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Abstract 
The paper introduces a new Frequentist model averaging estimation procedure, based on a 
stacked OLS estimator across models, implementable on cross-sectional, panel, as well as time se-
ries data. The proposed estimator shows the same optimal properties of the OLS estimator under 
the usual set of assumptions concerning the population regression model. Relatively to available 
alternative approaches, it has the advantage of performing model averaging ex-ante in a single 
step, optimally selecting models’ weight according to the MSE metric, i.e. by minimizing the 
squared Euclidean distance between actual and predicted value vectors. Moreover, it is straight- 
forward to implement, only requiring the estimation of a single OLS augmented regression. By ex-
ploiting ex-ante a broader information set and benefiting of more degrees of freedom, the pro-
posed approach yields more accurate and (relatively) more efficient estimation than available 
ex-post methods. 
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1. Introduction 
The Classical Linear Regression Model (CLRM) is grounded on a basic set of assumptions concerning its speci-
fication and distributional properties of control variables and error term. In this respect, under what is usually 
held as Assumption 1, the population regression model is required to be linear in the parameters, and control va-
riables are all known and included in the model. However, the latter correct specification assumption may not 
always be appropriate in Economics; for instance, there may be more than a single set of variables, i.e. more 
than a single candidate model, which can be employed in estimation, also when economic theory has clear-cut 
implications for the causal linkage of interest. 

Consider the relationship linking y to x, when both variables can be measured in different ways, i.e. when 
there exist iy  and jx , 1, ,i P=  , 1, ,j R=  ; then, in principle, up to P R× , different models can be esti-
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mated.1 
Two solutions have so far been proposed in the literature to the above model selection problem. On the one 

hand, by maintaining the assumption of correct specification, a single model out of the P R×  candidates can 
be selected according to various specification strategies (see [2] for a general account; see also [3] for recent 
developments in model selection). Alternatively, all of the P R×  models can be estimated, and a weighted av-
erage across models computed ex-post for the parameters of interest. In the latter case, the assumption of correct 
specification does not have necessarily to be maintained. 

Several model averaging procedures have been proposed in the literature, making use of either Bayesian or 
Frequentist procedures (see [4] [5]). Admittedly, relatively to Bayesian, the Frequentist approach to model av-
eraging is fairly underdeveloped. The current paper then aims at filling this gap in the literature, by proposing an 
ex-ante, mean square error-optimal model averaging procedure. The proposed procedure is grounded on a 
stacked OLS estimator across models, implementing model averaging ex-ante in a single step, optimally select-
ing models’ weight according to the MSE metric, i.e. by minimizing the squared Euclidean distance between 
actual and predicted value vectors. Moreover, it is straightforward to compute, only requiring the estimation of a 
single OLS augmented regression. By exploiting a broader information set ex-ante, i.e. by making use of all the 
available information jointly, and benefiting of more degrees of freedom, the proposed estimator then yields 
more accurate and (relatively) more efficient estimation than available ex-post methods. Extension to other es-
timation frameworks, i.e. GIVE or GMM, is also straightforward. 

The rest of the paper is organized as follows. In Section 2, the proposed approach is illustrated by means of a 
simple example. Then, the econometric methodology is outlined in full in Section 3, while Section 4 deals with 
its statistical properties. Finally Section 5 concludes. 

2. Ex-Ante Model Averaging: An Example  
For sake of clarity, consider the following bivariate example 

t t ty xβ ε= +                                       (1) 

where the dependent variable y is a linear function of the independent variable x. The endogenous variable y can 
then be alternatively measured by 1y  and 2y , while the independent variable x by 1x  and 2x . In what fol- 
lows we assume that the other usual properties of the CLRM hold, i.e. { }, ,,i t j ty x , , 1, 2i j = , 1, ,t T=  ,  

1T > , is a stationary and ergodic process, of zero mean for simplicity; the regressors ,j tx  and the residuals  

,ij tε  are at least contemporaneously orthogonal, i.e. , ,| 0i t j tE ε  = x ; the residuals are conditionally homoske-

dastic ( )2 2
, ,|i t t jE xε σ  =   and non serially correlated , , ,( | 0i t i t n t jE xε ε −  =  , 1,n =  ).2 

Four consistent estimates of the parameter of interest β  are then obtained, i.e. 1,1β̂ , 1,2β̂ , 2,1β̂ , 2,2β̂ , by 
means of OLS estimation of each of the four available alternative models 

1, 1, 11,

1, 2, 12,

2, 1, 21,

2, 2, 22, .

t t t

t t t

t t t

t t t

y x
y x
y x
y x

β ε

β ε

β ε

β ε

= +

= +

= +

= +

                                   (2) 

Ex-post model averaging then yields a robust consistent estimate ˆ
epβ  of β , by computing a weighted av-

erage of the four available estimates 1,1β̂ , 1,2β̂ , 2,1β̂ , 2,2β̂ , with weights determined according to Bayesian or 
Frequentist approaches. 

For instance, within a Frequentist model averaging approach [2], one has 

, ,
1,2 1,2

ˆ ˆ
ep i j i j

i j
wβ β

= =

= ∑ ∑                                    (3) 

 

 

1In Economics, the above situation is not unusual. For instance, be y a measure of income distribution inequality and x the degree of finan-
cial development of a country; in the latter case, the Gini Index, net or gross, or top-to-bottom income distribution quantile ratios (top to 
bottom 1% or 10%) would all be valid candidate dependent variables; moreover, concerning financial deepening, the GDP share of liquidity 
(M2 or M3), stock market capitalization, or credit to the private sector, might be alternatively employed (see [1]). 
2t is not necessarily a temporal index; applications to cross-sectional data are as viable as to time series. 
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where the weights ijw  can be computed by means of information criteria as in [6], setting 

( )
( )
,

,
,

1,2 1,2

exp 2

exp 2
i j

i j
i j

i j

I
w

I
= =

−
=

−∑ ∑
                                 (4) 

where ,i jI  is the Akaike or Schwarz-Bayes information criterion for model ,i j . Other approaches are also 
available, based on Mallow's criterion [7] or cross-validation [8]. 

On the other hand, the proposed model averaging strategy is single-step and implemented by means of an 
augmented regression model using all the available data jointly. It then requires the construction of the auxiliary 
dependent ( Jy ) and independent ( Jx ) variables, by appropriately stacking the actual data iy  and jx  in single 
column vectors. 

With reference to the set of models in (2), consider the stacked model obtained from their union, i.e. 

J J Jβ= +y x ε                                      (5) 

where [ ]1 1 2 2J
′′ ′ ′ ′=y y y y y , [ ]1 2 1 2J

′′ ′ ′ ′=x x x x x  and 1,1 1,2 2,1 2,2J
′′ ′ ′ ′ =  ε ε ε ε ε are 1S ×  vectors,  

4S T= ; iy , jx , ,i jε , , 1, 2i j = , are 1T ×  vectors containing the observations on iy , jx  and ,i jε , re-
spectively. 

Alternatively, the regression model can be written as  

, , , , 1, ,J s J s J sy x s Sβ ε= + =                                 (6) 

The stacked OLS problem is then stated as 

( ) ( )2

, ,1ˆ
ˆ ˆmin

ea

S
ea J s ea J ssRSS y x

β
β β

=
≡ −∑                            (7) 

yielding, after some algebra 

, ,
1,2 1,2 1

2
,

1,2 1,2 1

ˆ

T

i t j t
i j t

ea T

j t
i j t

y x

x
β = = =

= = =

=
∑ ∑ ∑

∑ ∑ ∑
                                 (8) 

or 

, .
1,2 1,2

ˆ ˆ
ea i j i j

i j
wβ β

= =

= ∑ ∑                                     (9) 

where 

, ,
1

2
,

1

ˆ

T

i t j t
t

ij T

j t
t

y x

x
β =

=

=
∑

∑
                                    (10) 

2
,

1
,

2
,

1,2 1,2 1

T

j t
t

i j T

j t
i j t

x
w

x

=

= = =

=
∑

∑ ∑ ∑
                                  (11) 

with 

2
,

1
,

21,2 1,2 1,2 1,2
,

1,2 1,2 1

1

T

j t
t

i j T
i j i j

j t
i j t

x
w

x

=

= = = =

= = =

= =
∑

∑ ∑ ∑ ∑
∑ ∑ ∑

 . 

The ex-ante model averaging or stacked OLS estimator of β  is then equivalent to its ex-post counterpart, 
with weights determined according to the relative variation of the candidate regressors. 
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Moreover, consistent OLS estimation of 2σ  from the generic ,i j th disjoint model yields  

2
, ,

2 1
,

ˆ
T

i j t
t

i j T

ε
σ ==

∑
                                     (12) 

while the stacked estimator is 

2 2
, , , ,

1,2 1,2 =12 2=1
,

1,2 1,2 1,2 1,2

ˆ ˆ
1 1
4 4

T T

i j t i j t
i j t t

ea i j
i j i jS T

ε ε
σ σ= =

= = = =

= = =
∑ ∑ ∑ ∑

∑ ∑ ∑ ∑                      (13) 

Hence, the stacked OLS estimator of 2σ  is equivalent to the arithmetic mean, across models, of the disjoint 
OLS estimators of 2σ . 

Issues related to the (relative) efficiency of the stacked OLS estimator and the gain in terms of higher degrees 
of freedom are discussed below. 

3. Ex-Ante Model Averaging by Stacking  
Consider the regression function 

= +y Xβ ε                                      (14) 

and suppose that P candidate dependent variables are available, i.e. 1 2, , , Py y y , where py , 1, ,p P=  , is a 
1T ×  column vector of observations. 

For simplicity, three cases for the specification of the design matrix are considered: 
1) The case of a single T K×  design matrix X  for the K regressors kx , 1, ,k K=  , where kx  is a 
1T ×  vector and T K> . 

2) The case of R candidates for one of the K regressors in the model, ordered first for simplicity, i.e., 1rx , 
1, ,r R=  , yielding up to R different rX  design matrices. 

3) The case of R candidates for each of the K regressors in the model, yielding up to KR  different design 
matrices rX , 1, , Kr R=  . 

3.1. The Case of a Single Design Matrix  
In case 1. Up to P models could be estimated, i.e. 

1 1

2 2

P P

= +
= +

= +

y X
y X

y X


β ε
β ε

β ε

                                    (15) 

Their union yields the stacked model 

,1 ,1 ,1P P P= +y X β ε                                   (16) 

where [ ],1 1 2P P
′′ ′ ′=y y y y  is a ( ) 1P T× ×  vector of observations on the P available candidate depen-

dent variables, obtained by stacking the P column vectors iy  on top of one other; ,1PX  is the ( )P T K× ×  

joint design matrix obtained by staking P times the matrix X  on top of itself, i.e. [ ],1P
′′ ′ ′=X X X X , 

β  is the 1K ×  vector of parameters, and ,1Pε  is the ( ) 1P T× ×  vector of residuals [ ],1 1 2P P
′′ ′ ′= ε ε ε ε , 

obtained by stacking the P column vectors iε  on top of one other. Hence, the sample size of the stacked model 
is S P T= × . 

Disjoint OLS estimation of the pth generic model in (15) yields (see [9]) 

( ) 1ˆ
p p

−′ ′= X X X yβ                                   (17) 
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while for the variance, in large samples 

2
ˆ ˆ

.p p
p T

σ
′

=

ε ε
                                     (18) 

The Ex-Ante Model Averaging Estimator  
Ex-ante model averaging is obtained by OLS estimation of the stacked model in (16), yielding 

( ) 1
,1 ,1 ,1 ,1

ˆ
ea P P P P

−
′ ′= X X X yβ                                (19) 

,1 ,12 ˆ ˆ
.P P

ea S
σ

′
=

ε ε
                                    (20) 

The linkage between ex-ante and ex-post model averaging can then be gauged by noting that (19) can be 
stated as 

[ ] [ ]
[ ] [ ]

( ) ( ) ( )

1
1 2

1
1 2

1 1 1
1 2

1

ˆ

1 1 ˆ

ea P

P

P

P p
p

P

P P

−

−

− − −

=

′ ′ ′ ′ ′ ′= + + + + + +

′ ′ ′ ′= + + +

 ′ ′ ′ ′ ′ ′= + + + =  ∑

X X X X X X X y X y X y

X X X y X y X y

X X X y X X X y X X X y

 





β

β

              (21) 

where ( ) 1ˆ
p p

−′ ′= X X X yβ , 1, ,p P=  . 
Hence, in this case, ex-ante OLS model averaging is equivalent to ex-post arithmetic model averaging across 

the P disjoint OLS estimators ˆ
pβ . 

Similarly for 2
eaσ  

,1 ,12 2

=1 =1

ˆ ˆˆ ˆ 1 1P P
p pP P

ea p
p pS P T P

σ σ
′′

= = =∑ ∑ 

ε εε ε
                           (22) 

which also is the arithmetic average, across the P available models, of the disjoint estimators 2
pσ . 

3.2. The Case of Multiple Design Matrices  
In the case of multiple design matrices, up to G regression models can be computed, with G R=  in case 2. and 

KG R=  in case 3., i.e. 

1 1 1,1

1 2 1,2

1 1,

2 1 2,1

2 2 2,2

2 2,

1 ,1

2 ,2

, .

G G

G G

P P

P P

P G P G

= +

= +

= +

= +

= +

= +

= +

= +

= +

y X
y X

y X
y X
y X

y X

y X
y X

y X









β ε

β ε

β ε

β ε

β ε

β ε

β ε

β ε

β ε

                                   (23) 

The disjoint OLS estimator for the generic ,p r th model, 1, ,p P=  , 1, ,r R=  , in (23) 

, ,p r p r p r= +y X β ε                                   (24) 
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is 

( ) 1
,

ˆ
p r r r r p

−′ ′= X X X yβ                                  (25) 

while for the variance, in large samples 

, ,2
,

ˆ ˆ
.p r p r

p r T
σ

′
=

ε ε
                                    (26) 

On the other hand, the union of the above disjoint models yields the stacked model 

, , ,P G P G P G= +y X β ε                                   (27) 

where β  is the 1K ×  vector of parameters, [ ]( ), 1 2P G G Pvec= ⊗y i y y y  is the ( ) 1T P G× × ×  vec- 

tor collecting the P py  ( )1T ×  vectors, 1, ,p P=  , which are then stacked on top of one other G times, vec  
is the vectorization operator, ⊗  is the Kronecker product and Gi  a 1G×  unitary vector.3 

By denoting [ ]1 2 G∗
′′ ′ ′=X X X X  the ( )G T K× ×  matrix obtained by stacking the G candidate de-

sign matrices on top of one another, ,P GX  is then the ( )P G T K× × ×  design matrix yield by staking P times 

the matrix ∗X  on top of itself, i.e. [ ],P G ∗ ∗ ∗
′′ ′ ′=X X X X . Finally,  

'
, 1,1 1, ,1 ,P G G P P G′ ′ ′ ′ =    ε ε ε ε ε  is a ( ) 1P G T× × ×  vector of residuals. Hence, the sample size of 

the stacked model is S T P G= × × . 
The stacked OLS estimator is then computed as 

( ) 1
, , , ,

ˆ
ea P G P G P G P G

−
′ ′= X X X yβ                               (28) 

, ,2 ˆ ˆ
.P G P G

ea S
σ

′
=

ε ε
                                   (29) 

3.2.1. The Case of a Single Candidate Dependent Variable  
For sake of simplicity, consider first the case where 1P = ; hence, S G T= × , , 1, 1P G G G= = ⊗y y i y , and the 
design matrix in the stacked model is [ ], 1, 1 2 .P G G G∗

′′ ′ ′= = =X X X X X X  
The stacked OLS estimator in (28) can then be stated 

[ ] [ ] [ ]
[ ] [ ] [ ]

1 1
1, 1 1 2 1 1

1 1 1
1 1 2 1 1

ˆ
ea G G

G

− −
∗ ∗ ∗ ∗ ∗

− − −
∗ ∗ ∗ ∗ ∗ ∗

′ ′ ′ ′ ′ ′ = = × + + + 

′ ′ ′ ′ ′ ′= + + +

X X X y X X X y X y X y

X X X y X X X y X X X y





β
                (30) 

where 1 1 2 2 .G G∗ ∗′ ′ ′ ′= + + +X X X X X X X X  

Denote 
1,

G

r i i
i i r= ≠

′= ∑K X X , yielding 1 2 2 3 3 G G′ ′ ′= + + +K X X X X X X , 2 1 1 3 3 G G′ ′ ′= + + +K X X X X X X , 

and so on. By substitution in (30), it follows 

[ ]( ) [ ]( ) [ ]( )
[ ]

11 1
1 1 1 1 1 2 2 2 2 1 1

1
1

1

ˆ

.

ea G G G G

G

r r r r
r

−− −

−

=

′ ′ ′ ′ ′ ′= + + + + + +

′ ′= +∑

X X K X y X X K X y X X K X y

X X K X y

β
         (31) 

Using matrix inversion rules4, one has 

[ ] ( ) ( ) ( )( ) ( ) ( )( )
11 1 1 1 1 11 .r r r r r r r r r r r r K r r r

−− − − − − −− ∗′ ′ ′ ′ ′ ′+ = − + = −X X K X X X X K X X X X I K X X      (32) 

 

 

3Hence, ( )
( )

( )
( )

( )
( )

, 1 1 1 2 2 2
1 1 1

.P G P P P
T G T G T G× × × × × ×

′ ′ ′ ′ ′ ′ ′ ′ ′ ′=  
 

y y y y y y y y y y     

4Given matrices A and C, non singular and of proper dimensions for their sum, it holds ( ) ( ) 11 1 1 1 1.A C A C A A
−− − − − −+ = +  
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where ( ) ( )( ) 11 11 .r r r r r r

−− −∗ −′ ′= +K X X K X X  

By substitution in (31), it follows 

( )( ) ( )1
1 1, 1,

1 1 1

ˆ ˆ ˆ
G G G

ea K r r r r K r r r r
r r r

−∗ ∗ ∗

= = =

′ ′= − = − =∑ ∑ ∑


I K X X X y I K Wβ β β                (33) 

where ( ) 1
1, 1

ˆ
r r r

−′ ′= X X X yβ . 
Optimal ex-ante weights, contained in the K K×  matrices r

∗W


, 1, ,r G=  , are then computed by taking 
into account all the information available on the various candidate regressors, being proportional to their relative 
variation. In fact, multiplying both sides of (32) by r r′X X , one has 

[ ] ( ) ( )1
r r r r r K r

− ∗′ ′+ = −X X K X X I K  

and therefore [ ] ( )1

1 1

G G

r r r r r r K
r r

−∗

= =

′ ′= + =∑ ∑W X X K X X I


. 

Moreover, given , 1,ˆ ˆP G G=ε ε , one has 

1, 1, 1, 1,2 2
1,

1 1

ˆ ˆ ˆ ˆ1 1 .
G G

G G r r
ea r

r rS G T G
σ σ

= =

′ ′
= = =∑ ∑ 

ε ε ε ε
 

Hence, 2
eaσ  is the arithmetic average, across the available G models, of the disjoint estimators 2

1,rσ . 

3.2.2. The Case of Multiple Candidate Dependent Variables 
Consider now the case in which more than single candidate dependent variable is available, i.e. 1P > . The 
stacked OLS estimator in (28) is then 

[ ] [ ]
( ) ( ) ( )

( )

[ ] ( ) ( )

( )

1
1 2

1
1 1 2 1 1 1 2 2 2 2

1 2

1
1 1 2 1 1 1 2 2 2 2

1 2

ˆ

=

1=

ea P

G G

P P G P

G G

P P G P

y y y

P

P

−
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−

∗ ∗

−
∗ ∗

′ ′ ′ ′ ′ ′= + + + + + +

′ ′ ′ ′ ′ ′ ′× + + + + + + +   
′ ′ ′ + + + + + 

′ ′ ′ ′ ′ ′ ′× + + + + + + +

′ ′ ′ + + + + + 

X X X X X X X X X

X X X y X y X y X y X y X y

X y X y X y

X X X y X y X y X y X y X y

X y X y X y

 

 

 

 

 

β

[ ] 1
1 2

1 1 1

1=
P P P

p p G p
p p pP

−
∗ ∗

= = =

 
′ ′ ′ ′× + + + 

 
∑ ∑ ∑X X X y X y X y

          (34) 

where again 1 1 2 2 G G∗ ∗′ ′ ′ ′= + + +X X X X X X X X . 

Moreover, denote 
=1,

G

r i i
i i r≠

′= ∑K X X , i.e. 1 2 2 3 3 G G′ ′ ′= + + +K X X X X X X ,  

2 1 1 3 3 G G′ ′ ′= + + +K X X X X X X , and so on; by substitution in (34), one then has 

[ ] [ ]

[ ]

[ ]

1 1
1 1 1 1 2 2 2 2

1 1

1

1

1

1 1

1 1ˆ

1

1 .

P P

ea p p
p p

P

G G G G p
p

G P

r r r r p
r p

P P

P

P

− −

= =

−

=

−

= =

   
′ ′ ′ ′= + + +   

   
 

′ ′+ + + 
 

′ ′= +

∑ ∑

∑

∑ ∑

X X K X y X X K X y

X X K X y

X X K X y



β

                (35) 

By recalling that [ ] ( )( )1 1
r r r K r r r

− −∗′ ′+ = −X X K I K X X , where ( ) ( )( ) 11 11
r r r r r r

−− −∗ −′ ′= +K X X K X X , by 

substitution in (35) one eventually has 
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( ) ( ) ( )1
, ,

1 1 1 1 1 1

1 1 1ˆ ˆ ˆ
G P G P G P

ea K r r r r p K r p r r p r
r p r p r pP P P

−∗ ∗ ∗

= = = = = =

   
′ ′= − = − =   

   
∑ ∑ ∑ ∑ ∑ ∑I K X X X y I K W



β β β       (36) 

where, as for the previous case, [ ] ( )1

1 1

G G

r r r r r r K
r r

−∗

= =

′ ′= + =∑ ∑W X X K X X I


. 

The optimal ex-ante weights, contained in the K K×  matrices r
∗W


, 1, ,r G=  , are again computed by 
taking into account all the information available on the various candidate regressors and are proportional to their 
relative variation. Averaging is then performed across all possible models which can be estimated according to 
the P candidate dependent variables. 

Moreover, 

, ,, ,2 2
,

1 1 1 1

ˆ ˆˆ ˆ 1 1 1 1 .
G P G P

p r p rP G P G
ea p r

r p r pS G P T G P
σ σ

= = = =

′′
= = =∑ ∑ ∑ ∑ 

ε εε ε
                     (37) 

Then, ex-ante model averaging estimation of the variance 2
eaσ  is computed as the arithmetic average, across 

all the G P×  models, of the disjoint estimators 2
,p rσ . 

4. Statistical Properties  
Assume that the properties of the classical linear regression model hold, i.e.: 

1) The population regression function is linear in the K parameters, i.e. = +y Xβ ε . 
2) { }, ,,p t r ty x  is a candidate stationary and ergodic process, 1, ,p P=  ; 1, ,r G=  , , KG R R= ;  

,r tx  is a 1K ×  vector of regressors (belonging to the rth design matrix rX ) at observation t, 1, ,t T=  ; 
T K> . 

3) The regressors ,r tx  are at least contemporaneously orthogonal to the residuals, i.e. , , ,| 0p r t r tE ε  = x , 
where , ,p r tε  is the residual from the generic prth model at observation t. 

4) Any of the T K×  design matrices rX  has rank equal to K with probability 1, with ( )1plim r rT − ′X X  a 
finite, symmetric, invertible, positive semidefinite matrix. 

5) The conditional variance covariance matrix of the residuals , ,p r tε  is a scalar identity matrix, i.e.  
2

, , |p r p r rE σ′  ≡ = X IΣε ε , implying that the residuals are conditionally homoskedastic ( )2 2
, , ,|p r t r tE ε σ  = x  

and non serially correlated , , , , ,( | 0p r t p r t n r tE ε ε −  = x , 1,n =  ).  

Under the above assumptions (even relaxing the conditional homoskedasticity property), the disjoint OLS es-
timator ,

ˆ
p rβ  in (25) and 2

,ˆ p rσ  in (26) is consistent and asymptotically normal (see [9]). The same properties 
hold for the stacked OLS estimator. Proofs for the most general case are reported below; results for the interme-
diate cases can be straightforwardly derived from those provided, by setting 1P =  or 1G = . 

4.1. Large Sample Properties 
In so far as ( ),

ˆplim p r =β β , it follows for ˆ
eaβ  in (36) 

( ) ( )

( )

, ,
1 1 1 1

,
1 1 1 1 1

1 1ˆ ˆ ˆplim plim plim plim

1 1ˆplim

G P G P

ea r p r r p r
r p r p

G P G P G

r p r r r
r p r p r

P P

P P

∗ ∗

= = = =

∗ ∗ ∗

= = = = =

    
= = ×         

 
= × = = = 

 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

W W

V V V

 

β β β

β β β β

 

since by ergodic stationarity ( )plim r r
∗ ∗=W V


, where r
∗V  is a finite and non singular K K×  matrix and  

1

G

r K
r

∗

=

=∑V I . 

Moreover, in so far as ( )2 2
,plim p rσ σ= , it follows for 2

eaσ  in (37) 

( ) ( )2 2 2 2 2
, ,

1 1 1 1 1 1

1 1 1 1 1 1plim plim = plim .
G P G P G P

ea p r p r
r p r p r pG P G P G P

σ σ σ σ σ
= = = = = =

 
= = = 

 
∑ ∑ ∑ ∑ ∑ ∑    
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Under properties 1. to 5., by means of a CLT (see [9]), one also has 

( )( )1 2 2 1
, , , ,, limd

P G P G P G P GS N p Sσ− −′ ′→X X X0ε
 

leading to  

( ) ( ) ( )( )
( ) ( ) ( )( )

( )( )

11 1 2
, , , ,

1 12 1 1 1
, , , , , ,

12 1
, ,

ˆ plim ,plim

, plim plim plim

, plim .

d
ea P G P G P G P G

d
P G P G P G P G P G P G

d
P G P G

S S N S

N S S S

N S

σ

σ

σ

−− −

− −− − −

−−

′ ′− → ×

 ′ ′ ′→ × × 
 

′→

X X X X

X X X X X X

X X

0

0

0

β β

 

The asymptotic distribution of ˆ
eaβ  then follows 

( )( )12
, ,

ˆ ~ ,
asy

ea P G P GN σ
−

′X Xβ β
 

as well as its feasible form 

( )( )12
, ,

ˆ ~ , .
asy

ea ea P G P GN σ
−

′X Xβ β
 

In the case of conditional heteroskedasticity ( )( )2Diag tσ=Σ , it would be straightforward to prove that 

( ) ( ) ( )( )
( ) ( ) ( )( )

11 1
, , , ,

1 11 1 1
, , , , , ,

ˆ plim ,plim

, plim plim plim

d
ea P G P G P G P G

d
P G P G P G P G P G P G

S S N S

N S S S

−− −

− −− − −

′ ′− → ×

 ′ ′ ′→ × × 
 

X X X X

X X X X X X

Σ

Σ

0

0

β β

 
and  

( ) ( )( )( )1 1
, , , , , ,

ˆ ~ ,
asy

ea P G P G P G P G P G P GN
− −

′ ′ ′X X X X X XΣβ β
 

with feasible form  

( ) ( )( )( )1 1
, , , , , ,

ˆ ˆ~ ,
asy

ea P G P G P G P G P G P GN
− −

′ ′ ′X X X X X XΣβ β
 

where ( )2ˆ ˆDiag tσ=Σ . 
The relative efficiency of the stacked over the disjoint OLS estimator can be established by comparing their 

asymptotic variances, i.e. ,
ˆ

p rasyV  
 β  and ˆ

eaasyV  
 β . One then has 

( ) ( )

( ) ( )( )

( )( )

112 2
, , ,

1 12 2

12

ˆ ˆ

1

1

p r ea r r P G P G

r r K r r r

r r r

asyV asyV

P
P

P

σ σ

σ σ

σ

−−

− −∗

−∗

    ′ ′− = −   

′ ′= − −

− ′= +

X X X X

X X I K X X

I K X X

β β

              (38) 

which is a finite, symmetric, positive semidefinite K K×  matrix, as 2 0σ >  and 1 0P
P
−

> , both finite, and  

( )( ) 1
r r r

−∗ ′+I K X X  is a finite, symmetric, positive semidefinite K K×  matrix by construction ( rX  is real 
and of full column rank K T<  for any r). 

Finally, the gain in terms of degrees of freedom yield by the stacked over the disjoint OLS estimator is equal 
to ( )1P G T× − × . In fact, by recalling that the number of degrees of freedom of the residual term is equal to the 
rank of the annihilator matrix (see [9]), the gain yield by stacked over disjoint OLS estimation can be established 
by comparing the rank of the annihilator matrix in the two cases 

( ) 1
, , , ,ea P G T P G P G P G P G

−

× × ′ ′= −M I X X X X  
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which is of rank equal to P G T K× × −  as 

( ) ( ) ( )( )
( )

1
, , , ,rank trace trace

trace

ea P G T P G P G P G P G

KP G T P G T K

−

× × ′ ′= −

= × × − = × × −

M I X X X X

I
 

and 

( ) 1
,p r T r r r r

−′ ′= −M I X X X X  

which is of rank T K−  as 

( ) ( ) ( )( ) ( )1
,rank trace trace trace .p r T r r r r KT T K−′ ′= − = − = −M I X X X X I  

The increase in degrees of freedom yield by stacked over disjoint OLS estimation is then  
( ) ( ) ( )1 .P G T K T K P G T× × − − − = × − ×  

4.2. Small Sample Properties 

If the stronger assumption of strict exogeneity is made in 3. above, i.e. , , | 0p r t rE ε  = X , the disjoint OLS es-

timators ,
ˆ

p rβ  in (25) and , ,2
,

ˆ ˆ
ˆ p r p r

p r T k
′

=
−

ε ε
σ  are also (conditionally and unconditionally) BLUE, i.e. best un- 

biased and efficient (within the class of linear estimators) (see [9]).5 Moreover, if the assumption of conditional 
Normality of the error term is added, i.e. ( )2

,ˆ | ~ ,p r N σ∗X 0ε , OLS is (conditionally and unconditionally) BUE, 
i.e. best unbiased (within the class of linear and non linear estimators), as well as (conditionally and uncondi-
tionally) normally distributed 

( )( )
( )( )

12
. , , ,

12
. , ,

ˆ | ~ ,

ˆ ~ ,

p r p r p r p r

p r p r p r

N

N E

σ

σ

−

−

′

 ′  

X X X

X X

β β

β β
                           (39) 

where , ,p r p rE ′  X X  is a finite, nonsingular, symmetric, positive semidefinite matrix of rank K T< . 

The above properties can also be established for the stacked OLS estimator, in the same way as for the dis-
joint OLS estimator (see [9]), yielding  

( )( )
( )( )

12
, , ,

12
, ,

ˆ | ~ ,

ˆ ~ ,

ea P G P G P G

ea P G P G

N

N E

σ

σ

−

−

′

 ′  

X X X

X X

β β

β β
                           (40) 

with , ,P G P GE ′  X X  a finite, nonsingular, symmetric, positive semidefinite matrix of rank K T< , and feasi-
ble form 

( )( )12
, ,

ˆ ˆ~ ,ea ea P G P GN σ
−

′X Xβ β  

where , ,2 ˆ ˆ
ˆ P G P G

ea S K
σ

′
=

−

ε ε
. 

Then, by comparing the conditional variances of ,
ˆ

p rβ  and ˆ
eaβ , one has again 

( ) ( ) ( )( )11 12 2 2
, , , ,

1ˆ ˆ| |p r r ea P G r r P G P G r r r
PV V

P
σ σ σ

−− −∗−    ′ ′ ′− = − = +   X X X X X X I K X Xβ β      (41) 

as for the asymptotic case. Moreover,  

 

 

5The usual caveat concerning the efficiency of 2
,ˆ p rσ  applies, as no linear unbiased estimator of 2σ  achieves the Cramer-Rao Lower 

Bound, which is obtained by the biased ML estimator 2
,p rσ . 
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( )( ) 12
, , ,

1ˆ ˆ ˆ ˆ| |p r ea p r r ea P G r r r
PV V E V E V E

P
σ −∗−             ′− = − = +            X X I K X Xβ β β β      (42) 

which similarly is a finite, symmetric and positive semidefinite K K×  matrix by construction. 
Finally, the gain in terms of degrees of freedom yield by stacked over disjoint OLS estimation is again 

( ) ( ) ( )1P G T K T K P G T× × − − − = × − × , as already shown for the asymptotic case. 

5. Conclusion 
The paper introduces an ex-ante model averaging approach, requiring the estimation of a single augmented 
model obtained from the union of all the possible candidate models, rather than their disjoint estimation. In this 
framework, optimal weights are implicitly computed according to the MSE metric, i.e. by minimizing the 
squared Euclidean distance between actual and predicted value vectors, and are proportional to the relative vari-
ation of the regressors. By exploiting ex-ante all the available information on the various candidate set of va-
riables, and relying on more degrees of freedom, it then leads to more accurate and (relatively) more efficient 
estimation than available ex-post methods. Moreover, the proposed estimator shows the same optimal properties 
of the disjoint OLS estimator, under the usual set of assumptions concerning the population regression model. 
While the method is proposed to be used within the OLS estimator framework, extension to GIVE and GMM is 
straightforward. We point to [1] for an empirical application using OLS and GMM estimation. 
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