total energy with respect to the exchange of two atoms of the
same type. The weights of the neural network can be determined by training the network on a
database of DFT total energies of different configurations.

Symmetry functions

In the generation of the NN potential for GeTe [12], two typesof symmetry functions have
been used: radial symmetry functions and angular symmetry functions. The formers are written
as sums of two-body terms, while the latter contain also three-body terms. The radial environ-
ment of atomi is described using two different radial functions with the form

G1
i = ∑

j
fc(Ri j )

G2
i = ∑

j
e−η(Ri j−Rs)

2 · fc(Ri j ). (2.86)
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The cut-off functionfc is defined by

fc(r i j ) =

{
0.5
[
cos
(

πr i j
rc

)
+1
]

for r i j < rc,

0 for r i j > rc.
(2.87)

FunctionG1
i is the sum of the cutoff functions with respect to all neighboring atomsj, while

G2
i is a sum of Gaussian functions centered at a certain radial distanceRs and multiplied by the

cut-off function.
These “shifted”G2

i functions are suitable to describe a spherical coordination shell around the
reference atom. The radial distribution of neighbours can be described by using a set of radial
functions with different spatial extensions, for exampleG1

i functions with different cut-off radii,
or G2

i functions with different cut-offs and/orη andRS parameters.

Figure 2.5: Radial symmetry functions. a)G1
i -type symmetry functions for different cut-off

radii. b) G2
i -type symmetry functions for different radial distancesRs with η=2 andRc=8 Å

respectively.

Typical forms of the radial symmetry functions are plotted in Fig. 2.5 for several parameter
values. Angular symmetry functions are defined as functionsof the bond angleθ jik that thei-th
atom forms with its two neighboursj andk and have the form

G3
i = 21−ξ

all

∑
j ,k6=i

(1+λcosθi jk)
ξ ·e−η(R2

i j+R2
ik+R2

jk)
2
· fc(Ri j ) · fc(Rik) · fc(Rjk). (2.88)

The parameterλ can assume values±1 shifting the maxima from 0◦ and 180◦ to 90◦. The
angular resolution is controlled by the parameterξ. Highξ values yield a narrower range of non-
zero symmetry function values (Fig. 2.6). A set of angular functions with differentξ-values can
thus be used to obtain a measure of the bond angle distribution function of each reference atom.
The angular distribution is sampled at various distances from the central atom by a suitable
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Figure 2.6: Angular symmetry functionsG3
i for several values ofξ with λ = 1.

choice ofη andRc, which control the radial part. The parameters that define the symmetry
functions are fixed in the training process of the NN. The total number of values of symmetry
functions describing a given structure is much larger than the number of degrees of freedom of
the system. This ensures that the full dimensionality of thesystem is captured and the resulting
redundancy of the information is not usually a problem for a NN algorithm.

Forces and stress evaluation

Since the NN energy is an analytical function of the symmetryfunctions, which in turn de-
pend on the atomic coordinates, the energy is an analytical function of the ionic coordinates.
The atomic forces and the stress tensor can thus be computed analytically. The forceFk acting
on thek-th atom is

Fk = − ∂E
∂Rk

= −
N

∑
i=1

∂Ei

∂Rk

= −
N

∑
i=1

Mi

∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Rk
(2.89)

where i runs on atoms andj on the symmetry functions. Since the energy is a function of
interatomic distancesRk j = Rk−R j , the stress tensor can be obtained from the virial theorem
[103] as

σαβ =
N

∑
i=1

N

∑
k=1

Rik,α ·
∂E

∂Rik,β
(2.90)
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whereα andβ are Cartesian coordinates.

Extrapolation

The NN method allows interpolation of the points in the dataset of a multi-variate function
with any arbitrary functional form. However, the NN algorithm fails in predicting the value
of the fitted function outside the configurational space spanned by the training dataset. This
condition can be simply checked by keeping memory of the minimum and maximum values
assumed by each symmetry function for the whole input dataset. In this way, the values assumed
by the symmetry functions depending on the atomic positionsduring the simulation can be
compared with the values of theG functions of the dataset. If a certain atom configuration cause
one or more symmetry functions to assume values outside the range defined by the training set,
a so called extrapolation occurs and the resulting NN energycould be not reliable. To fix this
issue, the atomic environment that causes the extrapolation can be added to the initial dataset
fitting again the potential to extend its transferability.

Neural Network potential for GeTe

The NN potential for bulk GeTe was generated by fitting the total energy of about 30000 con-
figurations of 64-, 96- and 216-atom supercells computed within DFT in Ref.[12]. Crystalline,
liquid and amorphous configurations and mixed crystalline/amorphous models were generated
with the PBE functional. Configurations at different pressure, temperature and stoichiometry
were also included in the dataset. The structure of the neural network employed to fit the ab-
initio data includes three hidden layers with 20 nodes each.The local environment of each atom
is described by the value of 159 radial and angular symmetry functions defined in terms of the
positions of all neighbors within a distance cut-off of 6.88Å.

The generated NN potential reproduces well the structural features of amorphous, liquid and
crystalline GeTe [12] and it has been validated in several works addressing the study of the
crystallization kinetics of GeTe [36, 37], the properties of the supercooled liquid [115], the
aging and the thermal transport of the bulk amorphous phase [116, 117].





3 Thermal conductivity in Phase Change
Materials

Thermal conductivity (κ) is one of the fundamental property for the PCMs operation, since
the phase changes corresponding to the memory writing/erasing processes are induced by Joule
heating. Heat dissipation and transport greatly affect thepower consumption and the switching
speed of the memory cell. These quantities also influence thethermal cross-talks among the
different bits in a memory array which can rise serious reliability issues. In ultrascaled devices,
where the cells are few nanometers apart, it is crucial to ensure that the programming of a cell
never influences the state of the neighboring ones.

Although data on thermal conductivity are available from several experimental works for the
bulk thermal conductivity of the prototypical GeSbTe phasechange alloys [7, 54, 118–120]
and the related binary compounds GeTe [51, 121–125] and Sb2Te3 [121], these data are not
always univocal. Moreover it is unclear whether or not the values measured in the bulk could
also describe the behavior of the material in nanoscaled devices (10-20 nm) which might be
smaller than the phonon mean free path or under extreme temperature gradient conditions as
those present in the real devices. Finally, there is a broader and general interest in understand-
ing the mechanisms that are responsible for the low thermal conductivity of these materials due
to their close relations with thermoelectric materials.

Atomistic simulations can provide crucial insights into the thermal transport properties of
phase change materials suitable to aid a reliable modeling of the device operation, engineering
of the device and the selection of new more performing compounds. To this end, we performed
simulations based on density functional theory (DFT) and classical molecular dynamics calcu-
lations based on neural network potential [12] of differentphase change compounds such as
GeTe, Ge2Sb2Te5, InSbTe alloys and the closely related Sb2Te3 compound.

The results are reported in the following in separate section for each compound.
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3.1 GeTe

The first material that we examined is the binary GeTe compound. Even if is not employed
in nowadays PCM cells, GeTe is widely studied as a prototypical phase change material as
it shares most of the properties with the more efficient and commonly used but more complex
ternary GST. Moreover, recent works put GeTe under scrutinyfor memristive and spintronic ap-
plications [15] because of a giant bulk Rashba effect [14]. GeTe is now also being reconsidered
for memory applications at high temperatures due to its higher crystallization temperature [126].

GeTe presents two crystalline phases at normal pressure [127]. The stable phase at low tem-
perature is the trigonalα-phase with space groupR3m, lattice parametera = 4.2398 Å and
angleα = 57.9◦ [128].

The α-phase of GeTe, with two atoms per unit cell, can be viewed as adistorted rocksalt
geometry with an elongation of the cube diagonal along the [111] direction and an off-center
displacement of the inner Te atom along the [111] direction giving rise to a 3+3 coordination of
Ge with three short and stronger bonds (2.84 Å) and three longand weaker (3.17 Å ) bonds. In
the conventional hexagonal unit cell of the trigonal phase,the structure can be also seen as an
arrangement of GeTe bilayers along thec direction with shorter intrabilayer bonds and weaker
interbilayers bonds (cf. Fig. 3.1).

Figure 3.1: Geometry of theα-GeTe crystal seen as a stacking of bilayers along thec axis
of the conventional hexagonal unit cell with the three shortintrabilayers bonds and three long
interbilayers bonds.

The ideal GeTe crystal is a narrow gap semiconductor with an experimental band gap of 0.6
eV. It turns into ap-type degenerate semiconductor because of defects in stoichiometry, in the
form of Ge vacancies, which induce the formation of holes in the valence band [129]. Hole
concentrations in native p-type doped GeTe are typically between 5· 1019 holes/cm3 reported
in Ref.[130] and 1.6· 1021 holes/cm3 This last concentration, considering two electrons per
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vacancy, correspond to a vacancy content of about 4.3atom% in the Ge sublattice reported
[131].

The trigonal ferroelectric phase transforms into the cubicparaelectric (β) phase (space group
Fm3̄m) with lattice parametera = 5.996 Å above the Curie temperature of 705 K [132]. The
structure theβ-GeTe and the nature of theα-β transition is still subject of investigation but
recent EXAFS measurements [133] suggest that the 3+3 coordination with shorter and longer
bonds locally survives also in the cubic phase and the overall cubic symmetry observed in X-
rays and neutron scattering experiments [134] is an effect of the spatial average.

Concerning the lattice thermal conductivity, the experimental data for crystalline GeTe at 300
K are scattered over a wide range of values 0.1-4.1 W/m K [51, 121–125] possibly because of
different defects concentration (the presence of Ge vacancies which can be hardly controlled in
the growth process) or because of difficulties in separatingthe overall thermal conductivity into
the lattice and electronic contributions.

In order to understand these data, explore the role of high anharmonicity and defect scattering,
we calculated the lattice contribution to the thermal conductivity in crystallineα-GeTe. To ob-
tain a cross-validation between independent methods we computed this quantity both with non
equilibrium molecular dynamics (See Sec.2.5) with the neural network potential (See Sec.2.6)
and by solving the Boltzmann transport equation based on DFPT second and third order force
constants (See Sec.2.3).

3.1.1 Ab initio structural and vibrational properties of crystalline GeTe

As a preliminary step we studied the structural properties and the phonon dispersions using
three different approximations LDA, PBE and PBE with semiempirical van der Waals correc-
tions according to the DFT-D scheme (Sec.2.1.5). The calculations has been performed using
the Quantum Espresso package. The Brillouin Zone (BZ) integration for the self-consistent
electron density was performed over a 12x12x12 MP mesh [135]and the Kohn-Sham states
were expanded in plane waves up to 30 Ry cutoff. Norm-conserving pseudopotentials with only
the outermost s and p electron in valence were used. Atomic positions where relaxed until the
forces were smaller than 1·10−4 Ry/a.u.. The theoretical structural parameters optimizedat zero
temperature for the ideal semiconducting structure using the LDA and the PBE functional with
or without vdW corrections are compared in Table 3.1 with experimental data.

All the functionals yield a good agreement with the experimental data. In particular the PBE
functional gives the best results, with a slight overestimation of the lattice parameter by 0.46%
and of the equilibrium volume by 2%, while both PBE+VdW correction and LDA functional
produces an underestimation of 1.8% and 3.4% in the lattice parameter and in the volume re-
spectively.α-GeTe has an electronic band gap of about 0.45 eV in DFT-PBE asusual slightly
underestimated with respect to the experimental value (0.6eV).
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Structural parameters LDA PBE PBE+vdW Exp.

a (Å) 4.23 4.33 4.22 4.31
α 58.79◦ 58.14◦ 58.84◦ 57.9◦

Unit Cell Volume (Å3) 52.00 54.98 51.75 53.88
x 0.2384 0.2358 0.2380 0.2366

Short, long bonds (Å) 2.83, 3.11 2.85, 3.21 2.82, 3.11 2.84, 3.17

Table 3.1: Structural parameters of the trigonal phase of crystallineα-GeTe computed within
DFT with the PBE or LDA functionals and with the addition of van der Waals interactions
according to Grimme [87] and from experimental data [128]. The lengths of the short and long
bonds are also given.

Phonon dispersion relations have been obtained by Fourier transforming the dynamical ma-
trix computed on a 6x6x6 MP grid in the BZ. The phonon dispersions along the high symmetry
directions of the Brillouin Zone (sketched in 3.2b) for the undoped case and the two limiting
cases of low (nh1=8 · 1019 holes/cm3) and high (nh2=2.1· 1021 holes/cm3) concentration of holes
are reported in in Fig.3.2a calculated with the PBE functional at the theoretical equilibrium lat-
tice parameters. A denser grid of 18x18x18 k-points was usedin the undoped case to converge
the effective charge tensor. The p-doping is introduced by removing electrons and by neutral-
izing the system with a uniform positive background [131]. We relaxed the atom positions at
the two doping levels by keeping the lattice parameters fixedat the values of the ideal crystal:
thex internal coordinate becomes 0.2359 for bothnh1 andnh2. The Ge vacancies, present in the
real crystal but lacking in our models of thep-type compound, are in fact expected to affect the
lattice parameters, as much as the holes in the valence bandsdo [131].

It can be observed that the metallic character of the hole-doped systems removes the discon-
tinuities in the phonon dispersion at theΓ point (TO-LO splitting) present in the stoichiometric
compound. The highest frequency phonon of A1 symmetry (atΓ) softens continuously with
increasingp-doping as already shown in Ref. [131]. The A1 mode, measured experimentally
by Raman spectroscopy [136], shows a strong temperature dependence as it corresponds to the
soft mode of the ferroelectric transition. The experimental frequency extrapolated to zero tem-
perature is 140.2 cm−1 in the sample measured in Ref. [136], for which the doping level is
unknown. The theoretical frequency, within this approximation, is 149.9 cm−1 in the stoichio-
metric compound and 120.1 cm−1 in the system with nh2=2.1 · 1021 holes/cm3, which means
that we could match the experimental frequency by a suitablechoice of doping. On the other
hand the acoustic modes are rather unaffected by the presence of holes.
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Figure 3.2: a) Phonon dispersion relations along high symmetry direction calculated with PBE
at equilibrium volume for the ideal undoped crystal (green solid line), low hole concentration
(red dashed line) and high hole concentration (blue dot-dashed line). b) The Brillouin zone of
α-GeTe.
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A comparison between the phonon dispersions along the high symmetry directions obtained
with different functionals in the low doping conditions is reported in Fig.3.3. It can be observed
that the slope of the acoustic modes is quite sensible to the equilibrium volume while it seems
to be less affected by the choice of the functional once the volume is set.
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Figure 3.3: Phonon dispersion relations of trigonal GeTe along high symmetry direction calcu-
lated with LDA, PBE and PBE+VDW at the respective equilibrium volume and with LDA at
the experimental volume.

3.1.2 Thermal conductivity of crystalline GeTe by ab initio DFPT

calculations

To gain direct access to the microscopic quantities that characterize the thermal conductivity
of an ideal material, such as phonon linewidth and mean free path, we performed the calculation
of the thermal conductivity ofα-GeTe with method based on the variational solution of the
Boltzmann transport equation Eq.2.50. Harmonic and anharmonic force constant have been
computed exploiting the 2n+1 theorem within DFPT as described in Sec.2.3

We first computed the lattice thermal conductivity for the ideal crystal without vacancies.
Anharmonic force constants have been computed on a 4x4x4 q-point phonon grid on the BZ,
Fourier interpolated with a finer 15x15x15 mesh for the calculations of phonon scattering rates
in the Boltzmann equation. Phonon energies have been broadened with a Gaussian function
with smearing of 2 cm−1 for energy conservation in three-phonon scattering processes. The
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convergence was checked with grid up to 25x25x25. Due to the actual limitations of the code,
the anharmonic force constants were computed only with the LDA functional. We performed the
calculations at experimental, theoretical PBE and theoretical PBE+vdW lattice parameters with
both the internal geometry unoptimized and optimized with the LDA functional. Anharmonic
force constants showed a very small dependence upon internal coordinate optimization. All the
phonon calculation and the anharmonic force constants havebeen performed with the lower
hole concentrationnh1.

The resulting lattice thermal conductivity at 300 K computed with PBE phonons along the
z direction, parallel to thec axis in the hexagonal notation (cf. Fig. 3.1), isκz=2.00 W/m K
while the lattice thermal conductivity in thexy plane parallel to the GeTe bilayers (cf. Fig. 3.1)
is κx=2.90 W/m K. For a polycrystalline sample the calculated average thermal conductivity
is κav=2

3κx+
1
3κz= 2.6 W/m K, which is an upper limit, as it neglects the effectsof defects

(vacancies in particular) and grain boundary scattering.κav is comparable, although slightly
larger, than the experimental value of 2.35± 0.53 W/m K of Ref. [51]. By using the LDA
functional for both the harmonic and anharmonic force constants at the experimental lattice
parameters one obtains an even larger lattice thermal conductivities ofκz=2.37 W/m K,κx=3.62
W/m K andκav=3.20 W/m K.

Using the equilibrium Boltzmann distribution of phonons instead of the quantum Bose-
Einstein distribution has no effect on the lattice thermal conductivity at 300 K (within the figures
given here) due to the low Debye temperature of GeTe(180 K).

For the same reason, the lattice thermal conductivities computed within the SMA (cf. Sec.2.3)
areκz=2.00 W/m K,κx=3.10 W/m K andκav=2.7 W/m K, i.e. only slightly lower than the values
obtained from the full solution of the BTE given above with LDA phonons (κav=3.20 W/m K).

The cumulative lattice thermal conductivity within the SMAof ideal α-GeTe as a function
of phonon frequency is shown in Fig. 3.4 computed using LDA phonons and anharmonic con-
stants. Group velocities, phonon lifetimes and mean free paths calculated on a 25x25x25 grid
are reported as function of the phonon frequency in Fig. 3.5 a,b and c respectively while the
averages of the same quantities in small energy windows are reported in Fig. 3.6.

The anharmonic broadening of the phonon branches computed as the inverse lifetime (Sec.2.3)
within the SMA are also reported in Fig. 3.7, while the spectral functionσ(q,ω) as defined in
Ref. [10] is reported in Fig. 3.8.

Comparison of Fig. 3.4 and Figs. 3.6-3.8 shows that acousticphonons mostly contribute to
the thermal conductivity at 300 K (up to 80%) because opticalphonons have both low group
velocities and lifetimes.

We then included the effects of vacancies in the Ge sublattice by adding a rate of elastic
scattering due to isotopic defects in the BTE (See Sec.2.3).We considered two limiting va-
cancy contents of 0.073atom% on the Ge sublattice corresponding to the hole concentration
of 8 · 1019 holes/cm3, and of 3atom% that corresponds to a hole concentration of 1.1· 1021

holes/cm3 close to that studied experimentally in Ref. [131].
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Figure 3.4: Cumulative lattice thermal conductivities within the SMA at 300 K of trigonal GeTe
along thec axis in the hexagonal notation (κz) in the perpendicular plane (κx) and their average
for a polycrystalline sample (κav).

The lattice thermal conductivities (LDA phonons) turn intoκz=2.0 W/m K,κx=3.0 W/m K
andκav=2.7 W/m K for the low vacancy content orκz=0.9 W/m K,κx=1.4 W/m K andκav=1.2
W/m K for the higher vacancy concentration to be compared with the values for ideal GeTe of
κz=2.3 W/m K,κx=3.6 W/m K andκav=3.2 W/m K as given above. Even a small amount of Ge
vacancies has thus a dramatic effect on the lattice thermal conductivity of GeTe which can be
more than halved for a 3atom% in agreement with the experimental data in Ref. [125].

In the presence of holes in the valence bands, the phonon lifetimes can be reduced also by
electron-phonon scattering processes. These effects are,however, negligible in GeTe at the dop-
ing levels discussed above. To estimate the reduction of thermal conductivity due to electron-
phonon scattering we removed from the calculation ofκ the contribution of all phonons with
wavevectorq smaller than twice the larger wavevector on the Fermi surface. These phonons are
the only one that can be affected by electron-phonon coupling. This would corresponds to a
large overestimation of the effects of the electron-phononcoupling that, nevertheless, leads to a
slight reduction of the thermal conductivities toκz=2.2 W/m K andκx=3.1 W/m K.
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Figure 3.5: a) Group velocities, b) phonon lifetimes and c) mean free paths of trigonal GeTe
calculated on a 25x25x25 grid. Each point correspond to a phonon of an individual branch in a
q-point of the mesh.
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Figure 3.6: a) Group velocities, b) phonon lifetimes and c) mean free paths of trigonal GeTe
averaged over all phonons within a small energy window of 2 cm−1.
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Figure 3.7: Anharmonc broadening (FWHM in cm−1) at 300K calculated within LDA at the
experimental volume.

Figure 3.8: Spectral function as a function ofq and frequency.
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Finally, we calculated the temperature dependence of the thermal conductivity in GeTe with
a 3% vacancies as reported in Fig.3.9. As discussed in Sec.2.3 in the single relaxation time ap-
proximation the thermal conductivity is given byκSMA= ∑ν 1/3Cνv2

ντ. WhereCν is the specific
heat per phonon mode,v andτν are the group velocity and the lifetime. The steep rise of the
thermal conductivity at low T is due to the increase in the specific heat per modeCν.
The relaxation timeτν first decreases exponentially when Umklapp processes are thermally ac-
tivated and then decreases as 1/T above the Debye temperature, leading to a maximum inκ and
a steady linear decrease at high temperatures.
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Figure 3.9: Temperature dependence of thermal conductivity in GeTe with 3% vacancies.

It is worth to stress that the effect of vacancies on the thermal conductivity has been actually
introduced perturbatively as isotopic defects according to Ref. [52]. Because of the important
approximations involved, the applicability of such methodcan not be taken as granted. To assess
the reliability of this approximation we have performed non-equilibrium molecular dynamics
(NEMD) simulations by using a Neural Network interatomic potential for GeTe (See Sec.2.6
and [12]) in which vacancies can be treated explicitly. The reliability of the classical approxi-
mation for phonons population at 300 K in GeTe, and thus the possibility to directly compare
NEMD results and DFPT results has been demonstrated above.

3.1.3 Thermal conductivity of crystalline GeTe by neural network

calculations

As a preliminary step to the calculation of thermal transport with the NN potential, we deter-
mined the theoretical equilibrium cell for the neural network potential. The structural parame-
ters optimized at zero temperature with the NN potential reported in Table 3.2 are in reasonably
good agreement with both experimental and DFT results.
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Structural parametersDFT (PBE) NN Exp.

a (Å) 4.33 4.47 4.31
α 58.14◦ 55.07◦ 57.9◦

Volume (Å3) 54.98 55.95 53.88
x 0.2358 0.2324 0.2366

Short, long bonds (Å) 2.85, 3.21 2.81, 3.31 2.84, 3.17

Table 3.2: Structural parameters of the trigonal phase of crystallineGeTe computed with the
NN potential, within DFT using the PBE approximation and from the experimental data [128].
The lengths of the short and long bonds are also given.

The values ofκz andκx were computed within reverse-NEMD (See Sec.2.5) by constructing
supercells and setting the planes of the sink and sources either parallel or perpendicular to the z
direction of the trigonal phase at the theoretical lattice parameters optimized at zero temperature.

Since the neural network calculation costs sensibly more than a classical force field molec-
ular dynamics calculation, we decided to adopt a non-symmetric configuration instead of the
more commonly used symmetric Muller-Plathe [11] configuration. In order to halve the com-
putational cost, the heat source and sink are placed at the edges of the cell and consist of a
slice of mobile atoms 5 Å thick and a 10 Å region of fixed atoms. Which decouple the source
and the sink in the presence of periodic boundary conditions. The temperature profile and heat
flux reach a converged steady condition after a time ranging from 0.7 to 2 ns depending on the
model. A plot of the temperature profile and heat-flux in a typical simulation cell is shown in
Fig. 3.10.

Figure 3.10: a) Heat flux as a function of time and b) temperature profile of atypical simulation
cell of the trigonal GeTe. The heat flux is along the c direction.
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In order to ensure the correct convergence of the results, wecalculated the thermal conduc-
tivity in supercells of different size. In particularκz is obtained with supercells with sizes from
28.6 Å x 24.8 Å x 56.71 Å to 28.6 Å x 24.8 Å x 748.61 Å where the longer edges are along the
c direction of the conventional hexagonal cell, whileκx = κy is obtained with sizes from 21.5
Å x 22.7 Å x 62.0 Å up to 21.5 Å x 22.7 Å x 744.1 Å. The dependence ofκ on L is reported in
Fig. 3.11. The convergence with respect to lateral dimensions of the cell, perpendicular to the
heat flux direction was checked by doubling the lateral surface area in 49.9 nm long supercells.

Figure 3.11: The dependence of the thermal conductivityκ as a function of the length of the
simulation cell L for the trigonal crystalline phase. The thermal conductivity perpendicular
(parallel) to the c-axis is reported in the upper (lower) panel.

We obtained a converged valueκz = 3.23± 0.1 W/m K andκx = κy=3.15± 0.2 W/m K. For a
polycrystalline sample the calculated average thermal conductivity isκav=2

3κx+
1
3κz=3.20 W/m

K. κav is very close to the result obtained within the DFPT calculations for the ideal crystal
(κav=2.7 W/m K with PBE andκav=3.18 W/m K with LDA). However, the Neural Network
potential does not manage to reproduce accurately the anisotropy of the thermal conductivity.
This can be mainly due to the lower anisotropy of the NN phonondispersions reported in Fig.
3.12. The overall agreement between DFT and NN phonon dispersion relations is satisfactory
but for a lower anisotropy of the sound velocities in the NN which is responsible for a lower
anisotropy of the thermal conductivity.
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Figure 3.12: Phonon dispersion relations of trigonal GeTe within NN potential using finite
difference methods.

We introduced vacancies in a random manner on the Ge sublattice with concentration of 3 %
corresponding to the hole concentration of 1.1·1021 holes/cm3. We then repeated the simula-
tions with vacancies and a 28.6 Å x 24.8 Å x 499.0 Å supercell obtainingκz=1.55± 0.1 W/m K
which is 49% lower than the value obtained with the same supercell at the same average temper-
ature of 300 K for the stoichiometric compound. Similarly weobtainedκx = κy=1.3± 0.2 W/m
K with the supercell of size 21.5 Å x 22.7 Å x 496.0 Å which is 56%lower than the value for
the stoichiometric compound at the same conditions. The reduction ofκ, in percentage, agrees
perfectly with that obtained using ab initio anharmonic force constants and the approximate
treatment of the vacancies as a kind of isotopic defect, which demonstrates the applicability of
this approach.

In conclusion, the DFPT calculations have shown that the large spread in the experimental
values of thermal conductivity of trigonal GeTe can be ascribed to different vacancy concentra-
tions.

3.1.4 Thermal conductivity in amorphous GeTe

To complete the picture of thermal conductivity in GeTe and gain some general hints about
the thermal conductivity in the amorphous states of change materials, we further studied the
thermal conductivity in amorphous GeTe by means of non-equilibrium molecular dynamics
simulations.
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The calculation of the thermal conductivity in an amorphoussystem requires very long sim-
ulations (on the ns scale) of large models (thousands of atoms) that are presently beyond the
reach of fully DFT simulations and thus it has been performedonly with the NN potential.

NN equilibrium molecular dynamics (MD) calculation of the thermal conductivity of bulk
amorphous GeTe performed in our group yieldedκ =0.27±0.05 W/m K [12, 116] at 300 K,
which is very close to experimental results of 0.24-0.25 W/mK [51].

However, in equilibrium molecular dynamic simulations, thermal conductivity is computed
within linear response theory which is valid only for small temperature gradients. In the actual
device, temperature gradients can be as large as 30 K/nm. Under these conditions it is unclear
whether or not the linear response approximation still holds. To address this issue we computed
the thermal conductivity by means of RNEMD method introduced in Sec.2.5 which allows
studying possible non-linear effects.

The amorphous models were generated by quenching from the melt (1000 K) to 300 K in
100 ps, according to the protocol used in our previous works [12, 116]. We considered several
supercells with different size, up to 24.8 Å x 24.8 Å x 397.3 Å (8192 atoms). As in the previous
case the heat source and sink are placed at the edges of the cell along the z-direction.

A plot of the temperature profile in a typical simulation run is shown in Fig. 3.13. The tem-
perature profile reaches a converged steady condition after800 ps.

The temperature of the sink and source are 220 K and 390 K and the imposed flux isq=3.02
· 10−8W. From the Fourier law and the slope of the temperature profile we obtainκ=0.26 W/m
K which is very close to our previous result of 0.27±0.05 W/m K at 300 K obtained from
equilibrium MD and the use of the Green-Kubo formula [116]. We checked the convergence of
κ by using supercells with different cross section areas perpendicular to the heat flux (24.8 x
24.8 Å2 and 49.7 x 49.7 Å2), and with different length along z.

Since the phonon mean free path in a-GeTe is always below few Å[116], κ is already con-
verged in a smaller 24.8 Å x 24.8 Å x 99.3 Å (2048 atoms) cell.

As shown in a previous work [116] the thermal conductivity ofa-GeTe is mostly due to
diffusions, i.e. delocalized quasi-stationary modes. Their contribution can be evaluated by using
the theory developed by Allen and Feldman [137] which assignsκAF = ∑ j Cj

1
3 ∑3

α=1Dα j where
Cj is the contribution of the j-th phonon to the specific heat andDα j is the “diffusivity” given
by

Dα j =
Ω2

8π2~2ν2
i

∑
n6= j

| 〈ej | Jα | en〉 |2 δ(ν j −νn). (3.1)

Here 〈ej | Jα | en〉 are the matrix elements of theα Cartesian component of the energy flux
operator between two harmonic normal modesen andej with frequenciesνn andν j . Since the
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phononic specific heat has already reached its classical value at 300 K and the diffusivity in Eq.
3.1 is temperature independent, we expect a weak dependenceof κ on the temperature above
300 K in a-GeTe.

Figure 3.13: Temperature profile in the NEMD simulation of bulk amorphousGeTe.

We investigated possible non-linear effects by tuning the initial temperature and the heat flux
in order to have large temperature gradients from 1 K/nm up toa value of 30 K/nm. We actually
did not observe changes ofκ within the error bar of 0.03 W/m K fordT

dz in the range given
above and for an average temperature in the range 200-400 K atwhich the amorphous phase
is stable against crystallization on the time scale of our simulations. We can conclude that at
the conditions of PCM operation we can still use the bulk value of the thermal conductivity of
a-GeTe measured/computed for small temperature gradients.

3.2 Ge2Sb2Te5

Ge2Sb2Te5 (GST) is the material of choice for commercial PCM devices thanks to the sta-
bility of the amorphous phase and the very fast phase transition. GST presents two crystalline
phases at normal pressure [70, 138]. The stable structure has a hexagonal symmetry with space
groupP3̄m1, the unit cell contains nine atoms in an octahedral coordination arranged in nine
layers stacked along thec axes.
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The internal arrangement of Ge and Sb atoms in the stacks is still debated and three sequences
have been experimentally proposed:

A Te–Ge–Te–Sb–Te–Te–Sb–Te–Ge–Te (Kooi)
from high resolution transmission electron microscope [138];

B Te–Sb–Te–Ge–Te–Te–Ge–Te–Sb–Te (Petrov)
from XRD measurements [70];

C Te–(Sb/Ge)–Te–(Sb/Ge)–Te–Te–(Sb/Ge)–Te–(Sb/Ge)–Te (Matsunaga)
from XRD measurements with a random distribution of Ge and Sb[139].

The Te-Te bonds are actually weak as the structure can be seenas a stacking of Ge2Sb2Te5

9-layers bound by vdW interaction across the Te-Te vdW gap. The structure of the two order
phases is shown in Fig.3.14.

Figure 3.14: Structure of Ge2Sb2Te5 in the hexagonal cell . Two formula units along the c axis,
and period replica of atoms at the edges of the hexagonal cellin the ab plane are shown. The
positions of Ge and Sb atoms are interchanged. The weak Te-Tebonds (3.7 long) connecting
adjacent slabs are not shown to emphasize the presence of Ge2Sb2Te5 stacks. The Petrov (B)
and Kooi (A) stackings are shown.

In PCM, a metastable cubic crystal is obtained upon crystallization of the amorphous phase.
The cubic phase (c-GST) has a rocksalt geometry with Te occupying one sublattice and Ge,
Sb and 20% of vacancies occupying randomly the other sublattice [139]. The metastable cubic
phase turns into the stable hexagonal phase at higher temperatures.

From the point of view of thermal conductivity several experimental works reported on the
measurements of the bulk thermal conductivity of differentGeSbTe alloys [7, 54, 119, 120].
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In the case of cubic Ge2Sb2Te5, disorder is present in the form of a random distribution
of Ge, Sb atoms and 20 % of vacancies in one sublattice of the rocksalt structure, the other
being full occupied by Te atoms. Disorder leads to a lattice thermal conductivityκ=0.40 W/m
K close to the value of 0.27 W/m K measured for the amorphous phase [54]. Vacancies in the
Ge sublattice of crystalline trigonal GeTe are also responsible for scattering of the measured
thermal conductivity over a wide range of values 0.1-4.1 W/mK [51, 121–125] as previously
shown for GeTe.

The lattice thermal conductivity is interestingly very low(0.45 W/m K) [54] also in the hexag-
onal phase, in which the vacancy concentration is expected to be relatively low. In this latter
case, disorder may arise by a partial random distribution ofSb/Ge atoms corresponding to the
stacking (C) proposed by Matsunaga et al. [139]. The thermalconductivity can thus be a good
probe to determine the real structure of this material.

3.2.1 Ab initio structural and vibrational properties of crystalline GST

The geometry of Ge2Sb2Te5 in the two ordered stackings within DFT-PBE was optimized
in a previous work [140], the results are reported in parenthesis in Tab. 3.3, compared with the
results obtained by adding the Grimme semiempirical van derWaals correction [87] and with the
experimental parameters. The calculations have been performed by using the Quantum Espresso
package [73]. The Brillouin Zone (BZ) integration for the self-consistent electron density was
performed over a 8x8x2 MP mesh and the Kohn-Sham states were expanded in plane waves up
to 20 Ry cutoff. Norm-conserving pseudopotentials with only the outermost s and p electron in
valence were used. Atomic positions where relaxed until theforces were smaller than 1·10−4

Ry/a.u..

Stacking
A B Exp.a

Energy (meV/atom) 0 (0) 16.3 (19)
Cell Parameters (Å)

a 4.191 (4.28) 4.178(4.25) 4.225
c 17.062 (17.31) 17.41 (17.74) 17.239

Table 3.3: Relative energies (meV/atom) and theoretical equilibriumlattice parameters (Å) for
stacking A (Kooi) and B (Petrov) optimized with the PBE+vdW functional. Data without vdW
corrections are reported in parenthesis.
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In the hexagonal crystalline phase, GST is a degenerate p-type semiconductor due to Ge/Sb
deficiency. As for GeTe the degenerate p-type character of GST was reproduced by removing
electrons and by neutralizing the system with a uniform positive background. We considered a
hole concentration of 0.084 holes/cell, i.e. 3.0· 1020 holes cm−3 close to the typical experimen-
tal value of 2.73· 1020 holes cm−3 at 3K of Ref. [141].

The Kooi phase (A) resulted to be energetically more favorable with both PBE and PBE+vdW.
Previous calculations [140] showed that the disordered Matsunaga stacking is only marginally
higher in energy than stacking A, actually within the free energy contribution expected for con-
figurational disorder, and it is even marginally lower in energy than stacking A if the hybrid
B3PW functional [142] is used.

However, the calculation of phonon dispersion relations, (Fig.3.15 and 3.16) obtained by
Fourier transforming the dynamical matrix computed on a 4x4x4 MP grid in the BZ revealed
that the Kooi phase is dynamically unstable in the PBE approximation, but it is stabilized by
including vdW interactions. The comparison between the phonons calculated with and without
vdW correction show that, as opposed to GeTe, the vdW correction does not significantly affect
the slope of the acoustic modes while it has remarkable effects (a shift of nearly 8 cm−1) only
on the optical modes.

−50

0

50

100

150

200

Γ A H K Γ

F
re

qu
en

cy
 (

cm
−

1 )

 

 

PBE teo. vol.

PBE+VdW teo. vol.

Figure 3.15: Phonon dispersion of Ge2Sb2Te5 in the Kooi stacking with PBE and PBE+vdW at
the respective equilibrium lattice parameters.
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Figure 3.16: Phonon dispersion of Ge2Sb2Te5 in the Petrov stacking with PBE and PBE+vdW
at the respective equilibrium lattice parameters.

3.2.2 Thermal conductivity of GST

The thermal conductivity has been computed using phonons calculated with the PBE func-
tional both with and without vdW corrections for the Petrov phase. In the Kooi phase the calcu-
lations were carried out exclusively with PBE including thevdW correction because this phase
is otherwise unstable. Anharmonic force constants have been computed only with the LDA
functional on a 4x4x1 q-point phonon grid on the BZ, for the cells at the PBE+vdW equilib-
rium parameters (and also at the equilibrium parameters of PBE without vdW corrections for
the Petrov phase) with both the internal coordinates optimized and unoptimized within the LDA
approximation. Also in this case only a marginal differencehas been observed as a consequence
of the two different internal geometry. The third order coefficients have been then Fourier inter-
polated with a finer 20x20x7 mesh for the solution of the Boltzmann equation. Phonon energies
have been broadened with a Gaussian function with smearing of 2 cm−1 for energy conserva-
tion in three-phonon scattering processes.

The thermal conductivities at 300 K for the ordered Ge2Sb2Te5 crystal in stacking A and B
obtained from the full solution of the BTE with the PBE+vdW functional are reported in Table
3.4. The average thermal conductivity of about 1.6-1.2 W/m Kis sizably larger than the exper-
imental value of 0.45 W/m K [54].
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We then introduced in the BTE the scattering due to vacanciesin either the Sb or Ge sub-
lattice with a concentration assigned by the holes density measured by the Hall effect which
yields 3· 1020 holes/cm3 [141]. This holes density corresponds to either 1.8 atom% vacancies
in the Ge sublattice (two holes per vacancy involving only the p electrons) or to 1.25 atom%
vacancies in the Sb sublattice (three electrons per vacancy). The average thermal conductivity
is reduced to about 1.1 W/m K (Table 3.4) which is still much higher than the experimental
value. By increasing the vacancy concentration up to 3 atom%in the Ge sublattice the average
thermal conductivity is further reduced to 0.64-0.86 W/m K.To bring the thermal conductivity
to a value closer to experiments we have then introduced the disorder in the Ge/Sb sublattice
by adding an isotopic phonon scattering rate in the BTE. By considering a full Ge/Sb mass
mixing and neglecting Ge/Sb vacancies the average thermal conductivity is sizably reduced to
0.61-0.76 W/m K (cf. Table 3.4). By further adding on top of Ge/Sb disorder the scattering due
to 1.8 atom% Ge vacancies or 1.25 atom% Sb vacancies, the average thermal conductivity is
further reduced to 0.43-0.58 W/m K or 0.28-0.42 W/m K (cf. Table 3.4).

A (Kooi) B (Petrov)

κz κx κav κz κx κav

Ideal 0.34 1.59 1.20 0.59 2.10 1.60
1.8 % Ge vac 0.28 1.19 0.83 0.42 1.49 1.13
1.25 % Sb vac 0.25 1.10 0.82 0.47 1.50 1.16
Ge/Sb disorder 0.20 0.77 0.61 0.30 0.99 0.76
Ge/Sb + Ge vac 0.16 0.56 0.43 0.25 0.75 0.58
Ge/Sb + Sb vac 0.11 0.37 0.28 0.23 0.51 0.42

Table 3.4: Lattice thermal conductivity of hexagonal Ge2Sb2Te5 at 300 K along thec axis in
the hexagonal notation (κz, cf. Fig. 3.14) in the perpendicular plane (κx) and their average for a
polycrystalline sample (κav). The first row report the values for the ideal crystal in which only
the anharmonic effect are taken into account. In second and third row are reported the values
of thermal conductivity including the isotopic scatteringdue to the two possible vacancy type
in a percentage compatible with experiments. In the fourth row is stated the values of thermal
conductivity taking into account the isotopic scattering produce by a complete disorder in the
Ge/Sb sublattice while in the fifth and sixth row the combinedeffect of disorder and vacancies
is taken into account.
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For the Petrov stacking the use of PBE instead of PBE+vdW leads to a slightly lower con-
ductivity. For the ideal Petrov phase the average thermal conductivity is 1.47 W/m K, and drops
to 0.69 W/m K and 0.47 W/m K with the inclusion of vacancies andvacancies plus complete
lattice disorder on the Ge/Sb sublattice.

In GST the thermal conductivity calculated within the SMA islower by less than 5 % with
respect to the full solution of the BTE.

The spectral functionσ(q,ω) calculated at 300K with PBE+vdW for the Kooi and Petrov
ideal phases are reported in Fig.3.17. The cumulative lattice thermal conductivity, average group
velocities, phonon lifetimes and mean free paths calculated within the SMA of Ge2Sb2Te5 cal-
culated with PBE+vdW as a function of phonons frequency is shown in Fig. 3.18 for the ideal
stacking Kooi and Petrov stackings and for the disordered Matsunaga structure including va-
cancies.

From Figs. 3.18 and 3.17 it is clear that, as in GeTe, the acoustic phonons mostly contribute to
the thermal conductivity at 300 K, with a small contributionof the lower energy optical modes
and a negligible contribution of the high energy optical modes. In the disordered Matsunaga
phase in particular, the whole lattice thermal conductivity originates from the acoustic modes
with energy below 30 cm−1.

It is clear that both vacancies and disorder are needed to achieve a good agreement between
theoretical and experimental data and this result stronglysuggests that the low thermal conduc-
tivity in the hexagonal phase is actually an indicator of the(Ge/Sb) sublattice disorder as also
suggested by recent experimental data from Z-resolved TEM in GST nanowires [143].

The temperature dependence of thermal conductivity for thedisordered phase, including sub-
lattice disorder and vacancies treated perturbatively, isreported in Fig.3.19.
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Figure 3.17: Spectral function at 300K for Ge2Sb2Te5 in the Kooi and Petrov stackings with
PBE+vdW at the respective equilibrium lattice parameters.
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Figure 3.18: Cumulative lattice thermal conductivities within the SMA at 300K along thec axis
in the hexagonal notation (κz) in the perpendicular plane (κx) and their average for a polycrys-
talline sampleκav) for the Petrov a), Matsunaga b) and Kooi c) stackings. Averaged velocities
d),e),f) lifetimes g),h),i) and mean free path l),m),n) forthe three different arrangements respec-
tively.



72 Thermal conductivity in Phase Change Materials

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2
T

he
rm

al
 C

on
du

ct
iv

ity
 (

W
/m

 K
)

Temperature (K)

 

 

Figure 3.19: Temperature dependence of thermal conductivity for the Matsunaga stacking of
Ge2Sb2Te5, including vacancies, calculated using PBE+vdW and starting from the unperturbed
Petrov harmonic and anharmonic force constants with sublattice disorder and vacancies treated
perturbatively as a mass disorder.

Finally, we verified that the thermal conductivity in the disordered hexagonal phase can be
well described within the minimal thermal conductivity model, according to Cahill which yields
for acoustic bands only:

κmin=
(π

6

)1/3
kBn3/2∑

s
vg,s

(
T

ΘD,s

)2∫ ΘD,s/T

0

x3ex

(ex−1)2dx (3.2)

wherex = ~ω/kBT, n the atomic number density. The sum runs over two transverse and
one longitudinal phonon branches, each with individual sound velocitiesvg,s and cut-off Debye
temperaturesΘD,s = (6π2n)1/3vg,s~/kB. For temperatures much aboveθD as is in the case of
GST at 300 K Eq.3.2 reduces to

κmin=
3
2

(π
6

n2)1/3vgkB

)
. (3.3)

By plugging in the Cahill formula 3.3 the sound velocities (vgL = 3120 m/s andvgT = 1950
m/s) and the atomic density computed within DFT, we obtaineda value ofκmin=0.43 W/m K,
very close to the experimental value and the rigorous first-principle result. This result suggest
that the minimal thermal conductivity can be used to estimate κ in other similarly disordered
phase change materials.
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3.3 Sb2Te3

Sb2Te3 is not a material commonly used in PCM cells because of the insufficient stability of
the amorphous phase. However, it is a semiconductor of interest for several technological appli-
cations, ranging from thermoelectrical devices to spintronic applications thanks to its topologi-
cal insulating properties. Only recently, slightly Ge-doped SbTe has also been reported [144] as
an interesting alloy for applications in PCM.

Crystalline Sb2Te3 is a small band gap (0.28 eV) semiconductor with a rhombohedral ge-
ometry (R3̄m space group (D5

3d)) with five atoms in the elemental unit cell [145]. The crystal
structure can be better visualized in the conventional hexagonal supercell with three formula
units (Fig. 3.20). In the hexagonal cell we recognize three slabs, each formed by five hexagonal
layers stacked along c in the sequence Te-Sb-Te-Sb-Te, eachlayer containing a single atom
in the unit cell. The weak Te-Te bonds, 3.736 Å long [145], connecting adjacent slabs are not
shown in Fig. 3.20 to emphasize the presence of Sb2Te3 structural units. The three atoms inde-
pendent by symmetry are at crystallographic positions Te1 =(0, 0, 0), Te2 = (0, 0,x) and Sb =
(0, 0,y) (Fig. 3.20).

Figure 3.20: Structure of Sb2Te3 in the elemental and conventional hexagonal supercell
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3.3.1 Ab initio structural and vibrational properties of crystalline Sb2Te3

The calculations were performed by integrating self-consistent electron density over a 6x6x6
MP mesh in the Brillouin Zone (BZ). Kohn-Sham states were expanded in plane waves up to
30 Ry cutoff. Norm-conserving pseudopotentials with only the outermost s and p electron in
valence were used. Atomic positions were relaxed until the forces were smaller than 1·10−4

Ry/a.u.. The PBE functional was employed both with and without the semiempirical vdW cor-
rections. Phonon dispersion relations have been obtained by Fourier transforming the dynamical
matrix computed on a 6x6x6 MP grid in the BZ. The phonon dispersion relations along the high
symmetry directions of the conventional hexagonal cell arereported in Fig.3.21. As for GST the
vdW corrections do not significantly affect the acoustic modes and low energy optical modes
while causes a blue shift of nearly 10 cm−1 in the highest frequency optical modes.

Structural parameters PBE PBE+vdW Exp.

a (Å) 4.316 4.219 4.264
c (Å) 31.037 30.692 30.458

x 0.785 0.786 0.787
y 0.397 0.397 0.399

Table 3.5: Structural parameters of crystalline Sb2Te3 computed using the PBE approximation
with and without vdW correction compared with experimentaldata.

0

50

100

150

200

Γ M K Γ

F
re

qu
en

cy
 (

cm
−

1 )

 

 

PBE teo. vol.

PBE+VdW teo. vol.

Figure 3.21: Phonon dispersions of crystalline Sb2Te3 along high symmetry directions of the
hexagonal cell calculated with PBE with and without vdW correction.
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3.3.2 Thermal conductivity of Sb2Te3

The lattice thermal conductivity at 300 K has been computed with PBE+vdW phonons. An-
harmonic force constants have been computed with the LDA functional on a 4x4x4 q-point
phonon grid on the BZ, for the elementary cell at the PBE+vdW equilibrium parameters. A
Fourier interpolation over 15x15x15 mesh and a smearing of 2cm−1 has been used for the
variational Boltzmann optimization.

The cumulative lattice thermal conductivity within the SMAof Sb2Te3 as a function of
phonons frequency as well as average group velocity, phononlifetimes and mean free paths
are shown in Fig. 3.22.

Figure 3.22: a) Cumulative lattice conductivity of Sb2Te3 at 300 K within SMA, b) averaged
group velocity c) lifetime and d) mean free path.

The results areκz=0.7 W/m K, κx=2.0 W/m K, andκav= 1.6 W/m K. These results are in
good agreement with the experimental values,κav= 1.3 W/m K reported in Ref. [121] and 1.8
W/m K of Ref. [146], obtained by subtracting the electronic thermal conductivity estimated
from the Wiedemann-Franz law from the measured total thermal conductivity. As for GeTe
and GST, thermal conductivity of Sb2Te3 presents a strong anisotropy in directions parallel and
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perpendicular to the c axis as a consequence of the presence of weak bonds across the vdW
gap. In Sb2Te3 the contribution of optical modes to the thermal conductivity is marginally more
important than in the previous cases and contributes up to 35%.

3.4 InSbTe Alloys

The In-Sb-Te (IST) alloys have recently attracted a considerable interest for phase change
memory applications as an alternative to the most widely used Ge2Sb2Te5 compound because of
its higher crystallization temperature. Moreover, they have been suggested as promising candi-
dates for multi-level PRAM because IST alloys demonstrate astable multi-phase change mech-
anism from the amorphous to a cubic phase, leading to multiple resistance levels.

In3Sb1Te2 is particularly interesting because of its high melting temperature of about 650◦C
[147], close to that of GST and an amorphous phase that shows avery high stability with a
crystallization temperature Tx of about 292◦C [148] compared to the value of 120◦C of GST.

Moreover, In3Sb1Te2 has recently been grown in form of nanowires within the Synapse
project, opening the possibility of new developments in ultrascaled devices and core-shell multi-
level memories.

3.4.1 Thermal conductivity of In3Sb1Te2

In3Sb1Te2 crystallizes in a rocksalt geometry with In fully occupyingone sublattice and
an expected disordered distribution of Sb and Te on the othersublattice. Such a high level
of disorder can bring the lattice thermal conductivity to a value close to the minimal thermal
conductivity as occurs in cubic and hexagonal Ge2Sb2Te5 that also show a mostly random mass
distribution in the Sb/Ge sublattice. Therefore, we computed phonon dispersion relations of
crystalline In3Sb1Te2 and we estimatedkmin as given by Eq.3.3.

To this end we did not included explicitly the disorder but wemodeled the disordered cubic
phase by an ordered hexagonal 6-atom supercell mimicking the ABC stacking of atomic planes
along the [111] direction of the cubic phase. The In-Sb-In-Te-In-Te- stacking was chosen. Cal-
culations have been performed by means of DFPT and norm conserving pseudopotentials. Plane
waves expansion of Kohn-Sham orbitals up to 35 Ry and the PBE [81] functional were used.
The geometry of the unit cell was optimized by fixing the c/a ratio of the hexagonal cell in order
to mimic the cubic-like geometry of the real disordered system. A 8x8x4 grid was used for the
integration of the BZ and the semiempirical vdW [87] was used. The resulting equilibrium lat-
tice parameter turns out to be 6.05 Å which is close to the experimental value of 6.126 Å [149].
The phonon dispersion relations for the model of crystalline In3Sb1Te2, calculated starting from
a 6x6x4 q-points mesh, are shown in Fig.3.23.

The transverse and longitudinal sound velocities averagedover the different directions of
the Brilluoin Zone arevT= 1900 m/s andvL=3100 m/s respectively. By plugging in the Cahill
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Figure 3.23: Phonon dispersions of In3Sb1Te2 along high symmetry directions of the hexagonal
cell calculated with PBE including vdW correction.

formula the resulting sound velocities and the atomic density, a minimum thermal conductivity
of 0.42 W/m K at 300 K was obtained, which is much smaller than the electronic contribution of
about 23 W/m K estimated from the measured electrical conductivity [150] of 3.2 104 S/cm at
25 ◦C and the application of the Wiedemann-Franz law. The lattice contribution to the thermal
conductivity of crystalline In3Sb1Te2 is therefore negligible.

3.5 Conclusions

In summary, the bulk thermal conductivity has been computedon the basis DFT calcula-
tions for crystalline GeTe, Sb2Te3 and GST. These calculations allowed us to identify the ori-
gin of the great variability in the experimental data for GeTe and the origin of the glass-like
thermal conductivity in GST providing an indirect proof of the disordered structure of hexago-
nal Ge2Sb2Te5. Thermal conductivity of GeTe has been computed also with a complementary
method, using a Neural Network potential and non-equilibrium molecular dynamics simula-
tions. These calculations proved on one hand the reliability of the NN potential in predicting
thermal properties of crystalline GeTe and on the other handsupported the approximations used
in the treatment of vacancies and disorder in the DFT calculations. Moreover, the MD simula-
tions have also shown that non-linear effects in the thermalconductivity are negligible up to
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very high thermal gradients of about 30 K/nm such as those present in PCM devices. Finally,
an estimate of thermal conductivity of In3Sb1Te2 was also given based on the minimal thermal
conductivity model and ab-initio phonons.



4 Thermal Boundary Resistance

The thermal boundary resistance (TBR) between the crystalline and the amorphous phase of
the active medium and between the active medium in PCM and thesurrounding dielectrics or
metallic electrodes are crucial parameters for the controlof thermal cross-talks with adjacent
cells which may arise during memory programming. A large TBRcan also lead to a reduction in
the programming current thanks to heat confinement effects [118]. The complete electrothermal
modeling of PCM operation requires the knowledge of the TBR at different interfaces which
are often difficult to measure accurately at the operation conditions of the device.

Figure 4.1: Thermal boundary resistance, defined as the temperature jump at the interface for
a fixed heat flux, and the three mechanisms responsible for it:a) phonon-phonon contribution,
b) electron-electron contribution and c) electron-phononcontribution. The sum of all the con-
tributions are given as parallel and series resistances in panel d).
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The TBR also named Kapitza resistanceR between two media at the interface sketched in
Fig. 4.1 is defined byR= T2−T1

q whereT1 andT2 are the temperatures in the two media in prox-
imity of the interface. In the most general case we would expect the presence of both electronic
and lattice contributions to the TBR. In particular we wouldexpect three processes to contribute
to the thermal boundary resistance as shown in Fig.4.1a-c.

The first contribution comes inevitably at every interface due to mismatch in the vibrational
modes of the two materials and the resulting phonon-phonon scattering (Rpp). The second con-
tributions, important in the case of an interface between two good conductors is due to the direct
transfer of heat from electrons crossing the interface and acts as a parallel channel of resistance
(Ree). The third contribution (Rep), that can be seen as a resistance in series with the phonon-
phonon channel, is particularly relevant at the interface between an insulator and a conductor.
It originates from the fact that at the metallic side of the interface an energy transfer from elec-
trons to ions has to take place to allow for the phonons to transfer heat across the junction.This
is possible because a non-equilibrium steady state is established, in which the temperature of
the electrons (Te) is higher than the temperature of the ions (Tp) as sketched in Fig. 4.2.

Figure 4.2: Temperature profile of the electrons (Te) and ions (Tp) at the metal/non-metal
interface crossed by a heat flux densityq according to the theory of Majumdar and Reddy
[59]. Rpp = ∆Tp/q=(Tp− T2)/q is the phonon contribution to the total thermal boundary
resistanceR = (T1− T2)/q. The electronic contribution due to electron-phonon coupling is
Rep= (T1−Tp)/q.
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Majumdar and Reddy [59] developed a theory to cope with this effect that provides an expres-
sion for the thermal boundary resistanceR given by the sum of a phononic (Rpp) and electron-
phonon (Rep) contribution:

R= Rpp+Rep= Rpp+(
κe

κ
)

3
2

√
1

Gκph
(4.1)

whereκ = κe+κph is the total thermal conductivity,κe andκph are the electronic and phononic
contribution to the thermal conductivity, andRpp= ∆Tp/q (Fig. 4.2).

Rep is controlled by the parameterG, defined bydE
dt =−G(Te−Tp), whereE is the electronic

energy density andt is the time. The parameterG controls the electron to phonon energy transfer
rate per unit volume, which depends on the electron-phonon coupling constantλ and on the
electronic density of states (DoS) at the Fermi levelN(EF) as [103]

G= πkBλ~< ω2 > N(EF) (4.2)

where< ω2 > is the second moment phonon spectrum according to McMillan.At the contact
between two metals an electron-phonon contribution to the TBR is present at both sides of the
interface (Rep and Rep’) in Fig. 4.1

A microscopic insight into the different contributions to the TBR is of great relevance to aid
the search for better performing materials for PCM and to engineer their properties. Unfortu-
nately, this information can hardly be accessed experimentally. We estimated these different
contributions for some of the most typical interfaces in PCMcells.To this end, we used DFPT
calculations to estimate phonons and electron-phonon coupling to compute Rep. The phonon-
phonon contribution Rpp has been computed either with a phenomenological model, thediffuse
mismatch model (DMM), briefly outlined in Sec.4.1.2 or by means of non-equilibrium molec-
ular dynamics for the particular case of the amorphous/crystalline interface of GeTe for which
a reliable interatomic potential is available (See Sec.2.6.1).

4.1 Thermal boundary resistance at Ge2Sb2Te5 interfaces

Ge2Sb2Te5 is the compound most widely used in PCM applications, the thermal boundary
resistance at the interface between GST and other materialscommonly present in the device
is thus of great practical importance for the electrothermal modeling and for the performance
improvement of the memory cells.

The hexagonal crystalline GST is a degenerate p-type semiconductor [141] in which heat
is carried by both electrons and phonons. Therefore at the contact between hexagonal GST
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(hex-GST) and a dielectric, thermal resistance consists ofthe sum of the phononic (Rpp) and
electron-phonon (Rep) contributions which act as series resistances [59]. At theinterface with a
metal the direct electronic contributionRee is also in principle present.

Experimental data are actually available for the TBR at the interface of GST with silica [9]
and with several metals including TiN and Al [54, 151] but no information is available on the
relative contribution of phonons and electron-phonon coupling to the total thermal boundary
resistanceR.

The contribution to the TBR from electrons crossing the interface Ree can be estimated from
the measured electronic contact resistance and the interfacial Wiedemann-Franz law asRee=

ρc/(LoT) whereLo is the Lorenz number (2.44 WΩ K2 ) and T is the temperature andρc the
contact electric resistance (See Sec.1.2).

At the interface between hex-GST and the metals used in the devices (TiN or TiW)ρc is typ-
ically rather high (about 10−7 cm2 ) as measured in Ref.[54, 152]. Thus the resulting values of
Reeare typically very large (103 m2 K GW−1 ) compared to Rpp and Rep . The parallel channel
for heat transfer given by Ree can thus be safely neglected.

To gain microscopic insight into the different contributions to the TBR, we computed by
DFPT the electron-phonon interaction in hexagonal GST which allows us to estimate the electron-
phonon contribution to the TBR as described in Sec.4.1.1. The phononic contribution to the
TBR at the interface with Al, TiN and amorphous silica is computed within the Diffuse Mis-
match Model (DMM) [56] from the full phonon dispersion relations according to the theory
developed of Chen [153] as briefly outlined in Sec.4.1.2.

4.1.1 Electron-phonon contribution to the thermal boundary resistance at

the interface of GST with metals and dielectrics

In order to estimate the electron-phonon contribution to the TBR is essential to determine the
electron cooling rateG given by Eq.4.2 which requires the knowledge of the density of states at
the Fermi level and the electron-phonon coupling constant.

The electron-phonon coupling constantλ can be computed by means of DFPT as

λ = 2
∫ ∞

0

α2F(ω)
ω

dω (4.3)

whereα2F(ω) is the Eliashberg spectral function which measures the contribution of phonons
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with frequencyω to the electron-phonon coupling:

α2F(ω) =
2

~N(EF)
∑
~q,ν

δ(ω−ω~q,ν)×

∑
~k,n,m

δ(ε~k,n−EF) | gn,m(~k~qν) |2 δ(ε~k+~q,m−EF) (4.4)

where the first sum runs over phonon bands at frequencyω~q,ν while in the second sum the index
n,m runs over electronic states at energiesε~k,n andε~k+~q,m. N(EF) is the electronic density of

states of both spins per cell at the Fermi energyEF andgn,m(~k~qν) is the electron-phonon matrix
element. This is given in turn by

gn,m(~k~qν) =

√
~

2ωq,ν
〈uk+q,m |M−

1
2 ∇Vq

effενq | uk,n〉 (4.5)

whereM is the atomic mass matrix,uk,n is the periodic part of the KS state,ενq is the normal-
ized eigenstate of the dynamical matrix, and∇Vq

eff is the derivative of the Kohn-Sham effective
potential with respect to the atomic displacement caused bya phonon with wavevectorq. The
Eliashberg function provides also the average phonon frequency according to McMillan enter-
ing Eq.4.2 as

< ω2 >=

∫
ωα2F(ω)dω∫ α2F(ω)dω

ω

(4.6)

For the hex-GST, the electron-phonon matrix elements are computed by means of DFPT on a
dense 64x64x32k-points grid and a 64x64x32q-point grid. The twoδ functions containing the
electronic energies were replaced by order one Hermite-Gauss smearing function with different
value of variance ranging from 0.002 to 0.05 Ry [154].

We first considered the stacking proposed by Petrov with a p-doping of 3 · 1020 holes/cm3

close to the experimental value (cf. Sec. 3.2.1). The electronic band structure and the electronic
DOS close to the Fermi level are shown in Fig. 4.3 withN(EF)=0.9257 states/(eV· cell).

The calculation of the electron-phonon coupling yieldsλ=0.11, and(< ω2 >)1/2=97.5 cm−1

from which we can estimate from Eq. 4.2 a value ofG=3.75· 1015 W/(m3 K). To obtain a fairly
converged value, eliminating the dependence fromN(EF), the value ofλ is obtained by mul-
tiplying λ/N(EF) by a more accurate value ofN(EF) computed using the tetrahedron method
over a uniform 96x96x48k-point mesh. We estimated a total error inλ below 11%. Note that a
value ofλ=0.1 for the similar hexagonal GeSb2Te4 was also estimated from experimental data
on magnetoresistance [155].
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Figure 4.3: Electronic bands along the high symmetry directions of the Brillouin Zone of hexag-
onal Ge2Sb2Te5 in the stacking of Ref. [70] with p-doping of 3· 1020 holes/cm3. The Electronic
density of states close to the Fermi level (zero of energy) ofthe optimized cell are reported in
the central and right panel for the stackings of Refs. [70] (Petrov) and [138] (Kooi) respectively
with the same p-doping used in the band calculation. The density of states at the Fermi level is
3.34· 1021 states/(eV cm3) or 3.62· 1021 states/(eV cm3) for the stackings of Ref. [70] (Petrov)
or Ref. [138] (Kooi).

We also computed the value ofN(EF) for the Kooi stacking ( see Sec.3.2.1 and Ref. [138]). To
this end the cell parameters have been optimized by including a van der Waals (vdW) correction
according to Grimme [87] which ensures a stable structure asdescribed in Sec.3.2.1. We got a
value ofN(EF)=0.9404 states/(eV· cell). Thus, we obtainedN(EF)=3.34·1021 states/(eV cm3)
or 3.62·1021 states/(eV cm3) for the Petrov and Kooi stacking respectively, which assigns an
uncertainty inN(EF) below 10 %.

By plugging in Eq. 4.1 the calculated value ofG for the stacking of Ref. [70] and the experi-
mental values for the electronic and phononic contributions to the thermal conductivityκe=0.87
W/m K andκp=0.42 W/m K from Ref. [54], we finally obtained an electronic contribution to
the thermal boundary resistance ofRep= 14.0 m2K/GW. Actually κe is obtained in Ref. [54]
from the electronic conductivity and the application of theWiedemann-Franz law andκp is
then obtained from the measured total thermal conductivityκ=κe+κp. The hole concentration
in the hexagonal GST samples measured in Ref. [54] ranges from 8.2· 1019 cm−3 to 1.5· 1020

cm−3. Note that, by assumingλ/N(EF) only slightly dependent onN(EF), the factor(Gκp)
−1
2

in the expression forRep (cf. Eq. 4.1) scales asN(EF)
−1 and thus only mildly on the hole con-
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centration asn−1/3
h . The value ofRep= 14.0 m2K/GW is in the same range of the experimental

values for the TBR at the interface between hex-GST and TiN (12 ± 10 2K/GW) [54]. The
electron-phonon contribution to the TBR is thus not negligible for GST.

As discussed in Sec.4.1 the electron-phonon contribution to the TBR inside good metals
(R′ep, cf. Fig. 4.2) like Al and TiN is negligible. The contribution to the TBR due to direct
electron-electron coupling is also negligible as already stated in Sec.1.2 and thus the total ther-
mal boundary resistance for all the interfaces that we considered reduces to the sumR=Rep+
Rpp. In the next section, we report the calculation of the phononcontribution Rpp which will
provide the total TBR to be compared with experiments.

4.1.2 Lattice contribution to the thermal boundary resistance at the

interface of GST with metals and dielectrics

The phonon-phonon contribution to the TBR, Rpp, has been computed with the phenomeno-
logical Diffuse Mismatch Model (DMM) by taking into accountthe full phonon dispersion
according to the scheme proposed by Chen [153] to which we refer for all the details. This
approximation yieldsRpp = 4/(TA→BCvgA) where A and B refer to two media andCvg is
group velocityvg weighted by the phonon heat capacity averaged over all phonon bands as

Cvg = ∑ν
∫

BZ
d3q
8π3~ων(q)vg(ν,q)∂ fB(ων(q))

∂T where fB is the Bose function. The transmissivity
TA→B at the interface for phonons incident from mediumA to mediumB is written in turn [153]
asTA→B =CvgB/(CvgA+CvgB).

To computeRpp at 300 K, we used the DFPT phonon dispersion relations for GeTe, Al and
TiN. Phonon dispersion relation were computed in the framework of DFPT as implemented in
the Quantum-Espresso suite of programs [73] with the Perdew-Becke-Ernzerhof [81] functional
for all the materials.

The lattice parameters, the hole concentration (0.084 holes/cell) and the details of the self-
consistent and linear response calculations are the same asthose reported in Sec.3.2.1.

We used a norm conserving pseudopotential for Al and Vanderbilt Ultrasoft [82] pseudopo-
tentials for Ti and N. Kohn-Sham orbitals were expanded in a plane waves basis up to a kinetic
cutoff of 20 Ry for Al and 30 Ry for TiN with a charge density cutoff of 450 Ry. The BZ integra-
tion for the self-consistent electron density was performed over a 12×12×12 Monkhorst-Pack
(MP) mesh [135]. A Gausssian smearing of 0.05 Ry was used for Al and 0.02 for TiN.

Both Al and TiN crystallize in a fcc structure, the theoretical equilibrium lattice parameter
resulted to be a=4.059 Å for Al and a=4.29 Å for TiN to be compared with an experimental
lattice parameter of a=4.049 Å [156] and a=4.24 [157] Å.

The dynamical matrix was computed within DFPT on a 4x4x4 uniform q-points mesh in the
BZ for Al, a 6x6x6 mesh for TiN.



86 Thermal Boundary Resistance

0

50

100

150

200

250

300

Γ X W X Γ L

F
re

qu
en

cy
 (

cm
−

1 )

Figure 4.4: Phonon dispersion relaxation of Al along high symmetry directions.
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Figure 4.5: Phonon dispersion relaxation of TiN along high symmetry directions.

The resulting dispersion curves are reported in Fig. 4.4 and4.5 for Al and TiN. For amorphous
silica, which has a Debye temperature ofθD=500 K [158] much higher than that of GST (136
K), we adopted the Debye approximation for the phonon density of states with the experimental
transverse and longitudinal sound velocities ofvT=3.7 km/s andvL=5.8 km/s [159] which yields
Cv(T)∼C(T)v̄g = 3(vL +2vT)nkBx−3

D

∫ xD
0

x4ex

(ex−1)2
dx wheren is the atomic density,xD = θD/T

andT is the temperature.
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To check the reliability of the Debye approximation for amorphous silica we compared the
results of the Debye approximation with that of fully ab-initio calculation in the similar but
more easily accessible systemα-quartz.

For α-quartz we used the Local Density Approximation (LDA) to theexchange and correla-
tion functional. Norm conserving and Vanderbilt Ultrasoft[82] pseudopotentials were used for
Si and O. Kohn-Sham orbitals were expanded up to a kinetic cutoff 35 Ry with a charge den-
sity cutoff of 450 Ry. The BZ integration for the self-consistent electron density was performed
over a 6×6×6 mesh. The dynamical matrix was computed within DFPT on a 4x4x4 uniform
q-points mesh in the BZ. The theoretical lattice parametersof quartz in the hexagonal (space
group P 32 2 1) phase are a=4.89 Å c=5.41 Å to be compared with the experimental values of
a=4.91 Å c=5.40 Å (exp. ref. [160]).
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Figure 4.6: Ratio betweenCvg from full phonon calculation and Debye approximation forα-
quartz.

In Fig. 4.6 we report the ratio betweenCvg values as a function of temperature for quartz
computed from the full phonon dispersion relation and from the Debye approximation with the
Debye temperature of 590 K and an average velocity of sound of4890 m/s.

Even if, similarly, the use of the Debye approximation couldintroduce an error up to a factor
2 in theCvg of amorphous silica, it implies an error of at most 12% in the TBR between silica
and GST.

TheCvg values as a function of temperature for hex-GST, amorphous silica, Al and TiN are
shown in Fig. 4.7.

The temperature dependence of the DMM contribution to the TBR for GST/Al, GST/TiN and
GST/silica are reported in Fig. 4.8.
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Figure 4.7: The Cvg values as a function of temperature for quartz computed fromthe full
phonon dispersion relation or within the Debye approximation
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Figure 4.8: Temperature dependence of the phononic contribution to thethermal boundary
resistance (TBR) at the GST/SiO2, GST/Al and GST/TiN interfaces computed with the DMM
model. The total TBR is obtained by summing the electron-phonon contribution of 14 m2K/GW
to all the curves.
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Taking into account the values obtained above and the Rep contribution calculated in the pre-
vious section the total TBR at 300 K is 20.1 m2K/GW for hex-GST/silica, 19.8 m2K/GW for
hex-GST/Al, and 19.7 m2K/GW for hex-GST/TiN. In the case of hex-GST/TiN the calculated
TBR (19.7 m2K/GW) is in very good agreement with the experimental value of 12± 10 m2K/GW
of Ref. [54]. In the case of the other two interfaces the theoretical TBR is largely lower than
the experimental value of 80± 2 m2K/GW for hex-GST/Al [151] and 116 m2K/GW for hex-
GST/SiO2 [161].

It is worth noticing, however, that in the same experimentalworks a value of 6± 2 m2K/GW
for c-GST/Al [151] and of about 5 m2K/GW for c-GST/SiO2 [161] are reported. These values
are very close to theRpp contribution of about 5-6 m2K/GW computed here from the DMM
for the interfaces with hex-GST (cf. Fig. 4.8). Because of the similarities between the phonon
spectra of the cubic and hexagonal phases, we might assume that the calculated values ofRpp

might also apply to the interfaces with c-GST.

On the other hand a precise estimate of theRep contribution for c-GST is difficult because
of the disorder in the cubic structure. However, we might take as a reasonable estimate forλ
in c-GST the value of 0.1 obtained from magnetotransport measurement in cubic GeSb2Te4

in Ref. [155]. An electron densityN(EF) of about 3.6· 1020/(eV cm3) can be obtained in turn
from the experimental hole concentration of 8· 1011/cm3 [141] and the hole effective mass of
2.06me obtained in Ref.[162] from DFT calculation of 270-atom supercell . By plugging in Eq.
4.2, these latter numbers forλ andN(EF) and from the experimental values ofκe= 0.04 W/m K
andκp=0.45 W/m K for c-GST [54] one obtainRep∼ 2.3 m2K/GW for c-GST. The theoretical
total TBR of about 8 m2K/GW for c-GST/Al and c-GST/SiO2 is thus in good agreement with
the experimental vales [151, 161].

This means that the large underestimation of the TBR for the hex-GST/Al and hex-GST/SiO2
interfaces must be actually traced back to a strong non-ideality of the real interfaces. As a matter
of fact, the interfaces of Al and silica with hex-GST are obtained by heating the stacks initially
formed with as-deposited amorphous GST. The amorphous phase first crystallizes at about 400
K into c-GST and then turns into hex-GST only above 580 K wheresizable mass interdiffusion
is expected to occur at the interface. Indeed, it was shown inRef. [151] by using the DMM and
a 2 nm thick interface the value ofRpp raised by an order of magnitude to about 100 m2K/GW.
A similar effect might occur at the hex-GST/SiO2 interface.
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4.2 Thermal boundary resistance at GeTe interfaces

We studied the interfaces between GeTe and the most common materials used for electrical
contacts in the devices, such as TiN and Al, and surrounding dielectrics such as SiO2.

Since crystalline GeTe is a degenerate p-type semiconductor, at the interface with a insulator
like silica we have to consider two contribution to thermal boundary resistance, one coming
form the phonon-phonon processes and the other due the electronic contribution which rise
from electron-phonon coupling.

The same electron-phonon contribution is expected at the interface between amorphous and
crystalline GeTe since the crystal is metallic while the amorphous is insulating. This interface
can be considered as a prototypical example of the interfaces between the two states of the
active media in PCM devices in which the TBR, especially due to the presence of the Rep term,
may not be negligible and might play and important role in theheat confinement during the
formation of the amorphous dome.

At the interface between GeTe and a metal, another electron-phonon coupling termR′ep arises
in series withRep andRpp (cf.4.1). In the case of a good metal, however, the electronic den-
sity of statesN(EF) is large makingR′ep negligible with respect toRep andRpp in GeTe as we
have discussed in the previous section for GST. Finally the contribution of the parallel channel
constituted by the direct electron-electron contributionRee, present only at the interface with a
metal, could be estimated from the application of interfacial Wiedemann-Franz law once a mea-
sure of the electronic contact resistance is available. From the high value of electrical contact
resistance given in Ref.[51] between GeTe nanowires and gold and the measurements of elec-
trical contact resistance in similar materials such as GST [54] we assumed that the contribution
from the electron-electron channel can be considered negligible also for the interfaces with bulk
GeTe.

4.2.1 Electron-phonon coupling and electronic contribution to the thermal

boundary resistance

To compute the electron phonon-coupling and hence the electron-phonon contribution to the
TBR we used the PBE functional at theoretical equilibrium lattice parameters. The details of
the calculation and the parameters used in the structural and phonon calculation are reported in
Sec.3.1.1. We performed the calculations for the two extremes of holes concentration reported
in literaturenh1=8 · 1019 holes/cm3 andnh2=2.1 · 1021 holes/cm3. As previously described, the
p-doping is introduced by removing electrons and by neutralizing the system with a uniform
positive background. The electronic band structures and density of states corresponding to the
two doping cases are reported in Fig4.9.

The electron-phonon matrix elements are computed by means of DFPT on a 6×6×6 q-point
grid for the phonons and on a dense 132×132×132k-points grid for nh1 and 96×96×96k-point
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Figure 4.9: Electronic bands along high symmetry directions and electronic density of states
(DoS) of trigonal GeTe. The DoS does not change by hole dopingon the scale of the figure.
The position of the Fermi level is indicated by a dot-dashed (dashed) line for hole concentra-
tion nh1=8 · 1019 holes/cm3 (nh2=2.1 · 1021 holes/cm3). The DoS has been computed with the
tetrahedron method on a 160x160x160 mesh.

grid for nh2 for the electrons. The twoδ functions containing the electron band energies were re-
placed by order-one Hermite-Gauss smearing function with different value of variance ranging
from 0.1 to 50 mRy [154]. Most of the variation of the value ofλ with the size ofk andq-point
meshes can be ascribed to fluctuations in the density of states at the Fermi level. The quantity
α2F(ω)/N(EF) thus converges faster with the size of thek andq-point meshes [163]. Then the
value ofλ is obtained by multiplyingλ/N(EF) by a more accurate value ofN(EF) computed
using the tetrahedron method over a uniform 160×160×160k-point mesh. We estimated a total
error inλ below 10% coming from the uncertainties inλ/N(EF) quantified by the convergence
with respect to the smearing and thek-point meshes shown in Fig. 4.10.

The Eliashberg function and the phonon density of states arereported in Fig. 4.11 for the two
doping levels. The electronic density of states (DoS) does not depend on the hole concentration
in the range considered here as shown in Fig. 4.9. The averagephonon frequency according
to Eq. 4.6 is(< ω2 >)

1
2 = 105.25 cm−1 for nh1=8 · 1019 holes/cm3 and (< ω2 >)

1
2 = 87.02

cm−1 for nh2. As shown in Fig. 4.9, an increase in nh simply shifts the Fermi level deeper in
the valence band with no significant changes in the DoS. Integration of α2F(ω) leads to very
similar values ofλ/N(EF) for the two doping levels, namely 0.816 (states/eV/cell)−1 for both
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Figure 4.10: Dependence of the electron-phonon coupling constantλ/N(EF) on the smearing
parameter (mRy) of the Diracδ-functions in Eq. 4.4 for the low and high doping systems.

nh1 andnh2. The DoS at the Fermi level is in turn 0.094 states/eV/cell and 0.632 states/eV/cell,
which yieldsλ=0.077 fornh1 andλ=0.51 fornh2. Sinceλ/N(EF) is poorly dependent of the hole
concentration, it is possible to estimate the value ofλ at different doping levels by multiplying
our result forλ/N(EF) with the actual density of state at the Fermi level.

The parameterG (Eq. 4.2) has been computed for the two representative hole concentrations
nh1=8 · 1019 holes/cm3 andnh2= 2.1 · 1021 holes/cm3 (cf. [130, 131]) from the value ofλ and
〈ω2〉 discussed above. The values ofG is 1.43· 106 GW/(m3 K) for nh1 and 4.5· 107 GW/(m3 K)
for nh2 . By using the phononic thermal conductivityκph∼ 3.2 W/m K as calculated in Sec.3.2.2,

the ratioκe/κ can be chosen such that the prefactor(κe/κ)
3
2 in Rep (cf. Eq. 4.1) is in the range

0.080< (κe/κ)
3
2 < 1 where the lower extreme corresponds to the low value ofκe=0.73 W/m K

for the sample measured in Ref. [51]. By plugging these numbers into formula 4.1,Rep falls in
the range 1.2-14.8 m2K/GW for nh1 and 0.21-2.6 m2K/GW for nh2.

Note that the sample with hole concentrationnh1= 8 · 1019 holes/cm3 measured in Ref. [130]
displays an electrical resistivity ofρ=1.4· 10−4 Ω cm while in another work [164] Hall mea-
surements on samples with the same resistivity of aboutρ=1.4· 10−4 Ω cm yielded a much
higher hole concentration of 8· 1020 holes/cm3 due to a different hole mobility. In fact, it was
shown (see Figs. 1 and 2 in Ref. [165]) that the resistivity isnot a monotonic function of the
Hall carrier density [165]. Note that different holes pockets with different effective masses are
progressively filled by increasing the hole content (cf. Fig. 4.9) which also opens new channels
for intervalley scattering.
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Figure 4.11: Phonon density of states (DoS) and Eliashberg functionα2F(ω)/N(EF)
(states/cm−1/cell)−1 for GeTe with hole concentrations of a)nh1=8 · 1019 holes/cm3 and b)
nh2=2.1·1021 holes/cm3.



94 Thermal Boundary Resistance

The estimate ofRep for a specific sample thus requires the measurements of bothnh (or
N(EF) by whatever means) andκe eventually fromρ and the application of the Wiedemann-
Franz law. For the specific sample of Ref. [130] for which bothnh (8 · 1019 holes/cm3) andρ
(1.4 · 10−4 Ωcm) are known we can estimateκe=5.22 W/m K from the Lorenz numberLo=
2.44 · 10−8 WΩ/K and κe=LoT/ρ for T=300 K, which finally yieldsRep= 7 m2K/GW. This
value is of the same order of magnitude of the TBRs measured atthe interface between phase
change materials like GST and metals and thus it is not a negligible quantity. Just to give a term
of comparison a TBR of 10 m2K/GW is equivalent in thermal resistance to 14 nm of silica or
190 nm of TiN.

4.2.2 Lattice contribution to the thermal boundary resistance between

GeTe and electrodes or dielectrics

To give a complete picture of the TBRs in a device we computed the phononic contribution
Rpp for the three interfaces GeTe/Al, GeTe/TiN and GeTe/silica. The first two are common
materials for the electric contacts and the heater while thelast one is the material in which
the active medium is commonly embedded. As for GST we used thediffuse mismatch model
outlined in Sec.4.1.2 to estimate Rpp. The computational details for GeTe are the same reported
in Sec.3.1.1 while the details for Al, TiN and silica are reported in Sec.4.1.2.
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Figure 4.12: Temperature dependence of the phononic contribution to thethermal boundary
resistance (TBR) at the GeTe/SiO2, GeTe/Al and GeTe/TiN interfaces computed with the DMM
model.
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The results for the phonon-phonon contribution to the TBR for GeTe/Al, GeTe/TiN, and
GeTe/silica, calculated within DMM contribution are reported as a function of temperature
in Fig. 4.12. Summing up the electron-phonon contribution calculated in the previous section
we can thus estimate a total thermal boundary resistance between 6 and 12 m2/GW. The only
experimental data available are the measurement of a total TBR of 80 m2/GW relative to the
GeTe/SiO2 interface reported in Ref.[51]. The large value observed experimentally might be
ascribed to a bad quality of the interface as discussed in Sec.4.1 for the interfaces of GST.

4.2.3 Thermal boundary resistance at crystalline/amorphous GeTe

interface.

In Sec.4.2.1 we have estimated a non-negligible contribution to the TBR in GeTe and GST
from the electron-phonon term. Since this term is also present at the interface between crys-
talline and amorphous phases the total TBR among these two phases of the same material
cannot be neglected. Moreover a lattice contribution couldstem from the mismatch in the vi-
brational modes of the two phases. In the case of GeTe, the phonons of the amorphous phase
display a softening in the acoustic branches, with respect to the crystal, due to a lower density
and a stiffening in the highest frequency region due to the appearance of phonons at about 200
cm−1, localized on the GeTe4 tetrahedra [12, 30, 166]. Furthermore, while in crystalline GeTe
the thermal conductivity is due to propagating phonons thatcan be described within the Boltz-
mann transport equation, in the amorphous phase the heat carriers are mostly non-propagating
delocalized vibrations (diffusions) [116, 137].

Since for GeTe we had a reliable potential [12] able to accurately describe the interactions
in every GeTe phase and the interplay different phases, we opted for a direct simulation of the
GeTe crystalline/amorphous interface.

To study the lattice contribution to the TBR we used the RNEMDscheme proposed by Müller-
Plathe [11] described in Sec2.5. The simulations were performed with the NN code RuN-
Ner [74] by using the DL_POLY v2.19 [75] code as MD driver. Thetime step was set to 2 fs.

We considered two interfaces, one lying on the (0001) crystalline plane and a second in the (2
1̄ 1̄0) crystalline plane in the hexagonal notation for the GeTecrystal. For the (0001) interface
we used a supercell with dimensions of 50.1 Å x 49.6 Å x 348.5 Å made by a junction between
a 28.6 Å x 24.8 Å x 249.5 Å cell of the bulk crystal and a 28.6 Å x 24.8 Å x 99.3 Å cell of
the bulk amorphous phase. The length along thez direction of the amorphous and crystalline
regions is comparable to the typical size of an ultra-scaledPCM device. In order to allow the
interface to adjust, the supercell was then annealed at 500 Kfor 20 ps and then quenched again
at 300 K in 20 ps. We considered the ideal stoichiometric compound, without defects.
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Figure 4.13: Temperature profile in the NEMD simulation of the junction between the amor-
phous and crystalline phases of GeTe. The heat sink and source are separated by 33 nm. The
interface lies on the (0001) crystalline plane in the hexagonal notation. The heat flux is 1.62·
10−8 W.

The steady temperature profile reached in about 2.2 ns of simulation is shown in Fig. 4.13.
A temperature jump at the interface can not be clearly identified in Fig. 4.13. If any, it is smaller
than the temperature fluctuations still present in the modeldue to its finite size. We repeated
the simulations for the (2̄1 1̄0) plane with similar results. We can thus set an upper limitto
Rpp for both interfaces of about only 2 m2K/GW. The dominant contribution to the TBR of the
amorphous/crystalline interface of GeTe is thus due to electron-phonon interactions yielding a
value of 7 m2K/GW.

4.3 Conclusions

Atomic simulations allowed to identify the different contributions to the TBR at the inter-
face between GST and GeTe with metals and dielectrics in PCM devices. Due to the low but
not negligible metallicity of GST and GeTe, a large contribution to the TBR arises from the
electron-phonon coupling (Rep). The sum of the Rep term with the phononic contribution (Rpp)
computed from DFPT phonons within the diffuse mismatch model provides a good agreement
with experiments for the TBR at the interfaces of hex-GST with Al and TiN of c-GST with Al
and silica. A bad agreement between theory and experiments for other interfaces can be ascribed
to non-idealities (such as interdiffusivity or roughness)of the interface. The theoretical value of
Rep+Rpp computed here thus represent a lower bound for the actual interfaces.
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Besides being a fundamental building block of chalcogenidealloys exploited as phase change
materials and a well known thermoelectric, Sb2Te3 has recently attracted a huge interest since
it is, together with Bi2Se3 and Bi2Te3, one of the first materials theoretically predicted and
experimentally confirmed [167] to be 3D topological insulators (TI). Topological insulators
are a new class of material that exhibits unique properties:they present a complete band gap
in the bulk but develops topologically protected metallic states at surface whose presence and
properties can be inferred exclusively from the bulk band structure in which the strong spin-orbit
coupling gives rise to a non-trivial order of the bands [168,169].

These surface states, that appears like a Dirac cone around theΓ-point, have a particular spin
texture (cf. Fig.5.1) responsible for peculiar propertiessuch as relative insensibility to surface
details and protection against backscattering by non-magnetic impurities [168, 169].

Figure 5.1: Spin texture of the surface Dirac cone of a 3D topological insulator. The black arrow
indicate one of the equivalent nesting vectors that connects two sides of the Fermi surface (line).

Electron-phonon interaction mediated by spin-orbit coupling is supposed to be the most rel-
evant scattering process for these states of interest for spintronic applications. The interest in
the determination of the interaction of topologically protected states with phonons motivated
an increasing number of experimental and theoretical works. However, the conclusions drawn
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in these works are not unique: Angle Resolved PhotoemissionSpectroscopy (ARPES) data
[170–172] and some theoretical works [173, 174] suggested avery small electron-phonon cou-
pling but surface phonons at the Bi2Se3 (0001) surface measured with helium atom scattering
(HAS) and reported in Fig.5.2 revealed a feature in the dispersion relations interpreted as a Kohn
anomaly which would suggest the presence of a strong electron-phonon coupling [175, 176].

Figure 5.2: a) Experimental HAS data (points) measured in Ref. [175]. for Bi2Se3 (0001) sur-
face. The lines are the results of an empirical bond-charge model. A scheme of the bulk and
surface projected Brillouin zone is reported in panel b).

To asses the presence and the origin of the proposed anomaly we calculated the phonon dis-
persion relation of Bi2Se3 (0001) surfaces by means of density functional perturbation theory.
For the sake of comparison we computed surface phonons of theSb2Te3 (0001) surface as well
for which experimental data are not available.

5.1 Sb2Te3 and Bi2Se3 (0001) Surfaces

Sb2Te3 and Bi2Se3 share the same rhombohedral crystal structure described inSec.3.3.1 that
can be seen as blocks of five hexagonal layers stacked in the sequence Te(Se)-Sb(Bi)-Te(Se)-
Sb(Bi)-Te(Se) linked to the other blocks by weak vdW interactions.

We studied the dynamical properties of Sb2Te3 and Bi2Se3 (0001) surfaces in hexagonal
notation by means of density functional perturbation theory. Norm conserving pseudopotentials
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were used for all the elements, the local density approximation (LDA) [79] for the exchange-
correlation energy functional was used for Bi2Se3 while the PBE approximation [81] was found
to produce better results for Sb2Te3. The theoretical equilibrium lattice parameters were used.
The lattice parameters of Sb2Te3 have already been reported in Sec.3.3.1 while for Bi2Se3 we
obtained a=4.10 Å and c=28.33 Å to be compared with the experimental values of a=4.14 Å
and c=28.64 Å [156].

Spin-orbit effect are treated self-consistently with fully relativistic pseudopotentials and the
formalism for non-collinear spin magnetization. The Khon-Sham orbitals were expanded in
plane waves up to an energy cutoff of 35 Ry. The surface was modelled by a slab geometry
with 15 layers i.e. 3 quintuple layers (QL) and a vacuum region 20 Å wide. The surface Brilloin
zone (SBZ), if not specified differently, was sampled over a 8x8x1 Monkhorst-Pack grid and
the dynamical matrix was calculated on a 6x6x1 mesh of q-points. The surface atomic positions
were relaxed until forces became lower than 0.1 mRy/a.u..

The electronic band structure of the slabs calculated with and without spin-orbit coupling
(SOC) is shown in Figs.5.3a and 5.3b for Sb2Te3 and Bi2Se3 respectively.

Figure 5.3: Surface electronic bands of (a) Sb2Te3 and (b) Bi2Se3 omitting (left) and including
(right) spin-orbit coupling.
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A small amount of additional charge of -0.03 electron/cell and 0.02 electron/cell was added
in order to reproduce the typical position of the Fermi levelreported in [177] and [171] mea-
sured by ARPES. Without SOC the Sb2Te3 and Bi2Se3 are insulators even at the surface with a
band gap respectively 0.25 eV and 0.35 eV wide. By including SOC both materials present the
gapless, spin-polarized and Dirac cone shaped surface bands around theΓ-point, typical of 3D
topological insulators [168, 169].

We first computed the phonon dispersion relations without the SOC. These are shown in
Fig.5.4 for Sb2Te3 and in Fig.5.6 for Bi2Se3, with phonon densities projected on the first, second
and third layer.

Figure 5.4: Surface phonons of Sb2Te3 omitting spin-orbit coupling. The colors represent the
projections on the first, second and third layers according to the different polarizations: shear
vertical (SV), longitudinal (L) and shear horizontal (SH).
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Figure 5.5: Experimental data for Sb2Te3 (0001) surface obtained by HREELS. Courtesy of
A.Politano and V.de Renzi. The two curves in the bottom panelcorrespond to two different mo-
mentum transfers corresponding to theΓ-point and a neighboring point along theΓM direction.

The surface spectra of Sb2Te3 is rather complex, at the topmost part of the spectra atΓ we can
find a mode that is mostly shear vertical polarized and localized on the first and the second layer
with a frequency of 170 cm−1; at approximately 1/2 of theΓM direction and at 1/3 of theΓK
it changes character becoming longitudinally polarized and completely localized on the second
layer. Two strong resonances are present in the middle part of the spectrum: the first one starting
at 113 cm−1 at theΓ-point and almost dispersionless and completely localizedin the third layer
and has a purely shear vertical polarization near theΓ-point that turns into a mixed shear-vertical
and longitudinal polarization at the zone boundary. The second one, also mainly localized on
the third layer, starts at 101 cm−1 with a mixed longitudinal and shear horizontal character that
gradually gives way to a prevalently longitudinal polarization after an avoided crossing with the
upper resonance. At low energies the main features are a nearly flat, shear-vertical mode at 60.5
cm−1 involving mainly the first layer and, at the lowermost end of the spectrum, a shear-vertical
mode localized in the second layer that exhibits the typicalbehavior of the Rayleigh wave but
for the unusual localization on the second layer. At the bestof our knowledge there are not
experimental measurements for Sb2Te3 surface phonons in literature to compare with. Recent
unpublished high resolution electron energy loss spectroscopy (HREELS) measurements, per-
formed by the group of V. DeRenzi with the collaboration of A.Politano, at and close to theΓ
point are reported in Fig.5.5. The frequencies of the two features clearly visible in the spectra
fairly agree with those of the theoretical highest, shear vertical mode at 170 cm−1 and of the
strong resonance at 113 cm−1.
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Figure 5.6: Surface phonons of Bi2Se3 omitting spin-orbit coupling. The colors represent the
projections on the first, second and third layers according to the different polarizations: shear
vertical (SV), longitudinal (L) and shear horizontal (SH).

The results for the surface phonon spectra of 3QL of Bi2Se3 are very similar to those ob-
tained using one and two QL in Ref. [178]. The upper part of thespectrum is dominated by the
modes involving the lighter Se atoms. Purely shear verticalvibrations of the outermost Se layer
give rise to the highest energy mode (185 cm−1 at Γ), clearly visible also in the experimental
HREELS data reported in Fig.5.7 with an energy of 23 meV (≈ 185.5 cm−1). The shear vertical
vibrations of Se atoms which compose the third layer, partially hybridized with longitudinal
modes of the first give rise to a sharp resonance around 153 cm−1. Longitudinal modes local-
ized in the third layer give rise to two bands that cross almost all the SBZ. One moves from
137 cm−1 at Γ down to 88 cm−1 along the MK direction, while the other, evident only at the
zone border, is almost flat with an energy around 145 cm−1 . Finally shear-horizontal modes
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Figure 5.7: Experimental data for Bi2Se3 (0001) surface obtained by HREELS. Courtesy of A.
Politano and V. De Renzi. The curves correspond to differentmomentum transfers correspond-
ing to theΓ-point and neighboring points along theΓM direction reported in the legend.

of the Se atoms in the first and third layer give rise to a broad resonance at 129 cm−1 and two
narrow bands around 133 cm−1 and 97 cm−1 that are nearly dispersionless along theΓM di-
rection while they exhibit an avoided crossing along theΓK. Modes related to the Bi atom are
clustered at low energy. In particular a shear vertical modecan be highlighted at the lower end
of the spectrum with a strong projection on the second layer for large q vectors that, as in the
case of Sb2Te3 can be ascribed to the Rayleigh wave. These low energy modes could account
for almost all the experimental data obtained by means of HASin Ref.[175] (cf. Figs. 5.8, 5.9).
The lowest energy data, in particular along theΓM direction can be ascribed to a mostly shear
vertical vibration of the second layer while most of the points with slightly higher energy can
be assigned to two broad longitudinal resonances localizedon the bismuth atoms. The feature
ascribed to the strong Kohn anomaly in Ref.[175] seems to fell in a region where there is no
evidence of surface modes but for a shallow shear vertical resonance on the first and second
layer with a slightly higher frequency.
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Figure 5.8: Surface phonons of Bi2Se3 (0001) surface projected on the second layer and on
shear vertical polarization compared with experimental HAS data. [175]

Figure 5.9: Surface phonons of Bi2Se3 (0001) surfaceprojected on the second layer and on
longitudinal polarization compared with experimental HASdata. [175]
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When SOC is taken into account a topological insulator exhibits metallic surface states. It
has been suggested that the presence of such states crossingthe Fermi level could give rise to
a Kohn anomaly in the surface phonon spectra in correspondence of the nesting vector of the
Fermi surface (line) on the Dirac cone (see Fig.5.1). In the calculation reported in Figs.5.4 and
5.6 we omitted the SOC and therefore there are no surface metallic states.

In order to verify the effect of such states on surface phonons we repeated the phonon calcu-
lations at the q-point corresponding to the nesting vector (2kF ) by including SOC. We compared
this result with that obtained by discarding the SOC.

To perform these calculations we had to improve the samplingof the Brillouin zone close
to the Fermi surface which is particularly important to resolve an eventual anomaly. Given the
peculiar shape of the Fermi surface in Sb2Te3 and Bi2Se3 slabs consisting of a ring around the
Γ-point, we used a graded k-point mesh (equivalent to a 50x50x1 uniform mesh) near theΓ-
point and a coarser one (equivalent to a 8x8x1 mesh) near the zone boundary. The results are
reported in Figs.5.10 and 5.11. A one to one comparison between phonon modes calculated with
and without SOC shows that there is no evidence of a Kohn anomaly induced by the presence of
the surface metallic states, involving any of the surface phonon modes. The spin-orbit coupling
results only in a overall softening of the phonon modes of at most 3% in Sb2Te3 and 6% in
Bi2Se3.

Figure 5.10: Surface phonons of Sb2Te3 omitting spin-orbit coupling (black continuous line)
and including (red dots) at a q vector corresponding to the nesting vector 2kF .
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Figure 5.11: Surface phonons of Bi2Se3 omitting spin-orbit coupling (black continuous line)
and including (red dots) at a q vector corresponding to the nesting vector 2kF .

5.2 Conclusion

The DFPT calculations of the surface phonons of Sb2Te3 and Bi2Se3 (0001) surfaces do not
seem to confirm the presence of a Kohn anomaly observed experimentally for Bi2Se3(0001).
One might speculate that the experimental feature assignedto the Kohn anomaly, if confirmed,
could arise from non-adiabatic effects which are missing inthe adiabatic DFPT framework we
used. Another possibility recently proposed in a theoretical paper is that the anomaly arises
from the coupling of phonons with plasmon (collective) excitation which are also missing in
the DFPT framework.



6 Sb2Te3-GeTe superlattices

Recently, it has been shown that GeTe-Sb2Te3 superlattices could allow the realization of
PCM devices requiring a considerably lower switching powerin SET/RESET operations than
conventional PCM alloys (cf. Sec.1.3.2 and Ref.[13]).

In these devices, referred to as interfacial phase change memories (iPCM) [13], it is believed
that the transformation involves small displacements of a subset of atoms without melting and
subsequent amorphization [13] as described in Sec.1.3.2.

On the basis of high resolution transmission electron microscope (TEM) images of (GeTe)2-
Sb2Te3 superlattices, it was proposed [13] that the SET(low resistivity) state corresponds to a
ferroelectric arrangement of the (GeTe)2 blocks (Ferro cf. Fig. 6.1) and that the RESET (high
resistivity) state could be obtained by a displacement of a Ge atom along the superlattice axis
(c), in a sort of umbrella-flipping process, in order to form Ge-Ge bonds ending up in the
Swithced-Ferro configuration (cf. Fig 6.1).

Figure 6.1: Structure of (GeTe)2Sb2Te3 superlattice in different configurations. a) Inverted
Petrov, b) Switched Inverted Petrov, c) Ferro and d) Switched Ferro.
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The RESET state has been later proposed [69] to correspond tothe so-called inverted Petrov
structure ideally obtained by switching Ge and neighboringTe atoms in the crystalline structure
of Ge2Sb2Te5 proposed by Petrov [70] (cf. Fig.3.14). A switch between thePetrov (SET) and
the Inverted-Petrov (RESET) configurations has also been proposed [71].

DFT calculations of electronic band structure revealed that the Inverted-Petrov structure
shows a Dirac cone at theΓ point with the Fermi level at the cone vertex which should cor-
respond to the interfacial topologically protected statespresent at the interface between the
topological insulator Sb2Te3 and the normal insulator (semiconductor) GeTe. The switched
Inverted-Petrov has instead a large density of states at theFermi level consistent with a SET
state.

A more recent calculation has shown that among the four configurations Ferro, Switched-
Ferro, Inverted-Petrov and Switched-Inverted-Petrov, the Ferro and Inverted-Petrov are the low-
est in energy with an electronic band structure compatible with the SET/RESET character. The
Switched-Ferro and Switched-Inverted-Petrov have been further proposed as intermediate states
along a Ferro←→ Inverted-Petrov transition.

All these structures have been proposed on the basis TEM dataand symmetry arguments.
However, since the TEM measurements are usually not Z-resolved the identification of the
different species is often uncertain.

Since the different phases discussed above feature different bonding geometries in the GeTe
blocks one would expect specific vibrational signatures of the different crystal structures. Would
this be the case, one should also be able to identify the structures, monitor the switching process
and perhaps also identify intermediate states by micro-Raman measurements.

In this section, we report on first principles calculation ofthe Raman spectrum of the four dif-
ferent geometries Ferro, Inverted-Petrov, Switched-Ferro, Switched-Inverted-Petrov discussed
above.

Furthermore recent TEM and Raman experimental data suggesta more complicated picture
[179], in which the structures involved are not limited to the simple superlattices described
above but are organized in more complex structures which arelikely to contain GeSb2Te4

blocks.

So far no experimental Raman spectra of (GeTe)2-Sb2Te3 superlattices are available. To asses
the reliability of the theoretical framework we have thus first computed the Raman spectra of
the hexagonal phase of crystalline GeSb2Te4 for which experimental Raman spectra to compare
with are available. In the next section we report the resultson GeSb2Te4 while the calculations
on the superlattices are reported in Sec.6.2.
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6.1 Structural properties and Raman spectra of Ge1Sb2Te4

Structural parameters of Ge1Sb2Te4 have been optimized with PBE exchange and correlation
energy functional both including and neglecting van der Waals (See Sec.2.1.5). The crystal
structure belongs to the R3m space group and it consists of seven layers (Ge1Sb2Te4) forming
lamellae separated by vdW gaps similarly to the structure ofGe2Sb2Te5. A partial disorder in
the Ge/Sb sublattice has been inferred form X-ray diffraction data [139]. In the calculations
we neglected the disorder in the Ge/Sb sublattice and we usedthe equivalent hexagonal cell
with three Ge1Sb2Te4 lamellae, stacked along thec axis (cf. Fig.6.4). Kohn-Sham (KS) orbitals
were expanded in a plane waves basis up to a kinetic cutoff of 35 Ry. Brillouin Zone (BZ)
integration was performed over a 12×12×2 shifted by 1x1x1 Monkhorst-Pack mesh [135]. The
resulting equilibrium lattice parameters turned out to be a=4.29 Å and c=41.48 Å neglecting
vdW correction and a=4.21 Å c=40.89 Å including it.

We computed the Raman spectrum from phonons at theΓ point within density functional
perturbation theory [93] for the theoretical equilibrium geometries. The differential cross sec-
tion for Raman scattering (Stokes) in non-resonant conditions is given by (for a unit volume of
scattering sample)

d2σ
dΩdω

= ∑
j

ω4
S

c4

∣∣eS·Rj ·eL
∣∣2(nB(ω/kbT)+1)δ(ω−ω j), (6.1)

wherenB(ω/kbT) is the Bose factor,ωS is the frequency of the scattered light,eS andeL are
the polarization vectors of the scattered and incident light, respectively. The Raman tensorRj

associated with thej-th phonon is given by

Rj
αβ =

√
Vo~

2ω j

N

∑
κ=1

∂χ∞
αβ

∂r(κ)
· e( j,κ)√

Mκ
, (6.2)

whereVo is the unit cell volume,r (κ) is the position of theκ-th atom andχ∞ = (ε∞−1)/4π
is the electronic susceptibility. The tensorsRj were computed fromχ∞ by finite differences, by
moving the atoms independent by symmetry with maximum displacement of 0.01 Å .

The Raman cross section is computed for a single crystal and unpolarized light in backscat-
tering geometry along the (c) axis.

The resulting spectra calculated including and neglectingthe vdW correction at the respective
equilibrium lattice parameter is reported in Fig.6.2 calculated with a 5 cm−1 linewidth. A com-
parison between the theoretical spectrum and experimentaldata recently obtained by Battaglia
et al.[180] on thin Ge1Sb2Te4 films is reported in Fig.6.3. The theoretical spectra reproduce
very well the position of the experimental peaks once the vdWcorrections are included. The
relative intensity of the peaks, strongly influenced by the measurement conditions, shows only
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a qualitative agreement.
A sketch of the displacement patterns of most important Raman-active modes is reported in

Fig.6.4 calculated including vdW corrections. Both the Eg-type modes at 115 cm−1 and 125
cm−1 contribute to the main peak but with a strong predominance ofthe first one. The compari-
son with experiments suggests that vdW corrections are mandatory to accurately reproduce the
phonon spectra.
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Figure 6.2: Raman spectra of Ge1Sb2Te4 calculated including and neglecting vdW correction.
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Figure 6.3: Raman spectra of Ge1Sb2Te4 calculated including vdW correction compared with
experimental data.[180]



6.1 Structural properties and Raman spectra of Ge1Sb2Te4 111

Figure 6.4: Sketch of the most active Raman modes of Ge1Sb2Te4 calculated including vdW
correction.
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6.2 Structural properties and Raman spectra of

(GeTe)2-Sb2Te3 superlattices

Raman spectra of superlattices were computed from DFPT phonons as described in the pre-
vious section. We used PBE exchange and correlation energy functional and norm conserving
pseudopotentials. The calculations were performed both including and neglecting van der Waals
corrections [87].

Kohn-Sham (KS) orbitals were expanded in a plane waves basisup to a kinetic cutoff of
35 Ry. Brillouin Zone (BZ) integration was performed over a 12×12×4 shifted by 1x1x1
Monkhorst-Pack (MP) mesh [135].

As a preliminary step, we have optimized the internal structure of the four different geome-
tries: Inverted-Petrov, Switched-Inverted-Petrov, Ferro and Switched-Ferro. The lattice param-
etersa andc are given in Table 6.1. In both SET states (Inverted-Petrov and Switched-Ferro)
Ge-Ge contacts are present in the GeTe blocks. The total energy (eV/atom) of the optimized
structures given in Table 6.1 show that the most stable SET and RESET structures are the Ferro
and the Inverted Petrov geometries. One might thus conceivethat the switching process would
involve these two lowest energy structures and it would thusconsist of both a displacement of
the Ge layer along thec direction and a sliding of Ge and Te layers in theab plane.

Structure a (Å) c (Å) Energy (meV/atom)

(SET) Inverted-Petrov 4.12 (4.19) 18.14 (19.03) 0.13 (0.50)
(RESET) Switched-Inverted-Petrov4.21 (4.13) 18.65 (18.47) 1.99 (1.64)

(RESET) Ferro 4.18 (4.265) 17.22 (17.45) 0.0 (0.0)
(SET) Switched-Ferro 4.10 (4.17) 18.95 (19.64) 2.53 (2.31)

Table 6.1: Theoreticala andc equilibrium lattice parameters and total energy (eV/atom)of the
Ferro , Switched-Ferro , Inverted-Petrov and Switched-Inverted-Petrov structures calculate with
PBE including and, in parenthesis, discarding vdW correction.

The Raman spectra have been computed as described for Ge1Sb2Te4 in non resonant condi-
tions. This is possible in a rigorous way only for insulatingphases. However, these materials
have a very low density of states at the Fermi level originating from states near theΓ-point
in the BZ (cf Fig.1.8). By performing the BZ integration overthe shifted 12x12x4 mesh, the
k-points are sufficiently far from theΓ-point so that all the configurations behave as insulators
which allows computing the Raman tensors for these phases. However, we must consider that
in these latter cases larger errors in the Raman cross section are possible, because of possible
resonance effects with the laser probe (in a zero gap system)neglected in Eq. 6.1.
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Inverted-Petrov (SET)

Eg 49 , 122, 132 ( 39, 116, 127)
A1g 75, 184 (64, 177)

Switched-Inverted-Petrov (RESET)

E 51, 98, 103, 119, 149 (46, 88, 96, 113, 139, 146)
A1 167, 180, 189 (157, 171, 180)

Ferro (RESET)

E 101, 116, 135 (94, 110, 124)
A1 155, 174 ( 145, 164)

Switched-Ferro (SET)

E 49, 121, 150 (46, 116, 142)
A1 54, 69, 186, 194, 199 (48, 64, 178, 187, 194)

Table 6.2: Frequency (cm−1) of phonons at theΓ-point of the two SET and the two RESET
geometries. For the Inverted-Petrov structure the Raman active modes have Eg or A1g sym-
metry while for all the other structures the Raman active modes have E or A1 symmetry. The
frequencies refer to calculation including the vdW correction. Data without vdW correction are
reported in parenthesis.

The phonon modes and Raman spectrum have been calculated as in the previous section. The
frequency of phonons at theΓ-point is reported in Table 6.2 for the four structures. The Raman
active modes have Eg or A1g symmetry in the Inverted-Petrov structure, while for all the other
structures the Raman active modes have E or A1 symmetry.

The Raman spectra for the four structures are reported in Fig. 6.5 calculated with PBE with
vdW correction and using a phonon gaussian linewidth of 5 cm−1 which seems adequate to
reproduce the experimental Raman spectra of Ge1Sb2Te4 computed in the previous section. To
resolve the different modes contributing to the Raman features we also computed the spectrum
with a smaller linewidth of 0.5 cm−1 reported in Fig. 6.6. The spectra calculated including the
vdW correction are reported in Fig. 6.7 with a linewidth of 5 cm−1.
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Figure 6.5: Raman spectra for the four GeTe-Sb2Te3 superlattice structures calculated with
PBE+vdW, phonon gaussian linewidth of 5 cm−1

Figure 6.6: Raman spectra for the four GeTe-Sb2Te3 superlattice structures calculated with
PBE+vdW, phonon gaussian linewidth of 0.5 cm−1
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Figure 6.7: Raman spectra for the four GeTe-Sb2Te3 superlattice structures calculated without
vdW correction, phonon gaussian linewidth of 5 cm−1

Phonons with E-type symmetry correspond to displacement pattern in theab plane while
A-type phonons correspond to displacements along thec axis. The displacement pattern of the
main Raman active modes for the four structures are reportedin Figs. 6.8-6.11.

To our knowledge no experimental data are available on the Raman spectra of these structure.
At this stage our results are theoretical predictions to be confirmed by experimental measure-
ments. Overall the differences in the spectra of all the fourphases are large enough to allow for
an easy discrimination among the different structures and for the identification of the switching
process by Raman spectroscopy.
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Figure 6.8: Displacement vectors of the most relevant Raman active modes of the Inverted-
Petrov configuration. The frequencies are referred to the PBE+vdW calculations.
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Figure 6.9: Displacement vectors of the most relevant Raman active modes of the Switched
Inverted-Petrov configuration. The frequencies are referred to the PBE+vdW calculations.
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Figure 6.10: Displacement vectors of the most relevant Raman active modes of the Ferro con-
figuration. The frequencies are referred to the PBE+vdW calculations.
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Figure 6.11: Displacement vectors of the most relevant Raman active modes of the Switched
Ferro configuration. The frequencies are referred to the PBE+vdW calculations.
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6.3 Conclusions

The calculation of the Raman spectra for the four (GeTe)2-Sb2Te3 superlattices proposed for
iPCM revealed that vibrational spectroscopy can be a valuable tool to experimentally identify
of the structures and the monitoring the phase transition ina simpler way with respect to TEM
measurements.

The reliability of out theoretical framework is demonstrated by the comparison between
Ge1Sb2Te4 theoretical and experimental spectra.



7 GeTe multilayers

Molecular Beam Epitaxy (MBE) offers a better control of the growth of GeTe-Sb2Te3 super-
lattices for the realization of iPCMs than the sputtering method used so far. The onset of the
MBE growth of GeTe and GeSbTe has been studied in details by anexperimental group we are
collaborating with [181].

GeTe multilayers are also of interest for their ferroelectric properties. Switching of the po-
larization in GeTe multilayers has been reported recently.[181] Moreover the interplay between
ferroelectricity and spin-orbit coupling give rise to a gigantic Rashba splitting in GeTe thin films
that might have applications in spintronic devices [14].

In this section, we report the calculations of phonon modes and Raman spectra in GeTe multi-
layers computed by DFPT aimed explaining the evolution of Raman peaks observed during the
layer-by-layer growth of GeTe on Si(111)-(

√
3×
√

3)R30◦-Sb reported in Fig.7.1. The spectra
are measured in z(y,xy)-z scattering geometry with a 633 nm laser.

Figure 7.1: Experimental Raman spectra measured as a function of the layer thickness in GeTe
multilayers grown by MBE. Arrows indicate Raman peaks of theSi substrate.
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The Raman peaks for 16 GeTe bilayers (BLs) are very close to the bulk values measured
for α-GeTe (see Sec.3.1.1), while for lower thickness both E and A1 peaks are steadily shifted
to higher frequencies up to 110 cm−1 and 155 cm−1 for the four bilayers (4BL) case. For
2BLs and below only the two peaks (marked by an arrow in Fig.7.1) at 225 cm−1 and 300
cm−1 corresponding respectively to the 2TA(L) and 2TA(X) modes of the silicon substrate are
observed while no modes associated with GeTe are detected.

Along with the changes in the Raman spectra, a variation in the lattice parameter was mea-
sured form the streak spacing of reflection high-energy electron diffraction (RHEED) during
the growth process. The distance between the211 planes sketched in Fig.7.2a is reported in
Fig.7.2d as a function of the deposition time. From Fig.7.2c, in which each maximum of the
oscillations correspond to the completion of a GeTe bilayer, a growth rate of 1 GeTe BL every
100s can be estimated. The reduction in the RHEED oscillations is indicative of an imperfect
layer-by-layer growth in which additional layers nucleateand coalesce at the same time, before
the full completion of the antecedent layers.

Figure 7.2: a) Schematic model ofα-GeTe crystal with the (211) planes highlighted in brown.
b) RHEED intensity over time acquired along red dashed line across the〈211〉 azimuth pat-
tern. c) Integrated specular beam intensity oscillations close to growth onset demonstrating the
formation of complete layers. d){211} lattice planes spacing calculated from RHEED streak
spacing showing a larger in-plane spacing with respect toα-GeTe during the first 200 seconds
of growth.
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Immediately at the growth onset, a ({211}) lattice spacing of 2.46 Å was observed, larger
than the value of 2.41 Å expected forα-GeTe and closer to the values of 2.446 Å expected for
β-GeTe and to the 2.46 Å for the metastable cubic GST [139].

This larger lattice spacing cannot be ascribed to the matching with the lattice spacing of the
substrate which has instead a smaller lattice spacing thanα-GeTe. This observation together
with the abrupt change in the Raman spectra for the thinnest films may indicate that the growth
initiate in a different phase than the expectedα-GeTe.

Because of the involvement of Sb in the surface preparation,the larger lattice spacing at
growth onset could be explained by the intermixing of Sb withGeTe into a GST compound.
Also the Raman spectrum of the 4BL sample, in Fig.7.1, the peaks shifted to 110 cm−1 and 155
cm−1 coincide with the Raman spectrum of metastable GST [182].

However the removal of Sb atoms from the silicon surface passivation is unlikely due to the
strong covalent bonds between Sb atoms and silicon. For instance, the stability of this surface
passivation can be appraised by considering that the substrate needs to be heated to 650-880◦C
in order to fully desorb the monolayer of Sb.

A residual Sb contamination of the growth chamber can be ruled out because in this case
because there is no reason why the contamination should be limited to the very first atomic
layers.

Therefore, also for the formation of an energetically favorable GST compound, a high barrier
needs to be overcome. For instance, it has been previously shown that this Sb passivation is able
to retain its stability, even after annealing at 300◦C in direct contact with a GST environment
[183].

Furthermore, if Sb atoms are removed and silicon bonds are somehow left unpassivated, the
growth of GeTe could be expected to yield in-plane twist domains, as it has been shown for GeTe
grown on a partially unpassivated surface such as Si(111)-(7x7). Because no pronounced in-
plane twist domains are observed when growing GeTe on the Sb passivated surface, it suggests
that the surface remains widely passivated.

As the presence of Sb intermixing/contamination of GeTe is ruled out we focused on DFPT
calculations of GeTe multilayers in order to understand theobserved behavior. Since the real
GeTe on Si(111)-(

√
3×
√

3)R30◦-Sb system gives rise to a reconstruction too big for DFPT
calculations, we mimicked the growth of GeTe multilayers onthe Sb-passivated Si surface by
considering a thick slab of GeTe with a numbers of layers freeto move and few bottom layers
frozen. We have considered both the bulk-like stacking of the frozen and free layers (AB–CA-
BC-AB-) and configurations in which the free layers are shifted in the xy axis with respect to
the bottom frozen layers (AB–AB-CA-BC-) in order to destroythe resonant bonding and reduce
the coupling between the free layers and the frozen substrate. The effect on phonon frequency
actually is marginal (cf. Tab. 7.1).

We used the PBE approximation for the exchange-correlationfunctional, and a 12x12x1 uni-
form mesh was used to sample the Brillouin Zone. The wavefunctions were expanded in plane
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ah (Å) E modes (cm−1) A modes (cm−1)

Bulk reference no holes 4.21 84 152
Resonant stacking 4BL 4.21 118 163
non-resonant stacking 4BL 4.21 120 164
non-resonant stacking 2BL 4.21 140 184
non-resonant stacking 1BL 4.21 148 195
non-resonant stacking 2BL 4.26 136 178
non-resonant stacking 1BL 4.26 145 188

Table 7.1: Phonon frequency at theΓ-point of multilayers in different configurations. For the
thinner multilayers we also considered the lattice parameter (in hexagonal notation) fixed to
the experimental value measured during the MBE growth. Resonant and non-resonant refer
due a different stacking of the free layers with respect to the substrate. The first line gives the
theoretical phonon frequency in the bulk with long-range interaction included and, in parenthe-
sis, excluded, the latter corresponding to the system with ahole concentration large enough to
screen the long range interactions.

waves up to 35 Ry cutoff. The Raman spectrum has been computedas described in Sec.6.1.
For the thinner multilayers we also considered the in-planelattice parameters fixed to the

experimental value of 4.26 Å corresponding to the interplane distance measured during the
MBE growth.

We also considered fully relaxed free standing multilayerswith optimized in-plane lattice
parameters. The in-plane lattice parameters shrink sizeably with respect to the bulk which leads
to an enhancing of the difference between short and long (resonating) bonds with respect to the
bulk (cf. Tab. 7.2b).

In the multilayers there are several E and A modes ideally corresponding to the folding atΓ of
bulk-like phonon branches along thec axis of the multilayers. The mode with the largest Raman
activity is actually that with with lower frequency for boththe A e E modes due to upward cur-
vature of the phonon bands from theΓ point along thec axis. The phonon frequency of the most
intense Raman mode for the adsorbed multilayers are given inTab. 7.1. The phonon frequencies
for the multilayers should to compared with the bulk-like phonons with a finite concentration of
holes that screen the long-range Coulomb interaction. The theoretical bulk Raman peak at zero
temperature with a concentration of holes comparable with experiments (see Sec.3.1.1) are 84
cm−1 and 130 cm−1. In the lack of holes, the long range Coulomb interaction shifts of the A
mode seen by Raman in backscattering geometry along thec axis. The theoretical blueshifted
frequency is 150 cm−1 which is not too far from the experimental value of 140 cm−1 obtained
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Free-standing bulk lattice parameter

ds (Å) dl (Å) E (cm−1) A (cm−1)

1BL 2.65 – 148 198
2BL 2.82 3.31 141 188
4BL 2.82 3.31 132 175

(a)

Free-standing optimized lattice parameter

ah (Å) ds (Å) dl (Å) E (cm−1) A (cm−1)

1BL 3.93 2.75 – 166 226
2BL 4.05 2.79 3.32 155 205
4BL 4.12 2.82 3.26 140 184

(b)

Free-standing experimental lattice parameter

ah (Å) ds (Å) dl (Å) E (cm−1) A (cm−1)

1BL 4.26 2.85 – 144 191
2BL 4.26 2.83 3.32 136 181

(c)

Table 7.2: Frequency of the main Raman active A and E modes for free-standing multilayers
with in-plane lattice parameters (a) fixed to the theoretical bulk value, (b) optimized to the theo-
retical equilibrium parameter for the free-standing slabsand (c) fixed to the value corresponding
to the interplanar distance measured experimentally by RHEED for the GeTe monolayer. ds and
dl are respectively the lengths of the short and long Ge-Te bonds to be compared with the
theoretical values of 2.85 and 3.21 Å in the bulk.

by extrapolation of the low temperature data to 0 K. In this latter system the hole content is
presumably very low although unknown. At room temperature we expect a redshift of both E
and A modes due to temperature of about 15 cm−1 (see [136]).

The phonon frequencies for the free standing multilayers with lattice parameters fixed at the
bulk value, at the value measured experimentally for the ultrathin layer and at the theoretical
value optimized for the free standing configuration are reported respectively in Tab. 7.2a, 7.2b
and 7.2c.
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Overall the frequency of the supported multilayers are lower than those of the freestanding
multilayers and better match the experimental spectra of the samples grown by MBE.

The DFT Raman spectrum in backscattering configuration for non-polarized light is reported
in Fig.7.3 for the supported four bilayers. The displacement patterns of modes mostly contribut-
ing to the peak at 120 and 164 cm−1 are given in Fig. 7.4. The spectrum compares well with the
experimental spectrum once the redshift due to temperature, not included in our calculations, is
considered.

Figure 7.3: Theoretical Raman spectra of supported 4BL GeTe compared with experimental
measurements.

Figure 7.4: Displacement patterns for the two most active Raman modes ofthe 4BL supported
on the bulk.
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A comparison between theoretical and experimental evolution of the frequencies of the E
and A modes with thickness is reported in Fig.7.5. The blue-shift of frequency for thin GeTe
multilayer (form 16 to 4 BL) can be completely ascribed to small size effects.

For even thinner films (2BLs and 1BL) the calculations predict the pursuance of the blueshift
trend for the Raman active modes and the maintaining of a distorted rombohedral structure for
both supported and freestanding bilayers regardless of thein-plane lattice parameter.

The large difference in Raman spectra for multilayer greater or lower than 4BL, and actually
the absence of any Raman signal for samples below 4BL (cf. Fig7.5), has been interpreted as
sign of an initial growth as a cubic rocksaltβ-GeTe phase (See Sec.3.1) for which no first order
Raman modes are expected as a consequence of the interactionwith the substrate. The origin of
theβ-GeTe phase in 1BL and 2BL is under debate and presently underinvestigation.

Figure 7.5: Experimental/theoretical comparison of the evolution of GeTe Raman frequency as
a function of the slab thickness of the multilayers.
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Shrinking the size of the PCM cells to the nano-scale reducesthe active material of the
volume to be programmed, so that shorter and less intense current pulses are required leading
to a lower power consumption. One of the possible roads to size reduction is to obtain phase
change materials in form of nanowires (NWs), which feature alower melting point and lower
reset currents in comparison with thin film-based conventional PCM cells. Moreover nanowires
are considered one of the best candidates for new multilevelmemories (See Sec.1.3.1).

In this section we report structural and total energy calculations, based on DFT, aimed at
explaining the peculiar morphology of Sb2Te3 nanowires grown by metal-oxide chemical vapor
deposition (MOCVD) by the experimental partner we collaborated with in the FP7-EU project
Synapse.

Figure 8.1: (a) SEM image of the Sb2Te3 NWs. (b) High magnification SEM image of a single
NW showing the peculiar morphology. (c) Three-dimensionalmodel of the nanowires.

The self-assembled NW growth was realized by exploiting thevapor-liquid-solid (VLS)
mechanism assisted by Au metal-catalyst colloidal nanoparticles. A small amount of Ge (less
than 3%) was introduced to control the NW growth rate and achieve the growth of NW with a
diameter smaller 40 nm. The SEM micrographs showed that these small diameter nanowires,
grows along the [0001] direction as happens also for larger NWs, but they have a peculiar zigzag
shape due to periodic oscillation of the sidewall facet orientation, as reported in Fig. 8.1a and b
and schematically represented in Fig. 8.1c.
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TEM images, reported in Fig.8.2a-c for a 30 nm NW, showed a twinning period of 18 nm con-
stant along the whole length of the nanowire. Moreover electron diffraction pattern (Fig.8.2d)
revealed a symmetry which is inconsistent with the usual Sb2Te3 bulk crystal structure.

Figure 8.2: a)-c) TEM images of Sb2Te3, d) Electron diffraction pattern for Sb2Te3 nanowires,
e) Model of zig-zag nanowire.

As seen in Sec.3.3.1 Sb2Te3 crystallizes in a rhombohedral layered structure with space group
R-3m (SG 166) that can be equally described by a non-unitary hexagonal cell with lattice pa-
rameters a=4.21 Å and c= 30.45 Å containing three formula units.

The diffraction pattern observed in Fig.8.2d is compatibleonly with a different symmetry
with a shorter periodicity along the c-axis of c′=c/3=10.6 Å. In particular it suggests a structure
where the five-layers blocks are simply repeated along the c-axis giving rise to a primitive
tetragonal lattice with space group P-3m (SG 164). The usual(SG 166) and the new suggested
structure in nanowires (SG 164) are compared in Fig. 8.3 while the two structures are compared
with high-resolution Z-resolved TEM images of a Sb2Te3 nanowire.
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Figure 8.3: Structure of Sb2Te3 in the usual SG 166 phase and the newly observed SG 164.

The atomic positions inside the unit cell have been assessedby means of high resolution
high-angle annular dark-field scanning TEM (STEM-HAADF) and are reported in Tab. 8.1.

In order to understand why the 164 phase appears in the nanowires but not in the bulk under
any experimental conditions and the origin of the twinning in nanowires, we computed the
formation energy of different surfaces of the two phases. The appearance of the 164 phase could
be in fact determined by the lower formation energy of its surfaces with respect to those of the
166 phase which makes the new phase favored in nanowires witha large surface to volume
ratio.

Structural parameters Theo. Exp.

a (Å) 4.2 4.2
c (Å) 1.043 1.06
Te1 (0,0,0) (0,0,0)
Te2 (1/3,2/3,0.6457) (1/3,2/3,0.6385)
Sb (1/3,2/3,0.1896) (1/3,2/3,0.1965)

Table 8.1: Lattice parameters of SG 164 Sb2Te3 and atomic positions of the atoms irreducible
by symmetry measured by means of STEM-HAADF and obtained from DFT.
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Figure 8.4: High resolution Z-contrast image of a Sb2Te3 NW, oriented along the [11-20] pro-
jection. The atomic model of the structure corresponding tothe SG 164 and SG 166 are su-
perimposed to the image according to the labels. To highlight the differences between the two
structures. A red dashed line is drawn running parallel to the c axis and intercepting the first
atomic column after each van der Waals gap, indicated by green circles.

We used PBE [81] approximation for the exchange-correlation functional with the inclusion
of a semiempirical van der Waals correction according to Grimme [87]. The Kohn-Sham states
were expanded on a plane wave basis up to a 35 Ry cutoff. In bulkcalculations the Brillouin
zone was sampled with a uniform Monkhorst-Pack mesh of 12x12x6 k-points for the hexagonal
cell of the SG164-phase and of 12x12x12 k-points for the elemental rhombohedral cell of the
SG166 phase. The surfaces were modeled by slabs about 30 Å thick with a vacuum 15 Å wide
separating the periodic replica. The surface Brilluoin Zone was integrated with up to 6x6x1
k-point meshes.
We first computed the theoretical equilibrium cell parameters of Sb2Te3 in the bulk of the new
SG164 phase. The structural parameters reported in Tab.8.1are in good agreement with exper-
imental data. Equilibrium parameters for the bulk SG166 phase are reported in Sec.3.2.1.

The internal structure of the penta-layer block is essentially the same in the two phases,
the largest structural differences consisting of the stacking of the blocks which results into a
different length of the weak Te-Te bond connecting the blocks (see Fig.8.3). In the SG164
phase this bond is almost 3% longer than in the SG166 phase. Asexpected, in the bulk the
SG164 phase is higher in energy than the SG166 phase by about∆µ=5.399 meV/atom.
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To calculate the energy of the surfaces that could be exposedby a nanowire growing along the
(0001) direction observed experimentally, we built slabs exposing the (11-20), (1-100), (1-102)
surfaces for the SG166 phase and the (11-20),(1-100),(1-101) surfaces for the SG164 phase.
The overall less costly surface is actually the (0001) face for both phases, which however can
not be exposed by a wire growing along the (0001) direction.

The (11-20) and (1-100) surfaces are the lowest indexes surfaces parallel to the c-axis; the
(1-101) face corresponds to the surface observed experimentally in SG164 nanowires, while the
(1-102) is the surface of the SG166 phase most similar to the (1-101) of the SG164 phase. We
considered different possible reconstructions of the (1-100),(1-102) and (1-101) surfaces needed
to keep the stoichiometry and the surface neutrality. On theother hand the (11-20) surface is
already neutral and does not need any reconstruction. The lowest energy reconstruction for each
surface is reported in Figs.8.5 and 8.6.

We calculated the surface energy as the difference between the energy of the slabs and the
energy of a bulk with an equivalent number of atoms divided bytwice the surface area. The
results are summarized in Tab.8.2.
The surface energies of the SG164 phase are lower than those of the phase SG166 for all faces.

Surface energy SG166 (11-20) (1-100) (1-102)
meV/Å2 34.4 32.3 32.9

Surface energy SG164 (11-20) (1-100) (1-101)
meV/Å2 34.1 31.0 27.4

Table 8.2: Surface energies for Sb2Te3 in the two SG166 and SG164 phases.

This is due to two concurring effects: firstly the SG164 phaseis more expanded along the c
direction which leads to a larger surface area for the same number of broken bonds, secondly
the Te-Te bonds broken at the surface are stronger (shorter)in the SG166 phase than in the
SG164 one. Therefore the NW geometry stabilize the SG164 phase because its surfaces have a
lower energy than those of the SG166 phase. Moreover, experimentally the 164 phase is seen
only when Sb2Te3 is doped with Ge for about 3 atom%. Indeed we have found that the difference
in the bulk energy between the SG164 and SG166 phase is reduced to ∆µ= 4.8 meV when Sb
is substituted by Ge for about 6.6 atom% (one Ge atom in a 15-atom cell). The (1-101) surface
experimentally observed to be exposed by our NWs, results tobe the most stable face of the
SG164 phase. This plane does not contain the c axis and forms an angle of 19.6◦ with the NW
growth direction.
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Figure 8.5: Lower energy surfaces of Sb2Te3 in the structure corresponding to the 166 space
group.
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Figure 8.6: Lower energy surfaces of Sb2Te3 in the structure corresponding to the 164 space
group.
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Following the model proposed by Johansson et al.[184] the formation of the twinning can be
explained as follows: a twinning forms when a NW grows tryingto expose a surface (the 1-101
family in our case) that does not contain its growth direction (the [0001]); in order to maintain
the growth direction, the edge of some facets increases while it decreases for the others, due to
different growth rates. As a result, the hexagonal interface develops into a triangle-like shape.
At a certain moment, it is energetically more favorable to create a twin plane rather than to
continue growing towards a fully triangular top interface.



9 Neural Network potential for GeTe
Nanowires

The study of phase change materials nanowires are one of the most recent and active fields of
research for the miniaturization of the PCM technology and the realization of multilevel memo-
ries as described in Sec.1.3.1. The possibility to study phase change materials nanowires using
ab-initio calculations, due to the large number of atoms involved, is limited to few properties
like the surface energy considered in the previous chapter for Sb2Te3. The study of other crucial
properties like the crystallization kinetics or thermal properties requires an alternative approach
with a lower computational cost. The neural network potential previously developed in our
group and described in Sec.2.6.1 proved to be very effectivein the description of a wide variety
of bulk properties of the prototypical phase chance material GeTe. However this potential did
not include any information about the surfaces. To extend the transferability of this potential
to accurately describe GeTe surfaces and thus open the possibility of the first simulations of a
phase change nanowire we added 12000 new surface configurations in the fitting database. After
the validation of the new potential by comparison with ab-initio simulations in small systems
we applied the new potential to the study of thermal conductivity in GeTe nanowires.

9.1 Validation of the GeTe potential for nanowires

We extended the transferability of the NN potential by adding in the DFT database for the
NN fitting a total of 5000 slab configurations with 128 atoms each and 7000 nanowires con-
figurations with 128-256 atoms in the crystalline, amorphous and liquid states. An initial set of
configurations have been generated from short ab-initio molecular dynamics simulations using
the CP2K [185] code and the computational settings used in previous works at which we refer
to for further details [12]. A first generation of the new neural network potential was built by
including these first configurations and a set of unrelaxed surface configurations generated sim-
ply by cutting the bulk. Subsequently new configurations have been extracted from molecular
dynamics runs executed with the most updated version of the potential and the potential was
iteratively refined.
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As a first step to validate the new potential we calculated theequilibrium lattice parameter
for α-GeTe. The results reported in Tab.9.1 together with the equilibrium parameters of the
previous version of the neural network potential, are in very good agreement with both the
ab-initio results and the experimental values.

NewNN OldNN DFT-PBE Exp.

a (Å ) 4.31 4.47 4.33 4.31
α 58.77◦ 55.07◦ 58.14◦ 57.90◦

x 0.2357 0.2324 0.2358 0.2366
long,short bonds (Å ) 2.85,3.21 2.81,3.31 2.85,3.21 2.84,3.17

Table 9.1: Lattice parameters of GeTe calculated with the new version of the NN potential
compared with the old version of the NN potential, the ab-initio and the experimental values.

The structural properties of the bulk liquid are also well reproduced as can be inferred from
Fig.9.2 where we compared the pair correlation functiong(r) of NN and DFT simulations
performed with the CP2K code [185] with the same computational settings of Ref.[12]. The
pair correlation function is defined in Eq.9.1 whereη andµ indicate the atomic specie, Nη is the
number of atom of the specieη, ρµ is the density of the atomic specieµ and ri j is the distance
between the atomi and j.

gηµ(r) =
1

4πr2Nηρµ
∑
i∈η

∑
j∈µ6=i

δ(r− r i j ) (9.1)

The pair correlation functions and the angular distribution functions for a 256-atom nanowire
at 700K calculated with NN and ab-initio are reported in Fig.9.3 and 9.4 respectively. Also in
this case the agreement is pretty good proving the effectiveness of the new potential in repro-
ducing the effects of low dimensionality. A snapshot of the nanowire is shown in Fig.9.1.

As a further validation we compared the surface energy of the(2-10) surface obtained from
neural network potential and ab initio calculations. The energy predicted by the NN turned out
to be 8% lower than the DFT value, an error comparable to the difference in surface energy
estimated with different ab-initio potentials. The choiceof this surface was dictated by the fact
that it is a neutral and stoichiometric surface that does notgive rise to an electric dipole in slab
configuration. The presence of a dipole (for example in the case of the (001) surface where one
surface of the slab is terminated by Te atoms and the other by Ge atoms) represent an obstacle
in the calculation of the surface energy in ab initio calculations since it introduces an additional
energy term which diverges with the slab size. On the other hand it is impossible to estimate the
surface energy of non stoichiometric slabs within the neural network scheme since is not pos-
sible to estimate the chemical potential of a single specie.The possible surface reconstructions
suitable to eliminate the dipole is therefore considerablyrestricted by the constraint of keeping
the stoichiometric fixed.
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Figure 9.1: Snaposhot of the MD simulation of the 256 atoms amorphous nanowire used for the
validation of the potential. The pictures represent three unit cells repeated along the direction
of growth of the nanowire.

Figure 9.2: Partial pair correlation functions of liquid bulk GeTe at 1150 K calculated with the
new version of the NN potential and from DFT simulations.
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Figure 9.3: Partial pair correlation functions of amorphous nanowire of GeTe at 700 K calcu-
lated with the new version of the NN potential and from DFT simulations.

Figure 9.4: Angular distribution function of amorphous nanowire of GeTe at 700 K calculated
with the new version of the NN potential and from DFT simulations.
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Finally, we compared the surface relaxations of the (001) and (2-10) surfaces in the DFT and
NN case. A disagreement below 4% among the two methods has been observed on the values
of surface relaxations with respect to their relative bulk equilibrium positions.

In the perspective to study thermal properties in nanowires, we also checked that the new
potential is still able to reproduce the thermal conductivity in both crystalline and amorphous
phases. A good agreement with the previous results has been obtained in both cases. A value
of κz=2.44± 0.15 W/m K inferred form the heat flux and temperature profile reported in Fig.
9.5 was obtained for a crystalline sample 25.6 nm long in close agreement with the value of
κz=2.55± 0.25 W/m K obtained with the previous version of the potential. Finally the thermal
conductivity computed for a 24.7 Å x 24.7 Å x 98.8 Å amorphous sample (cf. Fig. 9.6) resulted
to beκ=0.24± 0.02 W/m K consistent with the value ofκ=0.26± 0.02 W/m K previously
obtained.

Figure 9.5: Heat flux as a function of time and converged temperature profile for a crystalline
GeTe sample 25.6 nm long calculated with the new NN potential. The heat flux is directed along
the c axis of GeTe.
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Figure 9.6: Heat flux as a function of time and converged temperature profile for an amorphous
GeTe sample calculated with the new NN potential.

9.2 Thermal transport in GeTe Nanowires

In this section, we report on the calculation of thermal conductivity in GeTe nanowires car-
ried out in order to understand the effects of a reduced dimensionality on the thermal properties.
We focused onα-GeTe nanowires grown in the [220] direction (in hexagonal)notation equiv-
alent to the [110] direction of the cubic crystal the trigonal phase ofα-GeTe can be thought
as originating from. The choice of the crystalline phase andgrowth direction are dictated by
various experimental works in Refs.[186–189]. Moreover, it has been reported [186, 187] that
also nanowires initially grown in theβ-phase along the [110] direction turns into the more sta-
ble α-phase after one cycle of amorphization and recrystallization and it is likely that it keeps
the same growth direction. The diameter of experimental GeTe nanowires is in the 40-100 nm
range, too large to be directly addressed by RNEMD even usingthe neural network potential.
However, the growth of nanowires with diameters even below 10 nm is expected and is consid-
ered an important goal for technological applications. Forthis reason a 6.5 nm wide nanowire
has been used in these preliminary calculations. But for thegrowth direction, experiments do
not provide information on the geometry of the exposed surfaces. A direct evaluation of the
surface energy for non stochiometric slabs is not possible within the NN scheme. Therefore we
used the relative melting temperatures of different surfaces as a way to assess which surface is
energetically more favorable. It turned out that the tellurium-terminated (001) surfaces and the
(112) surface in hexagonal notation (four index notation withthe redundant index omitted as
usually reported in literature) are the most stable. A plausible shape of the nanowire is shown
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in Fig.9.7 with a hexagonal geometry exposing four (001) surfaces terminated with Te atoms
and two (112) surfaces. This is the model of the nanowire employed for calculations of thermal
conductivity.

Figure 9.7: Model of the GeTe nanowire used for the calculation of thermal conductivity.

Simulations at 700 K proved the stability of the structure and showed that the lateral surfaces
reconstruct forming a unitary cell of 16.53 Å along the NW growth direction, four times longer
than the unitary cell obtained by truncating the bulk. The thermal conductivity has been evalu-
ated by means of RNEMD at 300 K using a 390 Å long cell with one cold source and one hot
source at the edges separated by a layer of fixed atoms 10 Å thick as in the bulk calculations
(see Sec.2.5). The heat flux and temperature profile for this system are reported in Fig.9.8. The
system is free of Ge vacancies. The resulting thermal conductivity is κNW=1.57±0.04 W/m K,
considerably lower than the bulk value ofκ=3.15±0.20 W/m K obtained from NN calculations
for this crystalline direction.

Phonon scattering from the boundaries can reasonably be considered as a possible source
for the reduced thermal conductivity in nanowires. To quantify the possible effect of the re-
duced dimensionality on thermal conductivity we looked back at the results obtained for the
bulk with ab-initio techniques reported in Sec.2.3. In particular we evaluated the bulk thermal
conductivity setting the upper limit of the mean free path all phonons equal to the diameter of
the nanowire. This approximation represents a sensible overestimation of the effect of reduced
dimensionality since limits the thermal conductivity in every direction while in the nanowire
the boundaries does not limit the mean free path along the direction of growth of the wire. Any-
way, we obtained a reduction ofκ of of about 30% insufficient to explain alone the reduction
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Figure 9.8: Heat flux as a function of time and converged temperature profile for a crystalline
GeTe nanowire

in thermal conductivity calculated with the direct RNEMD calculation. Therefore the scattering
from the NW is surely not enough to explain the reduced thermal conductivity of the NW.

To clarify the source of the reduced thermal conductivity wethus studied the effect of the
reduced dimensionality on the phonon density of states and group velocities by assigning, as
a first step, the values computed for the bulk to the phonon lifetimes. Due to the large unit
cell of the nanowire the calculation of phonon lifetimes from the anharmonic force constants
described in Sec.2.3 and used for crystalline bulk systems,is not a viable option. To this aim,
we first verified for the bulk the effect of substituting the integral over the Brillouin zone with
an integral over the phonon energy by writing the thermal conductivity as in Eq.9.2.

κ =
1
3

∫
~ωD(ω)v2(ω)

∂ fBE(ω)
∂T

τ(ω)dω (9.2)

Where D is the phonon density of states per unit volume,v is the group velocity,τ the phonon
lifetime and fBE is the Bose-Einsten distribution function. The quantitiesv2(ω) andτ(ω) are
obtained for the bulk as averages over the Brillouin zone defined by Eqs.9.3
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v2(ω) =
∑ j ,q | −→v j(q) |2 δ(ω−ω j(q)

∑ j ,q δ(ω−ω j(q))

τ(ω) =
∑ j ,q τ j(q)δ(ω−ω j(q)

∑ j ,q δ(ω−ω j(q))
. (9.3)

For the bulk the dynamical matrix was calculated within the NN scheme by finite differ-
ence on a 10x10x10 supercell, the phonon density of statesD(ω) was determined by Fourier
interpolating the dynamical matrix over 125000q-points, the group velocities were calculated
differentiating the phonon dispersion curves interpolated over 15625q-points. The relaxation
times were obtained from the anharmonic NN force constants computed by finite differences
in a 1008 atom supercell and by sampling the Brillouin Zone with theΓ-point only. The above
procedure yields an average thermal conductivity ofκ=3.24 W/m K which is very close to the
valueκ=3.20 W/m K obtained in Sec.3.1.3 using RNEMD proving the effectiveness of Eq.9.2
for the bulk. As a further check we used Eqs.9.2 and 9.3 with ab-initio phonon density of states,
group velocities and relaxation times obtaining a value that differs by less than 7% from the
SMA solution of the Boltzmann equation carried out in Sec.3.1.2 integrating over the whole
BZ.

We thus used Eq.9.2 to determine the effect on thermal conductivity of the changes inD(ω)
andv2(ω) from the bulk to the nanowire.

The phonon density of states and group velocities for the nanowire were calculated starting
from harmonic force constants calculated with a finite difference method in the elementary cell
of the nanowire along the growth direction 16.93 Å long and containing 2164 atoms. Phonon
dispersion relations were then Fourier interpolated over a100q-point mesh in the direction of
the nanowire. The resulting density of states and group velocity as a function of the phonon
frequency are compared to the bulk values in Fig.9.9 and Fig.9.10 respectively.

We then computed the thermal conductivity of the nanowire either by Eq.9.4 where we used
the phonon density of the nanowire but the bulk values for thegroup velocities and the relaxation
times and by Eq. 9.5, (where also the group velocities are computed for the nanowire). We used
the bulk values for the functionτ(ω).

κNW1 =
1
3

∫
~ωD(ω)NWv2(ω)BULK

∂ fBE(ω)
∂T

τ(ω)BULKdω (9.4)

κNW2 =
1
3

∫
~ωD(ω)NWv2(ω)NW

∂ fBE(ω)
∂T

τ(ω)BULKdω (9.5)

The thermal conductivities computed using Eq.9.4 and Eq.9.5 areκNW1=3.64 W/m K which
is larger than the value obtained for the bulk, andκNW2=1.54 W/m K which is very close to
value obtained by RNEMD. We can conclude that the changes in the phonon density of states
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Figure 9.9: Phonon density of states of bulkα-GeTe and of the crystalline nanowire.

Figure 9.10: Group velocity of bulkα-GeTe and of the crystalline nanowire along the direction
of growth of the nanowire.

does not play any role in the reduction of the thermal conductivity (it actually increase the
thermal conductivity with respect to the bulk) while a majorrole is played by the reduction of
the group velocity (See Fig.9.10). These results gives the first indications about the effect of
nanostructuring on thermal conductivity and represents the first step towards a more systematic
study of GeTe nanowires for example as a function of the diameter. These results show that in
ultrathin nanowires the thermal conductivity is sizable reduced with respect to the bulk value.
The electrothermal modeling of PCM made of NW thus requires parameters specific for the
NW that cannot be inferred from the bulk values.



Conclusions

In the first part of this thesis we presented a study, based upon DFT calculations, of the ther-
mal conductivity and thermal boundary resistance of some ofthe most common phase change
materials: GST, GeTe and partially InSbTe alloys.

The calculation of the thermal conductivity in crystallineGeTe allowed us to attribute the
large variability of experimental data to the important role of the scattering from vacancies
whose concentration in GeTe can hardly be controlled. The comparison between ab-initio cal-
culations based on the solution of the Boltzmann transport equation and the results for non-
equilibrium molecular dynamics allowed us to check the reliability of the neural network po-
tential in the description of anharmonic properties of GeTe, and on the other hand to validate
the approximation assumed in the treatment of vacancies within the DFT approach.

The study of thermal conductivity in crystalline hexagonalGST provided a strong indication
of the presence of disorder in the Ge/Sb sublattice which is still subject of debate in literature.
In fact both vacancies and disorder turned out to be essential to reach a good agreement with
experimental data and explain the unusual glass-like thermal conductivity of this material.

The knowledge of thermal boundary resistance plays an important role in the electrothermal
modeling of the device. In particular it is important to knowthe different contributions to the
resistance is in order to properly engineer the materials and the device architecture. Ab initio cal-
culations of the electron-phonon interaction in self dopedGeTe and GST allowed us to estimate
the electron-phonon contribution to the thermal boundary resistance for these materials. This
term, usually negligible in good metals, turned out to be relevant and actually even larger than
the phonon-phonon contribution to the TBR due to the peculiar combination of small electron-
phonon coupling and low density of states at the Fermi level but a still appreciable electronic
thermal conductivity. This implies that the value of the thermal boundary resistance at an ideal
interface is more dependent on the properties of the phase change material itself than on the
choice of the interfacing material.

Beside the optimization of conventional PCM cells, recent progresses pushed the interest also
in the direction of novel device architectures.
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Among the most promising developments, interfacial phase change memories represent a
great advance towards low power applications. Although their potential in reducing the pro-
gramming current has been proved, their exact structure andthe transition mechanism are still
matter of debate. The ab initio calculation of the Raman spectra for some of the most likely
structures proved that vibrational spectroscopy could be used to discriminate among different
proposals and possibly also to determine the intermediatesin the transition mechanism. Simi-
larly, the Raman spectra calculated for multilayer GeTe structures helped clarifying the evolu-
tion with the thickness of the Raman peaks observed experimentally and understand the growth
mechanism.

As a side activity we also analyzed the interaction between phonons and the topologically
protected states appearing at the surface of the topological insulator Sb2Te3 and, for sake of
comparison Bi2Se3 as well. These states have been proposed to appear also at theinterface be-
tween Sb2Te3 and the GeTe blocks in iPCM superlattices and to be involved in the switching
of the device. As opposed to some claims drawn from Helium scattering data, we do not find a
strong electron-phonon coupling at the surface of Sb2Te3 and Bi2Se3.

Nanowires have also attracted a considerable interest for PCM applications because they open
the possibility to improve the scaling and to overcome the size limitations intrinsic to litho-
graphic methods. Moreover, they offer a practical way for the realization of multibit memories.
The study of the surface energy of Sb2Te3 nanowires provided an explanation for the peculiar
morphology and the unusual crystal structure observed experimentally, in nanowires but absent
in the bulk. We have shown that this new phase is stabilized innanowires as a consequence of
its lower surface energy with respect to the bulk Sb2Te3 structure.

Finally, the neural network potential developed to describe bulk GeTe has been successfully
extended to treat also surfaces and nanowires in order to study the effects of the reduced dimen-
sionality on thermal properties, crystallization and amorphous stability. This extension allowed
us to perform a preliminary study of the thermal conductivity in GeTe nanowires which re-
vealed a sizable reduction of thermal conductivity in nanowires primarily due to reduction in
group velocities due to phonon confinement.
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