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Abstract. This paper presents new results concerning evolution and inflexional instability of twisted
magnetic flux tubes in the solar corona. Inflexional configurations, attained when the curvature of the
tube axis vanishes, are generally present in coronal magnetic structures and are invariably associated
with the early stages of kink formation. New equations for the Lorentz force in orthogonal curvilinear
coordinates are applied to study the behaviour of twisted flux tubes in presence of inflexion points.
We find that inflexional flux tubes are in disequilibrium and evolve spontaneously to inflexion-free
configurations, possibly in braid form. These results have important applications for solar coronal
structures. First, they prove that the evolution and relaxation of twisted magnetic fields into braid form
is a generic feature, confirming the observational evidence of highly twisted and braided structures
present in the solar corona. Secondly, they demonstrate that inflexions can trigger kink instabilities,
providing a fundamental mechanism for modeling outbreaks of energy into heat, emitted by flares,
microflares and mass ejections.

1. Dynamics of Twisted Magnetic Flux Tubes in Orthogonal Curvilinear
Coordinates

Highly tangled and braided plasma loops constitute a basic structural element of
solar and stellar atmospheres (House and Berger, 1987; Bray et al., 1991). Recent
observational measurements (Keller, 1992) confirm that on the Sun, more than
90% of the magnetic flux outside sunspots is concentrated into small and intense
flux loops (Spruit and Roberts, 1983). Their structure outlines the entanglement
of magnetic lines moved about by the photospheric turbulent flow, whose vortical
motion is responsible for the complex topology of the lines of force. For typical
solar corona parameters, magnetic Reynolds numbers are very high (of the order of
109-10°), so that resistive and diffusive effects can be neglected. Hence, the evolu-
tion of coronal magnetic structures can be studied by ideal magnetohydrodynamics
equations.

Twisted magnetic flux tubes can be considered fundamental constituents of
complex coronal structures. Their dynamics is governed by the Lorentz force
associated with the magnetic field distribution. Here, we present new equations
for this force based on appropriate orthogonal curvilinear coordinates that take
into account torsion and internal twist of field lines. We take the orthogonal basis
(é,, &g, t) given by radial, azimuthal and axial unit vectors centred on the tube axis
X = X(s) (s arc-length and £ tangent to X) and independent coordinates r, 9 g, s.
The flux tube is identified with a geometric tube of circular cross-section of radius
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Figure 1. Reference systems centred on the circular cross-section of the flux tube. Note that the
azimuthal coordinate @ is a function of the total torsion through Equation (2).

a < R, with R = ¢! radius of curvature of the tube axis. The tube thinness
parameter is given by e = /R < 1 (not necessarily ¢ < 1). The magnetic field
B = B,, + B, is given by a meridian (i.e., poloidal) component B,,, and an axial
(i.e., toroidal) component B,, with

B, = [0.By(r,9(s)).0], B, =1[0,0,B,(r)], (1)

and By and B, smooth functions of the radius of the cross-sectionr (0 < r < @) and
the azimuth angle ¥ = J(s) (0 < 9 < 27). The independent azimuthal coordinate
g is related to 9 by the equation

9(s) =“9R*‘f:f(§)d§a @

where 7 is the torsion of the tube axis. It can be readily verified that the reference
system is orthogonal (Mercier, 1963), with scale factors h, = 1, hy = r and
hs = K = 1 — ercosd. By using the standard Frenet frame, we write the radial
and azimuthal unit vectors as &, = ficos ¥ + bsind and &g = —fsind + bcosd,
where 1 and b are the normal and binormal unit vectors to the tube axis (Figure 1).

The Lorentz force is given by F = J x B, where J = V x B is the current
density and, by appropriate rescaling, the magnetic permeability x is set equal to
one. By standard vector calculus the Lorentz force is rewritten as

F=(VxB)xB=(B-V)B-1iV(B?. (3)
The rh.s. of (3) is calculated in the orthogonal reference (&, &y, t). To evaluate
the gradients of the magnetic field in the poloidal and toroidal direction we use
Frenet—Serret formulae and the divergence-free condition V - B = 0. From the
latter, we have
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0By e
59, = ~Boggsin?. @)

where we made use of (2). After some algebra, we can write the Lorentz force
explicitly in terms of radial, meridian and axial components, i.e., F = F, + F,, +
F,. where

| Bzicosﬁ—B—Bz—lg(BerBz) ; )

r = Ir€p = s K v 20r 0 s €r ,

¥, = Fidy= BS% sind (39% - Bs) &, 6)
- & = T -

F,=Ft= BQE sind (Bs - B,«;E) t. @)

Radial and meridian components can be re-arranged in terms of a component
perpendicular to the tube axis (F ;) and the poloidal component (F), given by

B By 10 .
FJ_:Bszgn— [T_B-'-Ea (Bgz+332)] e, , (8)
F, = 3933% sin &y . ©)

The flux tube moves in the plasma by the action of the perpendicular component (8),
given by the curvature contribution along the normal direction (note the presence
of the scale factor K) balanced by the contribution from magnetic pressure in the
radial direction. For relatively thick flux tubes, i.e., when ¢ = O(1), the scale
factor K = 1 — c¢r cos ¥ may enhance considerably curvature effects. Whene <« 1,
K =~ 1 and we recover the classical solution for very thin flux tubes. The poloidal
component given by (9) has no effect on the tube displacement, but generates
a meridian flow, convecting the plasma from the inner concave region towards
the outer convex region. with consequential re-arrangement of the magnetic field
lines. Note that in absence of the meridian field (zero twist field everywhere)
F, = F, = 0. As we should expect B- F = 0, i.e., the Lorentz force acts normally
to the helical path of the twisted field lines, with

=—— = 1
Fnl - B, KL (10)

which relates magneto-mechanical effects to twist (©) and tube geometry (L is the
tube length).
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2. Inflexional Instability of Twisted Magnetic Flux Tubes

In general knotted magnetic flux tubes exhibit inflexional configurations. The geo-
metry of these configurations is characterized by the presence of points of inflexion
(i.e., points where curvature vanishes) along the tube axis. Inflexional states are eas-
ily identifiable for plane curves: in this case the inflexional geometry is simply given
by an S-shaped curve with the inflexion point at the change of concavity. Inflex-
ional configurations in magnetic field lines, however, are ubiquitous, especially in
highly tangled structures. Ricca and Moffatt (1992) showed that the appearance of
inflexional states is invariably associated with the continuous exchange of writhe
and twist helicity, a recurrent mechanism in solar coronal structures. The dynamics
of magnetic flux tubes in inflexional configuration can be studied by applying the
above equations to a generic deformation through inflexion. The generic behaviour
associated with passage through an inflexional state (say at s = 0 and time ¢ = 0)
has been studied by Ricca and Moffatt (1992), and is given by the time-dependent
twisted cubic

X(s,t) = (s — 3t%s%, —ts?, s%) (11)

for small s and £ (|s| > t), where ¢ denotes some ‘kinematical’ time (obtained by
appropriate rescaling of the real dynamics).

We can now apply Equations (5)—(7) to the inflexional geometry (11). Equi-
librium is attained by satisfying the magnetostatic condition J x B = Vp, which
gives

VxF=0. (12)

This analysis is carried out by rewriting Equation (12) in the orthogonal cur-
vilinear basis (&, &, t) with inflexional geometry (11). After appropriate non-
dimensionalisation of variables and some tedious, but straightforward algebra, we
can show (Ricca, 1996a, b) that Equation (12) has no physical solution. Indeed, we
can prove that

By G
B, cosd (Bs #0), L

where G is a smooth function of the flux tube geometry. From (13) we see that By
blows-upassecty = 1/ cos? at¥ = n/2and ¥ = 37 /2. Note that the singularity is
independent of the flux tube thickness ¢, so that this result holds true for relatively
thick flux tubes. Setting torsion to zero (in the function G), we can check that
the instability is also present in planar configurations (S-shaped curves), where
the disequilibrium is clearly driven by the normal unit vector in the two regions
of opposite concavity. We conclude that there is no equilibrium for flux tubes in
inflexional configuration.
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3. Physical Consequences of Inflexional Instability

The inflexional instability of magnetic flux tubes has important effects on the
evolution of coronal magnetic fields. In ideal conditions (that is when viscous or
resistive effects are neglected) magnetic fields deform and re-arrange themselves
in a continuous fashion by conserving topology (Antiochos, 1987; Moffatt, 1992).
Inflexions are removed by a re-arrangement of the field structure into a topologically
equivalent configuration, free from inflexions and possibly in braid form. Braids
are given by entangled field lines and constitute favoured candidates for solar
coronal structures (Berger, 1987). Typically, magnetic tubes re-adjust themselves
by reducing the excess of internal twist and magnetic stress, a process that in
ideal conditions is known to convert twist helicity into writhe helicity (Moffatt and
Ricca, 1992). This process is achieved mechanically by the action of the poloidal
component (9) of the Lorentz force on the tube strands. Inflexions are removed
either by lowering the internal twist through redistribution of torsional energy,
relaxing the whole structure to a braid pattern, or, if it is possible, by converting
as much of twist helicity as possible into writhe helicity, with production of large
helical structures (arches with low curvature and large coils). On relatively long
time-scales these too, under the action of the normal component of the Lorentz
force (8), re-adjust themselves to large inflexion-free braids.

Depending on how much twist has being actually built-up in the flux-tube,
we may identify three different scenarios for the evolution of coronal loops (see
Figure 2).

(i) Sub-critical twist: © < ©,,. The flux tube is still able to absorb a great deal
of twisting from chaotic and vortical motion in the photosphere and surrounding
plasma turbulence. Writhe helicity (which is a measure of the number of kinks
formed) may increase and is redistributed into twist helicity. The evolution is
dominated by curvature forces due to the normal component of Equation (8). These
induce a continuous, progressive shortening of the field lines, that is balanced by
plasma pressure. Note that for thin flux tubes the contribution from By*/r is
small compared with tension effects. At typical critical twist values () for kink
formation (see, for example, Priest, Hood, and Anzer, 1989), we have

Bs’c/K K
B/ > 17 =0(1), (14)
where N = O(1) is the critical number of twist turns for kink instability. In this
situation, big arches and large helical structures, with low bending energy, are
produced. Inflexions are removed by re-arranging the initial configuration into a
braided pattern. Thus, braided coronal loops are formed, with a relatively long
lifetime.
(i1) Twist almost at a critical level: © ~ ©,.. Inthis case the flux tube has as much
twist as it can support, with part of the total helicity converted into writhe helicity.
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inflexions

Figure 2. A coronal loop is identified with a bundle of magnetic fields twisted-up by the vortical
photospheric motion that during evolution may develop inflexional configurations in disequilibrium.
Depending on the amount of twist actually present in the loop, we have: (i) magnetic field lines
relaxing into a braid pattern; (ii) flux tube developing a hammock configuration; or (iii) passage
through inflexion. triggering kink instability and eventual outbreak of energy.

Writhe values are therefore high, but not high enough for the flux tube to produce
a full kink. In this case we can show (Ridgway and Priest, 1993; Ricca, 1994)
that coronal loops can attain a full, three-dimensional hammock configuration.
This is a particular geometry, where the dip is formed and maintained through
the inward action of the Lorentz force (in Equation (5)) on plasma particles.
Hammock configurations are good candidates for providing mechanical support
for cool, heavier plasma in the corona. Here we should point out that even when
the hammock configuration is attained by a magnetic field purely sheared near the
photospheric neutral line (see, for example, Antiochos, Dahlburg, and Klimchuk,
1994), twist injected by vortical photospheric motion should still be considered as
an influencing factor for dip formation (since shear can always be decomposed into
a strain and a twist action).
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(iii) Super-critical twist: @ > O, In this case high magnetic tension drives
inflexional flux tubes to an abrupt development of a full kink. But in super-critical
state, this triggers kink instability (Raadu, 1972). Highly twisted field lines relax
suddenly to become narrowly coiled together in a small region of space, where
plasma particles are trapped in high density. Here, resistive effects become too
important to be neglected and high currents soon develop. Magnetic field topology
is no longer conserved, with lines of force undergoing physical reconnections and
complete re-structuring (van Ballegooijen, 1985). The flux tube liberates excess of
torsional energy by breaking-up, with an out-break of magnetic energy released
into heat, to produce flares and erupting prominences (Hood and Priest, 1979).

As we have seen, in all these events inflexional instabilities play an important
role. Their presence is source of a disequilibrium that leads to re-arrangements or
re-structurings of the initial configuration. These results are important for energy
estimates of solar coronal structures, especially when these estimates are based on
theoretical models that are very sensitive to variations in geometric and topological
information (Berger, 1993; Chui and Moffatt, 1995; see also Ricca and Berger,
1996). The accuracy of these estimates is crucial to give precise evaluations of
the amount of energy that can be released into heat during flares, microflares,
and mass ejections (Parker, 1983). Moreover, the presence of highly twisted and
braided magnetic structures in the solar corona (Berger, 1987; Bray et al., 1991)
is in perfect agreement with our analysis of the relaxation of magnetic fields to
braid form, as we have discussed earlier in this section. Our programme is to
pursue further this analysis, by combining topological information and magnetic
relaxation techniques in order to carry out accurate estimates of minimum energy
levels for braided coronal magnetic structures.
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