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Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-
Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By
resolving the fine structure of the vortex cores, we demonstrate that total length of the vortex
system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity
remain separately unchanged throughout the process. Self-helicity is computed by two independent
methods, and topological information is based on the extraction and analysis of geometric quantities
such as writhe, total torsion and intrinsic twist of the reconnecting vortex rings.
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I. INTRODUCTION

Background.—Reconnection of coherent structures
play a fundamental rôle in many areas of science. Exam-
ples include vortices in classical fluid flows [1, 2], quan-
tum vortex filaments in superfluid Helium [3, 4], mag-
netic flux tubes in plasma physics [5, 6], phase transi-
tions in mesoscopic physics [7], macromolecules in DNA
biology [8]. Here we focus on a single reconnection event,
that characterizes superfluid quantum turbulence [9, 10],
by analyzing dynamical, geometric and topological prop-
erties that are relevant also in classical viscous fluids [2],
where similar features such as time asymmetry [4], he-
licity transfers, randomization of the velocity field and
energy cascades [11] are important.

In recent months a number of remarkable results based
on experimental observations [12], mathematical anal-
ysis [13] and theoretical and numerical work [14] have
provided contradictory information as regards helicity
transfer through reconnection. On one hand laboratory
experiments on the production and evolution of vortex
knots in water show [12] that the centerline helicity of a
vortex filament remains essentially conserved throughout
the spontaneous reconnection of the interacting vortices.
This result is mirrored by the mathematical analysis of
conservation of writhe and total torsion (for definitions,
see Sec.III here below) under the assumption of anti-
parallel reconnection of the interacting strands [13]. On
the other hand recent numerical results [14], based on
a linearized model of interacting Burgers-type vortices
brought together by an ambient irrotational strain field,
show that the initial helicity associated with the skewed
geometry is eliminated during the process. This apparent
contradiction motivates further the present study.

In this paper we carry out a simulation of the interac-
tion and reconnection of a single pair of identical quan-
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tum vortex rings. The evolution is governed by the three-
dimensional Gross-Pitaevskii equation (GPE), with the
aim to reproduce and analyze in the GPE context the
fine details of the prototype reconnection event as studied
in [14]. By resolving the fine structure of the vortex cores,
we monitor all the relevant dynamical, geometric and
topological features of the reconnection process. Consis-
tently with current simulations (see, for example [11]),
the peak in the normalized total length of the vortex sys-
tem, given by an initial stretching process followed by its
marked decay, is taken as signature of the reconnection
event, providing a precise benchmark for the diagnostics
of the mathematical and physical properties associated
with the reconnection event.
Governing equations.—Direct numerical simulation of

the reconnecting quantum vortex rings is done by using
the 3D Gross-Pitaevskii equation (GPE)
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with background density ρb = 1. Through the Madelung
transformation ψ =

√
ρ exp(iθ), eq. (1) admits decom-

position into two equations that can be interpreted in
classical fluid dynamical terms, i.e. the continuity equa-
tion and the momentum equation, given by

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 , (2)

ρ

(
∂ui
∂t

+ uj
∂ui
∂uj

)
= − ∂p

∂xi
+
∂τij
∂xj

, (3)

where ρ = |ψ|2 denotes fluid density, u = ∇θ velocity,

p = ρ2

4 pressure, and τij = 1
4ρ

∂2 ln ρ
∂xi∂xj

the so-called quan-

tum stress (i, j = 1, 2, 3). Defects in the wave function
ψ represent infinitesimally thin vortices of constant cir-
culation Γ =

∮
u · ds = 2π of healing length ξ = 1.

It is well known that GPE conserves mass, given by
M =

∫
|ψ|2 dx3, and the Hamiltonian E = K + I, where

K =
1

2

∫
∇ψ ·∇ψ∗ dx3 , I =

1

4

∫
(1− |ψ|2)2 dx3 , (4)
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denote respectively the kinetic (K) and interaction (I)
energy of the system (ψ∗ being the complex conjugate
of ψ). The term τij , negligible compared to the pressure
term at length scales much larger than the healing length
ξ = 1, is expected to be key to vortex reconnection [4],
and at scales larger than the vortex core, GPE in the form
of eqs. (2) and (3) reduces to the classical compressible
Euler equations.

Helicity and self-linking number.—A fundamental
quantity of topological fluid mechanics is kinetic helic-
ity, defined by [15]

H =

∫
u · ω dx3 , (5)

where ω = ∇×u is vorticity and the integral is extended
over the vorticity volume. H is known to be an invari-
ant of ideal fluid flows and in ideal conditions it admits a
topological interpretation in terms of linking number [16].
For a pair of linked vortex rings V1 and V2, centred re-
spectively on curves C1 and C2 and of equal circulation
Γ, eq. (5) can be written as [17, 18]

H(V1, V2) = Γ2[SL(V1) + SL(V2) + 2Lk(C1, C2)] , (6)

whereH(V1, V2) is the total helicity of the system, SL(Vi)
is the (Călugăreanu-White) self-linking number of Vk
(k = 1, 2) and Lk(C1, C2) is the (Gauss) linking number
of C1 and C2. Note that if the pair of rings are unlinked
(as in our case, cf. Figure 1a), then Lk(C1, C2) = 0 and
(6) can be further simplified to

H(V1, V2) = Γ2[SL(V1) + SL(V2)] . (7)

In general the self-linking number SL, can be decom-
posed into global geometric quantities, and one can
show [19, 20] that SL(Vk) = Wr(Ck) + T (Ck) +N(Rk),
where writhing number Wr(Ck), total torsion T (Ck) and
intrinsic twist N(Rk) are quantities that depend solely on
the shape of the vortex centerline Ck and ribbon Rk (for
definitions see [13, 18] and Sec. III here below).

II. NUMERICS AND INITIAL CONDITIONS

The numerical code used for the simulation is described
in [4]. It is based on a second-order Strang splitting
method in time, and Fourier decomposition in space.
Hence, boundary conditions must be periodic; for non-
periodic directions the computational domain is doubled
and “mirror” vortex rings are introduced in the doubled
domain, as was done in [21]. The method conserves mass
exactly.

Initial conditions.—A pair of vortex rings is set at the
center of the numerical box. While this particular setting
provides a good comparative test for the physics of vortex
reconnection [22], it helps to avoid difficulties associated
with the numerical implementation of boundary condi-
tions and the topological complexity implied by periodic

FIG. 1. (Color online) Time-evolution of interaction and
reconnection of two quantum vortex rings; isosurfaces of ρ =
0.06. (a) t = 0, (b) t = 10, (c) reconnection time t = t∗ =
11.81, t = 14.

conditions, while offering a realistic match to simulate
the event studied in [14].

At time t = 0 the two rings are centered in (0;±10; 0),
have radius R0 = 8 and are mutually inclined by an an-
gle α = ±π/10 with respect to the horizontal plane (see
Figure 1a). The computational domain is [−20; 20] ×
[−30; 30] × [−20; 20]. In order to have fine spatial and
temporal resolution of the vortex core and of the recon-
nection process, we have used ∆x = ∆y = ∆z = ξ/6
(i.e. the number of points is 240 × 360 × 240) and
∆t = 1/80 = 0.0125.

At each point Q on the vortex ring we place a Frenet
triad {t̂, n̂, b̂} given by the local unit tangent, normal
and binormal to the vortex centerline (no inflexion points
emerge during the simulation). For each grid point P in
the numerical domain we seek the nearest point Q on the

vortex line so that
−−→
QP identifies the distance of P from

the vortex. Thus,
−−→
QP is locally orthogonal to the vortex,

in the plane defined by n̂ and b̂ at Q. In this plane P
has polar coordinates (r, θ) centred on Q, where r = QP

and θ is the angle between
−−→
QP and n̂.

Each vortex contributes to the initial condition with
a density distribution ρ0k given by the Padé approx-
imation [23] ρ0k =

(
11
32r

2 + 11
384r

4
)
/
(
1 + 1

3r
2 + 11

384r
4
)
,

and phase distribution θ0k. The initial condition
due to the presence of both rings is thus ψ0 =√
ρ01ρ02 exp [i (θ01 + θ02)].

III. EXTRACTION OF GEOMETRIC AND
TOPOLOGICAL QUANTITIES

Normalized total length L/ξ, writhe Wr, normalized
total torsion T and intrinsic twist N are the global ge-
ometric quantities we want to monitor during reconnec-
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tion. The total twist is given by Tw = T + N , and
together with Wr gives the self-linking number SL =
Wr + Tw, a topological invariant. These quantities are
well-defined (assuming everything sufficiently smooth)
for each individual vortex ring.

The writhe Wr = Wr(C) is analytically defined by

Wr =
1

4π

∫
C

∫
C

x− x∗

‖x− x∗‖3
· ( dx× dr∗) . (8)

where C is the vortex centerline and x and x∗ denote the
position vectors of two points on C.

The normalized total torsion T = T (C) is given by

T =
1

2π

∫
C

τ(s) ds (9)

where (from its basic definition) the local torsion τ(s),
function of arc-length s on C, involves third order deriva-
tives of the position vector x of any point on C.

Intrinsic twist N = N(R) measures the rotation
around C of a reference ribbon R (with baseline C) as we
move along C. Here R has edges given by C and C ′, a
second curve obtained by translating C a small distance
ε (the width of R) along a unit normal vector û to C. ε is
chosen to be constant along C and sufficiently small com-
pared to the local radius of curvature. Clearly R depends
on the choice of û and in absence of inflection points, this
is always well-defined [17, 18]. If ϕ(s) denotes the angle
between û and n̂, we have

N =
1

2π

∫
C

dϕ(s)

ds
ds =

[Φ]C
2π

(10)

that measures the number of full rotations of the ribbon
R, after one full turn along C. From the definition of
total twist one can show [18] that indeed Tw = T +N .

FIG. 2. (Color online) Normalized total length L/ξ, plotted
against time t. The peak in L/ξ is taken as signature of the
reconnection time at t = t∗ = 11.81.

IV. RESULTS

Vortex centerlines are extracted from numerical data,
first by isolating the tubes whose density ρ < 0.2, and

FIG. 3. (Color online) (a) Normalized total energy (Hamil-
tonian) (K + I)/E, normalized kinetic energy K/E and nor-
malized interaction energy I/E plotted against time t. (b)
Kinetic helicity H plotted against time t. The vertical line
(red online) denotes the reconnection time t = t∗ = 11.81.

then by looking for minima of ρ/|ω| (minima of density
correspond to maxima of vorticity). Particular care has
been put to the extraction of sufficiently smooth data.
Intrinsic twist is obtained from phase information. The
ribbon R is thus obtained by requiring constant phase
θ = θ̄ along C, and by setting ε = 0.3, a good compro-
mise between visualization needs and misleading effects.
As usual, smoothing was applied to ensure sufficient reg-
ularity.

Figure 1 shows four snapshots of the time-evolution of
interaction and reconnection of the quantum vortex rings
(isosurfaces of ρ = 0.06). Before reconnection, the two
vortex rings move toward each other, bending upwards
in the region near the reconnection site, the more distant
parts of the vortices remaining almost un-affected. The
change of normalized total length L/ξ of the pair of rings
against time is used to check the reconnection process
and to the detect reconnection time. The plot is shown
in Figure 2 for t ∈ (10, 14). The marked peak at t =
t∗ = 11.81, after stretching, is taken as signature of the
reconnection time. The maximum value Lmax ≈ 108.6 ξ
corresponds to about 8% of increase with respect to the
initial total length, given by L0 ≈ 100.5 ξ. For t > t∗

the system relaxes at a faster rate, confirming the time
asymmetry found in earlier work [4].

As a further check, we plot the hamiltonian (E) given
by the normalized total energy (K+I)/E and, separately,
the normalized kinetic energy K/E and interaction en-
ergy I/E, given by (4) (see Figure 3a). Kinetic helicity
is computed according to eq. (5). As shown in Figure 3b
its value remains bounded, i.e. |H| < 10−9, that is ap-
proximately zero throughout the reconnection process (at
these length scales the spikes of the plot in Figure 3b are
essentially due to numerical noise). A check on vortex
strength confirms the conservation of Γ before and after
reconnection. A close-up view of the vortex centerlines
(in red, online) and reference ribbons (green and blue, on-
line) immediately before and after reconnection is shown
in the plots of Figure 4a,b. The reconnection event takes
place at a much faster timescale, well beyond numerical
accuracy. To monitor as close as possible the topological
transition, the event is represented at maximum numeri-
cal resolution by showing the diagrams of the discretized
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FIG. 4. (Color online) A close-up view of the vortex center-
lines (red online) and reference ribbons (green and blue online,
pale grey and darker otherwise) (a) immediately before recon-
nection at t = 11.81, and (b) immediately after reconnection
at t = 11.88. The transition is shown at maximum numeri-
cal resolution: (c) vortex centrelines just before (t < t∗, red
online) and after (t > t∗, black) reconnection; the state in-
between (at t = t∗) shows that reconnection is numerically
triggered by a jump at just two nodal points (circles).

vortex centrelines in Figure 5c. As we can see from the
central diagram of Figure 5c (at t = t∗) the reconnect-
ing event is numerically triggered by a jump at the two
nodal points (circles) of closest approach, demonstrating
that in the limit of numerical resolution reconnection in-
volves only the mutual cancellation of two anti-parallel
polygonal segments.

Finally, we examine the individual contributions to
the self-linking number by using the independent equa-
tions (8)–(10). Plots of Wr, T , N and SL against time
are shown in Figure 5. The ribbon R is found to be
θ = θ̄ ≈ 50◦. Writhe and twist remain very small
throughout the process. They are identically zero only
at t = 0, when the vortex rings are exactly planar tori,
whereas for t > 0 the vortex centerlines become gradu-
ally deformed. Except for a few spikes, which are not re-
lated to reconnection, |Wr| < 10−4 and |Tw| < 2×10−4.
Numerical errors associated to the computation of Tw
are generally larger than those on Wr, because of the
higher-order derivatives involved in the computation of
the normalized total torsion (see Figure 5b) and the ad-
ditional numerical noise associated with the computa-
tion of N (see Figure 5c). The numerical code has been
validated by computing Wr and Tw of known bench-
marks, and we are confident that the reported spikes
are only due to accumulation of numerical errors. Thus,
we conclude that all plots of Figure 5 show consistently
Wr = T = N = SL = 0 throughout the reconnection
process.

FIG. 5. (Color online) (a) Writhe Wr, (b) normalized total
torsion T , (c) normalized intrinsic twist N (with θ̄ ≈ 50◦) and
self-linking number SL plotted against time t. The vertical
line (red online) denotes the reconnection time t = t∗ = 11.81.

V. CONCLUSIONS

We have performed numerical simulations of the GPE,
that resolve the fine structure of the vortex-core un-
der anti-parallel reconnection of the tube strands of two
colliding quantum vortex rings. This simple scenario
provides a good benchmark for comparison with earlier
works on direct numerical simulation of reconnecting vor-
tex rings under Navier-Stokes equations [24, 25], and an
ideal setup for clarifying recent contradictory results ob-
tained by experiments and theoretical modeling on clas-
sical vortex dynamics.

Reconnection under Gross-Pitaevskii is clearly mani-
fested by the generation of a peak in total length, and
this is taken as a marker of the reconnection event. We
took extra care to monitor the behaviour of several ge-
ometric quantities during reconnection. As predicted by
geometric analysis [13] writhe and total torsion are found
to remain conserved, whereas there is no change in total
intrinsic twist, all this keeping clearly self-linking num-
ber invariant. Self-helicity, computed independently by
using eq. (5), is found consistently to remain conserved
during reconnection. Since in our experiment the (Gauss)
linking number Lk is always zero (the rings remain un-
linked throughout the process), there is no contradiction
with the fact that during reconnection topology actu-
ally changes (as indeed happens here). The fact that
self-helicity, and hence total helicity, remains conserved
during reconnection is thus something not only new for
quantum systems, but also in good agreement with the
recent experimental observations of reconnecting vortices
in water [12]. The methods used here can certainly be
extended to study more complex topologies and further
work is indeed in progress to analyze and to extend these
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preliminary findings.
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