UNIVERSITY OF MILANO - BICOCCA
Department of Materials Science

PhD School in Nanostructures and Nanotechnologies
XXVIII cycle

DEGLI STUDI

z
)
%
-
B

=== ONVTIN Id

Atomistic simulation of thermal transport and
vibrational properties in phase change materials

A. A.2014—-2015

PhD dissertation of:

Davide Campi

Tutor:
Prof. Marco Bernasconi






Contents

Introduction

1 Phase change materials and memories

3

1.1
1.2
1.3

Generalfeatures . . . . . . . . . ...
Thermal transport in phase change materials . . . . . . .. ... .. ...
Novel architectures for phase change memories . . . . ... .. ... ..

1.3.1 Multi-bit phase change memories and nanowires . . . . . . . ..
1.3.2 Interfacial phase change memories . . . . . . ... .. .. ...

Computational Methods

2.1

2.2

2.3
2.4
2.5
2.6

Density functionaltheory . . . . . . . . . .. .. .. ... .. ... ...
2.1.1 Exchange-correlation functionals e e e
2.1.2 Plane waves and pseudo-potentials . . . . . . . ... ... ...

2.1.3 Brillouinzonesums . . . . . ... ..

214 FOrces . . . . . . . e
2.1.5 DFT-D semiempirical correction for long range diso@n forces
Density Functional Perturbation Theory . . . . . . . . .. ... ... ..

2.2.1 Linearresponse . . . . . . . oo e

2.2.2 Phonons. . . . . . . . . . e

Thermal conductivity from ab-initio calculations . . .. . ... ... ...
Molecular Dynamics . . . . . . . . . . . . . e

Thermal conductivity from non-equilibrium moleculgmadmics simulations
Neural Network interatomic potential . . . . . ... ... ... ......
2.6.1 Neural Network potential energy surfaces for atamsimulations

Symmetry functions . . . . ... L
Forces and stress evaluation . . . . ... ... ... ........
Extrapolation . . . . . . . .. ...
Neural Network potential forGeTe . . . ... ... ... ... ...

Thermal conductivity in Phase Change Materials

3.1

GeTe . . .

3.1.1 Abinitio structural and vibrational properties oystalline GeTe



Contents

3.1.2 Thermal conductivity of crystalline GeTe by ab inid&PT calculations 52
3.1.3 Thermal conductivity of crystalline GeTe by neuralwark calculations 58

3.1.4 Thermal conductivity inamorphous GeTe . . . .. ... ........ 61
3.2 GeShhTes . . . . . e 63
3.2.1 Abinitio structural and vibrational properties oystalline GST . . . . 65
3.2.2 Thermal conductivity of GST . . ... ... ... ... ....... 67
3.3 SBTes. . . . 73
3.3.1 Abinitio structural and vibrational properties oystalline ShTes . . 74
3.3.2 Thermal conductivityofShhes . . . . . ... .. ... ... ..... 75
3.4 InSbTeAlloys . . . . . . . . e 67
3.4.1 Thermal conductivity of ySlyTe, . . . . . . . ... ... ... ... 76
3.5 Conclusions . . . . . . 77
Thermal Boundary Resistance 79
4.1 Thermal boundary resistance abGkTes interfaces . . . . . .. ... .. .. 81
4.1.1 Electron-phonon contribution to the thermal boupdasistance at the
interface of GST with metals and dielectrics . . . . . . 82
4.1.2 Lattice contribution to the thermal boundary resistaat the mterface
of GST with metals and dielectrics . . . . . .. ... ... ....... 85
4.2 Thermal boundary resistance at GeTe interfaces . . . . . .90
4.2.1 Electron-phonon coupling and electronic contrdnmtio the thermal
boundaryresistance . . . . . . . . ... 90
4.2.2 Lattice contribution to the thermal boundary resistabetween GeTe
and electrodes or dielectrics . . . . .. .. .. .. ... ... ... .. 94
4.2.3 Thermal boundary resistance at crystalline/amarpl@eTe interface. . 95
4.3 ConcClusions . . . . . . . . e 6 9
Surface phonons of Sb,Tes and BioSes 97
5.1 SbTezand BpbSe; (0001) Surfaces. . . . . . . .. . . .. .. 98
5.2 Conclusion . . . . . ... e 610
ShoTez-GeTe superlattices 107
6.1 Structural properties and Raman spectraafSbgle; . . . .. .. ... ... 109
6.2 Structural properties and Raman spectra of (Ge3b)Tes superlattices . . . . 112
6.3 Conclusions . . . . . . . 201
GeTe multilayers 121

SboTe3 Nanowires 129



Contents 5

9 Neural Network potential for GeTe Nanowires 137
9.1 \Validation of the GeTe potential for nanowires . . . . . .. ... ... ... 137
9.2 Thermal transportin GeTe Nanowires . . . . . . . . . ... .. . cceo .. 142

Conclusions 147

Publications 149

Collaborations 151

Bibliography 153






Introduction

Phase change materials are a class of chalcogenide congeormoyed for data storage
applications. They are at the basis of commonly used opteahories (e.g. DVD-RW and
Blue-Rays) and in the last few years they had been undeiisgifor the development of new
electronic non volatile memories known as phase change mesn@CM) [1, 2]. Originally
designed as a replacement for NOR Flash memories in recarg P&£Ms have widened their
application range. It has been demonstrated that PCMs areiging candidates for the real-
ization of the so called “storage class memories”, nontilelaemories with an access speed
comparable to that of the volatile DRAMs [3], and in applioas for neuromorphic computing
[4, 5]. Both optical disks and PCMs are based upon a fast aretsible transitions between
the crystalline and an amorphous phases, that correspdhéd tao states of the memory, i.e.
the 0 and 1 bits. The two states can be discriminated tharksaige difference in their optical
and electronic properties, the crystal being roughly sppeatetallic and the amorphous phase
being insulating. The phase transition is induced by hgaproduced by a laser pulse in DVD’s
and by Joule effect in PCMs.

A PCM device consists of a resistor made of a thin film of a plthseige material between
a metallic contact and a resistive electrode that heatsaipdtive layer. The programming op-
erations are performed by applying a bias of few \olts, emdodhave a sufficient current flow
to induce either the melting of the crystal and subsequentpinization or the recrystallization
of the amorphous phase.

Thermal properties of phase change materials greatly mfli@imost every key figure of
merit of PCMs such as the programming current, scalabihty reliability [6—8]. For this rea-
son quantities like thermal conductivity and thermal bamdesistance in PCMs have been
largely studied from an experimental point of view. Mostluése data, however, still need to be
fully understood and explained into a theoretical pictdtest to mention one issue we remark
that the hexagonal phase of £ Tes (GST), one of the most popular material for PCMs ap-
plications, presents an unusually low lattice thermal caigtity of just 0.5 W/m K [9] which
is in the range of thermal conductivities of glass-like miate and not of crystals.

This thesis is devoted to the study of phonons and thermagpi@t of phase change mate-
rials of interest for applications in PCMs. To this aim we disgomistic simulations based on
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density functional theory (DFT) and molecular dynamicsidations suitably designed inter-
atomic potentials. After a general introduction on the rtips of phase change memories and
materials given in chapter 1, we report a description of tmaputational detail in chapter 2.

In chapter 3 we report the results the thermal conductiviithiee widely used phase change
materials such as the aforementioned hexagonagE&es, amorphous and crystalline GeTe
and InSbTe alloys. The thermal conductivity of GST and aliste GeTe has been computed
solving the Boltzmann transport equation on the basis ahbaic and anharmonic force con-
stants calculated with ab initio methods [10]. As a crosgiadilon, and to directly evaluate the
role of defects, thermal conductivity of crystalline GeBestbeen computed also with a molec-
ular dynamics(MD) approach [11] using a neural networkratt@mic potential developed in
our group [12]. The same MD technique was also applied toystgdamorphous GeTe, while
a simplified model, known as minimum thermal conductivitydal was employed to estimate
the thermal conductivity in InSbTe.

In chapter 4 we addressed the problem of estimating the @iidroundary resistance (TBR)
between GST, GeTe and the materials commonly used as dieteot metallic contacts in
memory devices. TBR can reach sizable values [9] in PCMs lagid knowledge is essential
for a complete electrothermal modeling of PCM cells. By me&BFT calculations we have
been able to identify the different contributions to the TBRseveral interfaces of interest for
PCMs

In the last few years the research on phase change matemalsded from the bulk materials
to nanowires and superlattices.

Superlattices have recently attracted a considerableesttafter the proposal of the so called
“interface phase change memories” (iPCM) [13]. These me&raest on the transition among
different crystalline phases in GeTe-Sb3 superlattices without melting. This transition is ex-
pected to be produced by just a small movement in the Ge sigblaind requires thus far less
energy than an amorphization-recrystallization process.

Although the effectiveness of superlattices in the retibreof low power phase change mem-
ory has been demonstrated [13] the switching mechanism\ardtee actual crystal structure
are still matter of debate. Among the different proposalsas been suggested that the switch-
ing stems from a change in the topologically protected fater states that originates at the
interface between the topological insulaton® and the normal insulator GeTe. The same
states, appearing also at the surface ofT8f) have been proposed to affect the dispersion re-
lations of surface phonons. To address this issue, we cadmuirface phonons at the (0001)
surface of SpTes and of the similar BiSe; for sake of comparison as reported in chapter 5.



The vibrational properties of GeTe-Zles superlattices are reported in chapter 6. Since the
different structures proposed for these superlatticasifeaifferent bonding geometries in the
GeTe blocks one would expect specific vibrational signatofeéhe different crystal structures.
Would this be the case, one should also be able to identifgtthetures, monitor the switching
process and perhaps also identify intermediate states typfRiaman measurements. To this
end we computed the Raman spectra for the most likely stegt&ince no experimental data
are available on these superlattices we first usecb@de, as a reference system to assess the
reliability of our theoretical framework. The realizatiohprecise and highly controlled iPCMs
structures requires an accurate control of the growth potieat can be achieved by molecular
beam epitaxy (MBE). The MBE growth of GeTe multilayers is atfstep towards this goal.
Moreover GeTe multilayers are of great interest for they @aoperites like a giant Rashba
splitting [14] and the possibility of a ferroelectric swhiag [15]. In chapter 7 we present the
calculations of the Raman spectra of GeTe multilayers aiaedtplaining the evolution of the
peaks observed during their growth on Sh-passivated siBcofaces.

Nanowires are otherwise promising systems to obtain défeetcrystal structures and over-
come the size limitations imposed by lithographic procegaeshing further the scaling limits
of PCMs. Furthermore, nanowires in the form of core-shedtems are considered among the
best candidates for the realization of multibit memorieg.[1

In chapter 8 we studied the energetic of the surfaces gfé&manowires, in order to explain
the peculiar morphology and crystal structure observewlly, in chapter 9 we report about the
fitting of an extend version of the neural network potentialdulk GeTe developed in Ref.[12]
able to properly treat surfaces and nanowires and we pradest application of this potential
in the calculation of the thermal conductivity of GeTe cajshe nanowires.

The theoretical activity of this thesis has been stimulatedollaborations with experimental
groups mostly within the FP7-EU Project Synapse.






1 Phase change materials and memories

1.1 General features

Phase change materials are compounds of great techndledeeance since they are nowa-
days commonly employed in the well established technoldgyptical memories (e.g. DVD-
RW and Blue-Rays) and in a novel emerging class of electmomicvolatile memories (NVM)
known as Phase Change Memory (PCM) [1, 2]. Both applicatielyson the fast and reversible
transition between the crystalline and the amorphous padeéced by heating produced either
by a laser pulses (DVDs) or by Joule effect (PCMs) [17]. Thestalline and amorphous phases
show large differences in both reflectivity and resistiveyploited to store information in opti-
cal memories and PCMs.

The first material showing phase change properties was\aised back in the 60’s by J.F.
Dewald [18] and S. R. Ovshinsky [19], but the crystallizatgpeed of this first alloy was too
low for any practical application. Phase change materiasewediscovered in the '90, when
the search for faster rewritable optical discs led to thealisr of new and more performing
phase change compounds based on chalcogenides alloys.

In particular, the family of the pseudobinary compoundsT&gSh,Tes)y whose phase dia-
gram is shown in Fig.1.1, represents a prototypical systéma.GgSlyTe; 1 is the composition
actually used in Blue-Ray disks [2] while in PCM &&ipTes (GST) has been the material of
choice so far thanks to its high transformation speed andhitie stability of the metastable
amorphous phase [17]. Many other alloys, containing alsand Ga, have been studied for
particular purposes such as application at high temperatuautomotive electronics [20].

A 64 Mbits PCMs prototype was realized by Samsung back in 2002012 Micron reached
the mass production scale and commercialized the first 45Q@i &evice for mobile applica-
tions [21, 22] as replacement for NOR Flash memories.

In past few years the technological interest for PCMs sthiftevards their possible use in the
realization of the so called storage class memories: ndati@memories with an access speed
comparable to that of the volatile DRAMs [3].
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Ge(In,Ag,Sn) 1990 First product (PCR: 500 GB)
1994 Powerful phase-change disk (PD:650 MB)
1998 DVD-RAM ver.1 (2.6 GB)
2000 DVD-RAM ver.2 (4.7 GB)
2004 Single/dual layer Blu-ray disk (BD:25/50 GB)
\
1997 CD-RW (650 MB)
1999 DVD-RW (4.7 GB)
2003 Single layer Blu-ray disk (BD:23.3 GB)

GeTe
1971

Teg,Ge,55b,S,

GeTe-Sb,Te, 2005
1991 GeSbMnSn
Teg;Ge, § AgInSbTe Ge,5Shgs
Te AN Sh(Bi,Au,As)
AuTe, Sb,Te, Sh,oTes,

Figure 1.1: Sketch of the Ge Sb Te ternary phase diagram. Compositiervais of interest for
applications in optical disks are highlighted (Ref. [17]).

In 2014 Western Digital announced a prototype of a PCM basedge disk with a reading
speed 100 faster than state-of-the art solid state hardslard a comparable writing speed. In
July 2015 Intel and Micron have announced the release of a*8BwXpoint” crossbar tech-
nology suitable to fabricate storage class memories [2Bhoigh no information has been
released on the details of this new technology, it is comnaiee that PCMs are a leading
contender for the realization of such storage class mesorie

Although many different architectures have been developedthe years, the most common
one is the so called “mushroom cell” shown in Fig.1.2. Thegl&rcell is composed by a tran-
sistor that acts as a selector that modulates the currese pukhe read and write operations,
while the resistor is made by a thin film of phase change natssindwiched between a metal-
lic contact and a resistive electrode, usually TiN, thatrafes as a heater.

There are two different operations in the programming peaé the cell (Fig.1.3): SET and
RESET. In the RESET the active material switches from thelaotive crystalline phase to the
amorphous insulating phase with a resistance of the ordenoMQ, while in the first process
the chalcogenide switches back from the amorphous to tistatlipe phase.

In the RESET operation, the temperature of the active laybriefly raised over the melting
temperature J, using a short and intense current pulse after which a smadedd melted active
material experiences a fast (30-50 ns) cooling in which itpeid freezes into the amorphous
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Bit-line

-line —{

Figure 1.2: a-b) Architectures of a PCM cell in the so called “mushrooraifiguration (Ref.
[1]). c) SEM image of the programming region of the cell irating the amorphous and the
crystalline part.

a] Amorphous phase (b
Low reflectivity
High resistance

Short high laser or
current pulse
(reset pulse)
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Time

Laser power or
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Disorder

Undercooled g
a Crystalline phase It
High reflectivity Amorphou: E
Low resistance
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T, T,

(] m
Temperature (K)

Figure 1.3: RESET a,b) and SET c) process typically used in PCM programgmihe same
concepts apply to the programming of optical memories baseghase change materials like
e.g. DVD-RAM and Blu-Ray disks.
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phase. To revert the transformation the material is heapedvith a longer and less intense
pulse, to a temperature higher than the glass transitiopeemture J (or crystallization tem-
perature) at which the atomic mobility is high enough towaltbe recrystallization on the time
scale of approximately 100 ns.

The Joule heating of the amorphous phase in the SET procesalided by a peculiar elec-
tronic behavior of the amorphous phase, which shows a hegttredal resistivity at low voltages
(mV), by increasing the applied bias above a threshold gel{&4, ) of the order of few Volts,
it undergoes a purely electronic transition to a less resistate ( a process known as threshold
switching) which allows for a sufficient current flow.

The current-voltage characteristic of the amorphous ptisgdaying the threshold switching
is shown in Fig. 1.4. The crystal has instead a simple Ohnmhevwer as also shown in Fig. 1.4.
The reading of the memory is performed applying a voltageskalvan V.

A key factor for the application of phase change materialsy@mory devices is their very
high crystallization speed and in particular their veryhhigicleation rate. Over the years many
proposals have been raised to explain this peculiar prppert

0.40
Memory

035 switching

0.30 g

0.25 i

0.20 Crystalhne et

Current (mA)

0.15

0.10 ._.-:"" Threshold
o5 ¥ switching
0.05

Amorphous OFF —_—
0 &.’\" “" '. tae !

0 0 2 ; i 1.2
Voltage (V)

Figure 1.4: Typical current-voltage characteristic of a phase chargyécd. When the applied
voltage is low, a very low current flows through the amorphmagerial, while, by applying
a bias above a threshold voltage of about 0.7 V, the resistdraps and the current intensity
increases (threshold switching) allowing Joule heatind setrystallization. The crystalline
phase is metallic with a low ohmic resistance [17].
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On the basis of Extended X-Ray absorption fine structure (EXpspectra [24—26], Kolobov
et al.[27, 28] proposed that the crystallization consi$ta small movement of Ge atoms that
change their coordination from a tetrahedral geometry énaimorphous to the octahedral ge-
ometry of the crystal, which has been thus called “umbréibgiihg” model.

Ab-initio molecular dynamic (MD) simulations have lateroposed a different model for
the amorphous phase in which only 1/3 of Ge atoms are in &drahconfiguration while the
majority is in a defective octahedral bonding geometry Wibinding angles typical of the octa-
hedral environment of the crystal but a coordination nunhi&er than six [29, 30, 33].

Hegedus and Elliott [31] further recognized that the nektopology in the amorphous phase
consists of mostly four-membered rings which are also thiling block of the crystalline
rocksalt phase. They suggested that the phase transittamsothanks to a fast realignment of
four-membered rings [32—34] present in both the amorphodseystalline phases.

More recently, however, it has been realized that the diizstion during the SET operation
actually occurs at temperatures well above the glass tramsvhich implies that high speed
of crystallization actually depends on the properties efghpercooled liquid. Recent ultra-fast
differential scanning calorimetry (DSC) measurements &T 35] and MD simulations [36]
actually ascribed the fast crystallization of these mateto the fragility of the liquid phase.

The fragility of a liquid is defined on the basis of the temperadependence of the viscosity
n. Strong liquids show an Arrhenius behaviorrpas a function of temperature T in the range
between the melting temperaturg, &nd the glass transition temperaturg Fragile liquids,
instead, are characterized by a super-Arrhenius behalipas shown in Fig.1.5.

For fragile liquids,n can be very low down to temperatures close gor@sulting in a high
atomic diffusivity which can boost the crystallization spleas predicted classical nucleation
theory. Moreover it has been proved both experimentally§s8 theoretically [37] that another
factor that boost the crystallization speed in phase chamgterials is the breakdown of the
Stokes-Einstein relation (SER). The SER, that relates $wosityn with the diffusivity D as:

p— T (1.1)
6rmrp

wherekg is the Boltzmann constant ang the dimension of the particles, is strictly valid
in the hydrodynamic regime, but it is often not satisfied igfte liquids where both a high
diffusivity and a large viscosity can be present.
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Figure 1.5: Behavior of the viscosity as a function of the reduced temupee for different
supercooled liquids. In strong liquids the viscosity fattoan Arrhenius behavior, while a super-
Arrhenius behavior is observed for fragile liquids. Thed{green) curve represent the viscosity
n values estimated in Ref. [35] for &y Tes from ultra-fast DSC assuming (or not) the Stoks-
Einstein relation to hold.

In phase change materials a very high diffusivity, thatvadidor a fast structural reorgani-
zation, has been indeed observed even at temperature wsgy/ ta the glass transition where
the viscosity becomes high. This effect further contributespeed up the crystallization. The
breakdown of the Stokes-Einstein relation has been studlidetails in GeTe [37] where it has
been ascribed to the presence of a dynamical heterogeineitypcalized regions where atoms
move with a higher speed and regions where atoms move slower.

1.2 Thermal transport in phase change materials

Thermal properties of phase change materials recenthcégl a considerable interest. Ther-
mal design and engineering in fact play an important rolepitinoizing the performance of both
optical and PCM devices. In PCMs in particular, thermal préips influence almost every rel-
evant parameter for technological applications such agptbgramming current, scalability,
reliability, and cross talk among neighboring cells.[6-S&veral device studies indicated that
increasing interfacial [38, 39] and volumetric[40, 41]timal resistances can reduce program-
ming current and improve reliability [38, 42]. Furthermphbeside their application as phase
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change materials, chalcogenide have also attracted mtesftiah as candidates for thermo-
electric power conversion applications [43, 44].

Experimental measurements of lattice and electronic takoonductivity and of the resis-
tance at the interface between two materials due to theaphgat carrier transmission (thermal
boundary resistance or TBR), have been performed mainhhionchalcogenide films using
different techniques such as the &hethod, optical transient thermoreflectance (TTR) and op-
tical time domain thermoreflectance (TDTR). Commonly, famples below 100 nm,t3and
TTR can only access effective thermal properties, spatereaes which include both the effect
of bulk and interfacial resistance, while only TDTR has impiple the temporal resolution to
potentially resolve the TBR and intrinsic thermal propestuniquely in a single measure.

In the 30 method a microfabricated metal line is used as both a heatetr@rmometer to
measure the thermal response of the underlying thin filmgoarstibstrate. A currentgl, at
frequencyw is used to induce heat generation at frequen@yir2the metal line. The linear
thermal transfer function of the thin films and substratatesd the @ heating to the & temper-
ature rise in the metal line. The metal line resistance sdimearly with temperature, causing
resistance oscillations, 2B , at 2o, and voltage oscillations at,3due to the product ofJ and
Row) Which is measured and used to determine the thermal traiusfetion [45]. Since phase
change materials are electrically conductive they neecetstlated from the metal line with
a passivation layer. The measured thermal impedance mthus also the contribution of the
interface resistance and multiple measurements withrdiftefilm thickness are necessary to
decouple the TBR from the intrinsic material properties.

Several authors report the thermal conductivity of PCM miale® using the thin film &
method [46-49]. Fallica et al.[9] reported measurementh@ftotal thermal conductivity for
two crystalline phases of GST (hexagorall.13 W/m K and rocksalk=0.55 W/m K ) and
amorphous GSTkE0.21 W/m K) and an estimate of the thermal boundary resisthetween
these three phases and silica ( 94, 72 and 15&18W 1 respectively). In another work [51]
a total thermal conductivity ok=3.08 W/m K was reported for crystalline GeTe akw.23
W/m K for its amorphous phase.

Optical thermometry techniques (TTR and TDTR) measure#mstent change in reflectance
to probe the thermal response of a thin film stack. In contcaite 3o technique, optical tech-
niques are noncontact and do not require electrical pagsmMayers. In thermoreflectance mea-
surements, a high-intensity laser pulse causes a tempegtaursion in the sample. A probe
beam samples the temperature of a metal transducer vidatweeeflectance change. In time
domain thermoreflectance the reflectivity is measured végipect to time, with a resolution
down to 10 ps, and the data received can be matched to a mouil @dntain coefficients that
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correspond to thermal properties [53].

Recent TDTR measurements [54] provided further data onhiivertal conductivity of GST
(k=1.32 W/m K of which 0.73 W/m K due to electronic contributifam the crystalline hexag-
onal phasex=0.45 W/m K for the rocksalt phase ard0.23 W/m K for the amorphous). GST
has thus a glass-like thermal conductivity also in the aflise phase due to different types
of disorder. Moreover the thermal boundary resistance &&tGST and TiN was measured
leading to a much lower value (1220 GW~1 for the hexagonal-GST/TiN interface and 24
m? K GW~1 for cubic-GST/TiN interface) than the previous measuresér the GST/silica
interface.

From a theoretical point of view thermal conductivity in geachange materials has been ad-
dressed so far only with simplified models. The lattice thedroonductivity has been estimated
with good results [47, 55] in amorphous and rocksalt GST ¢Wwlhs characterized by a strong
disorder on Ge/Sb sublattice) using the minimum thermatiootivity model. This model at-
tributes all the thermal conductivity to the acoustic moaled assumes a mean free path of the
phonons of the same order of magnitude of the interatomiamntes, an approximation that can
hold in highly anharmonic systems or systems charactebyeallarge scattering contribution
from disorder or vacancies.

In the case of electrically conducting phase change mégeeéectron contribution to the
thermal conductivity has been commonly estimated on this lodglectrical conductivity mea-
surements and the application of the Wiedemann-Franzrzangde that links the electron con-
tribution to the thermal conductivitye to the electrical conductivitg aske/0 = LT whereL
is the Lorenz number (2.4%5 108 W Q K—2) and T is the temperature.

Thermal boundary resistance in phase change materialsavandifferent contributions. At
the interface between any two materials is present a TBRwérich originates from the imper-
fect transmission of phonons through the interface. Thia teas been estimated in literature for
PCMs with varying degrees of success [9, 54] using acoustimatch model (AMM) [56] and
diffuse mismatch model (DMM) [57, 58] that in their simpléstm predict interfacial phonon
transmission and reflection rates on the basis of the mignimtween the sound velocities in
the two media.

A second contribution to the TBR may rise when electronsrdaurie significantly to the ther-
mal conductivity of one or both contacting materials, sitiwy also affect interfacial transport.
Electron-electron contribution to the TBR has been estohédr phase change materials using
the so called interfacial Wiedemann-Franz-Lorenz (whietes that electron-electron term of
thermal boundary resistance is equal to the electric mterfesistance divided by th& factor)
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but is usually considered to have a negligible effect atmiterfaces relevant for PCMs.

Finally an interesting case might be represented by thefawe among a conductor and an
insulator where electrons and phonons must interact tgpi@mh heat across the boundary. A
general theory that describe such an interface has beefogedeMajumdar and Reddy [59]
but the problem has never been addressed in literature floisPC

As briefly summarized in the introduction we have addreseatke0f these issues on thermal
properties by means of atomistic simulations. In chaptee3eaport on the atomistic calcula-
tions of thermal conductivity in bulk GeTe, GST and,3&; to address the role of different
type of disorder while in chapter 4 we studied the differesnitdbutions to the TBR of GST
and GeTe with metals and dielectrics.

1.3 Novel architectures for phase change memories

In recent years several new possibility of development faage change materials emerged
in the form of new applications, new materials and new sggtiarspectives. In the next para-
graphs we will briefly present two of them, addressed to saxtenein the present thesis. We
will discuss first the possible realization of multi-bit menes cells in bulk and especially in
nanowires and then a new class of PCMs, called “Interfat¢iabp change memories” realized
in (GeTe»ShyTes superlattices and particularly promising for low power lagggions.

1.3.1 Multi-bit phase change memories and nanowires

The realization of a multi-bit memory represent an effextiay to significantly increase the
storage density of a memory device. The realization of rittmemory based on phase change
materials was already proposed in 1995 by Ovshinsky andar&ess [60] exploiting the pos-
sibility to create intermediate-resistance states byrodiimg the dimensions of the amorphized
region within the active layer and exploiting the large spéamnesistivity (up to three order of
magnitude) between the amorphous and crystalline phases.

Multi-bit memories have been realized using the classicaishroom” configuration using
nitrogen doped GST [61]. Moreover it has been demonstratgdip to 16 intermediate resis-
tance levels can be realized in this architecture by usiregd-werify-write algorithm [62, 63].
In this method several writing pulses are applied on a cefetxh a target resistance level.
The shapes of the pulses are adjusted at each iteration tasiseof the distance of the actual
resistance from the target value.
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Multi-bit memories have also been fabricated or with staictheee layers of a phase change
material with three heaters of different sizes as shown ¢n1 that induce a layer-by-layer
transformation [64—66].
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Figure 1.6: Scheme of a stacked 2-bits (00, 01, 10, 11) phase change mamibrand the
relative R-V characteristic.

However, the realization of complex multi-stack devicesgs standard top-down approach
based on the deposition of thin films and subsequent litlpbgeasteps is an extremely deli-
cate process and could easily bring to uncontrollable siratdefects and ultimately limit the
scalability. For this reason an alternative promising téghe technology is represented by the
multi-bit memories realized with core-shell nanowires {8%/). Nanowires present the advan-
tage of a defect-free crystal structure and sublithog@gimensions (ideally down to 10 nm)
which can result in a lower power consumption compared toveotional PCMs as already
demonstrated for single-level memories based on GeTe,8ei1j67]. Multi-level devices can
be realized by using CS-NW where the two phase change alfoyeaore and shell have a
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different melting or crystallization temperatures. Paygming can be carried out by applying
current pulses of different intensity in order to induce quential melting of the shell and the
core and reach intermediate values of resistance.

Multi-level memories with CS-NW made of G8l, Tes (core) and GeTe (shell) have recently
been realized [16] managing to obtain three well separasidtance levels (cf. Fig. 1.7). The
cell has the lowest resistance when both the GST and GeTa Hre crystalline phase. By ap-
plying a current pulse of 1.2 mA, the GST core melts and amipeplvhile GeTe remains crys-
talline obtaining an intermediate value for the resistafides higher resistive state is reached
when both GST and GeTe are in the amorphous phase.
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Figure 1.7: Variation of resistance of a core/shell GST/GeTe nanowéngag as a function of
current pulses with varying amplitudes. The three differesistive states (low, intermediate,
and high) achieved with application of current pulses aganty distinct. The schematic repre-
sents the cross section of the core/shell nanowire at eagh ef transition, where color change
corresponds to the phase transition: light orange repteseystalline phase, and dark orange
is amorphous. Blue line refers to an initially amorphousaveire, while red line to a nanowire
initially in the crystalline phase [16]

In this thesis we addressed the various issues on the piegpefhanowires that arised within
a collaboration with an experimental team in the joint FRYgoject Synapse. In particular we
studied the morphology of $hes nanowires and the thermal conductivity of GeTe nanowires.



16 Phase change materials and memories

Finally it is worth noticing that the continuous transitibatween resistance levels in a PCM
used in an analog manner, can mimic the behavior of a bickbgynapse. A phenomenon called
spike-timing-dependent plasticity (a biological procedgere the strength of connections be-
tween neurons are adjusted during learning) has also beeordgrated in PCM devices using
specific programming schemes [68]. PCMs are thus undeliisgag active elements for the de-
sign of neuromorphic computers with electronic hardwaat tesembles the functions of brain
elements. Image recognition using a neural network of PCWcde was also demonstrated
[4, 5].

1.3.2 Interfacial phase change memories

Recently, a new type of phase change memory device callegifacial phase change mem-
ory’ (iPCM) has been proposed and is attracting consideradterest since the SET-RESET
phase switching energy was demonstrated to be far smadlarttiat in conventional GST al-
loys and could thus play an important role in low power device

The iPCMs consist of hexagonal (GeJ€plyTes)y, superlattices deposited by sputtering
along a growth direction corresponding to tbexis of rhombohedral SBes. The precise
structure of the crystalline phases involved is, nowadsifssatter of debate.

Although the effectiveness of iPCM based cells has beengmahe mechanism of phase
transition, that can be induced by a nanosecond electnidaépis still unclear. It is believed
that the transformation involves small displacements aflezsst of atoms without melting and
subsequent amorphization. Thus in the case of iPCMs, rtthara transformation between an
amorphous and a crystalline phase the transition is betiveedifferent crystalline structures
with distinct conductive properties.

An example of two possible crystal structures represerdi@ET and a RESET state and
their relative band structure is reported in Fig.1.8.

On the basis of high resolution transmission electron rsmope (TEM) images of (GeTg)
ShyTes superlattices, it was proposed [13] that the SET state sporads to a ferroelectric ar-
rangement of the (GeTgblocks and that the RESET state could be obtained by a desplact
along the superlattice axis)(of a layer of Ge atoms in order to form Ge-Ge bonds. (Switched
Inverted Petrov)

The RESET state has been later proposed [69] to correspdhd sm-called inverted Petrov
structure ideally obtained by switching Ge and neighbofi@gtoms in the crystalline structure
of Ge,ShyTes proposed by Petrov et al. [70]. The Inverted-Petrov stmecisi lower in energy
than the Switched-Ferro configurations. A switch betweenRbtrov (SET) and the Inverted-
Petrov (RESET) configurations has also been proposed [i@13. recent paper, calculations
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Figure 1.8: In panel a) are sketched the crystalline structures of twasipte superlattices
named Inverted Petrov and Switched Inverted Petrov togetlik the theoretical band struc-
tures calculated in Ref.[69] and the TEM images for the stest In panel b) is reported the
evolution of the resistivity during the switching process.

based on Density Functional Theory have shown that the Ferhoverted-Petrov transforma-
tion involves both a vertical displacement of one Ge plang amateral displacement and a
lateral displacement of GeTe layer [72].

More controlled methods to grow chalcogenide superlattsteech as Molecular Beam Epi-
taxy (MBE) are under scrutiny to gain insights on the behagfdPCMs. As a first step mul-
tilayers of GeTe have been grown. In this thesis we congitbubd the understanding of the
behavior of GeTe multilayers by means of DFT calculationdissussed in chapter 7.






2 Computational Methods

In this thesis, phonons and thermal conductivity have beempeited for several systems by
different means. For crystalline systems with a relatiwehall unit cell we used fully ab-initio
methods based on density functional theory (DFT see S@¢@B@dldensity functional perturba-
tion theory (DFPT, Sec.2.2). The full solution of the Boltnm transport equation from DFT
anharmonic force constants has then been obtained (Sec.2.3

For large or disordered systems such as nanowires and aousrpmaterials we performed
molecular dynamics (MD) simulations (Sec.2.4) by using a-aquilibrium scheme (Sec.2.5)
and an interatomic potential generated with a Neural Neétwogthod (Sec. 2.6).

The DFT calculations have been performed with the Quantsprdsso suite of programs
[73] while the Neural Network molecular dynamics simulagsdave been performed with the
proprietary code RuNNer [74] and the DLPOLY code as a MD arjvé)].

2.1 Density functional theory

The quantum mechanical behavior of electrons in solids serilged by the many-particle
Schroedinger equation. This equation contains all thdahai physical information but except
few very special and simple cases is far too complex to beedaxactly. Several models to sim-
plify the complexity of the many-particle problem has betrdged, such as the Free Electron,
nearly Free Electrons and Tight-Bindings model [76]. Noh&hese models treat the elecron-
electron interaction explicitly. An early approach whehne €lectrostatic interaction between
electrons is taken into account is the Hartree equation.rihéu step in increasing accuracy
is represented by the Hartree-Fock method that extends dinieeld approximation including
also the effects of exchange interaction. The Hartree-Foethod gives good results in sys-
tems where the effects of exchange are much more importantttie correlation effects. The
attempts to include also correlation effects, that for disea material are impossible to treat

exactly, lead to Density Function Theory (DFT) that, in@adoth exchange and correlation
interactions.
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Density functional theory is based on the Hohenberg and Kokarem [77]. This theorem
states that two different potentials acting on electromsraa give rise to the same ground state
electronic charge densityr). Using this property and the Rayleight-Ritz variationahpiple.

It can be shown that a universal functional of the electrosrgh densityF[n(r)] exists such
that the energ§

En] = F[n] +/n(r)V(r)dr 2.1)

is minimized by the electron charge density of the grountestarresponding to the external
potentialV (r), under the constrain

/n(r)dr =N (2.2)

where N is the number of the electrons in the system. Furtbexnthe value of the minimum
coincides with the ground-state energy. The conceptugbldination introduced by this the-
orem is enormous: the problem of determining the grounce ftaergy and charge density is
now reduced to the minimization of a functional of ))vhich depends only on three variables,
while the wave functions depend on 3N variables. The majainlpm of this formulation is that
the form of the functional F[n] is unknown. Kohn and Sham [R8[ the idea to recast this
functional separating out of it a terriig[n|, defined as the kinetic energy of a non interacting
system with the same ground states density of the interacting one, and a Hartree term that
represents the classical electrostatic interaction berveéectrons:

Fn| :To[n]+%/%rlg|/)drdr’+Exc[n] (2.3)

We use here atomic units. Now all our ignorance is confinedéekchange-correlation energy
Exc[n]. The variation of the total energy functional with respexhfr) with the constraint of

a fixed number of electrons, leads formally to the same eguaii a system of noninteracting
electrons subject to an effective potential, called theamisistent field (SCF) potential, given

by

Veer(r) =V(r)+ [ XL ar" vl (2.4)

|r—
where 5

el =
is the functional derivative of the exchange-correlatioargy, called exchange-correlation po-
tential. The advantage of this formulation is that if onewrnw, the problem for noninteracting
electrons could be easily solved. To this end, one shouldegbe one-electron Schroedinger
equation

(2.5)

|:|2
-5 +Vece(n) | i) a0 2.6)
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The ground state charge density distribution would thenibengoy
=23 |Wi(r)|>6(ei —£F) (2.7)
|

where the Fermi energgg is defined by the condition on the number of electrons Eq 202lae
single-particle orbitals satisfy the orthonormality coas [ W; (r)W;(r)dr = §; j. The ground
state energy can now be equivalently expressed in term&dfdhn-Sham eigenvalues:

N/2

( )
ZZl ] ————drdr’ + Exc[n] — /n(r)vxc(r)dr (2.8)

Is worth noting that for electrons in a crystal the exterrmatieptialV (r) is generated by ionic
cores:

V(r) = Vion(r Z; (2.9)

IF—RI

whereR indicates ions coordinates. Moreover to the energy funeti&[n] one had to add the

ion-ion interaction energy
1 VAVA)

En=2§ 2
2 4RI —Ry]|

(2.10)

2.1.1 Exchange-correlation functionals

The Kohn-Sham scheme constitutes a useful way to implemamity-functional theory,
provided an accurate and reasonably easy-to-use apprixmig available for the exchange-
correlation energ¥xc[n] whose exact form is unknown. Two of the most used approxonati
for the exchange-correlation energy are the local dengipraximation (LDA) [79] and the
generalized gradient approximation (GGA) [80]. Within L@iAe exchange-correlation energy
of the electronic system is constructed by assuming thaexichange-correlation energy per
electron at a point is equal to exchange-correlation energy per electron inradgeneus
electron gas with an electron density as at the point

ELDAIn(r)] = / n(F)exe(n(r))dr (2.11)

The LDA is exact in the limit of high density or of a slowly vaing charge-density distribution.
Appreciably good results using LDA approximation were aied for semiconductors and sim-
ple metals. On the other hand LDA is well-known to considiralverstimate crystal cohesive
and molecular binding energies. A generalization of the Lapproximation is the GGA that
includes also the gradient of the electron density. The G&ghange-correlation functional
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depends on both the electron density and its gradient as:

ESSAn(r)] = [ n(r)exln(r), On(r))dr (2.12)

In general GGA gives better results than LDA. In this thesteamostly used the GGA functional
developed by Perdew, Burke and Ernzerhof (PBE) [81], fordgstems the LDA functional was
also used.

2.1.2 Plane waves and pseudo-potentials

In order to accurately describe the Kohn-Sham single-@anivave functions of a system, it
is necessary to choose a suitable set of basis functionsadueh the electron wave functions
can be expanded. Several approaches exist. One is to cotigdmost natural basis functions
from real space viewpoint, that is atomic-like basis fumes. Alternatively, one could employ
a basis set more suitable for a momentum space descriptithe ohaterial, that is the plane
waves basis set particularly suitable for periodic systefigs is the basis employed in the
Quantum-Espresso program that we used for our simulat@mt®rding to Bloch’s theorem, in
a periodic system, each single particle electronic wavetfan can be written as a product of a
cell-periodic part and a wave like part,

Wk = Unk(r)g*” (2.13)

Using a basis set consisting of a set of plane waves, we candxpe cell-periodic part of the
wave function in terms of reciprocal lattice vectors,

umk(r) = gcmHGeiG'r (2.14)

Thus we have _
Wnk(r) =Y CrksceKTET (2.15)
G

For pratical reasons the plane wave basis set has to be teednoya choosing a kinetic energy
cutoff through the condition;

1
> | k+G |< Ecut (2.16)

Plane waves offer important advantages: they are simplas¢obecause calculations can be
simply checked for convergence by increasing the size db#sés set, they are orthonormal by
construction and they are not biased by atomic positiongh®mther hand, they present also
some drawback like the dependence of the basis set from eodinape and size and a uniform
spatial resolution particularly unsuited to describe kb strongly localized core states and
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the delocalized valence states. Plane waves are used imotion with pseudopotentials. The
electrons in a solid can be divided into two categories, @@ valence electrons. The core
electrons organize them self into closed shells which scthe positively charged nucleus,
while the valence electrons take part in the bonding betveeems. The wave functions that
describe the core electrons and the valence electronsabscdpidly close to the nuclei. Using
plane-waves as a basis set one would need a large numberawfstap coefficients to describe
this region with a good accuracy. Fortunately, the coretedas on different atoms are almost
inert and only the valence electrons participate in therauitons between atoms. Hence, the
core electrons may be assumed to be fixed and a pseudo pbteayidoe constructed which
takes into account the effects of the nucleus and the coce@hs on valence electrons. A pseu-
dopotential is a fictitious electron-ion interaction pdtalacting on valence electrons only, that
mimics the interaction with the inner electrons, which arposed to be frozen in the core, as
well as the effective repulsion exerted by the latter on timmer due to their mutual orthogonal-
ity. The constructed pseudo potential should coincide thigtrue potential at and beyond some
given cut-off radius. . At the cut-off radius and beyond, the pseudo wave functionst match
the corresponding true wave function, while within the cagion the pseudo wave functions
are constructed to be smoother than the true wave functhartisal normconserving pseudopo-
tentials are determined uniquely by the properties of tbkaied atom, while the requirement of
norm conservation ensures transferability, i.e. the tyfmli a pseudopotential to provide results
whose quality is to a large extent independent on the locainetel environment. A second
property, in order to have optimum transferability, is ttreg logarithmic derivatives of the true
and pseudo wave functions agree at the cut-off radius. Tlr®gmess of a pseudopotential is
essential in plane wave calculations because it allowsdooethe number of expansion coef-
ficients. To improve this feature in 1990 Vanderbilt introdd ultrasoft pseudopotentials [82].
In this scheme, the orbitals are allowed to be as soft aslgedsithe core region; this comes
at the price of giving up both the norm conservation and taedsdrd orthonormality condition.
Orthonormality is recovered by introducing a generalizedrap operator which depends on
the ionic positions. The full electron density in obtaingdaolding to the square modulus of the
orbitals an augmentation charge localized in the core regio

2.1.3 Brillouin zone sums

Many quantities like the charge density or the total enenyplves integrals ovek in the

Brillouin Zone.
~ Qpz

= (Zn)3nocc BZ

Pa(k)d3k (2.17)
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wheren the band index an@gy is the volume of the Brillouin Zone. In practice one does not
perform an integral but a sum over a finite numbgrof k-points,

1

(P) Pa(k) (2.18)

N Occk EBZ

Only points in the irreducible brillouin zone (IBZ) with appriate weightd can be considered

in the sum as: 1

Nk OCckEIBZ

For metals at T=0, Eq.2.17 corresponds to an integral olree&k-vectors contained within the
Fermi surface. For the highest band there is a sharp diseotytin k-space between occupied
and unoccupied states and many k-point are needed to reqgacaccurately. To avoid such a
problem usually in metals the sharp step function at the Hexral is replaced with a smoother
function. For example one can use a gaussian smearing: épefigtction is thought as the
integral of ad function and thed function is replaced with a smooth gaussian with a variance
gives rise to an occupation function

f(E):%[l—erf(E_oEFﬂ (2.20)

(P) Pa(k) (k) (2.19)

2.1.4 Forces

The calculation of the forces is the basis of geometry ogi@tion and is also the starting
point for phonon calculation as we will see in the next chaterces can be calculated thanks
to Hellman-Feynman theorem:

oE oW|H|W)

i

9H
oR

) (2.21)

WhereR, represent the position of tH&-ion andW represents the ground state function. An
important consequence of the variational character of BRMfat the Hellmann-Feynman form
for forces, EQq.2.21 is still valid in a DFT framework. In fathe DFT expression for forces
contains a term coming from the explicit derivation of thegy functional E[n] with respect
to atomic positions, plus a term coming from its implicit dapence via the derivative of the
charge density:

oV (r) OEN OE[n] on(r)
DFT _ _ _
R = /n(r) 3R, dr 3R, an(r) oR dr (2.22)
For the ground state charge density the last term in Eq.228Bk and thugPF T = F. The
geometry optimization allows to obtain the atomic posiidmat minimize the total energy. At
each optimization step the Schroedinger equation for theetreinic system is solved and the
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forces acting on each atom are calculated. Different dlgms are available to move atoms
according to the forces such as the BFGS [83, 84] and dampaahuyg [85] methods which
allow a fast convergence toward the local energy minimum.

2.1.5 DFT-D semiempirical correction for long range dispersion forces

One of the drawback of DFT with current GGA exchange and tatios functionals is that it
can not describe long-range electron correlations thatem@onsible for van der Waals forces.
S.Grimme [86] proposed a method, the DFT-D, that providesmiempirical correction to
compensate for such deficiency. In DFT-D the total energyridem as

Eprr-p = EpFT + Edisp (2.23)
whereEpr is the self consistent energy as obtained from the usual D&thod andEgisp is

Nat—1 Nar (]

Edisp= — =6 fiamd Rii 2.24
disp i;j:;ﬁ%d dRij) (2.24)

Here,Ng is the number of atoms in the systeng, @&notes the dispersion coefficient for atom
pair ij, andR;j is the interatomic distance. The functiégumpis given by

S5
1+ e dR;/R—1)

fdamp(Rij) = (2.25)

whereR; is the sum of the VdW radii of the two atoms obtained from abamesults and is
a global scaling factor that only depends on the 1‘unctiosaleCésJ is given by

cl =/cicl (2.26)

C2 = 0.05NI30® (2.27)

and

where N has the value 2,10,18,36,54 for atoms from rows 1theperiodic tablelf)1 is the
ionization potential and is the static dipole polarizability. Recently an improvernef this
method, called DFT-D3, has been proposed [87]. In this ngwageh theCg parameters are
calculated as

cl = %/omori(iw)orj(iw)dw (2.28)
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wherea' (w) is the frequency-dependent polarizability of the atom ¢ehited using time de-
pendent density functional theory (TDDFT) and the dampunrgefion is given by

¢ B 1
MR 11 6(R;/(SR)) Y

(2.29)

wheresis a constant that depends on the functional it

2.2 Density Functional Perturbation Theory

As described in the previous chapter, DFT can provide in&diom such as the ground state
electron structure of a material or Hellmann-Feynman ®itoetween atoms. However, many
interesting features are related to higher order derigatof the ground state energy. For ex-
ample vibrational modes in a crystal are determined by tlersk derivative of the total en-
ergy with respect to ionic displacements. Many approacl&e been developed to study the
lattice dynamics from first principle calculations such esé&n-phonon, molecular-dynamics
and density functional perturbation theory. Within thezigao-phonon method a suitable choice
of atomic displacement is made in order to determine foraestamts from differences of
Hellmann-Feynman forces calculated as a function of ataitgplacement, small but finite,
from equilibrium positions. A frozen-phonon calculatian & lattice vibration at a generic vec-
tor g requires a super-cell havimpas a reciprocal lattice vector. This obviously turns outd@b
significant limitation for calculations at smajlbecause they would require large super-cells. In
molecular-dynamics (MD) simulations [88], the finite-teengture dynamics of atoms which vi-
brate about their equilibrium position are studied. Thert@ric approximation can be applied,
for low enough temperatures, to describe the atomic trajis from the classical equations
of motions. The Hellmann-Feynman forces have to be esdigrtti@ exact derivatives of the
total energy in order to obtain accurate trajectories anmcecbphonon density of states from
the Fourier transform of the velocity-velocity autocoateédn function. As in the frozen-phonon
method MD requires large super-cells in order to descrilgelavavelength phonons (smegjl.
The approach of DFPT [89-93] is based on the response ofahesdab arbitrary infinitesimal
displacements and the corresponding changes of the idieictigé one-electron potential as
calculated within linear response theory as we will see éréxt sections. DFPT can provide
phonon dispersion relations over the whole BZ.

2.2.1 Linear response

Within the Born-Oppenheimer adiabatic approximation i$ li@en shown that an explicit
expression for interatomic force constants (FC) can bemddzby differentiating the Hellman-
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Feynman force constants with respect to ionic coordinates

0%E[n| on(r) av d L5, / azv 0%En
6R|6RJ 0R; aRJ aR|aRJ 0R|0R;.

(2.30)

The FC can thus be calculated from the charge density andntbar Iresponse to a distortion
of the nuclear geometrgn(r)/0R,. The charge-density linear response can be evaluated by
linearizing Eqs.2.33-2.31 that leads to

N/2
aR. 4Rezl W (r aR. (2.31)

The derivatives of Kohn-Sham orbitals are obtained frorednization of equation 2.6 and 2.31
(Hscr—&i) 6%{(() =— (aVECRFI< ) aa;l) Wi(r) (2.32)
where OVscr(r) _ / 1 dr’+ OVxc(T) Mdr’ (2.33)

0R, 6R| lr—r’| 6R| on(r’) OR, '
and 0€; 0VscE

R = (¥ | === 3R, | W) (2.34)

The equations eq.2.31-2.33 form a set of self-consistenatemns for the perturbed system
completely analogous to the Kohn-Sham equations in thertunped case. Efficient iterative
algorithms such as conjugate gradient methods can be ustérfsolution of the linear system.

2.2.2 Phonons

Phonons are normal mode of the harmonic lattice. Within thetatic approximation, the
lattice dynamics can be studied as if the ions were classltaiges moving in an effective
potential determined by the ground-state electronic gnérghe previous sections we indicated
atomic positions with a single generalized index | that wé&enaxplicit ad = |, swherel is the
index of unit cell ands the index of the atom inside the unit cell. The position of fAatom is
thus

Ri =R +Ts+Us(l) (2.35)

HereR, is the position of théth unit cell in the Bravais latticess is the equilibrium position
of thesatom in the unit cell, andg(l) indicates the deviation from equilibrium of the nuclear
position. For small displacements of atoms around theiflibgum positions the total energy
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of the crystal can be expanded up to the second order as:

1 62 EtOt

21 S Wus(l Yug(m)

E'%ug(l)) = EX + (2.36)

The harmonic oscillations around equilibrium positioresgoverned by the equation of motion:

Mt (1) = — Sl = m%BCStB(l ,mub (m) (2.37)

where the greek superscripts indicates Cartesian comfonen

9°E

7= %R ~Rnm 2.38

cP(,m) =

The Fourier transform &&%P(R) with respect oR, C2P(q) si defined by:
, 2
CP(a) = Y e IRCPR) = T O (239)
R cdug(q)aut (q)
where N; is the number of unit cells in the crystal, and the veaigi) is defined by the

distortion pattern _
Ri[us(d)] = Ry + Ts+ ug(q)e ™ (2.40)

Phonon frequencies(q) are the solution of the secular equation

1
det mcgﬁ(m —w?(q)| =0 (2.41)
S
The quantity
1
JRCe (@ =D&(@) (242)
S

is called dynamical matrix. Translational invariance iynilat a lattice distortion of wave vector
g does not induce a force response in the crystal at wave wgctog. Because of this property,
interatomic force constants are more easily calculateddiprocal space and, where needed in
direct space, can be obtained by a Fourier transform. Thpromal-space expression for the
matrix of interatomic force constants is the sum of an etettrand ionic contribution:

cP(q) = cP(q)+"cP(q) (2.43)

where
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el ~0B _i on(r) \\ 0Vion(r aV|on (r)
Cst (a) = NG [/ (6ug(q)) 72 d +/nr e (q)dr] (2.44)

Vion(r) = ZVS[" — R —Ts—Us(l)] (2.45)

and

wherevs is the ionic pseudopotential. All derivatives are caloethfor us(q) = 0. The ionic
contribution comes from the ion-ion interaction and it daesdepend on the electronic struc-
ture. An explicit expression of this term can be found in B&} Since phonon frequencies
are usually rather smooth functions of the wave vector a ¢etagphonon dispersion can be
obtained using interpolation techniques. Fourier analgbiow that the smoother the phonon
dispersion, the shorter is the range of real-space int@iatconstants:

1 .
CP(R) = Y €97C (@) (2.46)
q

Real-space interatomic force constants can thus be olthinEourier analyzing a set of force-
constant matrices calculated over a uniform grid of pointeciprocal space.

For some materials in this thesis the vdW corrections dssiisn Sec.2.1.5 turned out to
be necessary to reproduce the experimental phonon sp&baeefore the dynamical matrix in
Eq.2.43 had to include the contributions from the interatordW potential of Eq.2.28. To this
end we developed a post-processing tool interfaced witlQtentum-Espresso program. As a
benchmark calculation we studied the phonon dispersiatioels in the bulk and at the surface
of crystalline Xe which is a typical vdW solid. We do not dissthere the details for which we
refer to Ref.[94].

2.3 Thermal conductivity from ab-initio calculations

The determination of the intrinsic lattice thermal condlutin a crystal requires the knowl-
edge of the harmonic phonon energies and anharmonic phgimamen scattering coefficients.
As we have seen in the previous section phonons can be efijceatculated by using DFPT.
The anharmonic scattering coefficients can be determinatidyhird-order derivative of the
energy with respect to three phonon perturbations, cooretipg to wave vectorg,q’ andq”.
For the thermal transport problem, it is necessary to kn@selderivatives with respect to three
arbitrary wave vectors satisfying the conditighq'+q"=G whereG is a reciprocal lattice vec-
tor. In principle, these coefficients can be obtained withFFPT [95] by using the so-called
“2n + 1” theorem as formulated in Ref.[96]. This theorem akao access the third derivative
of the total energy by using only the first derivative of grdtstate density and wave func-
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tions; without the need to perform expensive supercelidatons. The knowledge of phonons
and phonon-phonon scattering coefficients, however, septe only the starting point for the
calculation of thermal conductivity.

A microscopic description of the thermal conductivity hagb formulated in 1929 by Peierls
and it is known as Boltzmann transport equation (BTE). Thjgagion involves the unknown
perturbed phonon population and it describes how the pgextion due to a gradient of tem-
perature is balanced by the change in the phonon populatieniadscattering processes. The
calculation of the thermal conductivity requires the siolntof this equation and thus the de-
termination of the perturbed phonon populations. The egalkittion of the BTE equation is a
difficult task due to the complexity and the mutual intercection of the scattering terms. The
BTE equation is commonly solved within the so called singlede relaxation time approxi-
mation (SMA) in which is assumed that the phonon scatterioggsses can be described by
frequency-dependent relaxation times. However, a meth@wlive exactly the BTE equation
within DFPT has recently been developed. In what follows we @ brief overview of this
method following this recent work [10].

The fundamental heat equatiQh= —kOT, whereQ is the heat fluxk the thermal conduc-
tivity tensor andrl the temperature, can be written for a crystal as

1 oT
T Cq.jNq = k2 2.47
NoQ %h‘*’q,JCq,J”q,J I (2.47)

wherewy,j is the angular frequency of the phonon mode with wavevegtord branch index
J» Cq,j is the group velocityng ; the perturbed phonon population afids the volume of the
unit cell andk is thekyx component of the thermal conductivity tensorThe sum runs over
a uniform mesh ofNg g-points and we assumed without loss of generality that thgpé&za-
ture gradient and the heat flux are both along the x direciibe. knowledge of the perturbed
phonon population allows heat flux and subsequently thecorauctivity to be evaluated. The
Boltzmann transport equation represents a balance equatithe unknown perturbed phonon
population and can be written as

0T [ 0ng, ong,
TIox ( —a?) T Isea=0 (2.48)

where the first term indicating the phonon diffusion due ®ttmperature gradient and the
second term the scattering rate due to all the scatterintgpses.

For small perturbations from equilibrium, the temperaigradient of the perturbed phonon
population is replaced with the temperature gradient ofddeilibrium phonon population
0ng,j/0T = 0dNg j /0T whereng j = (exp™si/%T —1)~1: while the scattering terms are expanded
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about its equilibrium value in terms of a first-order peratibn fEX that can be written as

Ng,j ~ Ng,j +Ng,j (Mg} + 1)%—1 fo i (2.49)
The linearized BTE can thus be written in the form:
s () = 5 R (18 15 18
qi.a"]
P (118 1)
£ Py (16— 15 + Popeg (2.50)
ay

where the sum ovey andq” is performed over a uniform grid over the whole BZ and where

the EX superscript denotes the exact solution of the lizedrBTE.
The four components at the right side of Eq.2.50 representailr different scattering pro-
cesses shown in Fig.2.1

Figure 2.1: Phonon scattering processes in an anharmonic crystalseipee of isotopic impu-
rities P'S% and boundary scatterirfgP®.

In particular the first ternﬁ’&,/}y;j is the scattering rate at equilibrium of a process in which a

phonon modejj scatters by adéorbing another phompji to give rise to a third phonogq”j” .
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The second terrﬁgjj/’q”j” represents the opposite process where a phghjédecays into two

phononqg”j” andqj . The third termP('fJ‘)éIJ represents the scattering on an isotopic impurity

while the last thernIF'be is the scattering from the boundaries in a finite system.
The first two scatterlng rates have the form:

// "

AT Nh2§| (aj,q'j,—q"j")
XM Mg (Ngjr +1)8g1q .G
x O(hwygj + Ay jr — hadyrjr) (2.51)

and

1"in 271 )
Pgljm Nohz g |V3(qj,—q’] ,—q"j") |
xNgj (Nyj + 1) (Ngrj +1)8g-g—q.G

><6(h(.oqj —ﬁ(;.)q/j/—h(.oq//j//) (2.52)

whereV @ are the third derivatives of the total energy of the cry&fal, with respect to the
atomic displacements

V3(aj.d'i.q"j") = Al (2.53)
anjaxq/j/an//j// '

whereE®!! is the energy per cell and the quantitieg are defined as:

2M
qujza" ud(R)) exp 4R (2.54)

According to Ref.[97] the rate of the elastic scatteringvgotopic impurities can be written
in the form

]! Ngj +Nyj’
isot . lm A q) q’J
Paiai = 2Ng e Wy [”Qan’J’+72

XY G| Y 7 7y 17 8o — o) (2.55)
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with

G — (15

(2.56)

wheree is the concentration of the minority isotop®Ms the mass difference of the two
isotopes andMs) = Mg+ eAMs.
The last term, according to literature [98, 99] can be writis

Pbe = g (ngy + 1) (257)

whereL is the Casimir length anl a correction factor which depends on the width-to-length

ratio of the boundary.
After linearization, the BTE can be written as a linear syste matrix form

AfEX =b (2.58)

with by = —c¢,hopyNy (N + 1) and

v V”’ V! isot be
AV,\)/ = [ Z (P V/// ) Z P V// + PV 6\),V’
V”7V”/

Z(ww Py + Py ) + P (2.59)
Vv

where we used the contracted indeistead ofj. In this form the matriXA can be decom-
posed a®\ = A"+ A" where

AiVnN/ - — Z (PV Y/ PV V’ -+ P ’ V”) -+ P\I}S\(})/t (260)
V7
and
41
Ay =M s, (2.61)
\Y%

and whera, is the phonon-phonon relaxation time defined as
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(19) 7= (0) 7+ (@) T () (2.62)

where

_ T o
(Taj) 1:2qu=hz—No Z V3(ai,q'i,q"j") |2

al’]
X [Z(ﬁq/]‘/ — ﬁq//j//)é(h(x)qs-i- hooq/j/ — ﬁ(}.)q//j//)
—|—<1—|—ﬁq/j/ —|—ﬁq//]’//)6(h(ﬂqs— h(,oq/j/ — h(;oq//j//)] (263)

while the boundary and isotopic relaxation tinl@&andt'$® are

bey—1 _ Cqj
(tq) = F (2.64)

i _ Tt
7 = g 3 S~y
S [}

The A" diagonal matrix describes the depopulation of phonon stie to the scattering
mechanisms while th&'" matrix describes their repopulation due to the incomingtsrad
phonons.

All the complexity of the solution of the BTE lies in the praseof inverting the largé\
matrix as

1
EX_- = 2.66
f Ab (2.66)

for which the thermal conductivity can be evaluated as

1

EX
“Nakt2? T

h
K 2 > cvany(ny +1) f5X (2.67)
\Y

" NoQks

It is worth noticing that if theA™ term is neglected, the inversion of tA&" term is rather
trivial and the solution correspond to the single mode axipration
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1
FSMA _ Aoutb (2.68)
KSMA _ \py. fSMA _ hizz S ey (My + 1)T7 (2.69)
NoQkgT S

The solution of the exact equation 2.66 includidj can be addressed with a variational
approach as in Ref.[10]. In particular, it can be shown [11@1,] that the solution of the BTE is
the vectorfEX which makes stationary the quadratic form

F(f) = %f-Af—b-f (2.70)

It can be shown [10] that the convergence can be speededngiefid of directly minimize
Eq.2.70, the minimization is carried out with respect toriwcaled variable

f= VAUt (2.71)

which defines the functional

e 1 e~ ~

F(f)zéf-Af—b-f (2.72)
where

~ 1 1

A= \/,WA\/W (2.73)
and

~ 1 ~SMA

b= \/,Wb =f (2.74)

The minimization of theﬁ(?) functional is carried out with a conjugate-gradient metemt
the details on the variational solution we refer to the oagpaper Ref.[10].

2.4 Molecular Dynamics

Molecular dynamics is a technique that allows calculathmgtime evolution of a system of
atoms, considered as classical particles, once the intiadiitions of positions, velocities and
the interaction potential between particles at tighare known. Position and velocity of all the
particles at any time subsequégtre calculated by integrating the Newton’s equations of mo-
tion. The accuracy and the computational cost of the caiona@epends on the nature of the
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interaction potential.

In classical molecular dynamics, the interatomic poteérgigenerally described by analytical
expressions that contains empirical parameters obtarnedthe fitting of experimental data or
ab-initio results. This approach has a low computational echich scales linearly with the
number of atoms for short range potentials and allows thelsiton of very large systems (up
to 10’ atoms) for a long time (several ns). Accurate results, hewere likely to be obtained
only in conditions similar to those at which the parametéithe potential were fitted.

In ab-initio molecular dynamics, ions are still treated Essical particles but electrons are
treated at a quantum level. The forces acting on the ions easbtained from the solution of
the electronic problem, commonly using DFT, within the &digc approximation as described
in Sec.2.1.4. This method ensures a better accuracy ancflgeability with respect to clas-
sical MD, but it is computationally expensive, scales asstipgare of the number of atoms and
thus can allow only the simulation of small systems (at mesegl hundred atoms) for few
hundreds of ps.

Once the forces acting on the ions have been computed, tleeetnziution is given by the
classical Newton’s equation:
MR, = F (2.75)
whereF, is the force on thé-th nucleus and/, andR, are the nuclear mass and acceleration,
respectively. The numerical integration of the equatiomotion (2.75) is performed by finite

difference methods discretizing the time in stApaccording to different algorithms [102—105].

One of the most simple and stable algorithm is the Velocitgtefealgorithm [104, 105]. In
this method, positionR, and velocitiew, at timet + At can be obtained from the values at time
t from

Ri(t+At) = Ry(t)+v(t)At+ F({sil\'/ﬁt)})mt)?

FI{RIOD +F({Ri(t+At)})
2M,

V| (t—l—At) = V (t)—l— At. (2.76)

The knowledge of atomic trajectories allows computing Bigium observableg which can
be expressed as a function of ions positions and velocliieder the assumption of ergodicity,
Ais obtained as a time average over the trajectories

(Aens= (A)exp= lim 1 OTA({R|(I)},{V| (t)})dt. (2.77)

T—0 T
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2.5 Thermal conductivity from non-equilibrium molecular
dynamics simulations

We computed the thermal conductivity from molecular dyrasimulations using the Re-
verse Non-Equilibrium Molecular Dynamics scheme (RNEMRyeloped by Muller-Plathe
in Ref.[11]. Among the different methods to evaluate therited conductivity from MD cal-
culations, such as the Green-Kubo method based on the arglatimn function of the heat
flux Q(t) [106] or the direct gradient method, the RNEMD offers a fastenvergence with a
comparable accuracy. By assuming the heat flux and the tamopergradient both along the
x direction, the thermal conductivity componédnt Kyyx can be simply obtained from a MD
calculation in terms of temporal averages

lim lim — (V) (2.78)

= aT Jox—0t—=w (AT /0X)

The most natural way to obtain the thermal conductivity,nalagy to what is done experi-
mentally, would be to impose a temperature gradient usimgth@rmostats at the extremes of
the sample and to calculate the heat fi(t) parallel to the gradient. This method, however,
is rather inefficient because the quant@y(t) is subject to large oscillations and consequently
its average converges very slowly.

The RNEMD scheme proceeds in the opposite direction, idstéamposing a temperature
gradient and waiting for the average Qk(t) to converge, the heat flux is imposed on the
system while the temperature gradient is measured fromintindation. Since the temperature
is averaged over time as well as over a considerable numbmarttle is less subject to large
fluctuation with respect tQy(t) and its gradient converge much faster.

In order to impose a heat flux and to calculate a temperatwfeyrthe simulation box is
divided intoN slabs perpendicular to the x direction (cf. Fig.2.2).

Figure 2.2: Simulation box for a RNEMD calculation.
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A slab at one edge of the box is defined as the cold source whdther slab, positioned
at the center of the simulation box acts as the hot sourcermdtively the two sources can be
placed at the opposite edges of the simulation box and thedsermages can be decoupled by
interposing a slab of fixed atoms.

The heat flux is generated by exchanging the velocity vectoas atom in the cold slab and
one in the hot slab in such a way that the temperature incggagbe hot slab and decreases
and the cold slab. This procedure leaves the total linear @ambum, the total kinetic energy,
and the total energy unchanged. Since the kinetic enerdyaexe is known, the heat flux can
be calculated exactly at each step. Within this scheme #rand conductivity can be simply
computed as

Ztransfersg (Vﬁ - Vg)
 2tLyL,(dT /aX)
where the sum is taken over all transfer events during thelaiion time t,v, andv; are the
velocities in the hot and cool source exchanged at eacltidaréy andL, are the dimension of
the simulation box perpendicular to the heat flux &t/dx) is the thermal gradient computed
in the simulation.

K=

(2.79)

2.6 Neural Network interatomic potential

In order to obtain a reliable potential with an accuracy eltsthe ab initio calculations but
with a computational cost and scalability comparable tesitaal potential, an interatomic po-
tential for GeTe has been developed in our group by fittingtaliese of DFT energies [12]
with the Neural Network (NN) method proposed by Behler andgtifallo [107].

Neural networks are a class of algorithms, inspired by thecgire and mechanism of the
brain, widely used in machine learning, classification peots such as speech [108] and pattern
recognition. Moreover, they proved to be an efficient fittalgorithm, in particular for real-
valued non-linear functions in many variables [109, 110¢rehusual fitting methods fails.

This latter application makes neural nterworks partidulaseful in material simulations. An
interatomic potential is essentially an approximationta potential energy surface (PES) of
the system which in turn is a continuous real-valued fumcticsually of high dimensionality.

A non-linear multivariable function (in our case a potehéiaergy surface) can be seen as
a combination of single-variable non-linear functiondl@mhactivation function in the contest
of NN) generated by a feed-forward neural network, a typefddhematically represented in
Fig.2.3, formed by different layers where the informati@menove in one direction, from the
input layer to the output layer and never goes backwards.
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Figure 2.3: Schematic representation of a simple feed-forward NN tagpolith two hidden
layers.

A feed-forward NN is a mathematical object characterizedlifigrent layers and different
nodes on each layer. The numbers of input nodes, hidderslapernodes of each hidden layer
fix the topology of the network. Each node of the network aigks & neuron in a biological
system. The flexibility of the NN can be increased by incregughe number of hidden layers or
the number of nodes in the hidden layers and hence the nurhE#mg parameter on which
the function depends.

These fitting parameters can be considered as “weights’ctiratect the nodes in a layer
with the nodes in the next one. In Fig. 2.3 the parameter tlegghvg the node in thek layer
connecting it with thg node in thd layer is indicated byv}‘j'. Moreover, the hidden layers can

be linked with a bias layer with Weighhg, which allows a rigid shift of the activation functions.

In order to calculate the output of the neural network, eamhtp; of the fitting dataset is
assigned to a different node in the input layer and the oumlutesyjl of the first hidden layer
are calculated through two steps. In the first step the inglues are linearly combined with the
weightsw{}' and a bias valubj is added

4
Xj=bj+ 3 Wit (2.80)
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Then, a highly non-linear functiofi' is applied to the} values

yi = fH(x7). (2.81)

In a similar way, the values of the nodes of the next layersaitide output can be obtained
from the values calculated in the previous layers. The dutfine NN may be an array of values
or a single number calculated by summing up the results diitiheen layers as exemplified by
the equation

3 4 3
E=f] <b§>+ le%l% f2 <b$+ Y witfl - (b,-l+ > kjlxk>>> (2.82)
i= j=1 k=1

that describe the procedure sketched in Fig. 2.3.

Within the Neural Network, an activation functidnis applied to the nodes in each hidden
layer. Thef function is generally a non-linear function that asymmalty converges to a finite
value for very large and very small arguments, while in betwie displays a non-linear behav-
ior to emulate the threshold-like behavior of biologicalrans. Different types of activation
functions can be used, a common choices are the sigmoidduanct

1
=1rex

the hyperbolic tangent or Gaussian functions.

(2.83)

Generally, from the last hidden layer to the output layes,dhbtivation functions are linear in
order to avoid any constraint in the range of output values.

In order to determine the values of the fitting parametergreor functionl’, that describes
how far is the-th output value of the NN &y from a reference value; k¢ of the dataset, must

be defined:
1 N 2
M= N i:E (Einn—Eiref) (2.84)

whereN is the number of points in the dataset.

If the activation functions in the neural network are diffietiable, also the output of the NN
will be differentiable with respect to both input variabbasd weights and hence the error func-
tion I' is a differentiable function of the weights. The error fuans can thus be minimized
by finding the roots of the partial derivatives of the errondtion with respect to the weights
through a minimization procedure. The algorithm for evahgthe derivatives of the error
function is known as “back propagation”, since it corresg®to a propagation of errors back-
wards through the NN. The process by which the weights aratively improved until they
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provide a reasonable approximation of the underlying fioncis called "training” or "learn-
ing”, and each iteration of this process is known as "epoanlthe NN context.

2.6.1 Neural Network potential energy surfaces for atomistic simulations

Neural networks have been successfully used in the pastltbtha potential energy surface
of small molecules (5-10 atoms) [111] or isolated gas mdéscumteracting with a surface [112].

In this systems the input parameter are typically the atomdérnal coordinates of the molec-
ular system. The use of a single NN for all the atoms is easspna@ment, the training of the
network does not pose particular problems since the nunflveeights is small.

However, this approach suffers important limitations theshcrucial being that the resulting
potential have a very little transferability since it cahbe applied to systems with a different
number of atoms. In fact, the number of input nodes, and hdregalues of the weights, is
fixed and assigned by the number of degrees of freedom of #terayMoreover the number of
degrees of freedom of the system must be necessarily smedl sihen the NN tool is applied
to systems of thousands of atoms, the fitting procedure getgel and it would not be feasible
to generate a different NN potential for each system sizeréfore a straightforward extension
of this approach to larger systems is not possible.

A first NN scheme designed to deal with a large number of degseeedom and indepen-
dent on the system size was proposed by Hobatagl. [113] for carbon and C-H systems. In
this scheme, the atomic positions are not directly used @ iparameter for the NN but the
chemical environment of each bond in the model was decondpose a variable number of
input vectors characterizing three-atom chains, whichale the same dimensionality.

In a conceptually new approach to NNs, the total energy adyiseem has been written as sum
of the atomic energies, each obtained from a single atomi¢INM]. Each of these individual
NNs has an input vector with a fixed number of elements thatrdesthe local environment of
the atom and returns as output an atomic energy.

A further improvement to this approach was developed in 200 Behler and Parrinello
[107]. In this work the total energy is still considered amsaf the atomic energies

N
EtOt :;E.({r}) (285)

but the architecture of the NN is fixed for a given chemicairedat allowing to use a standard
NN for each atom (cf. Fig. 2.4). Only one input vector of fixechdnsionality is needed per
atom to describe its local chemical environment, which issidered up to a certain cutoff ra-
dius.
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Figure 2.4: Sketch of a neural network according to the scheme propogd&ktbler and Par-
rinello [107].

In order to decouple the number of input nodes from the nurobereighbours of each
atom, the environment is described not in terms of Carte&iantions, but through special
types of many-body descriptors called “symmetry functiofibe symmetry functions provide
information on the radial and angular arrangement of nesghbfor each atom in the system.

The symmetry functions must be chosen in order to ensuretiagiance of the energy with
respect to symmetry operations such as translations aatioms of the whole system and the
exchange of two atoms of the same species.

A vector of the symmetry function valudss; }, each of them depending on the coordinates
of all the atoms of the environment within the cut-off, is dse input values of a single-atom
NN. For a given atomic species, the architecture and theditiarameters of the NN are fixed,
ensuring the invariance of the total energy with respech&exchange of two atoms of the
same type. The weights of the neural network can be detedhipéraining the network on a
database of DFT total energies of different configurations.

Symmetry functions

In the generation of the NN potential for GeTe [12], two typésymmetry functions have
been used: radial symmetry functions and angular symmeigtions. The formers are written
as sums of two-body terms, while the latter contain alscettir@dy terms. The radial environ-
ment of atom is described using two different radial functions with tbhem

Gil = ch(Rij)
J

Gi2 — Ze*n(Rij*Rs)z.fc(Rij). (2.86)
J
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The cut-off functionf; is defined by

fe(rij) = { 8'5 [COS< re ) +1} ;Or fij <Te, (2.87)
orrij > re.

FunctionG! is the sum of the cutoff functions with respect to all neigtibg atomsj, while
G? is a sum of Gaussian functions centered at a certain radi@raieRs and multiplied by the
cut-off function.

These “shifted’G? functions are suitable to describe a spherical coordinatiell around the
reference atom. The radial distribution of neighbours cawléscribed by using a set of radial
functions with different spatial extensions, for exam@fefunctions with different cut-off radii,
or G? functions with different cut-offs and/ay andRs parameters.
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Figure 2.5: Radial symmetry functions. apt-type symmetry functions for different cut-off
radii. b) G?-type symmetry functions for different radial distand@swith n=2 andR.=8 A
respectively.

Typical forms of the radial symmetry functions are plotted-ig. 2.5 for several parameter
values. Angular symmetry functions are defined as functdtise bond angl®jix that thei-th
atom forms with its two neighbounsandk and have the form

all

Gf 2% 5 (L+Acosygt e NRITRAR® fo(Ry) - fe(Ri) - Te(Ri).  (2.88)
J kA

The parameteh can assume valueil shifting the maxima from Oand 180 to 90°. The
angular resolution is controlled by the paramétetligh & values yield a narrower range of non-
zero symmetry function values (Fig. 2.6). A set of angulactions with differen€-values can
thus be used to obtain a measure of the bond angle distnibiutnztion of each reference atom.
The angular distribution is sampled at various distances fthe central atom by a suitable
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Figure 2.6: Angular symmetry function&? for several values of with A = 1.

choice ofn andR;, which control the radial part. The parameters that defigesgmmetry
functions are fixed in the training process of the NN. Theltotenber of values of symmetry
functions describing a given structure is much larger tin@niumber of degrees of freedom of
the system. This ensures that the full dimensionality ofstystem is captured and the resulting
redundancy of the information is not usually a problem forNw@gorithm.

Forces and stress evaluation

Since the NN energy is an analytical function of the symmeingctions, which in turn de-
pend on the atomic coordinates, the energy is an analytic&tibn of the ionic coordinates.
The atomic forces and the stress tensor can thus be commabdieally. The force~y acting
on thek-th atom is

oE
Fk - _a—Rk
_ ¢ B
N M
I 0E 0Gj
- g5 i (2.89)
i;glaGLj R

wherei runs on atoms ang on the symmetry functions. Since the energy is a function of
interatomic distanceBy; = Rx — Rj, the stress tensor can be obtained from the virial theorem
[103] as

AR 0E
Oap = Z Rik,O( :

2.2 —aRik,B (2.90)
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wherea andf3 are Cartesian coordinates.

Extrapolation

The NN method allows interpolation of the points in the datas a multi-variate function
with any arbitrary functional form. However, the NN algdit fails in predicting the value
of the fitted function outside the configurational space spdrby the training dataset. This
condition can be simply checked by keeping memory of the mimh and maximum values
assumed by each symmetry function for the whole input dathsthis way, the values assumed
by the symmetry functions depending on the atomic positouréng the simulation can be
compared with the values of tli&functions of the dataset. If a certain atom configuratiorseau
one or more symmetry functions to assume values outsidattgerdefined by the training set,
a so called extrapolation occurs and the resulting NN eneogyd be not reliable. To fix this
issue, the atomic environment that causes the extrapolesin be added to the initial dataset
fitting again the potential to extend its transferability.

Neural Network potential for GeTe

The NN potential for bulk GeTe was generated by fitting theltenergy of about 30000 con-
figurations of 64-, 96- and 216-atom supercells computediwDFT in Ref.[12]. Crystalline,
liquid and amorphous configurations and mixed crystalinmedrphous models were generated
with the PBE functional. Configurations at different pregsuemperature and stoichiometry
were also included in the dataset. The structure of the haeetavork employed to fit the ab-
initio data includes three hidden layers with 20 nodes €&lsl.local environment of each atom
is described by the value of 159 radial and angular symmatrgtions defined in terms of the
positions of all neighbors within a distance cut-off of 688

The generated NN potential reproduces well the structeetlies of amorphous, liquid and
crystalline GeTe [12] and it has been validated in severaksvaddressing the study of the
crystallization kinetics of GeTe [36, 37], the propertidstlee supercooled liquid [115], the
aging and the thermal transport of the bulk amorphous pHase [L17].






3 Thermal conductivity in Phase Change
Materials

Thermal conductivityK) is one of the fundamental property for the PCMs operationtes
the phase changes corresponding to the memory writingigrpsocesses are induced by Joule
heating. Heat dissipation and transport greatly affecptheer consumption and the switching
speed of the memory cell. These quantities also influencéhdrenal cross-talks among the
different bits in a memory array which can rise serious blity issues. In ultrascaled devices,
where the cells are few nanometers apart, it is crucial tarenghat the programming of a cell
never influences the state of the neighboring ones.

Although data on thermal conductivity are available fromesal experimental works for the
bulk thermal conductivity of the prototypical GeSbTe phakange alloys [7, 54, 118-120]
and the related binary compounds GeTe [51, 121-125] andie5pl21], these data are not
always univocal. Moreover it is unclear whether or not thieies measured in the bulk could
also describe the behavior of the material in nanoscaleate®y¢10-20 nm) which might be
smaller than the phonon mean free path or under extreme tatape gradient conditions as
those present in the real devices. Finally, there is a broaud general interest in understand-
ing the mechanisms that are responsible for the low theroraluctivity of these materials due
to their close relations with thermoelectric materials.

Atomistic simulations can provide crucial insights inte tthermal transport properties of
phase change materials suitable to aid a reliable modefitigealevice operation, engineering
of the device and the selection of new more performing comgsuTo this end, we performed
simulations based on density functional theory (DFT) amdsical molecular dynamics calcu-
lations based on neural network potential [12] of differphise change compounds such as
GeTe, GeShyTes, INSbTe alloys and the closely related,$&; compound.

The results are reported in the following in separate sedtioeach compound.
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3.1 GeTe

The first material that we examined is the binary GeTe com@okren if is not employed
in nowadays PCM cells, GeTe is widely studied as a protogtgtiase change material as
it shares most of the properties with the more efficient anmdroonly used but more complex
ternary GST. Moreover, recent works put GeTe under scribinpnemristive and spintronic ap-
plications [15] because of a giant bulk Rashba effect [14]T&is now also being reconsidered
for memory applications at high temperatures due to itseriglystallization temperature [126].

GeTe presents two crystalline phases at normal pressuré [I2e stable phase at low tem-
perature is the trigonai-phase with space grouR3m, lattice parametea = 4.2398 A and
anglea = 57.9° [128].

The a-phase of GeTe, with two atoms per unit cell, can be viewed distarted rocksalt
geometry with an elongation of the cube diagonal along thd ] #lirection and an off-center
displacement of the inner Te atom along the [111] directi®ing rise to a 3+3 coordination of
Ge with three short and stronger bonds (2.84 A) and threedodgveaker (3.17 A ) bonds. In
the conventional hexagonal unit cell of the trigonal ph#se,structure can be also seen as an
arrangement of GeTe bilayers along théirection with shorter intrabilayer bonds and weaker
interbilayers bonds (cf. Fig. 3.1).

Figure 3.1: Geometry of then-GeTe crystal seen as a stacking of bilayers alongcthgis
of the conventional hexagonal unit cell with the three sittrbilayers bonds and three long
interbilayers bonds.

The ideal GeTe crystal is a narrow gap semiconductor withxgergmental band gap of 0.6
eV. It turns into ap-type degenerate semiconductor because of defects imgtoietry, in the
form of Ge vacancies, which induce the formation of holeshia Yalence band [129]. Hole
concentrations in native p-type doped GeTe are typicaltween 5- 10'° holes/cnd reported
in Ref.[130] and 1.6 10%! holes/cni This last concentration, considering two electrons per



3.1 GeTe 49

vacancy, correspond to a vacancy content of aboutthb&?6 in the Ge sublattice reported
[131].

The trigonal ferroelectric phase transforms into the cpli@electric§) phase (space group
Fnﬁm) with lattice parametea = 5.996 A above the Curie temperature of 705 K [132]. The
structure the3-GeTe and the nature of thee3 transition is still subject of investigation but
recent EXAFS measurements [133] suggest that th& 8oordination with shorter and longer
bonds locally survives also in the cubic phase and the dvarblc symmetry observed in X-
rays and neutron scattering experiments [134] is an effietieospatial average.

Concerning the lattice thermal conductivity, the expentaédata for crystalline GeTe at 300
K are scattered over a wide range of values 0.1-4.1 W/m K [81;--125] possibly because of
different defects concentration (the presence of Ge vaesameich can be hardly controlled in
the growth process) or because of difficulties in separdhiagverall thermal conductivity into
the lattice and electronic contributions.

In order to understand these data, explore the role of higaramonicity and defect scattering,
we calculated the lattice contribution to the thermal canighty in crystallinea-GeTe. To ob-
tain a cross-validation between independent methods weuetad this quantity both with non
equilibrium molecular dynamics (See Sec.2.5) with the akeoetwork potential (See Sec.2.6)
and by solving the Boltzmann transport equation based onl¥eleond and third order force
constants (See Sec.2.3).

3.1.1 Ab initio structural and vibrational properties of crystalline GeTe

As a preliminary step we studied the structural propertresthe phonon dispersions using
three different approximations LDA, PBE and PBE with senpemal van der Waals correc-
tions according to the DFT-D scheme (Sec.2.1.5). The catiouls has been performed using
the Quantum Espresso package. The Brillouin Zone (BZ) ratemn for the self-consistent
electron density was performed over a 12x12x12 MP mesh [488]the Kohn-Sham states
were expanded in plane waves up to 30 Ry cutoff. Norm-comsgpseudopotentials with only
the outermost s and p electron in valence were used. Atonsitipas where relaxed until the
forces were smaller than10—“ Ry/a.u.. The theoretical structural parameters optimigero
temperature for the ideal semiconducting structure usied_DA and the PBE functional with
or without vdW corrections are compared in Table 3.1 withezkpental data.

All the functionals yield a good agreement with the experitaédata. In particular the PBE
functional gives the best results, with a slight overestiomeof the lattice parameter by 0.46%
and of the equilibrium volume by 2%, while both PBE+VdW catien and LDA functional
produces an underestimation of 1.8% and 3.4% in the latacarpeter and in the volume re-
spectively.a-GeTe has an electronic band gap of about 0.45 eV in DFT-PBE@al slightly
underestimated with respect to the experimental valueg@)6
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Structural parameters LDA | PBE | PBE+vdW| Exp.
a (A 4.23 4.33 4.22 4.31
a 58.79 58.14 58.84 57.9
Unit Cell Volume (&%) | 52.00 54.98 51.75 53.88
X 0.2384 0.2358 0.2380 0.2366
Short, long bonds (A)| 2.83, 3.11| 2.85, 3.21| 2.82,3.11| 2.84, 3.17

Table 3.1: Structural parameters of the trigonal phase of crystallif@eTe computed within

DFT with the PBE or LDA functionals and with the addition ofrvder Waals interactions
according to Grimme [87] and from experimental data [128}e Tengths of the short and long
bonds are also given.

Phonon dispersion relations have been obtained by Fouaiesforming the dynamical ma-
trix computed on a 6x6x6 MP grid in the BZ. The phonon disgersialong the high symmetry
directions of the Brillouin Zone (sketched in 3.2b) for thedoped case and the two limiting
cases of lowr,;=8 - 10*° holes/cni) and high (n2=2.1- 10?* holes/cnd) concentration of holes
are reported in in Fig.3.2a calculated with the PBE functl@t the theoretical equilibrium lat-
tice parameters. A denser grid of 18x18x18 k-points was us#te undoped case to converge
the effective charge tensor. The p-doping is introducedenyaving electrons and by neutral-
izing the system with a uniform positive background [131f Wlaxed the atom positions at
the two doping levels by keeping the lattice parameters fatatie values of the ideal crystal:
thexinternal coordinate becomes 0.2359 for bathandn,,. The Ge vacancies, present in the
real crystal but lacking in our models of tipetype compound, are in fact expected to affect the
lattice parameters, as much as the holes in the valence darjd81].

It can be observed that the metallic character of the hopeedsystems removes the discon-
tinuities in the phonon dispersion at theoint (TO-LO splitting) present in the stoichiometric
compound. The highest frequency phonon qf gymmetry (atl”) softens continuously with
increasingp-doping as already shown in Ref. [131]. The mode, measured experimentally
by Raman spectroscopy [136], shows a strong temperatusndepce as it corresponds to the
soft mode of the ferroelectric transition. The experimefiequency extrapolated to zero tem-
perature is 140.2 crt in the sample measured in Ref. [136], for which the dopingllés
unknown. The theoretical frequency, within this approxiom, is 149.9 cmit in the stoichio-
metric compound and 120.1 crhin the system with p=2.1- 10?1 holes/cnd, which means
that we could match the experimental frequency by a suiteliidéce of doping. On the other
hand the acoustic modes are rather unaffected by the peeséholes.
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Figure 3.2: a) Phonon dispersion relations along high symmetry divaatalculated with PBE
at equilibrium volume for the ideal undoped crystal (greelidsline), low hole concentration
(red dashed line) and high hole concentration (blue datathsine). b) The Brillouin zone of
a-GeTe.



52 Thermal conductivity in Phase Change Materials

A comparison between the phonon dispersions along the lgigimetry directions obtained
with different functionals in the low doping conditions egorted in Fig.3.3. It can be observed
that the slope of the acoustic modes is quite sensible toghdirium volume while it seems
to be less affected by the choice of the functional once thewe is set.
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Figure 3.3: Phonon dispersion relations of trigonal GeTe along highragtny direction calcu-
lated with LDA, PBE and PBE+VDW at the respective equilibniwolume and with LDA at
the experimental volume.

3.1.2 Thermal conductivity of crystalline GeTe by ab initio DFPT
calculations

To gain direct access to the microscopic quantities thatacherize the thermal conductivity
of an ideal material, such as phonon linewidth and mean faé® we performed the calculation
of the thermal conductivity obi-GeTe with method based on the variational solution of the
Boltzmann transport equation Eq.2.50. Harmonic and anbmicrforce constant have been
computed exploiting ther®1 theorem within DFPT as described in Sec.2.3

We first computed the lattice thermal conductivity for theadcrystal without vacancies.
Anharmonic force constants have been computed on a 4x4xing{phonon grid on the BZ,
Fourier interpolated with a finer 15x15x15 mesh for the daltons of phonon scattering rates
in the Boltzmann equation. Phonon energies have been breddeith a Gaussian function
with smearing of 2 cm?! for energy conservation in three-phonon scattering psessThe
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convergence was checked with grid up to 25x25x25. Due to¢heahlimitations of the code,

the anharmonic force constants were computed only with B¥efunctional. We performed the
calculations at experimental, theoretical PBE and thexadPBE+vdW lattice parameters with
both the internal geometry unoptimized and optimized whth itDA functional. Anharmonic

force constants showed a very small dependence upon ihtemr@ainate optimization. All the

phonon calculation and the anharmonic force constants bega performed with the lower
hole concentrationy;.

The resulting lattice thermal conductivity at 300 K complweth PBE phonons along the
z direction, parallel to the axis in the hexagonal notation (cf. Fig. 3.1),kig=2.00 W/m K
while the lattice thermal conductivity in the/ plane parallel to the GeTe bilayers (cf. Fig. 3.1)
IS Kx=2.90 W/m K. For a polycrystalline sample the calculatedrage thermal conductivity
is Kav=%KX—|— %KZ= 2.6 W/m K, which is an upper limit, as it neglects the effeatsdefects
(vacancies in particular) and grain boundary scatteng.is comparable, although slightly
larger, than the experimental value of 2.350.53 W/m K of Ref. [51]. By using the LDA
functional for both the harmonic and anharmonic force camist at the experimental lattice
parameters one obtains an even larger lattice thermal ctiniies ofk,=2.37 W/m K,kx=3.62
W/m K andkz,~=3.20 W/m K.

Using the equilibrium Boltzmann distribution of phononstead of the quantum Bose-
Einstein distribution has no effect on the lattice thernmadductivity at 300 K (within the figures
given here) due to the low Debye temperature of GeTe(180 K).

For the same reason, the lattice thermal conductivitiegeed within the SMA (cf. Sec.2.3)
arek;=2.00 W/m K kx=3.10 W/m K ank5,~=2.7 W/m K, i.e. only slightly lower than the values
obtained from the full solution of the BTE given above withAPhonons K5,=3.20 W/m K).

The cumulative lattice thermal conductivity within the SMAideal a-GeTe as a function
of phonon frequency is shown in Fig. 3.4 computed using LDAmgns and anharmonic con-
stants. Group velocities, phonon lifetimes and mean frelespealculated on a 25x25x25 grid
are reported as function of the phonon frequency in Fig. 5aad c respectively while the
averages of the same quantities in small energy windowseated in Fig. 3.6.

The anharmonic broadening of the phonon branches compsitbd averse lifetime (Sec.2.3)
within the SMA are also reported in Fig. 3.7, while the spadunctiono(q, w) as defined in
Ref. [10] is reported in Fig. 3.8.

Comparison of Fig. 3.4 and Figs. 3.6-3.8 shows that acopsimons mostly contribute to
the thermal conductivity at 300 K (up to 80%) because opfitainons have both low group
velocities and lifetimes.

We then included the effects of vacancies in the Ge subtalticadding a rate of elastic
scattering due to isotopic defects in the BTE (See Sec.®V8)considered two limiting va-
cancy contents of 0.07&on?6 on the Ge sublattice corresponding to the hole conceottrati
of 8 - 10'° holes/cn3, and of 3aton® that corresponds to a hole concentration of 11071
holes/cni close to that studied experimentally in Ref. [131].
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Figure 3.4: Cumulative lattice thermal conductivities within the SM380 K of trigonal GeTe
along thec axis in the hexagonal notatiorj) in the perpendicular plan&y) and their average
for a polycrystalline samplegy).

The lattice thermal conductivities (LDA phonons) turn imtg=2.0 W/m K, kKx=3.0 W/m K
andka,=2.7 W/m K for the low vacancy content &5=0.9 W/m K,kx=1.4 W/m K andkz~=1.2
W/m K for the higher vacancy concentration to be compared thié values for ideal GeTe of
Kz=2.3 W/m K,kx=3.6 W/m K andkz~=3.2 W/m K as given above. Even a small amount of Ge
vacancies has thus a dramatic effect on the lattice theromalwctivity of GeTe which can be
more than halved for a 8ton6 in agreement with the experimental data in Ref. [125].

In the presence of holes in the valence bands, the phondimige can be reduced also by
electron-phonon scattering processes. These effectsaveyer, negligible in GeTe at the dop-
ing levels discussed above. To estimate the reduction ofmdeconductivity due to electron-
phonon scattering we removed from the calculatiok dfie contribution of all phonons with
wavevectoig smaller than twice the larger wavevector on the Fermi sarfabese phonons are
the only one that can be affected by electron-phonon cogplihis would corresponds to a
large overestimation of the effects of the electron-phormupling that, nevertheless, leads to a
slight reduction of the thermal conductivitieskg=2.2 W/m K andky=3.1 W/m K.
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Figure 3.5: a) Group velocities, b) phonon lifetimes and ¢) mean freagaf trigonal GeTe
calculated on a 25x25x25 grid. Each point correspond to aqhof an individual branch in a
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Figure 3.7: Anharmonc broadening (FWHM in cm) at 300K calculated within LDA at the
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Finally, we calculated the temperature dependence of grendd conductivity in GeTe with
a 3% vacancies as reported in Fig.3.9. As discussed in Sen.the single relaxation time ap-
proximation the thermal conductivity is given kgma= 5, 1/3C,V31. WhereC, is the specific
heat per phonon mode,andt, are the group velocity and the lifetime. The steep rise of the
thermal conductivity at low T is due to the increase in thecepeheat per mod€, .
The relaxation time, first decreases exponentially when Umklapp processes amadtly ac-
tivated and then decreases as 1/T above the Debye tempetaaiding to a maximum ik and
a steady linear decrease at high temperatures.
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Figure 3.9: Temperature dependence of thermal conductivity in GeTie 8%t vacancies.

It is worth to stress that the effect of vacancies on the théoonductivity has been actually
introduced perturbatively as isotopic defects accordmBef. [52]. Because of the important
approximations involved, the applicability of such metlwadh not be taken as granted. To assess
the reliability of this approximation we have performed requilibrium molecular dynamics
(NEMD) simulations by using a Neural Network interatomidgttial for GeTe (See Sec.2.6
and [12]) in which vacancies can be treated explicitly. Télebility of the classical approxi-
mation for phonons population at 300 K in GeTe, and thus tlesipdity to directly compare
NEMD results and DFPT results has been demonstrated above.

3.1.3 Thermal conductivity of crystalline GeTe by neural network
calculations

As a preliminary step to the calculation of thermal transpath the NN potential, we deter-
mined the theoretical equilibrium cell for the neural netkvpotential. The structural parame-
ters optimized at zero temperature with the NN potentiabriggal in Table 3.2 are in reasonably
good agreement with both experimental and DFT results.
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Structural parametersDFT (PBE)| NN | Exp.
a (A 4.33 4.47 4.31
a 58.14 55.07 57.9
Volume (A3) 54.98 55.95 53.88
X 0.2358 0.2324 0.2366
Short, long bonds (A) 2.85, 3.21 | 2.81, 3.31| 2.84, 3.17

Table 3.2: Structural parameters of the trigonal phase of crystal®de computed with the
NN potential, within DFT using the PBE approximation andirthe experimental data [128].
The lengths of the short and long bonds are also given.

The values ok; andky were computed within reverse-NEMD (See Sec.2.5) by cootstg
supercells and setting the planes of the sink and sourdes @iarallel or perpendicular to the z
direction of the trigonal phase at the theoretical latti@emeters optimized at zero temperature.

Since the neural network calculation costs sensibly maag thclassical force field molec-
ular dynamics calculation, we decided to adopt a non-symenednfiguration instead of the
more commonly used symmetric Muller-Plathe [11] configioratin order to halve the com-
putational cost, the heat source and sink are placed at theseaf the cell and consist of a
slice of mobile atoms 5 A thick and a 10 A region of fixed atom#ithi decouple the source
and the sink in the presence of periodic boundary conditibhe temperature profile and heat
flux reach a converged steady condition after a time rangmg D.7 to 2 ns depending on the
model. A plot of the temperature profile and heat-flux in adcgpsimulation cell is shown in
Fig. 3.10.
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Figure 3.10: a) Heat flux as a function of time and b) temperature profiletgpacal simulation
cell of the trigonal GeTe. The heat flux is along the c direttio
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In order to ensure the correct convergence of the resultsaleallated the thermal conduc-
tivity in supercells of different size. In particulag is obtained with supercells with sizes from
28.6 Ax24.8 Ax56.71 Ato 28.6 A x 24.8 A x 748.61 A where the lengdges are along the
c direction of the conventional hexagonal cell, whilge= Ky is obtained with sizes from 21.5
Ax22.7Ax62.0Aupto21.5Ax22.7 Ax744.1 A. The dependence of L is reported in
Fig. 3.11. The convergence with respect to lateral dimerssad the cell, perpendicular to the
heat flux direction was checked by doubling the lateral sgraea in 49.9 nm long supercells.
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Figure 3.11: The dependence of the thermal conductiwitas a function of the length of the
simulation cell L for the trigonal crystalline phase. Thertmal conductivity perpendicular
(parallel) to the c-axis is reported in the upper (lower)gdan

We obtained a converged valkg= 3.23+ 0.1 W/m K andky = Ky=3.15+ 0.2 W/m K. For a
polycrystalline sample the calculated average thermalgctivity is Kav=%KX—|— %KZ=3.20 W/m
K. Kay is very close to the result obtained within the DFPT calcafet for the ideal crystal
(Kav=2.7 W/m K with PBE andck4,=3.18 W/m K with LDA). However, the Neural Network
potential does not manage to reproduce accurately theteopyoof the thermal conductivity.
This can be mainly due to the lower anisotropy of the NN phaodispersions reported in Fig.
3.12. The overall agreement between DFT and NN phonon digperelations is satisfactory
but for a lower anisotropy of the sound velocities in the NNickhis responsible for a lower
anisotropy of the thermal conductivity.
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Figure 3.12: Phonon dispersion relations of trigonal GeTe within NN pttd using finite
difference methods.

We introduced vacancies in a random manner on the Ge sgblatiih concentration of 3 %
corresponding to the hole concentration of-1G¢! holes/cni. We then repeated the simula-
tions with vacancies and a 28.6 A x 24.8 A x 499.0 A supercahioingk,=1.55+ 0.1 W/m K
which is 49% lower than the value obtained with the same s@fieat the same average temper-
ature of 300 K for the stoichiometric compound. Similarly @®ainecky = ky=1.3+ 0.2 W/m
K with the supercell of size 21.5 A x 22.7 A x 496.0 A which is 568wer than the value for
the stoichiometric compound at the same conditions. Thectezh ofk, in percentage, agrees
perfectly with that obtained using ab initio anharmonicciconstants and the approximate
treatment of the vacancies as a kind of isotopic defect, ivtl@monstrates the applicability of
this approach.

In conclusion, the DFPT calculations have shown that thgelapread in the experimental
values of thermal conductivity of trigonal GeTe can be dmatito different vacancy concentra-
tions.

3.1.4 Thermal conductivity in amorphous GeTe

To complete the picture of thermal conductivity in GeTe aathgsome general hints about
the thermal conductivity in the amorphous states of changeemals, we further studied the
thermal conductivity in amorphous GeTe by means of nonguim molecular dynamics
simulations.
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The calculation of the thermal conductivity in an amorphsystem requires very long sim-
ulations (on the ns scale) of large models (thousands of gttimat are presently beyond the
reach of fully DFT simulations and thus it has been perform@g with the NN potential.

NN equilibrium molecular dynamics (MD) calculation of theetmal conductivity of bulk
amorphous GeTe performed in our group yielded0.274+0.05 W/m K [12, 116] at 300 K,
which is very close to experimental results of 0.24-0.25 W/B1].

However, in equilibrium molecular dynamic simulationsgiimal conductivity is computed
within linear response theory which is valid only for smaihtperature gradients. In the actual
device, temperature gradients can be as large as 30 K/nnerlimese conditions it is unclear
whether or not the linear response approximation still 80l@ address this issue we computed
the thermal conductivity by means of RNEMD method introaduige Sec.2.5 which allows
studying possible non-linear effects.

The amorphous models were generated by quenching from thg1060 K) to 300 K in
100 ps, according to the protocol used in our previous wdtRs 116]. We considered several
supercells with different size, up to 24.8 A x 24.8 A x 397.38192 atoms). As in the previous
case the heat source and sink are placed at the edges oflta®oglthe z-direction.

A plot of the temperature profile in a typical simulation rgrnshown in Fig. 3.13. The tem-
perature profile reaches a converged steady condition&dteps.

The temperature of the sink and source are 220 K and 390 K andosed flux igj=3.02
- 10-8W. From the Fourier law and the slope of the temperature profé obtairk=0.26 W/m
K which is very close to our previous result of 0:20.05 W/m K at 300 K obtained from
equilibrium MD and the use of the Green-Kubo formula [116§ @ecked the convergence of
K by using supercells with different cross section areasqrefigular to the heat flux (24.8 x
24.8 R and 49.7 x 49.7 A), and with different length along z.

Since the phonon mean free path in a-GeTe is always below fgidé], k is already con-
verged in a smaller 24.8 A x 24.8 A x 99.3 A (2048 atoms) cell.

As shown in a previous work [116] the thermal conductivityaetGeTe is mostly due to
diffusions, i.e. delocalized quasi-stationary modes iffé@ntribution can be evaluated by using
the theory developed by Allen and Feldman [137] which assige = ¥;Cj3¥3_; Doj Where
Cj is the contribution of the j-th phonon to the specific heat Bgglis the “diffusivity” given

by

QZ

=555 > | (8| Ja | en) [23(vj —vn). (3.1)
grenav & b

J

aj

Here (gj | Ju | &) are the matrix elements of ttee Cartesian component of the energy flux
operator between two harmonic normal modeande; with frequencies), andv;. Since the
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phononic specific heat has already reached its classias @300 K and the diffusivity in Eq.
3.1 is temperature independent, we expect a weak dependéroen the temperature above
300 K in a-GeTe.
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Figure 3.13: Temperature profile in the NEMD simulation of bulk amorph@esTe.

We investigated possible non-linear effects by tuning tiitéal temperature and the heat flux
in order to have large temperature gradients from 1 K/nm @mMalue of 30 K/nm. We actually
did not observe changes afwithin the error bar of 0.03 W/m K fo% in the range given
above and for an average temperature in the range 200-400Kiel the amorphous phase
is stable against crystallization on the time scale of oomusations. We can conclude that at
the conditions of PCM operation we can still use the bulk gafithe thermal conductivity of
a-GeTe measured/computed for small temperature gradients

3.2 GesShoTes

GeShTes (GST) is the material of choice for commercial PCM devicesmnits to the sta-
bility of the amorphous phase and the very fast phase trans(&EST presents two crystalline
phases at normal pressure [70, 138]. The stable structara heaxagonal symmetry with space
group P3mi, the unit cell contains nine atoms in an octahedral coatitin arranged in nine
layers stacked along tlueaxes.
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The internal arrangement of Ge and Sb atoms in the stackb desated and three sequences
have been experimentally proposed:

A Te-Ge-Te-Sb-Te-Te-Sh-Te-Ge-Te (Kooi)
from high resolution transmission electron microscope]13

B Te-Sb-Te-Ge-Te-Te—-Ge-Te—Sh—Te (Petrov)
from XRD measurements [70];

C Te—(Sb/Ge)-Te—(Sbh/Ge)-Te—-Te—(Sh/Ge)-Te—(Sh/Ge)—-aes(Maga)
from XRD measurements with a random distribution of Ge anfiLSB].

The Te-Te bonds are actually weak as the structure can beaseestacking of GShyTes
9-layers bound by vdW interaction across the Te-Te vdW géag. Structure of the two order
phases is shown in Fig.3.14.

Petrov

Figure 3.14: Structure of GeShyTes in the hexagonal cell . Two formula units along the c axis,
and period replica of atoms at the edges of the hexagonainctile ab plane are shown. The
positions of Ge and Sb atoms are interchanged. The weak beflds (3.7 long) connecting
adjacent slabs are not shown to emphasize the presence,8bFe; stacks. The Petrov (B)
and Kooi (A) stackings are shown.

In PCM, a metastable cubic crystal is obtained upon crys#ibn of the amorphous phase.
The cubic phase (c-GST) has a rocksalt geometry with Te gtegmne sublattice and Ge,
Sb and 20% of vacancies occupying randomly the other sidaddft39]. The metastable cubic
phase turns into the stable hexagonal phase at higher tatupes.

From the point of view of thermal conductivity several experntal works reported on the
measurements of the bulk thermal conductivity of diffet@eSbTe alloys [7, 54, 119, 120].
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In the case of cubic G&b,Tes, disorder is present in the form of a random distribution
of Ge, Sb atoms and 20 % of vacancies in one sublattice of ttlesadt structure, the other
being full occupied by Te atoms. Disorder leads to a latt@rhal conductivitk=0.40 W/m
K close to the value of 0.27 W/m K measured for the amorphoaslfb4]. Vacancies in the
Ge sublattice of crystalline trigonal GeTe are also resjpbmd$or scattering of the measured
thermal conductivity over a wide range of values 0.1-4.1 VW51, 121-125] as previously
shown for GeTe.

The lattice thermal conductivity is interestingly very |¢&v45 W/m K) [54] also in the hexag-
onal phase, in which the vacancy concentration is expectée trelatively low. In this latter
case, disorder may arise by a partial random distributioBldGe atoms corresponding to the
stacking (C) proposed by Matsunaga et al. [139]. The theom@dluctivity can thus be a good
probe to determine the real structure of this material.

3.2.1 Ab initio structural and vibrational properties of crystalline GST

The geometry of G£SkpTes in the two ordered stackings within DFT-PBE was optimized
in a previous work [140], the results are reported in paresithin Tab. 3.3, compared with the
results obtained by adding the Grimme semiempirical vaméeals correction [87] and with the
experimental parameters. The calculations have beenrpetbby using the Quantum Espresso
package [73]. The Brillouin Zone (BZ) integration for théfssnsistent electron density was
performed over a 8x8x2 MP mesh and the Kohn-Sham states wgaaded in plane waves up
to 20 Ry cutoff. Norm-conserving pseudopotentials withydhke outermost s and p electron in
valence were used. Atomic positions where relaxed untifthees were smaller than10~*
Ry/a.u..

Stacking
A B Exp2
Energy (meV/atom) 0 (0) 16.3 (19)
Cell Parameters (A)
a 4.191 (4.28) 4.178(4.25) 4.225
c 17.062 (17.31) 17.41(17.74) 17.239

Table 3.3: Relative energies (meV/atom) and theoretical equilibriattice parameters (A) for
stacking A (Kooi) and B (Petrov) optimized with the PBE+vdwhétional. Data without vdW
corrections are reported in parenthesis.
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In the hexagonal crystalline phase, GST is a degeneratpgsgmiconductor due to Ge/Sb
deficiency. As for GeTe the degenerate p-type character af W& reproduced by removing
electrons and by neutralizing the system with a uniformtpasbackground. We considered a
hole concentration of 0.084 holes/cell, i.e. 3110?° holes cni3 close to the typical experimen-
tal value of 2.73 10%° holes cnmi3 at 3K of Ref. [141].

The Kooi phase (A) resulted to be energetically more faveraiith both PBE and PBE+vdW.
Previous calculations [140] showed that the disorderedsiatga stacking is only marginally
higher in energy than stacking A, actually within the freergy contribution expected for con-
figurational disorder, and it is even marginally lower in gyethan stacking A if the hybrid
B3PW functional [142] is used.

However, the calculation of phonon dispersion relatiofrsy.8.15 and 3.16) obtained by
Fourier transforming the dynamical matrix computed on ax4x¥IP grid in the BZ revealed
that the Kooi phase is dynamically unstable in the PBE appration, but it is stabilized by
including vdW interactions. The comparison between thenphs calculated with and without
vdW correction show that, as opposed to GeTe, the vdW caoredbes not significantly affect
the slope of the acoustic modes while it has remarkabletsffacshift of nearly 8 cmt) only
on the optical modes.
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Figure 3.15: Phonon dispersion of G8b,Tes in the Kooi stacking with PBE and PBE+vdW at
the respective equilibrium lattice parameters.
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Figure 3.16: Phonon dispersion of G8b,Tes in the Petrov stacking with PBE and PBE+vdW
at the respective equilibrium lattice parameters.

3.2.2 Thermal conductivity of GST

The thermal conductivity has been computed using phondoslated with the PBE func-
tional both with and without vdW corrections for the Petrdwape. In the Kooi phase the calcu-
lations were carried out exclusively with PBE including titBV correction because this phase
is otherwise unstable. Anharmonic force constants have bemputed only with the LDA
functional on a 4x4x1 g-point phonon grid on the BZ, for thédscat the PBE+vdW equilib-
rium parameters (and also at the equilibrium parameter8&f without vdW corrections for
the Petrov phase) with both the internal coordinates opgthand unoptimized within the LDA
approximation. Also in this case only a marginal differehas been observed as a consequence
of the two different internal geometry. The third order dmeEnts have been then Fourier inter-
polated with a finer 20x20x7 mesh for the solution of the Bokinn equation. Phonon energies
have been broadened with a Gaussian function with smeafidgm1 for energy conserva-
tion in three-phonon scattering processes.

The thermal conductivities at 300 K for the ordered,Slg Tes crystal in stacking A and B
obtained from the full solution of the BTE with the PBE+vdWhfttional are reported in Table
3.4. The average thermal conductivity of about 1.6-1.2 W/is Kizably larger than the exper-
imental value of 0.45 W/m K [54].
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We then introduced in the BTE the scattering due to vacanciegher the Sb or Ge sub-
lattice with a concentration assigned by the holes denseagsured by the Hall effect which
yields 3- 10?° holes/cnd [141]. This holes density corresponds to either 1.8 atomeaneies
in the Ge sublattice (two holes per vacancy involving onky prelectrons) or to 1.25 atom%
vacancies in the Sb sublattice (three electrons per vagahbg average thermal conductivity
is reduced to about 1.1 W/m K (Table 3.4) which is still mucbhar than the experimental
value. By increasing the vacancy concentration up to 3 atemt¥te Ge sublattice the average
thermal conductivity is further reduced to 0.64-0.86 W/mIK.bring the thermal conductivity
to a value closer to experiments we have then introducedifoectr in the Ge/Sb sublattice
by adding an isotopic phonon scattering rate in the BTE. Bysatering a full Ge/Sb mass
mixing and neglecting Ge/Sb vacancies the average thewnaluctivity is sizably reduced to
0.61-0.76 W/m K (cf. Table 3.4). By further adding on top offSe disorder the scattering due
to 1.8 atom% Ge vacancies or 1.25 atom% Sb vacancies, thagavdrermal conductivity is
further reduced to 0.43-0.58 W/m K or 0.28-0.42 W/m K (cf. [EaB.4).

A (Kooi) B (Petrov)
Kz Kx Kav Kz Kx Kav
Ideal 0.34 1.59 1.20 0.59 2.10 1.60

1.8 % Ge vac 0.28 1.19 0.83 0.42 1.49 1.13
1.25% Sbvac 0.25 1.10 0.82 0.47 1.50 1.16
Ge/Sb disorder  0.20 0.77 0.61 0.30 0.99 0.76
Ge/Sb + Gevac 0.16 0.56 0.43 0.25 0.75 0.58
Ge/Sb + Sbvac 0.11 0.37 0.28 0.23 0.51 0.42

Table 3.4: Lattice thermal conductivity of hexagonal &8y Tes at 300 K along the axis in

the hexagonal notatiox, cf. Fig. 3.14) in the perpendicular plang) and their average for a
polycrystalline samplekg,). The first row report the values for the ideal crystal in vilhanly

the anharmonic effect are taken into account. In secondtardirow are reported the values
of thermal conductivity including the isotopic scatteridge to the two possible vacancy type
in a percentage compatible with experiments. In the fowth is stated the values of thermal
conductivity taking into account the isotopic scatteringduce by a complete disorder in the

Ge/Sh sublattice while in the fifth and sixth row the combiefféct of disorder and vacancies
is taken into account.
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For the Petrov stacking the use of PBE instead of PBE+vdWsléaa slightly lower con-
ductivity. For the ideal Petrov phase the average thermadectivity is 1.47 W/m K, and drops
to 0.69 W/m K and 0.47 W/m K with the inclusion of vacancies aadancies plus complete
lattice disorder on the Ge/Sb sublattice.

In GST the thermal conductivity calculated within the SMAasver by less than 5 % with
respect to the full solution of the BTE.

The spectral functiow(q, w) calculated at 300K with PBE+vdW for the Kooi and Petrov
ideal phases are reported in Fig.3.17. The cumulativeéstitiermal conductivity, average group
velocities, phonon lifetimes and mean free paths calcdiaithin the SMA of GeShb,Tes cal-
culated with PBE+vdW as a function of phonons frequency ashin Fig. 3.18 for the ideal
stacking Kooi and Petrov stackings and for the disorderetsiemga structure including va-
cancies.

From Figs. 3.18 and 3.17 itis clear that, as in GeTe, the dicquisonons mostly contribute to
the thermal conductivity at 300 K, with a small contributioiithe lower energy optical modes
and a negligible contribution of the high energy optical m®din the disordered Matsunaga
phase in particular, the whole lattice thermal condugtiertiginates from the acoustic modes
with energy below 30 cmt.

It is clear that both vacancies and disorder are needed tev&ch good agreement between
theoretical and experimental data and this result strosigygests that the low thermal conduc-
tivity in the hexagonal phase is actually an indicator of (@Ge/Sb) sublattice disorder as also
suggested by recent experimental data from Z-resolved TEGIHT nanowires [143].

The temperature dependence of thermal conductivity fodib@rdered phase, including sub-
lattice disorder and vacancies treated perturbativehgpsrted in Fig.3.19.
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Figure 3.17: Spectral function at 300K for G8k,Tes in the Kooi and Petrov stackings with
PBE+vdW at the respective equilibrium lattice parameters.
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Figure 3.18: Cumulative lattice thermal conductivities within the SME380K along thec axis

in the hexagonal notatio{) in the perpendicular plan&) and their average for a polycrys-
talline sample<y,) for the Petrov a), Matsunaga b) and Kooi c) stackings. Ayedavelocities
d),e),f) lifetimes g),h),i) and mean free path I),m),n) floe three different arrangements respec-
tively.
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Figure 3.19: Temperature dependence of thermal conductivity for thesMatga stacking of
GeShTes, including vacancies, calculated using PBE+vdW and sigftiom the unperturbed
Petrov harmonic and anharmonic force constants with diddatisorder and vacancies treated
perturbatively as a mass disorder.

Finally, we verified that the thermal conductivity in the alidered hexagonal phase can be
well described within the minimal thermal conductivity neddaccording to Cahill which yields
for acoustic bands only:

m13, 5, T \? /©s/T 3¢
Kmin=( = n V, ———dX 3.2
mn=(5) e Tvws(g) [ oy (3.2)
wherex = hw/ksT, n the atomic number density. The sum runs over two transverde a
one longitudinal phonon branches, each with individuahsbielocitiesvy s and cut-off Debye
temperature®p s = (6T[2n)1/ 3vg,g,h/ ks. For temperatures much abo@g as is in the case of
GST at 300 K Eq.3.2 reduces to

3/m

By plugging in the Cahill formula 3.3 the sound velocitieg (= 3120 m/s andigt = 1950
m/s) and the atomic density computed within DFT, we obtamedlue ofkmjn=0.43 W/m K,
very close to the experimental value and the rigorous fiisiefple result. This result suggest
that the minimal thermal conductivity can be used to es&@wran other similarly disordered
phase change materials.
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3.3 szTeg

ShyTes is not a material commonly used in PCM cells because of thefingent stability of
the amorphous phase. However, it is a semiconductor oEsitéor several technological appli-
cations, ranging from thermoelectrical devices to spmtr@applications thanks to its topologi-
cal insulating properties. Only recently, slightly Ge-édiSbTe has also been reported [144] as
an interesting alloy for applications in PCM.

Crystalline ShTes is a small band gap (0.28 eV) semiconductor with a rhombaheph-
ometry R§m space groupI:di)) with five atoms in the elemental unit cell [145]. The crysta
structure can be better visualized in the conventional yexal supercell with three formula
units (Fig. 3.20). In the hexagonal cell we recognize thtalkss each formed by five hexagonal
layers stacked along c in the sequence Te-Sb-Te-Sb-Te,l@gahcontaining a single atom
in the unit cell. The weak Te-Te bonds, 3.736 A long [145], ecting adjacent slabs are not
shown in Fig. 3.20 to emphasize the presence ofi&pstructural units. The three atoms inde-
pendent by symmetry are at crystallographic positions T€l, 8, 0), Te2 = (0, 0x) and Sb =
(0, 0,y) (Fig. 3.20).

Figure 3.20: Structure of SpTe; in the elemental and conventional hexagonal supercell
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3.3.1 Ab initio structural and vibrational properties of crystalline SboTes

The calculations were performed by integrating self-cstesit electron density over a 6x6x6
MP mesh in the Brillouin Zone (BZ). Kohn-Sham states wereaexied in plane waves up to
30 Ry cutoff. Norm-conserving pseudopotentials with otlg butermost s and p electron in
valence were used. Atomic positions were relaxed until treels were smaller than10~*
Ry/a.u.. The PBE functional was employed both with and withthe semiempirical vdW cor-
rections. Phonon dispersion relations have been obtanEdurier transforming the dynamical
matrix computed on a 6x6x6 MP grid in the BZ. The phonon disjperrelations along the high
symmetry directions of the conventional hexagonal celteperted in Fig.3.21. As for GST the
vdW corrections do not significantly affect the acoustic e®dnd low energy optical modes
while causes a blue shift of nearly 10 cthin the highest frequency optical modes.

Structural parameters PBE | PBE+vdW | Exp.

a (A 4316 | 4.219 | 4.264
c(A) 31.037| 30.692 | 30.458
X 0.785| 0.786 | 0.787
y 0.397 | 0.397 | 0.399

Table 3.5: Structural parameters of crystalline b3 computed using the PBE approximation
with and without vdW correction compared with experimeiakzia.
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Figure 3.21: Phonon dispersions of crystalline Sle; along high symmetry directions of the
hexagonal cell calculated with PBE with and without vdW ection.
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3.3.2 Thermal conductivity of SboTes

The lattice thermal conductivity at 300 K has been computgd RBE+vdW phonons. An-
harmonic force constants have been computed with the LDAtiomal on a 4x4x4 g-point
phonon grid on the BZ, for the elementary cell at the PBE+vdyilérium parameters. A
Fourier interpolation over 15x15x15 mesh and a smearing ai2! has been used for the
variational Boltzmann optimization.

The cumulative lattice thermal conductivity within the SMA SkyTes as a function of
phonons frequency as well as average group velocity, phéfegsimes and mean free paths
are shown in Fig. 3.22.
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Figure 3.22: a) Cumulative lattice conductivity of $be; at 300 K within SMA, b) averaged
group velocity c) lifetime and d) mean free path.

The results ar&,=0.7 W/m K, kKx=2.0 W/m K, andka= 1.6 W/m K. These results are in
good agreement with the experimental valueg= 1.3 W/m K reported in Ref. [121] and 1.8
W/m K of Ref. [146], obtained by subtracting the electrorfierimal conductivity estimated
from the Wiedemann-Franz law from the measured total theocmaductivity. As for GeTe
and GST, thermal conductivity of $be3 presents a strong anisotropy in directions parallel and
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perpendicular to the ¢ axis as a consequence of the presémasak bonds across the vdwW
gap. In SbTes the contribution of optical modes to the thermal conduttiia marginally more
important than in the previous cases and contributes up%a 35

3.4 InSbTe Alloys

The In-Sb-Te (IST) alloys have recently attracted a comaiale interest for phase change
memory applications as an alternative to the most widelg G®Sh, Tes compound because of
its higher crystallization temperature. Moreover, theyenbeen suggested as promising candi-
dates for multi-level PRAM because IST alloys demonstratable multi-phase change mech-
anism from the amorphous to a cubic phase, leading to meiitgdistance levels.

In3Shy Tey is particularly interesting because of its high melting pemature of about 650C
[147], close to that of GST and an amorphous phase that shawsyahigh stability with a
crystallization temperaturesTof about 292°C [148] compared to the value of 12C of GST.

Moreover, InSkh;Te; has recently been grown in form of nanowires within the Sgeap
project, opening the possibility of new developments iragitaled devices and core-shell multi-
level memories.

3.4.1 Thermal conductivity of In3gSb1Tes>

In3Sy Tey crystallizes in a rocksalt geometry with In fully occupyioge sublattice and
an expected disordered distribution of Sb and Te on the athklattice. Such a high level
of disorder can bring the lattice thermal conductivity toaue close to the minimal thermal
conductivity as occurs in cubic and hexagona&® Tes that also show a mostly random mass
distribution in the Sb/Ge sublattice. Therefore, we coragythonon dispersion relations of
crystalline ISh; Te; and we estimateky;, as given by Eq.3.3.

To this end we did not included explicitly the disorder butrvedeled the disordered cubic
phase by an ordered hexagonal 6-atom supercell mimicken§BC stacking of atomic planes
along the [111] direction of the cubic phase. The In-Sb-¢ak1-Te- stacking was chosen. Cal-
culations have been performed by means of DFPT and normcong@seudopotentials. Plane
waves expansion of Kohn-Sham orbitals up to 35 Ry and the BREf{inctional were used.
The geometry of the unit cell was optimized by fixing the ctéoraf the hexagonal cell in order
to mimic the cubic-like geometry of the real disordered sgstA 8x8x4 grid was used for the
integration of the BZ and the semiempirical vdW [87] was usdtk resulting equilibrium lat-
tice parameter turns out to be 6.05 A which is close to the ix@atal value of 6.126 A [149].
The phonon dispersion relations for the model of crystallmSh, Tey, calculated starting from
a 6x6x4 g-points mesh, are shown in Fig.3.23.

The transverse and longitudinal sound velocities averaxyed the different directions of
the Brilluoin Zone are/;= 1900 m/s andyp =3100 m/s respectively. By plugging in the Cahill
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Figure 3.23: Phonon dispersions of 48b; Te, along high symmetry directions of the hexagonal
cell calculated with PBE including vdW correction.

formula the resulting sound velocities and the atomic dgrsiminimum thermal conductivity
of 0.42 W/m K at 300 K was obtained, which is much smaller thenalectronic contribution of
about 23 W/m K estimated from the measured electrical candiyq150] of 3.2 1¢* S/cm at
25°C and the application of the Wiedemann-Franz law. The Rttantribution to the thermal
conductivity of crystalline 18Sh; Tey is therefore negligible.

3.5 Conclusions

In summary, the bulk thermal conductivity has been compuotedhe basis DFT calcula-
tions for crystalline GeTe, Sbhes and GST. These calculations allowed us to identify the ori-
gin of the great variability in the experimental data for @eand the origin of the glass-like
thermal conductivity in GST providing an indirect proof betdisordered structure of hexago-
nal GeShkyTes. Thermal conductivity of GeTe has been computed also withnaptementary
method, using a Neural Network potential and non-equilitorimolecular dynamics simula-
tions. These calculations proved on one hand the religlmfithe NN potential in predicting
thermal properties of crystalline GeTe and on the other lsapgorted the approximations used
in the treatment of vacancies and disorder in the DFT cdiculs. Moreover, the MD simula-
tions have also shown that non-linear effects in the thewguoatuctivity are negligible up to
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very high thermal gradients of about 30 K/nm such as thossepten PCM devices. Finally,
an estimate of thermal conductivity ofd8l, Te, was also given based on the minimal thermal
conductivity model and ab-initio phonons.



4 Thermal Boundary Resistance

The thermal boundary resistance (TBR) between the cristadihd the amorphous phase of
the active medium and between the active medium in PCM andutreunding dielectrics or
metallic electrodes are crucial parameters for the cowmtirtthermal cross-talks with adjacent
cells which may arise during memory programming. A large TdaR also lead to a reductionin
the programming current thanks to heat confinement efféd¢®][ The complete electrothermal
modeling of PCM operation requires the knowledge of the TBRiferent interfaces which
are often difficult to measure accurately at the operatiomlitions of the device.

Solid A Solid B

Heat flux

d)
Ree
Electrons Electrons
RQP R.ep

Phonons Phonons

Rpp

Figure 4.1: Thermal boundary resistance, defined as the temperatue gtithe interface for
a fixed heat flux, and the three mechanisms responsible @y jithonon-phonon contribution,
b) electron-electron contribution and c) electron-phonontribution. The sum of all the con-
tributions are given as parallel and series resistancearial).
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The TBR also named Kapitza resistarRé&etween two media at the interface sketched in
Fig. 4.1 is defined bR = % whereT, andT, are the temperatures in the two media in prox-
imity of the interface. In the most general case we would ek{lee presence of both electronic
and lattice contributions to the TBR. In particular we woealgbect three processes to contribute
to the thermal boundary resistance as shown in Fig.4.1a-c.

The first contribution comes inevitably at every interface do mismatch in the vibrational

modes of the two materials and the resulting phonon-phocaitesing (Rp). The second con-
tributions, important in the case of an interface betweengaod conductors is due to the direct
transfer of heat from electrons crossing the interface atglas a parallel channel of resistance
(Ree)- The third contribution (&), that can be seen as a resistance in series with the phonon-
phonon channel, is particularly relevant at the interfaggvieen an insulator and a conductor.
It originates from the fact that at the metallic side of thierface an energy transfer from elec-
trons to ions has to take place to allow for the phonons testearheat across the junction.This
is possible because a non-equilibrium steady state isle$tat), in which the temperature of
the electronsT) is higher than the temperature of the iofiis)(as sketched in Fig. 4.2.
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Figure 4.2: Temperature profile of the electronsefTand ions () at the metal/non-metal
interface crossed by a heat flux densifyaccording to the theory of Majumdar and Reddy
[59]. Rpp = ATp/a=(Tp — T2)/q is the phonon contribution to the total thermal boundary
resistanceR = (T; — T2)/q. The electronic contribution due to electron-phonon cimgpis

Rep= (T1 —Tp)/a.



4.1 Thermal boundary resistance at GeoSbyTeg interfaces 81

Majumdar and Reddy [59] developed a theory to cope with fifesethat provides an expres-
sion for the thermal boundary resistariRgiven by the sum of a phononi®§,) and electron-
phonon Rep) contribution:

Ke 3 1
R=R =R —)2, [ —— 4.1
pp+ Rep pp+(K) \/GKph (4.1)

wherek = Ke+Kph is the total thermal conductivitye andk pn are the electronic and phononic
contribution to the thermal conductivity, afyp,= AT/ (Fig. 4.2).

Repis controlled by the paramet&; defined b;% = —G(Te—Tp), whereE is the electronic
energy density andis the time. The paramet&rcontrols the electron to phonon energy transfer
rate per unit volume, which depends on the electron-phomaiplcag constanh and on the
electronic density of states (DoS) at the Fermi IeNdEg) as [103]

G = 1kghh < @ > N(EF) (4.2)

where< «? > is the second moment phonon spectrum according to McMiRatthe contact
between two metals an electron-phonon contribution to R & present at both sides of the
interface (Rpand Rp) in Fig. 4.1

A microscopic insight into the different contributions teetTBR is of great relevance to aid
the search for better performing materials for PCM and tarexey their properties. Unfortu-
nately, this information can hardly be accessed experialgniVe estimated these different
contributions for some of the most typical interfaces in P€&lls.To this end, we used DFPT
calculations to estimate phonons and electron-phononlioguie compute Ry, The phonon-
phonon contribution R, has been computed either with a phenomenological modediffase
mismatch model (DMM), briefly outlined in Sec.4.1.2 or by mea&f non-equilibrium molec-
ular dynamics for the particular case of the amorphoustalyse interface of GeTe for which
a reliable interatomic potential is available (See Secl}.6

4.1 Thermal boundary resistance at Ge,SboTes interfaces

GeShTes is the compound most widely used in PCM applications, thenthéboundary
resistance at the interface between GST and other mateaaishonly present in the device
is thus of great practical importance for the electrothémmadeling and for the performance
improvement of the memory cells.

The hexagonal crystalline GST is a degenerate p-type sechicbor [141] in which heat
is carried by both electrons and phonons. Therefore at theacbbetween hexagonal GST
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(hex-GST) and a dielectric, thermal resistance consisteesum of the phononidp) and
electron-phononRep) contributions which act as series resistances [59]. Atrtteaface with a
metal the direct electronic contributid®e is also in principle present.

Experimental data are actually available for the TBR at tiierface of GST with silica [9]
and with several metals including TiN and Al [54, 151] but nformation is available on the
relative contribution of phonons and electron-phonon tiagpo the total thermal boundary
resistance.

The contribution to the TBR from electrons crossing therfiatee R can be estimated from
the measured electronic contact resistance and the ictrf&iedemann-Franz law d&e =
pe/(LoT) whereL, is the Lorenz number (2.44 \@ K2 ) and T is the temperature apg the
contact electric resistance (See Sec.1.2).

At the interface between hex-GST and the metals used in thea$e(TiN or TiW)pc is typ-
ically rather high (about 10’ cn¥ ) as measured in Ref.[54, 152]. Thus the resulting values of
Reeare typically very large (1dm? K GW~1) compared to Bp and Rp. The parallel channel
for heat transfer given by &can thus be safely neglected.

To gain microscopic insight into the different contributoto the TBR, we computed by
DFPT the electron-phonon interaction in hexagonal GST wallows us to estimate the electron-
phonon contribution to the TBR as described in Sec.4.1.&. giononic contribution to the
TBR at the interface with Al, TiN and amorphous silica is cartgal within the Diffuse Mis-
match Model (DMM) [56] from the full phonon dispersion retats according to the theory
developed of Chen [153] as briefly outlined in Sec.4.1.2.

4.1.1 Electron-phonon contribution to the thermal boundary resistance at
the interface of GST with metals and dielectrics

In order to estimate the electron-phonon contribution &fBR is essential to determine the
electron cooling rat& given by Eq.4.2 which requires the knowledge of the dendistates at
the Fermi level and the electron-phonon coupling constant.

The electron-phonon coupling constantan be computed by means of DFPT as

L [*0%F(w)
}\_2/0 — (4.3)

wherea?F (w) is the Eliashberg spectral function which measures theritoibn of phonons
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with frequencyw to the electron-phonon coupling:

GZF((,Q) = IN(EF) C%6((@— Wyv) X
S 8(g,—Er) | g"M(kav) [ 8(gg, g — EF) (4.4)

—

k,n,m

where the first sum runs over phonon bands at frequeggywhile in the second sum the index
n,mruns over electronic states at energigs andshd - N(EF) is the electronic density of

states of both spins per cell at the Fermi enéigyandg”vm(ﬁqv) is the electron-phonon matrix
element. This is given in turn by

g"M(kav) = (Ukgqm | M™20VgtEvq | Uk.n) (4.5)
200g,v

whereM is the atomic mass matrix ,, is the periodic part of the KS statg,q is the normal-
ized eigenstate of the dynamical matrix, amMQﬁ is the derivative of the Kohn-Sham effective
potential with respect to the atomic displacement causedl fliilyonon with wavevectar. The
Eliashberg function provides also the average phonon éegyuaccording to McMillan enter-
ing Eq.4.2 as

2
2 JwoF(w)dw
Sw = a2F (w)dw
w

(4.6)

For the hex-GST, the electron-phonon matrix elements argated by means of DFPT on a
dense 64x64x3R-points grid and a 64x64x3¢-point grid. The twad functions containing the
electronic energies were replaced by order one Hermites&smearing function with different
value of variance ranging from 0.002 to 0.05 Ry [154].

We first considered the stacking proposed by Petrov with agng) of 3- 10%° holes/cni
close to the experimental value (cf. Sec. 3.2.1). The eaatand structure and the electronic
DOS close to the Fermi level are shown in Fig. 4.3 whittEg )=0.9257 states/(eVcell).

The calculation of the electron-phonon coupling yield®.11, and < «? >)2=97.5 cnr'?
from which we can estimate from Eq. 4.2 a valuessf3.75- 101° W/(m?® K). To obtain a fairly
converged value, eliminating the dependence fidf&r ), the value ofA is obtained by mul-
tiplying A/N(Er) by a more accurate value b Er) computed using the tetrahedron method
over a uniform 96x96x48-point mesh. We estimated a total erroiibelow 11%. Note that a
value ofA=0.1 for the similar hexagonal Gegle, was also estimated from experimental data
on magnetoresistance [155].
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Figure 4.3: Electronic bands along the high symmetry directions of ttikdBiin Zone of hexag-
onal GeShyTes in the stacking of Ref. [70] with p-doping of-3L0?° holes/crd. The Electronic
density of states close to the Fermi level (zero of energyhefoptimized cell are reported in
the central and right panel for the stackings of Refs. [7@}1#) and [138] (Kooi) respectively
with the same p-doping used in the band calculation. Theityenisstates at the Fermi level is
3.34- 10%! states/(eV cr) or 3.62- 10%! states/(eV cr¥) for the stackings of Ref. [70] (Petrov)
or Ref. [138] (Kooi).

We also computed the value Nf Er ) for the Kooi stacking ( see Sec.3.2.1 and Ref. [138]). To
this end the cell parameters have been optimized by indpaliran der Waals (vdW) correction
according to Grimme [87] which ensures a stable structudeasribed in Sec.3.2.1. We got a
value ofN(Er)=0.9404 states/(eVcell). Thus, we obtained(Er)=3.3410%! states/(eV cr¥)

or 3.6210°! states/(eV cr) for the Petrov and Kooi stacking respectively, which assign
uncertainty inN(Er) below 10 %.

By plugging in Eq. 4.1 the calculated value Gffor the stacking of Ref. [70] and the experi-
mental values for the electronic and phononic contribitorthe thermal conductivity.=0.87
W/m K andkp=0.42 W/m K from Ref. [54], we finally obtained an electronmntribution to
the thermal boundary resistanceRf= 14.0 nmfK/GW. Actually Ke is obtained in Ref. [54]
from the electronic conductivity and the application of #edemann-Franz law an, is
then obtained from the measured total thermal conducti#tye+k . The hole concentration
in the hexagonal GST samples measured in Ref. [54] rangesdr®- 10° cm 3 to 1.5- 10%°
cm~3. Note that, by assuminky/N(Eg) only slightly dependent oN(E), the factor(Gk p)%l

in the expression foRep (cf. Eq. 4.1) scales as(Eg)~* and thus only mildly on the hole con-
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centration a$1g1/3. The value oRep= 14.0 nfK/GW is in the same range of the experimental
values for the TBR at the interface between hex-GST and TIN#110 2K/GW) [54]. The
electron-phonon contribution to the TBR is thus not neglgfor GST.

As discussed in Sec.4.1 the electron-phonon contributotné TBR inside good metals
(Rep cf. Fig. 4.2) like Al and TiN is negligible. The contributioto the TBR due to direct
electron-electron coupling is also negligible as alreddtesl in Sec.1.2 and thus the total ther-
mal boundary resistance for all the interfaces that we cemed reduces to the SUR¥Rep+
Rpp- In the next section, we report the calculation of the phoommtribution R, which will
provide the total TBR to be compared with experiments.

4.1.2 Lattice contribution to the thermal boundary resistance at the
interface of GST with metals and dielectrics

The phonon-phonon contribution to the TBRy,JRhas been computed with the phenomeno-
logical Diffuse Mismatch Model (DMM) by taking into accouttte full phonon dispersion
according to the scheme proposed by Chen [153] to which wex fef all the details. This
approximation yieldsRpp = 4/(Ta-8Cvy,) Where A and B refer to two media an€yy is

group velocityvg weighted by the phonon heat capacity averaged over all phbaads as

Cvy =73, fBzg%ghoq,(q)vg(v,q)w where fg is the Bose function. The transmissivity

Ta_sp at the interface for phonons incident from medi&rto mediumB is written in turn [153]
asTaB = Cvyg/(Cvgs +Cyyg)-

To computeRpp at 300 K, we used the DFPT phonon dispersion relations foreGaTand
TiN. Phonon dispersion relation were computed in the fraorkwf DFPT as implemented in
the Quantum-Espresso suite of programs [73] with the PeBieske-Ernzerhof [81] functional
for all the materials.

The lattice parameters, the hole concentration (0.084sle®#) and the details of the self-
consistent and linear response calculations are the sathesesreported in Sec.3.2.1.

We used a norm conserving pseudopotential for Al and VanidéHbrasoft [82] pseudopo-
tentials for Ti and N. Kohn-Sham orbitals were expanded ifeag@waves basis up to a kinetic
cutoff of 20 Ry for Al and 30 Ry for TiN with a charge density otftof 450 Ry. The BZ integra-
tion for the self-consistent electron density was perfatoeer a 12 12x 12 Monkhorst-Pack
(MP) mesh [135]. A Gausssian smearing of 0.05 Ry was usedIfané& 0.02 for TiN.

Both Al and TiN crystallize in a fcc structure, the theoratiequilibrium lattice parameter
resulted to be a=4.059 A for Al and a=4.29 A for TiN to be congpbwith an experimental
lattice parameter of a=4.049 A [156] and a=4.24 [157] A.

The dynamical matrix was computed within DFPT on a 4x4x4amif g-points mesh in the
BZ for Al, a 6x6x6 mesh for TiN.
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Figure 4.5: Phonon dispersion relaxation of TiN along high symmetredions.

The resulting dispersion curves are reported in Fig. 4.4ahtbr Al and TiN. For amorphous
silica, which has a Debye temperaturefpt=500 K [158] much higher than that of GST (136
K), we adopted the Debye approximation for the phonon dgp$ttates with the experimental
transverse and longitudinal sound velocitiesp£3.7 km/s andy =5.8 km/s [159] which yields
CV(T) ~ C(T Vg = 3(vi + 2vr )nksxg> [3° wx"i—é(l)zdxwheren is the atomic densityp = 6p/T
andT is the temperature.
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To check the reliability of the Debye approximation for aptoous silica we compared the
results of the Debye approximation with that of fully abtimicalculation in the similar but
more easily accessible systerquartz.

For a-quartz we used the Local Density Approximation (LDA) to thehange and correla-
tion functional. Norm conserving and Vanderbilt Ultrag@®2] pseudopotentials were used for
Si and O. Kohn-Sham orbitals were expanded up to a kinetwffcd$ Ry with a charge den-
sity cutoff of 450 Ry. The BZ integration for the self-cortsist electron density was performed
over a 6<6x6 mesh. The dynamical matrix was computed within DFPT on a4xhiform
g-points mesh in the BZ. The theoretical lattice parametéiguartz in the hexagonal (space
group P 32 2 1) phase are a=4.89 A c=5.41 A to be compared véthxperimental values of
a=4.91 A ¢=5.40 A (exp. ref. [160]).

100 200 300 400 500 600
Temperature (K)

Figure 4.6: Ratio betweerCvy from full phonon calculation and Debye approximation éor
quartz.

In Fig. 4.6 we report the ratio betwe€hy values as a function of temperature for quartz
computed from the full phonon dispersion relation and fromDebye approximation with the
Debye temperature of 590 K and an average velocity of soud89® m/s.

Even if, similarly, the use of the Debye approximation canktoduce an error up to a factor
2 in theCyvqy of amorphous silica, it implies an error of at most 12% in tf&RTbetween silica
and GST.

TheCyy values as a function of temperature for hex-GST, amorphitioa,sAl and TiN are
shown in Fig. 4.7.

The temperature dependence of the DMM contribution to thR 1@ GST/AI, GST/TIN and
GST/silica are reported in Fig. 4.8.
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Figure 4.7: The Cvy values as a function of temperature for quartz computed fitwenfull
phonon dispersion relation or within the Debye approxiorati
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Figure 4.8: Temperature dependence of the phononic contribution tahteemal boundary
resistance (TBR) at the GST/SIOGST/Al and GST/TIN interfaces computed with the DMM
model. The total TBR is obtained by summing the electronapinacontribution of 14 fK/GW

to all the curves.
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Taking into account the values obtained above and theénhtribution calculated in the pre-
vious section the total TBR at 300 K is 20.PKIGW for hex-GST/silica, 19.8 RK/GW for
hex-GST/Al, and 19.7 RK/GW for hex-GST/TiN. In the case of hex-GST/TiIN the caldath
TBR (19.7 nfK/GW) is in very good agreement with the experimental valiEo+ 10 nPK/GW
of Ref. [54]. In the case of the other two interfaces the thBoal TBR is largely lower than
the experimental value of 88 2 m?K/GW for hex-GST/Al [151] and 116 RK/GW for hex-
GST/SiIG [161].

It is worth noticing, however, that in the same experimeniatks a value of 6t 2 nPK/GW
for c-GST/AI [151] and of about 5 RK/GW for c-GST/SIQ [161] are reported. These values
are very close to th&y contribution of about 5-6 AK/GW computed here from the DMM
for the interfaces with hex-GST (cf. Fig. 4.8). Because ef shmilarities between the phonon
spectra of the cubic and hexagonal phases, we might assatéhcalculated values &,
might also apply to the interfaces with c-GST.

On the other hand a precise estimate of Rag contribution for c-GST is difficult because
of the disorder in the cubic structure. However, we mighetak a reasonable estimate for
in c-GST the value of 0.1 obtained from magnetotransportson@snent in cubic GeSibey

in Ref. [155]. An electron densiti(Er) of about 3.6 10°%(eV cn?) can be obtained in turn
from the experimental hole concentration of B3'Y/cm? [141] and the hole effective mass of
2.06me obtained in Ref.[162] from DFT calculation of 270-atom sigedl . By plugging in Eq.
4.2, these latter numbers fdrandN(Eg ) and from the experimental valuesiaf= 0.04 W/m K
andk ,=0.45 W/m K for c-GST [54] one obtaiRep, ~ 2.3 mPK/GW for c-GST. The theoretical
total TBR of about 8 fiK/GW for c-GST/Al and c-GST/Si@is thus in good agreement with
the experimental vales [151, 161].

This means that the large underestimation of the TBR for the ®ST/Al and hex-GST/Si©
interfaces must be actually traced back to a strong noriiigleathe real interfaces. As a matter
of fact, the interfaces of Al and silica with hex-GST are ah¢a by heating the stacks initially
formed with as-deposited amorphous GST. The amorphou ginsiscrystallizes at about 400
Kinto c-GST and then turns into hex-GST only above 580 K wiseézable mass interdiffusion
is expected to occur at the interface. Indeed, it was shovRein[151] by using the DMM and
a 2 nm thick interface the value 8, raised by an order of magnitude to about 108KAGW.

A similar effect might occur at the hex-GST/Sithterface.
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4.2 Thermal boundary resistance at GeTe interfaces

We studied the interfaces between GeTe and the most commeemiatgused for electrical
contacts in the devices, such as TiN and Al, and surroundilgatrics such as SiD

Since crystalline GeTe is a degenerate p-type semicongattine interface with a insulator
like silica we have to consider two contribution to thermalhdary resistance, one coming
form the phonon-phonon processes and the other due theoslectontribution which rise
from electron-phonon coupling.

The same electron-phonon contribution is expected at tieefate between amorphous and
crystalline GeTe since the crystal is metallic while the gohous is insulating. This interface
can be considered as a prototypical example of the intesfaeéwveen the two states of the
active media in PCM devices in which the TBR, especially duthé presence of the.Rterm,
may not be negligible and might play and important role in tleat confinement during the
formation of the amorphous dome.

At the interface between GeTe and a metal, another eleginonon coupling terrﬁ?eparises
in series withRep andRpp (cf.4.1). In the case of a good metal, however, the eleatrdan-
sity of statedN(Er) is large makingR/ep negligible with respect t&®.p andRpp in GeTe as we
have discussed in the previous section for GST. Finally dmrtbution of the parallel channel
constituted by the direct electron-electron contribufiag present only at the interface with a
metal, could be estimated from the application of intedbBé/iedemann-Franz law once a mea-
sure of the electronic contact resistance is availablenAte high value of electrical contact
resistance given in Ref.[51] between GeTe nanowires artl@uod the measurements of elec-
trical contact resistance in similar materials such as G&J e assumed that the contribution
from the electron-electron channel can be consideredgibtgialso for the interfaces with bulk
GeTe.

4.2.1 Electron-phonon coupling and electronic contribution to the thermal
boundary resistance

To compute the electron phonon-coupling and hence therefephonon contribution to the
TBR we used the PBE functional at theoretical equilibriuttida parameters. The details of
the calculation and the parameters used in the structudgblaonon calculation are reported in
Sec.3.1.1. We performed the calculations for the two exteof holes concentration reported
in literatureny; =8 - 10'° holes/cnd andnpp=2.1- 10?1 holes/crd. As previously described, the
p-doping is introduced by removing electrons and by neiairey the system with a uniform
positive background. The electronic band structures anditjeof states corresponding to the
two doping cases are reported in Fig4.9.

The electron-phonon matrix elements are computed by mdddBSRT on a 6<6x6 g-point
grid for the phonons and on a dense ¥332x 132k-points grid for p; and 96<96x 96 k-point
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Figure 4.9: Electronic bands along high symmetry directions and edeatrdensity of states
(DoS) of trigonal GeTe. The DoS does not change by hole dopmthe scale of the figure.
The position of the Fermi level is indicated by a dot-dastaaiskied) line for hole concentra-
tion Ny=8 - 109 holes/cnd (Nnp=2.1- 10?! holes/cnd). The DoS has been computed with the
tetrahedron method on a 160x160x160 mesh.

grid for ny for the electrons. The twdfunctions containing the electron band energies were re-
placed by order-one Hermite-Gauss smearing function witardnt value of variance ranging
from 0.1 to 50 mRy [154]. Most of the variation of the valuexolvith the size ok andg-point
meshes can be ascribed to fluctuations in the density okstiaitthe Fermi level. The quantity
aF (w)/N(Eg) thus converges faster with the size of thandg-point meshes [163]. Then the
value ofA is obtained by multiplying\/N(Er) by a more accurate value df(Ex) computed
using the tetrahedron method over a uniform £&60x 160k-point mesh. We estimated a total
error inA below 10% coming from the uncertaintiesNiN(Er ) quantified by the convergence
with respect to the smearing and thgoint meshes shown in Fig. 4.10.

The Eliashberg function and the phonon density of statesep@ted in Fig. 4.11 for the two
doping levels. The electronic density of states (DoS) de¢slepend on the hole concentration
in the range considered here as shown in Fig. 4.9. The avetageon frequency according
to Eq. 4.6 is(< w? >)2 = 10525 cnrt for ny=8-10° holes/cni and (< w? >)2 = 87.02
cm? for npp. As shown in Fig. 4.9, an increase ip simply shifts the Fermi level deeper in
the valence band with no significant changes in the DoS. latiem of a?F (w) leads to very
similar values of\ /N(Eg) for the two doping levels, namely 0.816 (states/eV/célfpr both
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Figure 4.10: Dependence of the electron-phonon coupling const@Nt(Eg ) on the smearing
parameter (mRy) of the Dira&functions in Eq. 4.4 for the low and high doping systems.

N1 andnpe. The DOS at the Fermi level is in turn 0.094 states/eV/call @632 states/eV/cell,
which yieldsA=0.077 fomy; andA=0.51 forn,,. SinceA /N(Er) is poorly dependent of the hole
concentration, it is possible to estimate the valua at different doping levels by multiplying
our result forA /N(Eg) with the actual density of state at the Fermi level.

The paramete@ (Eg. 4.2) has been computed for the two representative looleanitrations
Nh1=8 - 10 holes/cni andnpy=2.1- 10%! holes/cnd (cf. [130, 131]) from the value ok and
() discussed above. The values®is 1.43- 10° GW/(m? K) for np; and 4.5 10" GW/(m?® K)
for npy . By using the phononic thermal conductivigy, ~ 3.2 W/m K as calculated in Sec.3.2.2,
the ratioke/k can be chosen such that the prefacﬁt(yiK)% in Rep (cf. Eq. 4.1) is in the range
0.080< (Ke/K):‘z3 < 1 where the lower extreme corresponds to the low values0.73 W/m K
for the sample measured in Ref. [51]. By plugging these nusiingo formula 4.1Rep falls in
the range 1.2-14.8 fiK/GW for np; and 0.21-2.6 fK/GW for npy.

Note that the sample with hole concentratipg= 8 - 10'° holes/cni measured in Ref. [130]
displays an electrical resistivity @g=1.4- 10~% Q cm while in another work [164] Hall mea-
surements on samples with the same resistivity of apedt4- 10~% Q cm yielded a much
higher hole concentration of -8L.0°° holes/cnd due to a different hole mobility. In fact, it was
shown (see Figs. 1 and 2 in Ref. [165]) that the resistivitgyas a monotonic function of the
Hall carrier density [165]. Note that different holes poikevith different effective masses are
progressively filled by increasing the hole content (cf. Bi@) which also opens new channels
for intervalley scattering.
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Figure 4.11: Phonon density of states (DoS) and Eliashberg functicii (w)/N(Er)
(states/cm?/cell)~t for GeTe with hole concentrations of a);=8- 10 holes/cni and b)
Nhe=2.1- 10?1 holes/cnd.
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The estimate oRp for a specific sample thus requires the measurements ofripogor
N(Eg) by whatever means) and. eventually fromp and the application of the Wiedemann-
Franz law. For the specific sample of Ref. [130] for which bath(8 - 10'° holes/cni) andp
(1.4-10~* Qcm) are known we can estimakg=5.22 W/m K from the Lorenz numbér,=
2.44.10°8 WQ/K andke=LoT /p for T=300 K, which finally yieldsRep= 7 mPK/GW. This
value is of the same order of magnitude of the TBRs measurttgk anterface between phase
change materials like GST and metals and thus it is not agiblgiquantity. Just to give a term
of comparison a TBR of 10 AK/GW is equivalent in thermal resistance to 14 nm of silica or
190 nm of TiN.

4.2.2 Lattice contribution to the thermal boundary resistance between
GeTe and electrodes or dielectrics

To give a complete picture of the TBRs in a device we computedohononic contribution
Rpp for the three interfaces GeTe/Al, GeTe/TiN and GeTe/silidae first two are common
materials for the electric contacts and the heater whileldeeone is the material in which
the active medium is commonly embedded. As for GST we usedithese mismatch model
outlined in Sec.4.1.2 to estimatg )R The computational details for GeTe are the same reported
in Sec.3.1.1 while the details for Al, TiN and silica are rgpd in Sec.4.1.2.
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Figure 4.12: Temperature dependence of the phononic contribution tdhdenal boundary
resistance (TBR) at the GeTe/Si@eTe/Al and GeTe/TiN interfaces computed with the DMM
model.
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The results for the phonon-phonon contribution to the TBRG@&Te/Al, GeTe/TiN, and
GeTel/silica, calculated within DMM contribution are refamr as a function of temperature
in Fig. 4.12. Summing up the electron-phonon contributialtalated in the previous section
we can thus estimate a total thermal boundary resistaneeebat6 and 12 RIGW. The only
experimental data available are the measurement of a tBfal df 80 n¥/GW relative to the
GeTe/SiQ interface reported in Ref.[51]. The large value observgokedarmentally might be
ascribed to a bad quality of the interface as discussed il Sefor the interfaces of GST.

4.2.3 Thermal boundary resistance at crystalline/amorphous GeTe
interface.

In Sec.4.2.1 we have estimated a non-negligible contobu the TBR in GeTe and GST
from the electron-phonon term. Since this term is also prieaethe interface between crys-
talline and amorphous phases the total TBR among these taseplof the same material
cannot be neglected. Moreover a lattice contribution catden from the mismatch in the vi-
brational modes of the two phases. In the case of GeTe, theoplsof the amorphous phase
display a softening in the acoustic branches, with respetttd crystal, due to a lower density
and a stiffening in the highest frequency region due to theeamnce of phonons at about 200
cm1, localized on the GeTeetrahedra [12, 30, 166]. Furthermore, while in crystallBeTe
the thermal conductivity is due to propagating phononsdthatbe described within the Boltz-
mann transport equation, in the amorphous phase the hegrsare mostly non-propagating
delocalized vibrations (diffusions) [116, 137].

Since for GeTe we had a reliable potential [12] able to adelyalescribe the interactions
in every GeTe phase and the interplay different phases, wegldpr a direct simulation of the
GeTe crystalline/amorphous interface.

To study the lattice contribution to the TBR we used the RNE&theme proposed by Miller-
Plathe [11] described in Sec2.5. The simulations were padd with the NN code RuN-
Ner [74] by using the DL_POLY v2.19 [75] code as MD driver. Timae step was set to 2 fs.

We considered two interfaces, one lying on the (0001) ciys¢égplane and a second in the (2
1 10) crystalline plane in the hexagonal notation for the Ga¥stal. For the (0001) interface
we used a supercell with dimensions of 50.1 A x 49.6 A x 348.5alenby a junction between
a 28.6 A x 24.8 A x 249.5 A cell of the bulk crystal and a 28.6 A x@A x 99.3 A cell of
the bulk amorphous phase. The length alongzki&ection of the amorphous and crystalline
regions is comparable to the typical size of an ultra-scBIEM device. In order to allow the
interface to adjust, the supercell was then annealed at 500 20 ps and then quenched again
at 300 K in 20 ps. We considered the ideal stoichiometric caumg, without defects.
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Figure 4.13: Temperature profile in the NEMD simulation of the junctiortivibeen the amor-
phous and crystalline phases of GeTe. The heat sink andesatecseparated by 33 nm. The
interface lies on the (0001) crystalline plane in the hexadjmotation. The heat flux is 1.62
1078 W.

The steady temperature profile reached in about 2.2 ns ofaioniis shown in Fig. 4.13.
A temperature jump at the interface can not be clearly ifiedtin Fig. 4.13. If any, it is smaller
than the temperature fluctuations still present in the mddel to its finite size. We repeated
the simulations for the (i IO) plane with similar results. We can thus set an upper lmit
Rpp for both interfaces of about only 23K/GW. The dominant contribution to the TBR of the
amorphous/crystalline interface of GeTe is thus due totelaephonon interactions yielding a
value of 7 nTK/GW.

4.3 Conclusions

Atomic simulations allowed to identify the different caibitions to the TBR at the inter-
face between GST and GeTe with metals and dielectrics in P@ntes. Due to the low but
not negligible metallicity of GST and GeTe, a large conttiba to the TBR arises from the
electron-phonon coupling €g). The sum of the B, term with the phononic contribution ()
computed from DFPT phonons within the diffuse mismatch mpdevides a good agreement
with experiments for the TBR at the interfaces of hex-GSThwiit and TiN of c-GST with Al
and silica. A bad agreement between theory and experimamntsifer interfaces can be ascribed
to non-idealities (such as interdiffusivity or roughnesfisthe interface. The theoretical value of
ReptRpp computed here thus represent a lower bound for the acteafaces.



5 Surface phonons of SboTez and BixSes

Besides being a fundamental building block of chalcogeallbs's exploited as phase change
materials and a well known thermoelectric ,3&; has recently attracted a huge interest since
it is, together with BiSe; and BpTes, one of the first materials theoretically predicted and
experimentally confirmed [167] to be 3D topological insatat(Tl). Topological insulators
are a new class of material that exhibits unique properties; present a complete band gap
in the bulk but develops topologically protected metalt&tss at surface whose presence and
properties can be inferred exclusively from the bulk banacstire in which the strong spin-orbit
coupling gives rise to a non-trivial order of the bands [1B&9)].

These surface states, that appears like a Dirac cone arbehepbint, have a particular spin
texture (cf. Fig.5.1) responsible for peculiar propersash as relative insensibility to surface
details and protection against backscattering by non-etagmpurities [168, 169].

Figure 5.1: Spin texture of the surface Dirac cone of a 3D topologicall@®r. The black arrow
indicate one of the equivalent nesting vectors that cosreat sides of the Fermi surface (line).

Electron-phonon interaction mediated by spin-orbit coupls supposed to be the most rel-
evant scattering process for these states of interest fiotrgpic applications. The interest in
the determination of the interaction of topologically mrcted states with phonons motivated
an increasing number of experimental and theoretical watksvever, the conclusions drawn
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in these works are not unique: Angle Resolved PhotoemisSpattroscopy (ARPES) data
[170-172] and some theoretical works [173, 174] suggesteahasmall electron-phonon cou-
pling but surface phonons at the;Big; (0001) surface measured with helium atom scattering
(HAS) and reported in Fig.5.2 revealed a feature in the dgspe relations interpreted as a Kohn
anomaly which would suggest the presence of a strong efeptnonon coupling [175, 176].
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Figure 5.2: a) Experimental HAS data (points) measured in Ref. [175]BieSe; (0001) sur-
face. The lines are the results of an empirical bond-chargdein A scheme of the bulk and
surface projected Brillouin zone is reported in panel b).

To asses the presence and the origin of the proposed anoreagleulated the phonon dis-
persion relation of BiSe; (0001) surfaces by means of density functional perturbatieory.
For the sake of comparison we computed surface phonons 8igfies (0001) surface as well
for which experimental data are not available.

5.1 SboTesz and Bi>Se3 (0001) Surfaces

ShyTes and BbSe; share the same rhombohedral crystal structure descrildgelii3.3.1 that
can be seen as blocks of five hexagonal layers stacked in goersee Te(Se)-Sb(Bi)-Te(Se)-
Sb(Bi)-Te(Se) linked to the other blocks by weak vdW intéicats.

We studied the dynamical properties of,$6; and BpSe; (0001) surfaces in hexagonal
notation by means of density functional perturbation tiigldorm conserving pseudopotentials
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were used for all the elements, the local density approxandgt.DA) [79] for the exchange-
correlation energy functional was used fop8& while the PBE approximation [81] was found
to produce better results for ghes. The theoretical equilibrium lattice parameters were used
The lattice parameters of Shes have already been reported in Sec.3.3.1 while foSBj we
obtained a=4.10 A and c=28.33 A to be compared with the exymerial values of a=4.14 A
and c=28.64 A [156].

Spin-orbit effect are treated self-consistently with yuklativistic pseudopotentials and the
formalism for non-collinear spin magnetization. The Khsinam orbitals were expanded in
plane waves up to an energy cutoff of 35 Ry. The surface washsadby a slab geometry
with 15 layers i.e. 3 quintuple layers (QL) and a vacuum ne@i0 A wide. The surface Brilloin
zone (SBZ), if not specified differently, was sampled ovex&& Monkhorst-Pack grid and
the dynamical matrix was calculated on a 6x6x1 mesh of gtpoirhe surface atomic positions
were relaxed until forces became lower than 0.1 mRy/a.u..

The electronic band structure of the slabs calculated withwaithout spin-orbit coupling
(SOC) is shown in Figs.5.3a and 5.3b fon$&; and BpSe; respectively.
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Figure 5.3: Surface electronic bands of (a) Sle; and (b) BpSe; omitting (left) and including
(right) spin-orbit coupling.
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A small amount of additional charge of -0.03 electron/catl &.02 electron/cell was added
in order to reproduce the typical position of the Fermi lesglorted in [177] and [171] mea-
sured by ARPES. Without SOC the Sie; and BbSe; are insulators even at the surface with a
band gap respectively 0.25 eV and 0.35 eV wide. By includi@gdoth materials present the
gapless, spin-polarized and Dirac cone shaped surfaces laaodnd thé -point, typical of 3D
topological insulators [168, 169].

We first computed the phonon dispersion relations withoat3®C. These are shown in
Fig.5.4 for ShTes and in Fig.5.6 for BiSe;, with phonon densities projected on the first, second
and third layer.
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Figure 5.4: Surface phonons of $bes omitting spin-orbit coupling. The colors represent the
projections on the first, second and third layers accordintpé different polarizations: shear
vertical (SV), longitudinal (L) and shear horizontal (SH).
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Figure 5.5: Experimental data for Shie; (0001) surface obtained by HREELS. Courtesy of
A.Politano and V.de Renzi. The two curves in the bottom paagkespond to two different mo-
mentum transfers corresponding to fhipoint and a neighboring point along thé direction.

The surface spectra of $bes is rather complex, at the topmost part of the spectfava¢ can
find a mode that is mostly shear vertical polarized and laedlon the first and the second layer
with a frequency of 170 cmt; at approximately 1/2 of thEM direction and at 1/3 of th€K
it changes character becoming longitudinally polarizedl @mpletely localized on the second
layer. Two strong resonances are present in the middle pidue gpectrum: the first one starting
at 113 cn1? at thel -point and almost dispersionless and completely localizdlde third layer
and has a purely shear vertical polarization neaf tp@int that turns into a mixed shear-vertical
and longitudinal polarization at the zone boundary. Th@sd®ne, also mainly localized on
the third layer, starts at 101 crhwith a mixed longitudinal and shear horizontal charactat th
gradually gives way to a prevalently longitudinal polatiaa after an avoided crossing with the
upper resonance. At low energies the main features are by flegrshear-vertical mode at 60.5
cm involving mainly the first layer and, at the lowermost endraf spectrum, a shear-vertical
mode localized in the second layer that exhibits the tygiedlavior of the Rayleigh wave but
for the unusual localization on the second layer. At the béstur knowledge there are not
experimental measurements for,$&3 surface phonons in literature to compare with. Recent
unpublished high resolution electron energy loss spedms (HREELS) measurements, per-
formed by the group of V. DeRenzi with the collaboration offAlitano, at and close to the
point are reported in Fig.5.5. The frequencies of the twauies clearly visible in the spectra
fairly agree with those of the theoretical highest, sheatica mode at 170 cm! and of the
strong resonance at 113 cm
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Figure 5.6: Surface phonons of BSe; omitting spin-orbit coupling. The colors represent the
projections on the first, second and third layers accordintpé different polarizations: shear
vertical (SV), longitudinal (L) and shear horizontal (SH).

The results for the surface phonon spectra of 3QL oSBj are very similar to those ob-
tained using one and two QL in Ref. [178]. The upper part ofsiectrum is dominated by the
modes involving the lighter Se atoms. Purely shear ventitahtions of the outermost Se layer
give rise to the highest energy mode (185¢matI"), clearly visible also in the experimental
HREELS data reported in Fig.5.7 with an energy of 23 meMg5.5 cntl). The shear vertical
vibrations of Se atoms which compose the third layer, partieybridized with longitudinal
modes of the first give rise to a sharp resonance around 153.drongitudinal modes local-
ized in the third layer give rise to two bands that cross atnatishe SBZ. One moves from
137 cntt atI down to 88 cnm! along the MK direction, while the other, evident only at the
zone border, is almost flat with an energy around 145 crFinally shear-horizontal modes
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Figure 5.7: Experimental data for BSe; (0001) surface obtained by HREELS. Courtesy of A.
Politano and V. De Renzi. The curves correspond to diffememnentum transfers correspond-
ing to thel -point and neighboring points along thé direction reported in the legend.

of the Se atoms in the first and third layer give rise to a bresémance at 129 cm and two
narrow bands around 133 crhand 97 cn?! that are nearly dispersionless along fid di-
rection while they exhibit an avoided crossing along fitke Modes related to the Bi atom are
clustered at low energy. In particular a shear vertical neatebe highlighted at the lower end
of the spectrum with a strong projection on the second layelaifge q vectors that, as in the
case of SpTes can be ascribed to the Rayleigh wave. These low energy madsd account
for almost all the experimental data obtained by means of HA®ef.[175] (cf. Figs. 5.8, 5.9).
The lowest energy data, in particular along [Hé direction can be ascribed to a mostly shear
vertical vibration of the second layer while most of the geiwith slightly higher energy can
be assigned to two broad longitudinal resonances locabpethe bismuth atoms. The feature
ascribed to the strong Kohn anomaly in Ref.[175] seems tarfed region where there is no
evidence of surface modes but for a shallow shear vertisaln@nce on the first and second
layer with a slightly higher frequency.
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Figure 5.8: Surface phonons of Bse (0001) surface projected on the second layer and on
shear vertical polarization compared with experimentalS-thata. [175]
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Figure 5.9: Surface phonons of Be; (0001) surfaceprojected on the second layer and on
longitudinal polarization compared with experimental Hé&a. [175]
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When SOC is taken into account a topological insulator athiietallic surface states. It
has been suggested that the presence of such states ciiheskaymi level could give rise to
a Kohn anomaly in the surface phonon spectra in correspaedaiithe nesting vector of the
Fermi surface (line) on the Dirac cone (see Fig.5.1). In #lewtation reported in Figs.5.4 and
5.6 we omitted the SOC and therefore there are no surfacdlimstates.

In order to verify the effect of such states on surface phewemrepeated the phonon calcu-
lations at the g-point corresponding to the nesting ve@ky)(by including SOC. We compared
this result with that obtained by discarding the SOC.

To perform these calculations we had to improve the samgifrthe Brillouin zone close
to the Fermi surface which is particularly important to lgs@an eventual anomaly. Given the
peculiar shape of the Fermi surface ino® and BbSe; slabs consisting of a ring around the
I"-point, we used a graded k-point mesh (equivalent to a 50kb@xform mesh) near the-
point and a coarser one (equivalent to a 8x8x1 mesh) neaotie lzoundary. The results are
reported in Figs.5.10 and 5.11. A one to one comparison legtwkonon modes calculated with
and without SOC shows that there is no evidence of a Kohn alyantuced by the presence of
the surface metallic states, involving any of the surfacenoim modes. The spin-orbit coupling
results only in a overall softening of the phonon modes of as3% in SbTez and 6% in
Bi>Se;.
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Figure 5.10: Surface phonons of $Sbe; omitting spin-orbit coupling (black continuous line)
and including (red dots) at a q vector corresponding to tistimg vector R .
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Figure 5.11: Surface phonons of BSe; omitting spin-orbit coupling (black continuous line)
and including (red dots) at a q vector corresponding to tiséimge vector Rr .

5.2 Conclusion

The DFPT calculations of the surface phonons of &g and BbSe; (0001) surfaces do not
seem to confirm the presence of a Kohn anomaly observed exgraially for BpSe;(0001).
One might speculate that the experimental feature assigrnbe Kohn anomaly, if confirmed,
could arise from non-adiabatic effects which are missindpeadiabatic DFPT framework we
used. Another possibility recently proposed in a theoatt@per is that the anomaly arises
from the coupling of phonons with plasmon (collective) ¢atton which are also missing in
the DFPT framework.



6 SboTes-GeTe superlattices

Recently, it has been shown that GeTerBl3 superlattices could allow the realization of
PCM devices requiring a considerably lower switching poimeBET/RESET operations than
conventional PCM alloys (cf. Sec.1.3.2 and Ref.[13]).

In these devices, referred to as interfacial phase changeones (iPCM) [13], it is believed
that the transformation involves small displacements aftzsst of atoms without melting and
subsequent amorphization [13] as described in Sec.1.3.2.

On the basis of high resolution transmission electron rsmope (TEM) images of (GeTg)
ShyTes superlattices, it was proposed [13] that the SET(low riedtig} state corresponds to a
ferroelectric arrangement of the (Ged®Jocks (Ferro cf. Fig. 6.1) and that the RESET (high
resistivity) state could be obtained by a displacement oea®m along the superlattice axis
(), in a sort of umbrella-flipping process, in order to form Ge-bonds ending up in the
Swithced-Ferro configuration (cf. Fig 6.1).

Switched
Inverted Petrov  |nverted Petrov Switched Ferro Ferro

¢ o° o, J'\e
¢ % &

e. e € «

-

Figure 6.1: Structure of (GeTeBhTe; superlattice in different configurations. a) Inverted
Petrov, b) Switched Inverted Petrov, c) Ferro and d) Switdherro.
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The RESET state has been later proposed [69] to correspdhd sm-called inverted Petrov
structure ideally obtained by switching Ge and neighbofi@gtoms in the crystalline structure
of Ge,ShyTes proposed by Petrov [70] (cf. Fig.3.14). A switch betweenPRe¢rov (SET) and
the Inverted-Petrov (RESET) configurations has also beamgsed [71].

DFT calculations of electronic band structure revealed tha Inverted-Petrov structure
shows a Dirac cone at tHe point with the Fermi level at the cone vertex which should cor
respond to the interfacial topologically protected stgiessent at the interface between the
topological insulator Sf¥e; and the normal insulator (semiconductor) GeTe. The switche
Inverted-Petrov has instead a large density of states dt¢hmi level consistent with a SET
state.

A more recent calculation has shown that among the four cordigpns Ferro, Switched-
Ferro, Inverted-Petrov and Switched-Inverted-Petravférro and Inverted-Petrov are the low-
est in energy with an electronic band structure compatilifle the SET/RESET character. The
Switched-Ferro and Switched-Inverted-Petrov have beghduproposed as intermediate states
along a Ferra— Inverted-Petrov transition.

All these structures have been proposed on the basis TEMatatadymmetry arguments.
However, since the TEM measurements are usually not Zveddhe identification of the
different species is often uncertain.

Since the different phases discussed above feature diffecnding geometries in the GeTe
blocks one would expect specific vibrational signaturebefdifferent crystal structures. Would
this be the case, one should also be able to identify thetstes; monitor the switching process
and perhaps also identify intermediate states by microdRameasurements.

In this section, we report on first principles calculationled Raman spectrum of the four dif-
ferent geometries Ferro, Inverted-Petrov, Switchedd;e3witched-Inverted-Petrov discussed
above.

Furthermore recent TEM and Raman experimental data suggaste complicated picture
[179], in which the structures involved are not limited te thimple superlattices described
above but are organized in more complex structures whicHilely to contain GeSples
blocks.

So far no experimental Raman spectra of (Ge-R&tp Tes superlattices are available. To asses
the reliability of the theoretical framework we have thustfitomputed the Raman spectra of
the hexagonal phase of crystalline GeB# for which experimental Raman spectra to compare
with are available. In the next section we report the resuit&eShTe, while the calculations
on the superlattices are reported in Sec.6.2.



6.1 Structural properties and Raman spectra of Ge;ShoTey 109

6.1 Structural properties and Raman spectra of Ge1SboTey

Structural parameters of @8y Tes have been optimized with PBE exchange and correlation
energy functional both including and neglecting van der M/éd8ee Sec.2.1.5). The crystal
structure belongs to thed space group and it consists of seven layerg §88¢e,) forming
lamellae separated by vdW gaps similarly to the structut@®Bhb,Tes. A partial disorder in
the Ge/Sb sublattice has been inferred form X-ray diffaactiata [139]. In the calculations
we neglected the disorder in the Ge/Sb sublattice and we thgedquivalent hexagonal cell
with three GeShyTe, lamellae, stacked along tleaxis (cf. Fig.6.4). Kohn-Sham (KS) orbitals
were expanded in a plane waves basis up to a kinetic cutof6dRy3 Brillouin Zone (BZ)
integration was performed over ax22x 2 shifted by 1x1x1 Monkhorst-Pack mesh [135]. The
resulting equilibrium lattice parameters turned out to bd.29 A and c=41.48 A neglecting
vdW correction and a=4.21 A ¢=40.89 A including it.

We computed the Raman spectrum from phonons af tpeint within density functional
perturbation theory [93] for the theoretical equilibriuraagnetries. The differential cross sec-
tion for Raman scattering (Stokes) in non-resonant camatis given by (for a unit volume of
scattering sample)

d%o
dQdw

4 .
- Z%ﬂes-Rl e |” (ne(00/keT) +1)3(0— ), (6.1)
J

whereng(w/k,T) is the Bose factorps is the frequency of the scattered ligat,ande,_ are
the polarization vectors of the scattered and incident Jliggspectively. The Raman tendRr
associated with thg-th phonon is given by

_ [Voh & MXap e(j,K)
B\ 2w &or(k) My’

whereV, is the unit cell volumer (k) is the position of th&-th atom and(® = (¢* — 1) /41t
is the electronic susceptibility. The tens&swere computed fromy® by finite differences, by
moving the atoms independent by symmetry with maximum eisgghent of 0.01 A .

The Raman cross section is computed for a single crystal apdlarized light in backscat-
tering geometry along the) axis.

Rl 6.2)

The resulting spectra calculated including and negled¢hiegydW correction at the respective
equilibrium lattice parameter is reported in Fig.6.2 ckdted with a 5 crmt linewidth. A com-
parison between the theoretical spectrum and experimeatalrecently obtained by Battaglia
et al.[180] on thin GeSkyTey films is reported in Fig.6.3. The theoretical spectra repoed
very well the position of the experimental peaks once the \aiections are included. The
relative intensity of the peaks, strongly influenced by treasurement conditions, shows only
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a qualitative agreement.
A sketch of the displacement patterns of most important Reatdive modes is reported in

Fig.6.4 calculated including vdW corrections. Both thetfpe modes at 115 cm and 125
cm~1 contribute to the main peak but with a strong predominanteefirst one. The compari-
son with experiments suggests that vdW corrections are atandto accurately reproduce the

phonon spectra.
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Figure 6.2: Raman spectra of GBh,Te, calculated including and neglecting vdW correction.
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Figure 6.3: Raman spectra of GBh,Te, calculated including vdW correction compared with
experimental data.[180]



6.1 Structural properties and Raman spectra of Ge;ShoTey 111

A1g173 cm? Eg125cm™ Eq 115 cm™

Figure 6.4: Sketch of the most active Raman modes of &®Te, calculated including vdw
correction.
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6.2 Structural properties and Raman spectra of
(GeTe)>-SbyTes superlattices

Raman spectra of superlattices were computed from DFPTquisoms described in the pre-
vious section. We used PBE exchange and correlation enengyiénal and norm conserving
pseudopotentials. The calculations were performed beothding and neglecting van der Waals
corrections [87].

Kohn-Sham (KS) orbitals were expanded in a plane waves logste a kinetic cutoff of
35 Ry. Brillouin Zone (BZ) integration was performed over 2x12x4 shifted by 1x1x1
Monkhorst-Pack (MP) mesh [135].

As a preliminary step, we have optimized the internal stmecof the four different geome-
tries: Inverted-Petrov, Switched-Inverted-Petrov, Be@md Switched-Ferro. The lattice param-
etersa andc are given in Table 6.1. In both SET states (Inverted-Petral Switched-Ferro)
Ge-Ge contacts are present in the GeTe blocks. The totayeipey/atom) of the optimized
structures given in Table 6.1 show that the most stable SER&ESET structures are the Ferro
and the Inverted Petrov geometries. One might thus conteate¢he switching process would
involve these two lowest energy structures and it would garssist of both a displacement of
the Ge layer along thedirection and a sliding of Ge and Te layers in #igplane.

Structure ETE c (A) | Energy (meV/atom)
(SET) Inverted-Petrov 4.12 (4.19) | 18.14 (19.03) 0.13 (0.50)
(RESET) Switched-Inverted-Petrav4.21 (4.13) | 18.65 (18.47) 1.99 (1.64)
(RESET) Ferro 4.18 (4.265) 17.22 (17.45) 0.0 (0.0)
(SET) Switched-Ferro 4.10(4.17) | 18.95 (19.64) 2.53(2.31)

Table 6.1: Theoreticala andc equilibrium lattice parameters and total energy (eV/atofithe
Ferro , Switched-Ferro , Inverted-Petrov and Switcheeatad-Petrov structures calculate with
PBE including and, in parenthesis, discarding vdW coroecti

The Raman spectra have been computed as described {8b3e4 in non resonant condi-
tions. This is possible in a rigorous way only for insulatpizases. However, these materials
have a very low density of states at the Fermi level originafrom states near thie-point
in the BZ (cf Fig.1.8). By performing the BZ integration oude shifted 12x12x4 mesh, the
k-points are sufficiently far from thE-point so that all the configurations behave as insulators
which allows computing the Raman tensors for these phasmsever, we must consider that
in these latter cases larger errors in the Raman cross sextopossible, because of possible
resonance effects with the laser probe (in a zero gap systeghgcted in Eq. 6.1.
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Inverted-Petrov (SET)

49,122,132 (39, 116, 127)
75, 184 (64, 177)

Switched-Inverted-Petrov (RESET)

51, 98, 103, 119, 149 (46, 88, 96, 113, 139, 146)
167, 180, 189 (157, 171, 180)

Aq

Ferro (RESET)

101, 116, 135 (94, 110, 124)
155, 174 ( 145, 164)

Ay

Switched-Ferro (SET)

49, 121, 150 (46, 116, 142)
54, 69, 186, 194, 199 (48, 64, 178, 187, 194)

Table 6.2: Frequency (cm?) of phonons at thé-point of the two SET and the two RESET

geometries. For the Inverted-Petrov structure the Ramtaveamodes have gor A;g sym-

metry while for all the other structures the Raman active esdehve E or Asymmetry. The
frequencies refer to calculation including the vdW colimttData without vdW correction are
reported in parenthesis.

The phonon modes and Raman spectrum have been calculateth@aprevious section. The
frequency of phonons at thepoint is reported in Table 6.2 for the four structures. Tlaan
active modes havegor Ajg symmetry in the Inverted-Petrov structure, while for a# tther
structures the Raman active modes have E psyinmetry.

The Raman spectra for the four structures are reported ir6Fsgcalculated with PBE with
vdW correction and using a phonon gaussian linewidth of 5tmhich seems adequate to
reproduce the experimental Raman spectra afSBgle; computed in the previous section. To
resolve the different modes contributing to the Raman featwe also computed the spectrum
with a smaller linewidth of 0.5 cm' reported in Fig. 6.6. The spectra calculated including the
vdW correction are reported in Fig. 6.7 with a linewidth off& .
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Figure 6.5: Raman spectra for the four GeTe-$b; superlattice structures calculated with
PBE+vdW, phonon gaussian linewidth of 5t
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Figure 6.6: Raman spectra for the four GeTe-3b;z superlattice structures calculated with
PBE-+vdW, phonon gaussian linewidth of 0.5cth
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Figure 6.7: Raman spectra for the four GeTe-3bs superlattice structures calculated without
vdW correction, phonon gaussian linewidth of 5¢m

Phonons with E-type symmetry correspond to displacemetternpain theab plane while
A-type phonons correspond to displacements along tin@s. The displacement pattern of the
main Raman active modes for the four structures are reportéds. 6.8-6.11.

To our knowledge no experimental data are available on tineeRaspectra of these structure.
At this stage our results are theoretical predictions tododioned by experimental measure-
ments. Overall the differences in the spectra of all the finases are large enough to allow for
an easy discrimination among the different structures anthk identification of the switching
process by Raman spectroscopy.
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Figure 6.8: Displacement vectors of the most relevant Raman active mofighe Inverted-
Petrov configuration. The frequencies are referred to theRBEW calculations.
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Figure 6.10: Displacement vectors of the most relevant Raman active softiéhe Ferro con-
figuration. The frequencies are referred to the PBE+vdWutations.
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6.3 Conclusions

The calculation of the Raman spectra for the four (GgBi)pTes superlattices proposed for
IPCM revealed that vibrational spectroscopy can be a véuabol to experimentally identify
of the structures and the monitoring the phase transiti@nsimpler way with respect to TEM
measurements.

The reliability of out theoretical framework is demonséditby the comparison between
Ge ShyTey theoretical and experimental spectra.
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Molecular Beam Epitaxy (MBE) offers a better control of threwgth of GeTe-SpTes super-
lattices for the realization of iPCMs than the sputteringhmnd used so far. The onset of the
MBE growth of GeTe and GeSbTe has been studied in details kx@@rimental group we are
collaborating with [181].

GeTe multilayers are also of interest for their ferroelegbroperties. Switching of the po-
larization in GeTe multilayers has been reported recgh8y] Moreover the interplay between
ferroelectricity and spin-orbit coupling give rise to agmgic Rashba splitting in GeTe thin films
that might have applications in spintronic devices [14].

In this section, we report the calculations of phonon modesaman spectra in GeTe multi-
layers computed by DFPT aimed explaining the evolution ahRapeaks observed during the
layer-by-layer growth of GeTe on Si(111y/8 x v/3)R30°-Sb reported in Fig.7.1. The spectra
are measured in z(y,xy)-z scattering geometry with a 633aserl

60nm GeTe
(A,) 16 BLs
i 8 BLs
~—6 BLs
——4 BLs
-2 BLs
-1 BL
0.5 BL
—Si Reference

Intensity [arb. units]

50 100 150 200 250 300
Raman shift [cm'I]

Figure 7.1: Experimental Raman spectra measured as a function of teetlaigkness in GeTe
multilayers grown by MBE. Arrows indicate Raman peaks of$substrate.
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The Raman peaks for 16 GeTe bilayers (BLs) are very closeetdtitk values measured
for a-GeTe (see Sec.3.1.1), while for lower thickness both E apdeaks are steadily shifted
to higher frequencies up to 110 chand 155 cm?! for the four bilayers (4BL) case. For
2BLs and below only the two peaks (marked by an arrow in Flg.@t 225 cm® and 300
cm~1 corresponding respectively to the 2TA(L) and 2TA(X) modéthe silicon substrate are
observed while no modes associated with GeTe are detected.

Along with the changes in the Raman spectra, a variationaridtiice parameter was mea-
sured form the streak spacing of reflection high-energyteladiffraction (RHEED) during
the growth process. The distance between2hg planes sketched in Fig.7.2a is reported in
Fig.7.2d as a function of the deposition time. From Fig.7i@avhich each maximum of the
oscillations correspond to the completion of a GeTe bilaggrowth rate of 1 GeTe BL every
100s can be estimated. The reduction in the RHEED oscifiati® indicative of an imperfect
layer-by-layer growth in which additional layers nucleatel coalesce at the same time, before
the full completion of the antecedent layers.
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Figure 7.2: @) Schematic model af-GeTe crystal with theZ11) planes highlighted in brown.
b) RHEED intensity over time acquired along red dashed liress the(211) azimuth pat-
tern. c) Integrated specular beam intensity oscillatidasecto growth onset demonstrating the
formation of complete layers. 11} lattice planes spacing calculated from RHEED streak
spacing showing a larger in-plane spacing with respeat@eTe during the first 200 seconds

of growth.
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Immediately at the growth onset, §2(11}) lattice spacing of 2.46 A was observed, larger
than the value of 2.41 A expected forGeTe and closer to the values of 2.446 A expected for
B-GeTe and to the 2.46 A for the metastable cubic GST [139].

This larger lattice spacing cannot be ascribed to the magolith the lattice spacing of the
substrate which has instead a smaller lattice spacingdh@eTe. This observation together
with the abrupt change in the Raman spectra for the thinest fhay indicate that the growth
initiate in a different phase than the expecteGeTe.

Because of the involvement of Sb in the surface preparatienjarger lattice spacing at
growth onset could be explained by the intermixing of Sb v@#iTe into a GST compound.
Also the Raman spectrum of the 4BL sample, in Fig.7.1, thé&spshifted to 110 cm! and 155
cm? coincide with the Raman spectrum of metastable GST [182].

However the removal of Sb atoms from the silicon surfaceipassn is unlikely due to the
strong covalent bonds between Sb atoms and silicon. Fanost the stability of this surface
passivation can be appraised by considering that the stbsieeds to be heated to 650-880
in order to fully desorb the monolayer of Sh.

A residual Sb contamination of the growth chamber can bedralg because in this case
because there is no reason why the contamination shouldritedi to the very first atomic
layers.

Therefore, also for the formation of an energetically fade GST compound, a high barrier
needs to be overcome. For instance, it has been previouslynsthat this Sb passivation is able
to retain its stability, even after annealing at 300n direct contact with a GST environment
[183].

Furthermore, if Sb atoms are removed and silicon bonds anelsow left unpassivated, the
growth of GeTe could be expected to yield in-plane twist dosas it has been shown for GeTe
grown on a partially unpassivated surface such as Si(1XI)}( Because no pronounced in-
plane twist domains are observed when growing GeTe on thaShvated surface, it suggests
that the surface remains widely passivated.

As the presence of Sb intermixing/contamination of GeTellisd out we focused on DFPT
calculations of GeTe multilayers in order to understandabgerved behavior. Since the real
GeTe on Si(111)4/3 x v/3)R30-Sb system gives rise to a reconstruction too big for DFPT
calculations, we mimicked the growth of GeTe multilayerstio@ Sb-passivated Si surface by
considering a thick slab of GeTe with a numbers of layers tioemove and few bottom layers
frozen. We have considered both the bulk-like stacking efftbzen and free layers (AB—CA-
BC-AB-) and configurations in which the free layers are gtifin the xy axis with respect to
the bottom frozen layers (AB—AB-CA-BC-) in order to destthg resonant bonding and reduce
the coupling between the free layers and the frozen subsirae effect on phonon frequency
actually is marginal (cf. Tab. 7.1).

We used the PBE approximation for the exchange-correlatioctional, and a 12x12x1 uni-
form mesh was used to sample the Brillouin Zone. The wav¢immse were expanded in plane
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an (A) E modes (cm?) A modes (cn?)

Bulk reference no holes 421 84 152
Resonant stacking 4BL 421 118 163
non-resonant stacking 4BL 4.21 120 164
non-resonant stacking 2BL 4.21 140 184
non-resonant stacking 1BL 4.21 148 195
non-resonant stacking 2BL  4.26 136 178
non-resonant stacking 1BL 4.26 145 188

Table 7.1: Phonon frequency at tHe-point of multilayers in different configurations. For the
thinner multilayers we also considered the lattice param@h hexagonal notation) fixed to
the experimental value measured during the MBE growth. Re#oand non-resonant refer
due a different stacking of the free layers with respect eodhbstrate. The first line gives the
theoretical phonon frequency in the bulk with long-rangeriaction included and, in parenthe-
sis, excluded, the latter corresponding to the system wiitble concentration large enough to
screen the long range interactions.

waves up to 35 Ry cutoff. The Raman spectrum has been comasidekcribed in Sec.6.1.

For the thinner multilayers we also considered the in-platice parameters fixed to the
experimental value of 4.26 A corresponding to the interpldistance measured during the
MBE growth.

We also considered fully relaxed free standing multilayeith optimized in-plane lattice
parameters. The in-plane lattice parameters shrink dizeath respect to the bulk which leads
to an enhancing of the difference between short and longriegsg) bonds with respect to the
bulk (cf. Tab. 7.2b).

In the multilayers there are several E and A modes ideallsesponding to the folding &t of
bulk-like phonon branches along thaxis of the multilayers. The mode with the largest Raman
activity is actually that with with lower frequency for botihe A e E modes due to upward cur-
vature of the phonon bands from thgoint along the axis. The phonon frequency of the most
intense Raman mode for the adsorbed multilayers are giveatan/.1. The phonon frequencies
for the multilayers should to compared with the bulk-likeopbns with a finite concentration of
holes that screen the long-range Coulomb interaction. Akeretical bulk Raman peak at zero
temperature with a concentration of holes comparable wigleements (see Sec.3.1.1) are 84
cm~1 and 130 cm. In the lack of holes, the long range Coulomb interactioffitsiuf the A
mode seen by Raman in backscattering geometry along dbés. The theoretical blueshifted
frequency is 150 cm which is not too far from the experimental value of 140 cnobtained
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Free-standing bulk lattice parameter Free-standing optimized lattice parameter
ds(d) di(A) E(cm?) A(cm™) (A ds®) d(A) E(m™) Am?
1BL 265 - 148 198 1BL 393 275 - 166 226
2BL 2.82 331 141 188 2BL 4.05 279 332 155 205
4BL 2.82 331 132 175 4BL 4.12 282 326 140 184

@ (b)
Free-standing experimental lattice parameter

an(A) ds(A) di(A) Em?) A(m™)

1BL 426 285 - 144 191
2BL 426 283 332 136 181

(©)

Table 7.2: Frequency of the main Raman active A and E modes for freaistgrmultilayers
with in-plane lattice parameters (a) fixed to the theorétictk value, (b) optimized to the theo-
retical equilibrium parameter for the free-standing skaha (c) fixed to the value corresponding
to the interplanar distance measured experimentally by Rbifor the GeTe monolayers@nd

d are respectively the lengths of the short and long Ge-Te oode compared with the
theoretical values of 2.85 and 3.21 A in the bulk.

by extrapolation of the low temperature data to O K. In thiselasystem the hole content is
presumably very low although unknown. At room temperatueeexpect a redshift of both E
and A modes due to temperature of about 15 tigsee [136]).

The phonon frequencies for the free standing multilayeth lattice parameters fixed at the
bulk value, at the value measured experimentally for theathliin layer and at the theoretical
value optimized for the free standing configuration are reggbrespectively in Tab. 7.2a, 7.2b
and 7.2c.
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Overall the frequency of the supported multilayers are lothan those of the freestanding
multilayers and better match the experimental spectraeoééimples grown by MBE.

The DFT Raman spectrum in backscattering configurationdorpolarized light is reported
in Fig.7.3 for the supported four bilayers. The displacetpatterns of modes mostly contribut-
ing to the peak at 120 and 164 chare given in Fig. 7.4. The spectrum compares well with the
experimental spectrum once the redshift due to temperataténcluded in our calculations, is
considered.

TR T YT YT YT T

4 BLs GeTe

Intensity [arb. units]

50 100 150 200 250
Raman shift [cm'1]

Figure 7.3: Theoretical Raman spectra of supported 4BL GeTe compartdexperimental
measurements.

E mode (120.2cm-1) A, mode (163.9 cm-1)

Figure 7.4: Displacement patterns for the two most active Raman modémafBL supported
on the bulk.



GeTe multilayers 127

A comparison between theoretical and experimental exaudf the frequencies of the E
and A modes with thickness is reported in Fig.7.5. The bhlué-ef frequency for thin GeTe
multilayer (form 16 to 4 BL) can be completely ascribed to Brsize effects.

For even thinner films (2BLs and 1BL) the calculations prettie pursuance of the blueshift
trend for the Raman active modes and the maintaining of artiest rombohedral structure for
both supported and freestanding bilayers regardless aftpine lattice parameter.

The large difference in Raman spectra for multilayer greatéower than 4BL, and actually
the absence of any Raman signal for samples below 4BL (cf7 By has been interpreted as
sign of an initial growth as a cubic rocksg8hGeTe phase (See Sec.3.1) for which no first order
Raman modes are expected as a consequence of the intevaithidine substrate. The origin of
the3-GeTe phase in 1BL and 2BL is under debate and presently imgkstigation.
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Figure 7.5: Experimental/theoretical comparison of the evolution effé Raman frequency as
a function of the slab thickness of the multilayers.
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Shrinking the size of the PCM cells to the nano-scale redtivesactive material of the
volume to be programmed, so that shorter and less intensentyaulses are required leading
to a lower power consumption. One of the possible roads ®r&duction is to obtain phase
change materials in form of nanowires (NWs), which featutewser melting point and lower
reset currents in comparison with thin film-based conveti®CM cells. Moreover nanowires
are considered one of the best candidates for new multilegeiories (See Sec.1.3.1).

In this section we report structural and total energy caltohs, based on DFT, aimed at
explaining the peculiar morphology of $kes nanowires grown by metal-oxide chemical vapor
deposition (MOCVD) by the experimental partner we collabed with in the FP7-EU project
Synapse.

Figure 8.1: (a) SEM image of the Siies NWs. (b) High magnification SEM image of a single
NW showing the peculiar morphology. (c) Three-dimensianabel of the nanowires.

The self-assembled NW growth was realized by exploiting wapor-liquid-solid (VLS)
mechanism assisted by Au metal-catalyst colloidal nanmbes. A small amount of Ge (less
than 3%) was introduced to control the NW growth rate andea&hthe growth of NW with a
diameter smaller 40 nm. The SEM micrographs showed thae thesll diameter nanowires,
grows along the [0001] direction as happens also for lar¢sNout they have a peculiar zigzag
shape due to periodic oscillation of the sidewall facetria&on, as reported in Fig. 8.1aand b
and schematically represented in Fig. 8.1c.
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TEM images, reported in Fig.8.2a-c for a 30 nm NW, showed artiig period of 18 nm con-
stant along the whole length of the nanowire. Moreover sbectliffraction pattern (Fig.8.2d)
revealed a symmetry which is inconsistent with the usual&pbulk crystal structure.

Figure 8.2: a)-¢) TEM images of Si¥es, d) Electron diffraction pattern for $ibes nanowires,
e) Model of zig-zag nanowire.

As seenin Sec.3.3.1 §he; crystallizes in arhombohedral layered structure with sgaoup
R-3m (SG 166) that can be equally described by a non-unitexgdonal cell with lattice pa-
rameters a=4.21 A and c= 30.45 A containing three formulgsuni

The diffraction pattern observed in Fig.8.2d is compatiahdy with a different symmetry
with a shorter periodicity along the c-axis d£c/3=10.6 A. In particular it suggests a structure
where the five-layers blocks are simply repeated along theri<-giving rise to a primitive
tetragonal lattice with space group P-3m (SG 164). The U8(l166) and the new suggested
structure in nanowires (SG 164) are compared in Fig. 8.3anh# two structures are compared
with high-resolution Z-resolved TEM images of a;$bz nanowire.
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Figure 8.3: Structure of SpTes in the usual SG 166 phase and the newly observed SG 164.

The atomic positions inside the unit cell have been assdsgedeans of high resolution
high-angle annular dark-field scanning TEM (STEM-HAADFYare reported in Tab. 8.1.

In order to understand why the 164 phase appears in the naasolit not in the bulk under
any experimental conditions and the origin of the twinningnanowires, we computed the
formation energy of different surfaces of the two phases.dppearance of the 164 phase could
be in fact determined by the lower formation energy of itaras with respect to those of the
166 phase which makes the new phase favored in nanowiresawétge surface to volume
ratio.

Structural parameters Theo. | Exp.
a(A) 4.2 4.2
c(A) 1.043 1.06
Tel (0,0,0) (0,0,0)
Te2 (1/3,2/3,0.6457) (1/3,2/3,0.6385)
Sb (1/3,2/3,0.1896) (1/3,2/3,0.1965)

Table 8.1: Lattice parameters of SG 164 Ske; and atomic positions of the atoms irreducible
by symmetry measured by means of STEM-HAADF and obtainet 2é-T.
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Bulk SG#166 phase New SG#164 phase

D O -
(i On

Figure 8.4: High resolution Z-contrast image of a Se; NW, oriented along the [11-20] pro-

jection. The atomic model of the structure correspondintheoSG 164 and SG 166 are su-
perimposed to the image according to the labels. To hightigg differences between the two
structures. A red dashed line is drawn running parallel éodfaxis and intercepting the first
atomic column after each van der Waals gap, indicated byngreeles.

We used PBE [81] approximation for the exchange-corratdtimctional with the inclusion
of a semiempirical van der Waals correction according tor@re [87]. The Kohn-Sham states
were expanded on a plane wave basis up to a 35 Ry cutoff. Indaltkilations the Brillouin
zone was sampled with a uniform Monkhorst-Pack mesh of 12&k2points for the hexagonal
cell of the SG164-phase and of 12x12x12 k-points for the etgal rhombohedral cell of the
SG166 phase. The surfaces were modeled by slabs about 36kAntith a vacuum 15 A wide
separating the periodic replica. The surface Brilluoin @avas integrated with up to 6x6x1
k-point meshes.

We first computed the theoretical equilibrium cell parameté SbhTes in the bulk of the new
SG164 phase. The structural parameters reported in Tay@ih good agreement with exper-
imental data. Equilibrium parameters for the bulk SG166sphare reported in Sec.3.2.1.

The internal structure of the penta-layer block is esskytine same in the two phases,
the largest structural differences consisting of the stackf the blocks which results into a
different length of the weak Te-Te bond connecting the dodee Fig.8.3). In the SG164
phase this bond is almost 3% longer than in the SG166 phasexpected, in the bulk the
SG164 phase is higher in energy than the SG166 phase by Afrebit399 meV/atom.
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To calculate the energy of the surfaces that could be exgmgsachanowire growing along the
(0001) direction observed experimentally, we built slakgosing the (11-20), (1-100), (1-102)
surfaces for the SG166 phase and the (11-20),(1-100), 1) <ufaces for the SG164 phase.
The overall less costly surface is actually the (0001) facebbth phases, which however can
not be exposed by a wire growing along the (0001) direction.

The (11-20) and (1-100) surfaces are the lowest indexeacesfparallel to the c-axis; the
(1-101) face corresponds to the surface observed expemfhein SG164 nanowires, while the
(1-102) is the surface of the SG166 phase most similar toltfi() of the SG164 phase. We
considered different possible reconstructions of the(@},{1-102) and (1-101) surfaces needed
to keep the stoichiometry and the surface neutrality. Orother hand the (11-20) surface is
already neutral and does not need any reconstruction. Westenergy reconstruction for each
surface is reported in Figs.8.5 and 8.6.

We calculated the surface energy as the difference betweeartergy of the slabs and the
energy of a bulk with an equivalent number of atoms dividedvage the surface area. The
results are summarized in Tab.8.2.

The surface energies of the SG164 phase are lower than thtteephase SG166 for all faces.

Surface energy SG166 (11-20) (1-100) (1-102)
meV/A? 34.4 32.3 32.9

Surface energy SG164 (11-20) (1-100) (1-101)
meV/A2 341 310 27.4

Table 8.2: Surface energies for $bes in the two SG166 and SG164 phases.

This is due to two concurring effects: firstly the SG164 phiaseore expanded along the ¢
direction which leads to a larger surface area for the samabeu of broken bonds, secondly
the Te-Te bonds broken at the surface are stronger (shamténg SG166 phase than in the
SG164 one. Therefore the NW geometry stabilize the SG16depbacause its surfaces have a
lower energy than those of the SG166 phase. Moreover, erpetally the 164 phase is seen
only when ShTes is doped with Ge for about 3 atom%. Indeed we have found tleatifference

in the bulk energy between the SG164 and SG166 phase is cttudg= 4.8 meV when Sb
is substituted by Ge for about 6.6 atom% (one Ge atom in adisraell). The (1-101) surface
experimentally observed to be exposed by our NWSs, resulbe tthe most stable face of the
SG164 phase. This plane does not contain the ¢ axis and formusgie of 19.6 with the NW
growth direction.
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Figure 8.5: Lower energy surfaces of $bes in the structure corresponding to the 166 space
group.
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(11-20)

Figure 8.6: Lower energy surfaces of $bes in the structure corresponding to the 164 space
group.
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Following the model proposed by Johansson et al.[184] thed@ion of the twinning can be
explained as follows: a twinning forms when a NW grows tryiagxpose a surface (the 1-101
family in our case) that does not contain its growth diratiithhe [0001]); in order to maintain
the growth direction, the edge of some facets increase®wldecreases for the others, due to
different growth rates. As a result, the hexagonal interfdevelops into a triangle-like shape.
At a certain moment, it is energetically more favorable teate a twin plane rather than to
continue growing towards a fully triangular top interface.



9 Neural Network potential for GeTe
Nanowires

The study of phase change materials nanowires are one ofasieretent and active fields of
research for the miniaturization of the PCM technology dr&realization of multilevel memo-
ries as described in Sec.1.3.1. The possibility to studg@lthange materials nanowires using
ab-initio calculations, due to the large number of atomslved, is limited to few properties
like the surface energy considered in the previous chapt&ltpTes. The study of other crucial
properties like the crystallization kinetics or thermabperties requires an alternative approach
with a lower computational cost. The neural network potmreviously developed in our
group and described in Sec.2.6.1 proved to be very effertithee description of a wide variety
of bulk properties of the prototypical phase chance mdt&&e. However this potential did
not include any information about the surfaces. To exteedttansferability of this potential
to accurately describe GeTe surfaces and thus open thébpivgsif the first simulations of a
phase change nanowire we added 12000 new surface configugratithe fitting database. After
the validation of the new potential by comparison with aibiersimulations in small systems
we applied the new potential to the study of thermal conditgtin GeTe nanowires.

9.1 Validation of the GeTe potential for nanowires

We extended the transferability of the NN potential by agdimthe DFT database for the
NN fitting a total of 5000 slab configurations with 128 atomsteand 7000 nanowires con-
figurations with 128-256 atoms in the crystalline, amorphand liquid states. An initial set of
configurations have been generated from short ab-initieoutér dynamics simulations using
the CP2K [185] code and the computational settings usedewiquis works at which we refer
to for further details [12]. A first generation of the new nalunetwork potential was built by
including these first configurations and a set of unrelaxefdse configurations generated sim-
ply by cutting the bulk. Subsequently new configurationsehlagen extracted from molecular
dynamics runs executed with the most updated version of ekenpal and the potential was
iteratively refined.
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As a first step to validate the new potential we calculatedetiglibrium lattice parameter
for a-GeTe. The results reported in Tab.9.1 together with thelibgum parameters of the
previous version of the neural network potential, are inyvgonod agreement with both the
ab-initio results and the experimental values.

[ NewNN | OIdNN [ DFT-PBE| Exp.

a(h) 4.31 4.47 4.33 4.31

a 58.77 55.07 58.14 57.90

X 0.2357 | 0.2324 | 0.2358 | 0.2366
long,short bonds (A ) 2.85,3.21| 2.81,3.31| 2.85,3.21| 2.84,3.17

Table 9.1: Lattice parameters of GeTe calculated with the new versioth@ NN potential
compared with the old version of the NN potential, the atierand the experimental values.

The structural properties of the bulk liquid are also welirceluced as can be inferred from
Fig.9.2 where we compared the pair correlation functgn of NN and DFT simulations
performed with the CP2K code [185] with the same computalisettings of Ref.[12]. The
pair correlation function is defined in Eq.9.1 wherandp indicate the atomic specieNs the
number of atom of the specig py is the density of the atomic spegieand §;j is the distance
between the atomandj.

1
412Ny py i; jE

The pair correlation functions and the angular distribufionctions for a 256-atom nanowire
at 700K calculated with NN and ab-initio are reported in i8.and 9.4 respectively. Also in
this case the agreement is pretty good proving the effeats® of the new potential in repro-
ducing the effects of low dimensionality. A snapshot of ta@aowire is shown in Fig.9.1.

As a further validation we compared the surface energy of2kHED) surface obtained from
neural network potential and ab initio calculations. Thergg predicted by the NN turned out
to be 8% lower than the DFT value, an error comparable to tfierdnce in surface energy
estimated with different ab-initio potentials. The choofehis surface was dictated by the fact
that it is a neutral and stoichiometric surface that doegivatrise to an electric dipole in slab
configuration. The presence of a dipole (for example in ttse cd the (001) surface where one
surface of the slab is terminated by Te atoms and the otherebgt@ns) represent an obstacle
in the calculation of the surface energy in ab initio caltiolas since it introduces an additional
energy term which diverges with the slab size. On the othed litas impossible to estimate the
surface energy of non stoichiometric slabs within the nengéwork scheme since is not pos-
sible to estimate the chemical potential of a single spdtie.possible surface reconstructions
suitable to eliminate the dipole is therefore consideraédyricted by the constraint of keeping
the stoichiometric fixed.

Onu(r) o(r —rij) (9.1)
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Figure 9.1: Snaposhot of the MD simulation of the 256 atoms amorphouswiaa used for the
validation of the potential. The pictures represent thnei¢ cells repeated along the direction

of growth of the nanowire.
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Figure 9.2: Partial pair correlation functions of liquid bulk GeTe atDIK calculated with the
new version of the NN potential and from DFT simulations.
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Figure 9.3: Partial pair correlation functions of amorphous nanowir&eTe at 700 K calcu-
lated with the new version of the NN potential and from DFT @iations.
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Figure 9.4: Angular distribution function of amorphous nanowire of @&t 700 K calculated
with the new version of the NN potential and from DFT simuias.



9.1 Validation of the GeTe potential for nanowires 141

Finally, we compared the surface relaxations of the (00d)(@rl0) surfaces in the DFT and
NN case. A disagreement below 4% among the two methods hasobserved on the values
of surface relaxations with respect to their relative bugkigbrium positions.

In the perspective to study thermal properties in nanowinesalso checked that the new
potential is still able to reproduce the thermal conduttiua both crystalline and amorphous
phases. A good agreement with the previous results has temed in both cases. A value
of k;=2.44+ 0.15 W/m K inferred form the heat flux and temperature proglgorted in Fig.
9.5 was obtained for a crystalline sample 25.6 nm long ineclgreement with the value of
K,=2.55+ 0.25 W/m K obtained with the previous version of the potdnkaally the thermal
conductivity computed for a 24.7 A x 24.7 A x 98.8 A amorphoasiple (cf. Fig. 9.6) resulted
to bek=0.24 4+ 0.02 W/m K consistent with the value @=0.26 + 0.02 W/m K previously
obtained.
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Figure 9.5: Heat flux as a function of time and converged temperaturel@roii a crystalline
GeTe sample 25.6 nm long calculated with the new NN poteritfa heat flux is directed along
the c axis of GeTe.
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Figure 9.6: Heat flux as a function of time and converged temperatureleifofi an amorphous
GeTe sample calculated with the new NN potential.

9.2 Thermal transport in GeTe Nanowires

In this section, we report on the calculation of thermal aaribity in GeTe nanowires car-
ried out in order to understand the effects of a reduced dsieality on the thermal properties.
We focused omi-GeTe nanowires grown in the [220] direction (in hexagonalation equiv-
alent to the [110] direction of the cubic crystal the trigbphase ofa-GeTe can be thought
as originating from. The choice of the crystalline phase graivth direction are dictated by
various experimental works in Refs.[186—189]. Moreovieais been reported [186, 187] that
also nanowires initially grown in th@-phase along the [110] direction turns into the more sta-
ble a-phase after one cycle of amorphization and recrystaitinadnd it is likely that it keeps
the same growth direction. The diameter of experimentaleGenowires is in the 40-100 nm
range, too large to be directly addressed by RNEMD even ubiegeural network potential.
However, the growth of nanowires with diameters even bel@wrh is expected and is consid-
ered an important goal for technological applications. thes reason a 6.5 nm wide nanowire
has been used in these preliminary calculations. But fogtbeith direction, experiments do
not provide information on the geometry of the exposed sedaA direct evaluation of the
surface energy for non stochiometric slabs is not possiiilimthe NN scheme. Therefore we
used the relative melting temperatures of different sedaas a way to assess which surface is
energetically more favorable. It turned out that the t&lion-terminated (001) surfaces and the
(112) surface in hexagonal notation (four index notation itk redundant index omitted as
usually reported in literature) are the most stable. A pldeshape of the nanowire is shown
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in Fig.9.7 with a hexagonal geometry exposing four (001ja@s terminated with Te atoms
and two (11.2) surfaces. This is the model of the nanowire employeddtmutations of thermal
conductivity.
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Figure 9.7: Model of the GeTe nanowire used for the calculation of theéicoaductivity.

Simulations at 700 K proved the stability of the structurd ahowed that the lateral surfaces
reconstruct forming a unitary cell of 16.53 A along the NW\gtlo direction, four times longer
than the unitary cell obtained by truncating the bulk. Therital conductivity has been evalu-
ated by means of RNEMD at 300 K using a 390 A long cell with onld source and one hot
source at the edges separated by a layer of fixed atoms 10 aim the bulk calculations
(see Sec.2.5). The heat flux and temperature profile for yisies are reported in Fig.9.8. The
system is free of Ge vacancies. The resulting thermal cdivityds kKnyw=1.5740.04 W/m K,
considerably lower than the bulk valuetof3.15+0.20 W/m K obtained from NN calculations
for this crystalline direction.

Phonon scattering from the boundaries can reasonably b®dewvad as a possible source
for the reduced thermal conductivity in nanowires. To qifarihe possible effect of the re-
duced dimensionality on thermal conductivity we lookedkbatthe results obtained for the
bulk with ab-initio techniques reported in Sec.2.3. In jgaitr we evaluated the bulk thermal
conductivity setting the upper limit of the mean free patlpabnons equal to the diameter of
the nanowire. This approximation represents a sensibleesimnation of the effect of reduced
dimensionality since limits the thermal conductivity inegy direction while in the nanowire
the boundaries does not limit the mean free path along tleettbn of growth of the wire. Any-
way, we obtained a reduction &fof of about 30% insufficient to explain alone the reduction
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Figure 9.8: Heat flux as a function of time and converged temperaturelerafi a crystalline
GeTe nanowire

in thermal conductivity calculated with the direct RNEMUOaaation. Therefore the scattering
from the NW is surely not enough to explain the reduced thecamaductivity of the NW.

To clarify the source of the reduced thermal conductivitytives studied the effect of the
reduced dimensionality on the phonon density of states amajpgvelocities by assigning, as
a first step, the values computed for the bulk to the phonetirfiles. Due to the large unit
cell of the nanowire the calculation of phonon lifetimesnfrthe anharmonic force constants
described in Sec.2.3 and used for crystalline bulk systesmt a viable option. To this aim,
we first verified for the bulk the effect of substituting theegral over the Brillouin zone with
an integral over the phonon energy by writing the thermabcetivity as in EqQ.9.2.

/h WD (® afE;ET( D) ¢ () doo 9.2)

Where D is the phonon density of states per unit volwngthe group velocity; the phonon
lifetime and fge is the Bose-Einsten distribution function. The quantitié&) andt(w) are
obtained for the bulk as averages over the Brillouin zonenddfby Eqs.9.3
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For the bulk the dynamical matrix was calculated within thid Bcheme by finite differ-
ence on a 10x10x10 supercell, the phonon density of sixteg was determined by Fourier
interpolating the dynamical matrix over 1250§4points, the group velocities were calculated
differentiating the phonon dispersion curves interpalaieer 156259-points. The relaxation
times were obtained from the anharmonic NN force constamtspaited by finite differences
in a 1008 atom supercell and by sampling the Brillouin Zongwhel -point only. The above
procedure yields an average thermal conductivitg=s8.24 W/m K which is very close to the
valuek=3.20 W/m K obtained in Sec.3.1.3 using RNEMD proving theetiveness of Eq.9.2
for the bulk. As a further check we used Egs.9.2 and 9.3 witmaio phonon density of states,
group velocities and relaxation times obtaining a value thigers by less than 7% from the
SMA solution of the Boltzmann equation carried out in SekcBintegrating over the whole
BZ.

We thus used Eq.9.2 to determine the effect on thermal canityof the changes iD(w)
andv?(w) from the bulk to the nanowire.

The phonon density of states and group velocities for thewar were calculated starting
from harmonic force constants calculated with a finite défece method in the elementary cell
of the nanowire along the growth direction 16.93 A long andtaming 2164 atoms. Phonon
dispersion relations were then Fourier interpolated ovEd@g-point mesh in the direction of
the nanowire. The resulting density of states and groupcitglas a function of the phonon
frequency are compared to the bulk values in Fig.9.9 an®@Hi@.respectively.

We then computed the thermal conductivity of the nanowitieegiby Eq.9.4 where we used
the phonon density of the nanowire but the bulk values fogtbep velocities and the relaxation
times and by Eq. 9.5, (where also the group velocities argpabea for the nanowire). We used
the bulk values for the functionw).

KNW1 = :—:;/th(co)Nsz(co)BULKaf%ﬁ_(w)T(co)BULKdoo (9.4)
KNw2 = %/th(Q))NWvZ(O))NWaf%I%I_(w>T(OO)BULKdOO (9.5)

The thermal conductivities computed using Eq.9.4 and B@&kyw1=3.64 W/m K which
is larger than the value obtained for the bulk, angyv»=1.54 W/m K which is very close to
value obtained by RNEMD. We can conclude that the changdseiphonon density of states
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Figure 9.9: Phonon density of states of bulkGeTe and of the crystalline nanowire.
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Figure 9.10: Group velocity of bulka-GeTe and of the crystalline nanowire along the direction
of growth of the nanowire.

does not play any role in the reduction of the thermal condit(it actually increase the
thermal conductivity with respect to the bulk) while a majole is played by the reduction of
the group velocity (See Fig.9.10). These results gives teifidications about the effect of
nanostructuring on thermal conductivity and represergditht step towards a more systematic
study of GeTe nanowires for example as a function of the diam&hese results show that in
ultrathin nanowires the thermal conductivity is sizabldueed with respect to the bulk value.
The electrothermal modeling of PCM made of NW thus requisimeters specific for the
NW that cannot be inferred from the bulk values.



Conclusions

In the first part of this thesis we presented a study, based D§d calculations, of the ther-
mal conductivity and thermal boundary resistance of sonmte@mMmost common phase change
materials: GST, GeTe and partially InSbTe alloys.

The calculation of the thermal conductivity in crystalli@eTe allowed us to attribute the
large variability of experimental data to the importanteralf the scattering from vacancies
whose concentration in GeTe can hardly be controlled. Thepesison between ab-initio cal-
culations based on the solution of the Boltzmann transpguagon and the results for non-
equilibrium molecular dynamics allowed us to check theatslity of the neural network po-
tential in the description of anharmonic properties of Gearel on the other hand to validate
the approximation assumed in the treatment of vacancidsniite DFT approach.

The study of thermal conductivity in crystalline hexagoB&8T provided a strong indication
of the presence of disorder in the Ge/Sb sublattice whictlilissbject of debate in literature.
In fact both vacancies and disorder turned out to be essémtiaach a good agreement with
experimental data and explain the unusual glass-like thleconductivity of this material.

The knowledge of thermal boundary resistance plays an itaporole in the electrothermal
modeling of the device. In particular it is important to knéwve different contributions to the
resistance is in order to properly engineer the materialstandevice architecture. Ab initio cal-
culations of the electron-phonon interaction in self do@ede and GST allowed us to estimate
the electron-phonon contribution to the thermal boundasystance for these materials. This
term, usually negligible in good metals, turned out to bevaht and actually even larger than
the phonon-phonon contribution to the TBR due to the pecababination of small electron-
phonon coupling and low density of states at the Fermi leuebbstill appreciable electronic
thermal conductivity. This implies that the value of therthal boundary resistance at an ideal
interface is more dependent on the properties of the phamggehmaterial itself than on the
choice of the interfacing material.

Beside the optimization of conventional PCM cells, recengpesses pushed the interest also
in the direction of novel device architectures.
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Among the most promising developments, interfacial phdmage memories represent a
great advance towards low power applications. Althouglir thetential in reducing the pro-
gramming current has been proved, their exact structurerenttansition mechanism are still
matter of debate. The ab initio calculation of the Raman tsador some of the most likely
structures proved that vibrational spectroscopy coulddsluo discriminate among different
proposals and possibly also to determine the intermediatd® transition mechanism. Simi-
larly, the Raman spectra calculated for multilayer GeTecstires helped clarifying the evolu-
tion with the thickness of the Raman peaks observed expetaitygand understand the growth
mechanism.

As a side activity we also analyzed the interaction betwdsnpns and the topologically
protected states appearing at the surface of the topoldgmaator SbTes and, for sake of
comparison BiSe; as well. These states have been proposed to appear alsaraetifece be-
tween ShTes and the GeTe blocks in iPCM superlattices and to be involaetie switching
of the device. As opposed to some claims drawn from Heliurttestiag data, we do not find a
strong electron-phonon coupling at the surface offépand BbSe;.

Nanowires have also attracted a considerable interestbt &pplications because they open
the possibility to improve the scaling and to overcome tlze $imitations intrinsic to litho-
graphic methods. Moreover, they offer a practical way ferrimalization of multibit memories.
The study of the surface energy of Sks nanowires provided an explanation for the peculiar
morphology and the unusual crystal structure observedempatally, in nanowires but absent
in the bulk. We have shown that this new phase is stabilizetimowires as a consequence of
its lower surface energy with respect to the bullkBH structure.

Finally, the neural network potential developed to deschiblk GeTe has been successfully
extended to treat also surfaces and nanowires in orderdy gte effects of the reduced dimen-
sionality on thermal properties, crystallization and apihaus stability. This extension allowed
us to perform a preliminary study of the thermal conductivit GeTe nanowires which re-
vealed a sizable reduction of thermal conductivity in nainesvprimarily due to reduction in
group velocities due to phonon confinement.
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