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Introduction

The problem of multiple testing has aroused new interest in the last decades,
especially since 1950s when Tukey and Scheffé formalized it first. There exist
many applicative problems that require a proper statistical method for con-
trolling the probability of false rejections and the test power while dealing
with a finite set of multiple comparisons. Because of the increasing number of
applications that require a multiple testing approach, because of the increas-
ing power of computers that allows to perform intensive algorithms and, as
a counterpart, because of the limitations of the historical multiple testing ap-
proaches, the methodological research in this specific field is of great interest
and in rapid evolution.
The methodological interest that motivated first this Thesis, hence, concerns
the analysis of the multiple testing problem in a Bayesian perspective and the
evaluation of the robustness of our proposal when dealing with dependent test
statistics.

Furthermore, during our research, it has been launched a fruitful collab-
oration with the Department of Psychology and with the new Milan Center
for Neuroscience (Neuro-mi). One of the most intriguing challenge in neuro-
science concerns, indeed, the construction of brain networks that can be inter-
preted as maps of the interactions between brain regions. The multiple test-
ing methodology is a well-established approach for the construction of brain
networks, but the praxis, in neurofunctional applicative studies, is to adopt
traditional methods for multiple comparisons that are known to have many
limitations.
The analysis of neurofunctional data is a complex process that requires multi-
ple skills and that can not disregard from a valid and proper statistical method.
Hence, the practical aims that motivated this Thesis concerns the analysis of
neurofunctional magnetic resonance images (fMRI) data in order to describe
and synthesize the pattern of functional connectivity of human brains in rest-
ing state conditions.

The human brain is a proper example of a complex system, i. e. a system
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characterized by a set of elementary units and their interactions, that can be
represented by means of a network.
In Chapter 1 we discuss the network paradigm and we argument the reasons
of its success in modern science and in the specific field of neuroscience. The
main aim of this Chapter is to review the mathematical theory of graphs since
it provides a useful formalization of the concept of network. This Chapter
aims also to formalize the most relevant definitions about graphs in matrix
form and, at last, to give special attention to the main network measures avail-
able for the analysis of networks.
Since the MRI scans are, nowadays, very accurate, researchers can define small
brain regions of interest (ROIs): the higher the amount of ROIs, the greater the
problem of dimensionality in the multiple comparisons. The problem of multi-
ple testing in brain network construction is an open issue in applied statistical
research.
In Chapter 2 we illustrate, from a methodological point of view, many of the
estimators that have been historically proposed with respect to the probability
of first kind and of second kind, given a set of multiple comparisons. Many tra-
ditional methods have good properties under the assumption of independence
of test statistics; furthermore, the traditional approaches adopted in fMRI data
analysis usually allow to control only for the false rejections, without provid-
ing any information on the error of second kind or on the test power.
In this regard, in Section 2.3 of Chapter 2 we propose, in an innovative way, a
definition of the false non-discovery rate and of the power (BP) in a Bayesian
perspective (Berlingeri, 2015), in analogy with Efron (2010) which introduced
the Bayes false discovery rate (FDR). In addition, we explore the main finite
properties of the estimates of FDR and BP; we investigate also the asymptotic
properties of those estimates, both with theoretical considerations and with
simulation studies, both under the hypothesis of independence of the p-values
and under some assumptions of dependence.
In Chapter 3, we adopt a combination of the most recent techniques and tools
to analyze resting state fMRI data, with the innovative Bayesian solution to
control for multiple testing problems and with graph theory. This is done to
explicitly testing two alternative theories about age-related changes in rest-
ing state functional connectivity, namely the de-differentiation hypothesis and
the localization hypothesis. The de-differentiation hypothesis would be due
to a less efficient neuromodulation of neuronal noise that would cause more
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dense and less sparse neuronal networks; the localization hypothesis, con-
versely, would be due to an increment of neurofunctional connections between
brain regions that belong to the same anatomical macro-structures.
Thirty-five young and thirty-five elderly participants underwent a resting state
fMRI study. For each participant we extracted 116 time-series that repre-
sented the spontaneous low frequency fluctuations of the 116 regions Auto-
matic Anatomical Labelling Atlas and we computed, by means of an empirical
Bayesian approach, subject-specific balanced network, i.e. a network in which
the false discovery rate and the power were balanced. Each single-subject net-
work was then described by means of network and distance measures. These
measures were used to test between-groups differences.





Chapter 1

Network Analysis

1.1 Reasons for a successful paradigm

The network paradigm is increasingly common in many fields of research,
such as neuroscience, information technology or sociology. Consequently,
mathematicians and statisticians have spent many effort in improving the theo-
retical knowledge of this paradigm, in developing efficient algorithms of anal-
ysis and in investigating the properties and the characteristics of networks.
But why, precisely, this paradigm has been so successful?
Before introducing any mathematical concept or any formal definition about
networks, the main aim of this Section, indeed, is to answer this question.
In this manner, we hope not only to be able to explain the reasons of the suc-
cess of network models in science, but also, implicitly, to argue why we too
have adopted this specific paradigm for our applied research on neurofunc-
tional data.

In the Oxford Dictionary, a network is generically defined as a collection of
interconnected things. If we analyze in depth this definition, we find out that
it implies the knowledge and the specification of two different sets: the set
of elements considered, namely the "things", and the set of interconnections
between those elements.
The development and diffusion of the network paradigm reflects a "tendency
towards a system-level perspective in science" (Kolaczyk and Csárdi, 2014). In
fact, as Eric D. Kolaczyk effectively pointed out in his book "Statistical analysis
of network data" (2014), in modern science there is an increasing interest in
evaluating how the composing elements of a complex system cooperate and
are interconnected: as a consequence the focus shifts from the analysis of each
single element in its singularity, to the analysis of the whole system in its com-
plexity.

5



6 Chapter 1. Network Analysis

In this regard, a network can be described as a mathematical tool for mod-
eling and synthesizing complex systems.
In order to better understand the network paradigm we aim to explain what
we precisely mean by complex system and, as a second step, we aim to formal-
ize in mathematical language, by means of the theory of graphs, some basic
concepts about networks.
The best way to clarify what a complex system is, seems to make a distinction
between complex systems and complicated systems.
The adjective complicated derives from the Greek word plèkein and means with
folds: as a consequence, the better way to understand a complicated system is
to unfold it with a linear analysis. On the other hand, the adjective complex de-
rives from the Greek word plèko and means with connections: network models,
indeed, offer mathematical tools to properly analyze those connections.
Hence, a complex system is formally defined as an open system, namely a sys-
tem that interacts with the environment, characterized by a set of elementary
units and a set of connections between pairs of units.
As we have already underlined, in the last decades networks became an es-
sential statistical method for the description and the analysis of complex sys-
tems: from an epistemological point of view, network models are a successful
paradigm because they allow to hive off a complex system into simpler units
and to study their significant connections.
A statistical network analysis can be effectively performed in many areas of
application: there are numerous examples of studies carried out on different
classes of complex systems such as neurological, social, economic, physical or
computer science.
The mathematical theory of graphs provides the most effective "language" for
the formalization of a network, as well as for the analysis of its features. The
statistical analysis of networks, therefore, can not disregard from graph theory
whose distinctive rationale will be extensively detailed in Section 1.2.

1.1.1 Brain networks as a special case of networks models

The human brain is a proper example of a complex system: as a matter of
fact, it is composed by brain regions that are anatomically connected and that
cooperate both in performing specific tasks or in resting state conditions.
In neuroscience, Functional Magnetic resonance imaging (fMRI) analysis have
become more and more widespread, both due to the increasing availability of
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the fMRI scanners and due to the increasing precision of the acquired brain
images. Nowadays, a huge amount of brain imaging data is available1 and
researchers are looking for adequate methods of analysis.

In this regard, graph theory provides an effective way to represent a com-
plex system: in the particular contest of neuroscience and neuroimaging, these
representations, and the methodological and statistical procedures underlying
graphs generation, are referred to as “brain network analyses”.
The human brain, as a complex system, can be modeled as a network and can
be graphically represented: a node of the brain network model corresponds to
a specific brain region, while a link of the network corresponds to an interac-
tion between two nodes.
With regard to the set of interactions between pairs of units or nodes, at least
three different kind of connections (namely the anatomical, the functional and
the effective connection) can be taken into consideration.
The anatomical connectivity refers to the physical and synaptic connections be-
tween neuronal elements.
The functional connectivity is defined as the temporal covariance (or correla-
tion), or, more generally, as the deviation from statistical independence, that
exists between distributed and often spatially remote neuronal units (Friston
et al., 1993; Friston, 1994). The deviations from statistical independence be-
tween neuronal elements are commonly captured in a covariance matrix (or
a correlation matrix), or equivalently in an adjacency matrix, to represent the
functional connectivity of the explored system (Sporns, 2002).
At last, the effective connectivity refers to the impact of a brain region of a neu-
ronal element on another.
Since the correlation, or covariation, concerns the intensity of the signal but
not its direction, the functional connectivity is symmetric; on the contrary, the
effective connectivity measures the asymmetric effect of a brain region on each
other brain region and can be interpreted as a causal connection.

The main objective of a brain network analysis concerns the construction
of a brain network, that is a map of the brain containing only the significant
connections among brain regions of interest (Gold et al., 2010).

1The Human Connectome Project, for example, is a five years project sponsored by the Har-
vard Consortium, that aims to map the complete structural and functional neural connections
across individuals and that provides lots of freely available fMRI data.

http://www.humanconnectomeproject.org/about/
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In the application on real fMRI data, whose results are illustrated in Chap-
ter 3, we have restricted our attention on the analysis of the pattern of func-
tional connectivity. We excluded the anatomical connectivity as we did not
have any interest in investigating the synaptic connections between neurons;
on the other hand we excluded the effective connectivity because we were not
interested in the analysis of causal connections.
In fact, the practical interest that motivated first this study concerns the con-
struction of a network capable of describing and synthesizing the pattern of
functional connectivity of a human brain.

1.2 Graph Theory

The mathematical theory of graphs provides a useful formalization of the con-
cept of network, defined as set of elements and their interconnections, and also
a useful way of representation.
Historically, Euler is recognized as the first mathematician to have solved a
problem, the famous problem of the seven bridges of Königsberg, with a ar-
gumentation based on graphs.
In order to determine if there exists a close walk that crosses exactly once each
of the seven bridges, Euler formalized the problem by drawing an undirected
graph such that each node corresponds to a shore while each link corresponds
to a bridge (see Alexanderson, 2006; Gribkovskaia, Halskau, and Laporte, 2007,
for an historical review). Although this paper by Euler was his only contribu-
tion to graph theory, this solution was a precursor to a new way of thinking a
system as a set of interconnected objects, namely as a complex system.

1.2.1 Main Definitions

A graph, denoted by G = (V, E) (in accordance to the notation in Drton, 2009),
is defined as a mathematical object consisting of a finite set of nodes (or ver-
tices equivalently) V and a finite set of links (or edges equivalently) E, such
that E ⊆ (V ×V)/{(v, v) : v ∈ V}.
The number of nodes of a graph G, Nv = |V|, represents its order while the
number of links, Ne = |E|, represents its size.
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If we restrict our attention to brain networks analysis, each anatomical brain
region corresponds to a node of the brain network, while the connection be-
tween two anatomical regions is represented by means of a link.
A graph can be classified, with respect to the characteristics of its links, as a
directed graph or digraph, whenever all its links are directed, or as an undirected
graph otherwise. A link (v, w) ∈ E is said to be directed if (w, v) 6∈ E, and is
denoted by v → w; on the contrary a link is said to be undirected if (w, v) ∈ E,
and is denoted by v− w. If v → w then the node v is a parent of w that is said
children, while if v− w then v and w are said neighbors.

Usually in brain network analysis, and also in the application on real fMRI
data illustrated in Chapter 3, the main objective concerns the construction of
an interpretable brain map made up by functional connections between cou-
ples of brain regions. The functional connectivity can be quantified by means
of covariation’s or correlation’s measures that are symmetric definite. As a
consequence, a link has not a direction and the resulting brain network is undi-
rected. For this reason, in what follows, we will provide definitions and hints
only with regards to undirected graphs (for a discussion of directed graphs
see Drton, 2009; Kolaczyk and Csárdi, 2014).

Given a set of nodes, the pattern of connectivity among nodes depends on
the set of links: in order to fully describe the characteristics of a graph, hence,
it is of interest to formalize such a pattern of connectivity by means of specific
definitions.
Two nodes in V are said to be adjacent if they are connected by a link in E; in
an analogous way, two links are said to be adjacent if they are connected by a
common node referred to as endpoint.
A node is said to be incident on a link if it is an endpoint of that link. Given
those primary notions of adjacency and incidence, it follows the intuitive con-
cept of degree of a node. Formally, the degree dv of a node v ∈ V is equal to the
number of links incident on v. Intuitively, the node degree can be interpreted
as a measure of connectivity of a graph: the higher the degree of a node, the
more interconnected the node with the graph.

A graph is said to be regular if any node has the same degree (if the com-
mon degree is equal to d the graph is said d-regular). The attribute ’regular’
refers to the fact that, in that particular case, the same level of connectivity is
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shared by all the nodes in the graph.

Having introduced some fundamental concepts about connectivity in a
graph, as a next step it is interesting to formalize the concept of paths between
nodes. In this regard, a walk in the graph G is a sequence of nodes connected
by a sequence of links; the length of a walk is denoted by the lowercase letter
l.
A path is a particular case of walk characterized by a set of distinct nodes
v0, . . . , vk such that vi and vi+1 are adjacent for all i = 1, . . . , k; differently a
trails is a walk in which the links are adjacent and distinct.
Furthermore, a cycle is a path that begins and ends in the same node: if a
graph has no cycles then is said to be acyclic. A directed graph with no cycles
is synthetically referred to as DAG (Directed Acyclic Graph).
Whenever exists a walk from a node u ∈ V to another node v ∈ V, then the
node v is said to be reachable starting from u. If the property of reachability
is owned by any node in the graph, then the graph G is said to be connected:
specifically, starting from any node in the set V, any other node of the graph
is reachable.

Of sure interest is the quantification of the distance between two nodes
u, v ∈ V of a graph by means of the total amount of links that connect them.
Usually, however, there exists more than one path between u and v: the praxis,
in this case, is to define the distance as the length of the shortest path between
the nodes. Conversely, if in a graph does not exist a path between v and u,
then the distance between this couple of nodes is conventionally set equal to
infinity. The diameter of a graph is equal to the length of its longest path.

Furthermore, we aim to introduce an extension of undirected graphs by
defining the weighted graphs. Formally, a graph is said to be weighted if each
link has an associated weight. A link between two nodes denotes the presence
of a connection, while the corresponding weight quantifies the intensity of this
connection. By way of example, in brain networks the presence of a link be-
tween two brain regions reveals the existence of a functional connection, an
the intensity of the signal can be quantified by means of the correlation or
covariation index. All the definitions and notions previously introduced can
be easily extended to weighed graphs. As an example, the degree of a node
becomes equal to the sum of weights of the links incident on that node.
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Finally, a subgraph H = (VH, EH) of a graph G = (V, E) is also a graph
in which VH ⊆ V and EH ⊆ E. A particular case of subgraph is the induced
subgraph, that is a subgraph G′ = (V′, E′) of a graph G = (V, E) such that
V′ ⊆ V is defined a priori and E′ ⊆ E is the set of links in G among the set of
nodes V′.
Let us consider a not connected graph G, if there exists a subgraph of G that
is connected then this latter is defined as a component of G.

A graph is said to be complete if every node is connected to every other node
by a link: in an analogous way a clique of a graph G is a complete subgraph
of G. A clique of G is maximal if it is not contained in any other complete
subgraph.

1.2.2 Matrix Algebra

Having defined the graph G = (V, E) and its main characteristics (Section
1.2.1), as a second step one may aim to rigorously attend some analysis on that
graph. In this regard, it may be useful to formalize the information contained
in the graph by converting it in matrix form.
A graph, as we have introduced yet, is a set V of nodes connected by a set E
of links. The information about the pattern of connectivity of a graph can be
effectively stored in a symmetric matrix A, called adjacency matrix:

Ai,j =

1 if {i, j} ∈ E

0 otherwise

The adjacency matrix has dimensions Nv × Nv, where Nv is the number of
nodes in the graph. If two nodes are connected by a link in the graph, then the
corresponding entry of A is set equal to 1, otherwise it is set equal to 0.

The adjacency matrix, as a storage element, contains all the informations
about the connectivity on the original graph; in addition, the matrix algebra
enables to attend many operations and analysis on the network in an effective
and simple way, in particular in an IT perspective.

By way of example, many of the definitions introduced in the previous Sec-
tion (1.2.1), can be converted in algebraic operations on the adjacency matrix.
A simple example concerns the concept of degree di associated to node i. In
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graph theory di is formally defined as the number of links that connect node
i to the remaining nodes of graph G; such a definition is clear and easy to
understand but it does not provide any operational rule to compute di. Given
a graph G = (V, E), one would have to count, for each node, how many nodes
are connected with it by a link. Having converted the original graph in an adja-
cency matrix, the computation of di comes down to the summary Ai· = ∑j Aij;
such a summary can be performed equivalently by row or column because of
the symmetry of A.

Another interesting example of graphs analysis by means of matrix algebra
concerns the quantification of the number of walks of same length in a graph.
In fact, recalling that a walk is a sequence of nodes connected by a sequence
of links, one may be interested in evaluating how much walks of length r con-
nect the nodes i and j in the graph. Similarly to the previous example on the
degree, with the sole graph theory this operation can be very demanding. On
the contrary, given an adjacency matrix associated to the original graph, the
number of walks of length r is simply equal to Ar

ij, where Ar is the r-th power
of the adjacency matrix.
It appears clear, hence, that the matrix algebra applied on graphs provide an
effective mean of analysis; furthermore, the operational rules on an adjacency
matrix can be converted easily in computer language.

In the following Section 1.3 on network measures, we will introduce some
relevant indicators that synthesize and summarize the topology of a graph;
because of the effectiveness and because of the simplicity of the matrix algebra
applied to graph theory, we will define all the measures of interest in terms
of the adjacency matrix of a graph, by adopting directly the algebraic notation
rather than the graphs notation.

1.2.3 Graph representation

A graph is a mathematical object containing many informations on the pat-
tern of connectivity of a set of elements. In the adjacency matrix the whole
pattern of connectivity is translated in algebraic language, in order to facil-
itate the computation of synthetic indicators about the characteristics of the
graph. Moreover, despite the adjacency matrix provides a full description of
the graph, it appears necessary also to represent it by means of a visual image.
A visual representation of a graph guarantees an intuitive understanding; this



Chapter 1. Network Analysis 13

is particularly relevant as the network analysis is extensively adopted in mul-
tidisciplinary research.

A well-established representation of a graph provides that:

• each node is represented as a full-fill dot, at times labeled with the node’s
name or ID;

• each link is represented as a line ( for weighted graphs, usually the thick-
ness of the line is proportional to the weight of the link).

In the particular contest of brain network representations, it is quite com-
mon to represent the graph in stereotactic coordinates. As an alternative, brain
networks can be represented by a chord diagram, that is a particular kind or
graphical representation such that the nodes are displayed radially around a
circle while the links are drawn as arcs rather than straight lines.

Figure 1.1: On the left a brain network is represented with a
chord diagram, on the right the same brain network is repre-

sented in stereotactic coordinates

1.3 Network Measures

Once a complex system has been represented by means of a network, its graph
topology can be quantitatively described by a wide variety of measures. As
a consequence, the purpose of this Section is to introduce some relevant net-
work measures that have been extensively described in the wide literature on
Networks.
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The network measures are synthetic indicators of specific network charac-
teristics and provide a description of the their main properties.

In the specific contest of neuroimaging, for instance, when constructing a
brain network, researchers have usually to deal with a huge number of nodes
and links. The brain area scanned with a magnetic resonance is, in fact, par-
titioned into at least 90 brain regions; as a consequence, the total amount of
possible links is equal to 4005. It appears clear, hence, that the sole graphical
representation is not sufficient to understand the characteristics of the net-
work: as a result, the analysis of the characteristics of a brain network requires
inevitably the selection of a set of proper indicators.

1.3.1 Nodes and links characteristics

In Subsection 1.2.1 we have already introduced some synthetic indicators that
provide a description of the characteristics of nodes and links. Let us recall,
for example, the definitions of order an size of a graph; the order of a graph
is equal to the number of rows, or columns by symmetry, of the adjacency
matrix, while the size of an unweighted graph corresponds to the number of
“1” values that are displayed above the main diagonal of the adjacency matrix
(Kolaczyk and Csárdi, 2014). While the order is a nodes characteristic, the size
is a links characteristic: those two measures, taken together, provide a first
evidence of the ’dimension’ of the graph.

A second indicator of nodes characteristics is represented by the degree of a
node v ∈ V, that is equal to the number of links that connect v to the remaining
nodes of the graph. The degree of a node quantifies properly the level of con-
nectivity of a specific node in a graph. Each node is associated with its degree
and, as a consequence, the definition of degree distribution results naturally. Let
us define, indeed, fd the fraction of nodes with degree equal to d

fd =
#{v ∈ V|dv = d}

|V|

the collection of fd for all possible d ≥ 0 characterizes the degree distribution
of a graph. Because of the Glivenko-Cantelli theorem, the empirical degree
distribution of a graph is a good estimate of the unknown degree distribution.
Given the degree distribution, there exist many standard statistical approaches
to synthesize it. By way of example, an histogram or a box plot are proper
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graphical tools that allow to individuate the modal class or asymmetries of the
distribution. The arithmetic mean d̄ = ∑v∈V dv or the median can be calcu-
lated, furthermore, as measures of central tendency of the degree distribution,
while the standard deviation quantifies the amount of dispersion among nodes
degrees.

Finally, another measure that is related to the degree distribution of a graph
is the number of hubs. An hub is generally defined as a fulcrum of a network,
as its pivot node: formally, in the literature about network measures, an hub
is defined as a node whose degree is greater than the mean network degree
(Wijk, Stam, and Daffertshofer, 2010). Obviously, in a graph we can count
more than one hub; the total number of hubs, in fact, represents a measure of
network efficiency; the higher the number of hubs, the more interconnected
the nodes of the network (Heuvel and Sporns, 2013).

1.3.2 Measures of centrality

The concept of centrality is referred to the relevance that a node has in the
graph structure. Intuitively, it is easy to understand what the concept of rel-
evance of a node in a graph means; however, if we were asked to formalize
this concept, it would be clear that there is not a unique definition of rele-
vance. Freeman (1979), while investigating the concept of centrality in social
networks, pointed out that ’there is certainly no unanimity on exactly what
centrality is or on its conceptual foundations, and there is little agreement on
the proper procedure for its measurement.’ At each formal definition of rele-
vance, therefore, corresponds a suitable network measure and in what follows
we will explore some well-established measures of centrality.

The measure of closeness centrality enables to quantify how much a node is
close to other nodes in the graph. Formally, the closeness centrality (Freeman,
1979) of node v is equal to

Lv =
Nv − 1

∑u∈V du,v

where du,v is the shortest path between nodes u and v. With respect to this
measure of centrality, the concept of relevance is interpreted in terms of dis-
tance of a node to the remaining nodes of the graph.
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The measure of betweenness centrality is also related to the paths structure in
a graph but, in addition, takes into account the position of a node with respect
to the other nodes. The formal definition of this measure, for node v, is given
by:

Bv =
1

(Nv − 1)(Nv − 2) ∑
s 6=t 6=v∈V

σs,t|v
σs,t

where σs,t is equal to the number of shortest paths between nodes s and t while
σs,t|v is equal to the number of shortest paths, constrained to pass through v,
between nodes s and t.

1.3.3 Measures of local density

A relevant property of graphs, that is particularly interesting when dealing
with brain networks, is the property of density, namely the tendency of a graph
to be almost fully connected. Usually such a tendency can be observed only
for a subset of nodes of a graph and, for this reason, it is preferable to consider
the property of local density.

In graph theory, a clique is a complete subgraph of the original graph G.
In order to identify the pattern of localized density, it may seems appropriate
to identify all the cliques of G. However, in real networks, is uncommon to
observe cliques made up by more than three nodes, except for highly globally
dense networks: as a consequence, it appears appropriate to weaken the defi-
nition of clique.
In this regard, it is interesting to define the concept of core of a graph G that
is a subset of G composed by nodes with similar degree: by way of example a
k-core is a subset of G such that its nodes have degree at least equal to k.

An alternative measure of local density quantifies, with a measure between
0 and 1, how a subgraph H is close to be a clique.

den(H) =
|EH|

|VH|(|VH| − 1)/2

where |VH| and |EH| are respectively the order and the size of H.
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1.3.4 Measures of segregation

An interesting operation on the nodes of a graph consists in clustering them
into groups or modules. Many of the common clustering algorithms that exist
in the statistical literature may be applied to this specific contest of analysis
(Rokach and Maimon, 2005). Consider, by way of example, the hierarchical
clustering that classified the objects of interest, the nodes of a graph in our
application, into a set of finite modules: usually the clustering analysis can be
performed with an agglomerative algorithm, namely an algorithm that merges
into the same cluster the most similar elements, or with a divisive algorithm,
namely an algorithm that separates into different clusters the most dissimilar
elements. An extension of the classical hierarchical algorithm has been pro-
posed by Cattinelli et al. (2013), and is invariant to data ordering.

Given a set of modules, one may be interested in evaluating how much
such a partition captures a nontrivial module structure.
In this regard the Newman’s modularity measure Q (Newman, 2006) is defined
as:

Q =
1

Ne
∑

i,j∈V

(
aij −

ai.a.j

Ne

)
δmi,mj (1.1)

where mi is the module containing node i and δmi,mj is an indicator function
that assumes value 1 if mi = mj and value 0 otherwise.
Such a measure quantifies the modular structure beyond the expected at ran-
dom one and ranges between -1/2 and 1 (Brandes et al., 2008).





Chapter 2

Multiple Hypotheses Testing

2.1 Focusing the problem

Traditionally, when testing a null hypothesis against a single alternative, the
objective is to maximize the power of the test by checking the error of first
kind, that is the probability of rejecting the null hypothesis when it is true.
Therefore, similarly to the well-established paradigm for single hypothesis,
when dealing with multiple comparisons we are interested in evaluating the
rate of false discoveries and the power.

The problem of multiple comparisons has been historically introduced by
Tukey and Scheffé in the 1950s (Benjamini and Braun, 2002) and has aroused
new interest with the diffusion of genomic studies that allow to compare the
expression levels of thousands of genes simultaneously (Dudoit, Shaffer, and
Boldrick, 2003).
In many applications may be needed to simultaneously test a finite number
of hypotheses. In particular, neuropsychologists have to deal with a huge
amount of multiple comparisons, by way of example in the analysis of func-
tional Magnetic Resonance Imaging (fMRI), while constructing brain maps or
brain networks, that describe and summarize the pattern of brain activations
(Lindquist, 2008).
The practical interest that motivated first this research project concerns, in fact,
the construction of a network capable of describing and synthesizing the pat-
tern of functional connectivity of a human brain. As already pointed out, in
neuroimaging literature the human brain connectivity is commonly classified
into anatomical, functional and effective connectivity (Friston, 1994; Sporns,
2002).
With regard to this specific study, we focused our attention on the analysis
of the pattern of functional connectivity, that is measured as the correlation

19
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among couples of brain regions (Sporns, 2002); there exist many statistical
measures that allow to quantify such a correlation as the Pearson’s correlation
coefficient or the Spearman’s rank coefficient. The pattern of functional con-
nectivity is usually summarized into a brain network, that can be interpreted
as a map of the brain composed only by the significant signals among brain
regions of interest (Gold et al., 2010). In particular, as we mean to construct
an interpretable brain map made up only by effective connections between
couples of ROIs, only signals higher than a proper threshold are kept. The
resulting brain network is, hence, unweighted and, since the correlation con-
cerns the intensity of the signal but not its direction, also undirected.
From a statistical point of view, the determination of which signals are statisti-
cally significant with respect to a proper threshold results in a multiple testing
problem. In fact, each region is compared with the remaining brain regions
and all the comparisons have to be performed conjointly: given k brain regions,
the correlation coefficients to be tested are k(k−1)

2 . As a consequence, the more
the total amount of brain areas, the more the total amount of simultaneous
comparisons, the more the level of detail of the resulting brain network.
More formally, let us consider r1, . . . , rj, . . . , rm distinct correlation coefficients,
where m is the number of conjoint tests; we are interested in the simultane-
ous comparison of the following hypotheses for the correlation parameter ρj

corresponding to rj,

H0 : ρj = 0 vs H1 = H̄0 : ρj 6= 0

The statistic test tj is, hence, given by,

tj =
rj√

1− r2
j

√
n− 2 f or j = 1, . . . , m (2.1)

(Gibbons and Chakraborti, 2011). Under H0, the test statistic tj for each com-
parison is assumed approximately distributed as a Student’s t with n− 2 de-
grees of freedom (Zimmerman et al., 2006), where n is the length of the origi-
nating time series for each brain region.
We usually define the same rejection region for each simultaneous test, equiv-
alently with respect to the statistic test or to its associated p-value,

Γ = {|rj| ≥ τ} = {pj ≤ γ}

We point out that τ is the rejection threshold on the basis of which we
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constructed the brain network. The more τ is high, close to 1, the more the re-
sulting brain network is conservative; in fact as τ increases, the number of links
included in the brain network decreases. In the literature concerning brain net-
works construction with a multiple comparison perspective does not yet exist
a common approach to identify a suitable threshold. In Section 2.2 we review
the well-established literature on multiple comparisons, while in Section 2.3
we propose a method of threshold’s selection that controls the probability of
false discoveries and the power of the comparisons in a bayesian perspective.

2.2 Traditional Methods

Let us consider the general problem of simultaneously testing H1, . . . , Hm hy-
pothesis.
The easiest solution to this multiple testing problem could consist in ignor-
ing its multiplicity by testing, individually, each hypothesis at a fixed level α.
However, we can observe that with such a procedure, as m increases also the
probability of false rejections rapidly increases: as a consequence the tests are
not indeed controlled at level α.

Table 2.1: Probability of at least one false rejection, P, as m in-
creases.

m 1 2 5 10 15 20 30 40 50 100
P 0.05 0.10 0.23 0.40 0.54 0.64 0.79 0.88 0.92 0.99

It is evident, hence, that the approach of individually testing each hypothe-
sis is not effective: an appropriate approach, as a consequence, has necessarily
to take into account the multiplicity of the problem, for example by controlling
right the probability of at least one false rejection.

2.2.1 Family-wise error rate

In the light of the results reported in Table 2.1, the probability of at least one
false rejection seems the probability that deserves to be controlled in order to
manage the family of multiple comparisons.
Since, for a single hypothesis the probability of false rejection is set less or
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equal to α, in an analogous way, for m simultaneous hypotheses, the probabil-
ity of one or more false rejection, referred to as FWER, can be naturally set not
greater then a fix level.
The acronym FWER stands for family-wise error rate where the term "family",
in particular, refers to the finite set of hypotheses considered.

In this Subsection we desire to recall several methods based on FWER
that have been proposed in the last century (Lehmann, 2006) and that still
are adopted in numerous applications studies, in particular in the functional
neuroimaging literature (Nichols and Hayasaka, 2003).

A statistical method for multiple comparisons that controls FWER is a
method such that there exists a constant α for which:

FWER ≤ α

When dealing with multiple comparisons, it is usually preferable to de-
fine the statistical approach in terms of p-values of the individual tests, rather
then in terms of test statistics; in this regard, the following Lemma assumes a
particular relevance.

Lemma 1. Let us define ti as the test statistic associated to the i−th null hypothesis
and Sα as the rejection region at level α.
For any α < α′, we assume that Sα ⊂ Sα′ and also that P(ti ∈ Sα) ≤ α for all
0 < α < 1. The p-value is, hence, defined as:

pi = in f {α : ti ∈ Sα}

Hence, for the i−th null hypothesis, the following properties hold:

1.
P(pi ≤ u) ≤ u

2.
P(pi ≤ u) ≥ P(ti ∈ Su)

and pi is uniformly distributed on (0, 1).
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Proof. Under the assumption of the i−th null hypothesis to be true, the event
{pi ≤ u} implies {ti ≤ Su+ε} for any small ε > 0. Then, by assumption:

P(pi ≤ u) ≤ P(ti ≤ Su+ε) ≤ u + ε→ u

as ε→ 0 and so (1.) is given.
In order to demonstrate (2.) it is sufficient to point out that the event {ti ≤ Su}
implies {pi ≤ u} and so, by monotonicity:

P (ti ∈ Su) ≤ P(pi ≤ u)

Finally, given Sα such that P(ti ∈ Sα) ≤ α for all 0 < α < 1, pi is uniformly
distributed on (0, 1) under the null hypothesis.

If a p-value verify the property (1.) of Lemma 1, then such a p-value is
referred to as a valid p-value (Casella and Berger, 2002).

The first method we aim to define and explore is the Bonferroni method
(Lehmann, 2006), a well-established approach that controls FWER.

Let us assume the H1, . . . , Hm conjoint hypotheses to be independent and
let us define the corresponding p-values p1, . . . , pm.
The Bonferroni method provides that the hypothesis Hi is rejected if pi ≤ α/m,
where m is the total amount of multiple comparisons.
The Bonferroni procedure at level α implies that FWER ≤ α for the family of
m hypotheses simultaneously tested; such an implication can be easily demon-
strated:

Proof. Let us define I as the subset of true hypotheses with |I| denoting its
cardinality. Then:

FWER = P(reject Hi, ∀i ∈ I) ≤∑
i∈I

P(reject Hi) =

= ∑
i∈I

P
(

pi ≤
α

m

)
≤∑

i∈I

α

m
≤ |I|α

m
≤ α
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We recall that the first inequality is true because of the Boole inequality, that,
for the generic event Ei, states that

P

(
n⋃

i=1

Ei

)
≤

n

∑
i=1

P(Ei) (2.2)

The Bonferroni procedure is very simple but it does not represent a proper
approach in case the number of simultaneously tested hypotheses, m, is high.
In fact, each hypothesis Hi is tested at level α/m, and this quantity is as smaller
as m increases, since α is fixed: therefore, given m very high, there would be a
tendency to accept nearly all the hypotheses and, as a consequence, to accept
also the false hypotheses. Precisely for this reason, the Bonferroni procedure
is usually criticized as a too much conservative procedure.

In order to overcome the characteristic of the Bonferroni procedure to be
excessively conservative, there have been proposed, in the statistical literature,
many methodologies for multiple comparisons based on a step down iterative
procedure: the Holm procedure described below is a relevant example of this
kind (Holm, 1979).

Given m conjoint hypotheses, the notation H(1), . . . , H(m) is referred to the
ordered hypotheses and, similarly, the notation p(1) ≤ · · · ≤ p(m) is referred to
the corresponding ordered p-values.
The Hold procedure is a step-down iterative procedure that can be outlined
step by step as follows:

(i) The hypothesis H1, that corresponds to the hypothesis with the smallest
p-value, is tested at level α/m. If p(1) ≥ α/m, then all the hypotheses are
accepted and the procedure ends; otherwise if p(1) < α/m, the hypothe-
sis H(1) is rejected and the procedure continues to step (ii);

(ii) The hypothesis H2 is tested at level α/(m − 1). If p(1) < α/m and
p(2) ≥ α/(m − 1), then the hypotheses H(2), . . . , H(m) are accepted and
the procedure ends; otherwise, if p(1) < α/m and p(2) < α/(m− 1) the
hypothesis H(2)is rejected and the procedure continues to step (iii);
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(iii) The procedure is iterated until, at step k, it occurs that p(k) ≥ α/(m− k +
1): the first k − 1 ordered hypotheses are rejected, while the remaining
are accepted.

In what follows it is demonstrated that the Holm procedure satisfies the
inequality FWER ≤ α:

Proof. Let us define I as the subset of true hypotheses, and j as the smallest
random index such that:

p(j) = min
i∈I

pi

Clearly j ≤ m− |I|+ 1. If the following holds:

p(1) ≤ α/m, p(2) ≤ α/(m− 1), . . . , p(j) ≤ α/(m− j + 1)

Then the procedure commits a false rejection and, as a consequence, it holds
that:

min
i∈I

pi = p(j) ≤ α/(m− j + 1) ≤ α/|I|

In conclusion, by the Boole inequality, the probability of erroneously rejecting
p(j) is less of equal than α:

P
(

min
i∈I

p̂i ≤ α/|I|
)
≤∑

i∈I
P ( p̂i ≤ α/|I|) ≤ α

And hence the Thesis is given.

The Holm procedure can be generalized in a general step-down procedure
that consists in determining if the most significant test has to be rejected.
In particular, given the p(1) ≤ · · · ≤ p(m) ordered p-values, let us consider also
a set of ordered constant values α1 ≤ α2 ≤ . . . αm.
The first step of this general step-down procedure consists in verifying if p(1) ≥
α1: if the inequality is satisfied, then all the hypotheses are accepted; otherwise
if

p(1) < α1, . . . , p(r) < αr

then the first r ≤ m hypotheses are rejected.
In case the generic αi is set equal to α

m−i+1 , than the Holm procedure is ob-
tained again.

A different iterative procedure for multiple comparisons, is the step-up pro-
cedure that, as opposed to the step-down procedure, starts by determining if
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the least significant p-value has to be accepted. More formally, the entire set
of hypotheses is rejected if p(m) < αm, otherwise if:

p(m) ≥ αm, . . . , p(r+1) ≥ αr+1, p(r) ≥ αr

the first r− 1 ≤ m hypotheses are rejected.

The procedures based on FWER control for at least one false rejection; this
approach can be extended by admitting more then one false rejection, expe-
cially if m is large, as commonly occurs in many applications. Such a procedure
is referred to as the k−FWER procedure because it controls for k or more false
rejections (Lehmann and Romano, 2012).
In analogy with the definition of FWER, the k−FWER quantity is defined as:

k− FWER = P(reject at least k hypotheses Hi , ∀i ∈ I)

Having defined the probability of at least k false rejections, Lehmann and Ro-
mano (2012) also introduced a step-down procedure that controls k−FWER at
level α, namely a procedure such that k− FWER ≤ α.
Interestingly, the procedure based on k−FWER holds without any assump-
tions on the dependence structure of the p-values, while all the procedures
that control FWER require the assumption of independence among p-values.
As it requires less restrictive assumptions, the procedure based on k−FWER
can be interpreted as a less severe procedure with respect to procedures based
on FWER and is preferable whenever such an independence hypothesis on the
p-values is violated.

The first procedure proposed by Lehmann and Romano (2012) can be in-
terpreted as an extension of the Bonferroni method in case one aims to control
k−FWER rather than FWER.
Let us consider a general multiple testing problem, and let us adopt the same
notation as before; such a procedure rejects any Hi if, for its corresponding
p-value, it occurs that:

pi ≤
kα

m
It is easy to prove that this procedure controls k−FWER at level α, because of
the Markov inequality:
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Proof. Let us define I the subset of true hypotheses and N the number of false
rejections. Then by the Markov inequality:

P(N ≥ k) ≤ E(N)

k
=

E
(

∑i∈I 1pi≤ kα
m

)
K

= ∑
i∈I

P
(

pi ≤ kα
m

)
k

≤∑
i∈I

kα/m
k

= |I| α
m
≤ α

With respect to FWER, we have introduced the step-down procedure, and
in particular the procedure proposed by Holm, as an extension of the simpler
Bonferroni method. In an analogous way, with respect to k−FWER, the proce-
dure we have just described can be easily extended into a generic step-down
approach. Given the constant value αi such that:

αi =

 kα
m i ≤ k

kα
m+k−i i > k

The step-down procedure that controls k− FWER at level α follows the
same steps of the Holm procedure and, for this reason, can be interpreted as
its counterpart. The following argumentation demonstrates that the procedure
strongly controls k− FWER.

Proof. Let us consider I as the subset of true hypotheses and |I| ≥ k (otherwise
no proof is needed). Consider the ordered p-values corresponding to the true
hypotheses and denoted as:

q1 ≤ · · · ≤ q|I|

Consider, furthermore, j to be the smallest random index such that p(j) = q(k).
Th largest random index j is observed if the smallest p-values correspond to
the m − |I| false null hypotheses while the other p-values correspond to the
true null hypotheses and hence, the following is verified:

k ≤ j ≤ m− |I|+ k

In addition, if it holds that:

p(1) ≤ α1, p(2) ≤ α2, . . . , p(j) ≤ αj



28 Chapter 2. Multiple Hypotheses Testing

Hence, at least k false rejections are generated from the generalized step-down
procedure; as a consequence:

q(k) = p(j) ≤ αj =
kα

m + k− j
≤ kα

|I|

Finally, to sum up and conclude:

P
(

q(k) ≤
kα

|I|

)
≤ kα

|I| ≤ α

2.2.2 False discovery rate

The possible outcomes of a problem of m multiple comparisons can be effec-
tively summarize as shown in Table 2.2:

Table 2.2: Summary of the possible outcomes in case of m hy-
potheses simultaneously tested.

Hypotesis Accepted Rejected Total
Null true U V m0
Alternative true T S m1

W R m

It is relevant to notice that R, the number of rejected hypotheses, is an
observed random variable, while U, V, S e T are not observable random vari-
ables because, in real application problems, is unknown which null hypotheses
are true. Furthermore, V represents the number of true null hypotheses erro-
neously rejected, hereafter referred to as false discoveries: the proportion of
false discoveries (FDP) is, hence, defined as V/R.
According to the proposed notation in Table 2.2, the FWER quantity can be
expressed as P(V ≥ 1) while the k−FWER can be expressed as P(V ≥ k).
Lehmann and Romano (2012) proposed an approach that controls the FDP at a
given probability; in particular, given γ and α ∈ (0, 1), a procedure such that:

P(FDP > γ) ≤ α

Benjamini and Hochberg (1995), in a pioneering paper in the field of mul-
tiple testing, have defined a new error measurement, called false discovery rate
(FDR), that is equal to the expected value of the FDP:
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FDR = E

(
V
R

)
In order to better understand the properties of the FDR, it is interesting to

recall two important properties of the FDP:

1. If all null hypotheses are true, namely if m0 = m, then S = 0 and V =

R. If V = 0 no hypothesis is rejected and therefore the rate of false
discoveries is equal to 0. If V > 0 then V

R = 1 and FDR = P(V ≥ 1) and
thus is equivalent to control FDR or FWER .

2. If m0 < m and V > 0 then the proportion V/R ≤ 1 and P(V ≥ 1) ≥
FDR: controlling FWER is the same as controlling FDR, but the vice
versa does not hold. For this reason, any procedure that controls FDR
can yield a power’s increase as it is less conservative than procedures that
control FWER. In particular, the greater is the number of null hypotheses
that are not true the greater is S and, then, FDR is smaller if compared to
FWER.

Having verified that controlling FDR guarantees an increase in the test
power than controlling FWER, it is of sure interest, hence, to examine the
controlling procedure for the FDR measurement error.

In accordance with the notation previously introduced on the set of m hy-
potheses and their corrensponding p-values and in accordance with the Bon-
ferroni method, we aim to define a procedure such that the first k ordered
hypotheses H(1), . . . , H(k) are rejected if:

k = max{i : p(i) ≤
i
m

q∗} (2.3)

Benjamini and Hochberg (1995) have demonstrated the following:

Theorem 2. For each possible configuration of the null hypotheses, and under the
assumption of independence of the test statistics, the procedure defined in 2.3 controls
FDR at level q∗, namely it guarantees that FDR ≤ q∗.

The proof of Theorem 2 arises immediately from the following Lemma.

Lemma 3. For all the first 0 ≤ m0 ≤ m independent p-values that correspond to the
true null hypotheses and for all the subsequent m1 = m−m0 p-values that correspond
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to the false null hypotheses, the multiple testing procedure defined in 2.3 satisfies the
inequality:

E

[
V
R

∣∣∣∣ Pm0+1 = p1, . . . , Pm = pm1

]
≤ m0

m
q∗

where Pi refers to the p-value random variable, while pi refers to its observed value and
p1 ≤ · · · ≤ pm1 are ordered without loss of generality.

Proof. The Lemma is trivially true if m = 1.
By induction, let us assume that the Lemma is true for every m′ ≤ m; then the
Lemma can be proven for m + 1.

If m0 = 0, then all the null hypotheses are false and therefore the proportion
V/R is identically equal to zero; as a consequence:

E

[
V
R
|P1 = p1, . . . , Pm = pm

]
= 0 ≤ m0

m + 1
q∗

On the other hand, if m0 > 0, let us define P′i , for i = 1, . . . , m0, the p-values
corresponding to true null hypotheses and P′(m0)

the largest one; we recall
that those p-values are independent random variables uniformly distributed
between 0 and 1 (see 1).
Finally, let j0 to be the largest j between 0 and m1 such that:

pj ≤
m0 + j
m + 1

q∗

and let p′′ = m0+j0
m+1 q∗.

By conditioning the expected value also on P′(m0)
= p it follows that:

E

[
V
R
|P′(m0)

= p, Pm0+1 = p1, . . . , Pm = pm1

]
=

=
∫ 1

0
E

[
V
R
|P′(m0)

= p, Pm0+1 = p1, . . . , Pm = pm1

]
m0p(m0−1) dp =

=
∫ p′′

0
E

[
V
R
|P′(m0)

= p, Pm0+1 = p1, . . . , Pm = pm1

]
m0p(m0−1) dp

+
∫ 1

p′′
E

[
V
R
|P′(m0)

= p, Pm0+1 = p1, . . . , Pm = pm1

]
m0p(m0−1) dp

where m0p(m0−1) is the density of the random variable P′(m0)
.
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Note that the integral has been split into two addends to highlight the integra-
tion point p′′.

In the first integral, the integration interval is equal to [0, p′′] (i.e. p ≤ p′′):
all the m0 + j0 hypotheses, then, are rejected and V

R = m0
m0+j0

. Furthermore, the
expected value is constant and moves out of the integral while the primitive of
the remaining density is trivially equal to pm0 . In conclusion, the first integral
is equal to:

m0

m0 + j0
(p′′)m0 =

m0

m0 + j0

(
m0 + j0
m + 1

)m0

(q∗)m0 =
m0

m + 1
q∗(p′′)m0−1

In the second integral, the integration interval is equal to [p′′, 1] (i.e.p > p′′):
by analyzing together the m null hypotheses, both true and false, the i-th
ordered hypothesis is rejected if it exists a k such that p(k) ≤ [k/(m + 1)]q∗,
with i ≤ k ≤ m0 + j− 1, or, equivalently, it is rejected if:

p(k)
p
≤ k

p(m + 1)
q∗

By induction, given that the thesis is true for m, then for m + 1 it holds that:

E

[
V
R

∣∣∣∣ P′(m0)
= p, Pm0+1 = p1, . . . , Pm = pm1

]
≤ m0 − 1

(m + 1)p
q∗

Then, the second integral is less than or equal to:

m0 − 1
m + 1

q∗
∫ 1

p′′
m0pm0−2) =

m0

m + 1
q∗[1− (p′′)m0−1]

In order to conclude, it is worth to notice that the thesis is true for m+ 1, under
the assumption that it was true for m, because of the following inequality:

E

[
V
R
|P′(m0)

= p, Pm0+1 = p1, . . . , Pm = pm1

]

≤ m0

m + 1
q∗(p′′)m0−1 +

m0

m + 1
q∗[1− (p′′)m0−1] =

m0

m + 1
q∗

We want to remark that the hypothesis of independence among the test statis-
tics has not been exploited in the proof of this Lemma.

Because of Lemma 3, Theorem 2 can be immediately demonstrated by ap-
plying the property of conditional expected values: hence, the procedure in
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2.3 guarantees that FDR is controlled at level q∗.

The acceptance/rejection procedure defined in 2.3, with FDR controlled at
level q∗ = α, is a step-down procedure. In fact, given the p-values in ascending
order, the first step of such a procedure consists of comparing p(m) and α: if
the m-th p-value is smaller than the type I error α, then all the null hypotheses
are rejected; otherwise only the hypothesis H(m) is accepted and the procedure
keeps on by comparing the (m− 1)−th p-value and α(1− 1

m ). The algorithm
ends at step i−th if p(i) ≤ α(1− i−1

m ): in this case the hypotheses from the first
to the i-th are rejected.

The proposed FDR controlling procedure can also be viewed as a pos-
terior maximization, as proved by the following Theorem by Benjamini and
Hochberg (1995).

Theorem 4. The solution to the problem of maximum under constraints which leads
to choose α such that r(α), the number of rejection at that level, is maximized under
the constraint that αm/r(α) ≤ q∗ is equivalent to the controlling procedure 2.3.

Proof. In order to prove this Theorem it is sufficient to observe that, chosen α

as the control level, if p(i) ≤ α ≤ p(i+1) then r(α) = i.
As a consequence, by replacing the value i in the constraint, we obtain αm

i ≤ q∗

and, hence α ≤ i
m q∗. By recalling that procedure 2.3 leads to finding the p(k)

ordered p-value such that k = max{i : p(i) ≤ i
m q∗}, we deduce that α = p(k) is

the solution of the maximum under constraint problem.

2.2.3 Positive False Discovery Rate

In their pioneering paper, Benjamini and Hochberg (1995) investigated some
alternative formulations of the false discovery rate such as:

E

(
V
R

∣∣∣∣ R > 0
)

(a)

E[V]

E[R]
(b)

The authors motivated their propensity for FDR, rather than for the al-
ternatives (a) and (b), by observing that if all the null hypotheses are true,
i.e. m0 = m, then V/R = 1 and so both (a) and (b) can not been con-
trolled as they are identically equal to 1. On the contrary FDR is control-
lable in this case and, as remarked in the previous Section, controlling FDR
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is equivalent to controlling FWER: in fact, FDR can be equivalently written as
FDR = E

( V
R

∣∣ R > 0
)

P(R > 0), and clearly it depends on P(R > 0).

Differently from the methodological proposal of Benjamini and Hochberg
(1995), that has been widely welcomed in the statistical literature, Storey (2002)
and Storey and Tibshirani (2003) has further revolutionized the methodology
concerning multiple comparisons by proposing the quantity (a) as the appro-
priate quantity to be controlled.
His methodological proposal originates, firstly, by noting that it is true that if
m = m0 then the rate of false discoveries is equal to 1, as observed by Ben-
jamini and Hochberg (1995), but this seems an unlikely eventuality and a not
so relevant case of study.
Furthermore, when at least one rejection has occurred, i.e. R > 0, and the sig-
nificance level of control is equal to α, it is fundamental to observe that FDR is
actually controlled at level α

P(R>0) and not at level α, as one might mistakenly
suppose; on the contrary, when controlling the quantity (a), this misunder-
standing is completely avoided.

Formally the positive False Discovery Rate (pFDR) is defined as:

pFDR = E

(
V
R

∣∣∣∣ R > 0
)

The adjective positive points out that the expected value of false discoveries is
conditioned to positive values of the variable R, that represents the number of
hypotheses rejected.

In case of m conjoint hypotheses H1, . . . , Hm, the corresponding indepen-
dent test statistics are indicated with T1, . . . , Tm and Γ represents a given rejec-
tion region.
The subscript 0 denotes the i−th null hypothesis Hi0, while the notation Hi0

denotes the i−th alternative hypothesis.
Under the assumption of identical distribution between Ti|Hi0 and Ti|Hi0, the
hypotheses are independent Bernoulli random variables with P(Hi0) = π0 and
P(Hi0) = π1.
pFDR can be written equivalently as a function of the rejection region Γ:

pFDR(Γ) = E

(
V(Γ)
R(Γ)

∣∣∣∣ R(Γ) > 0
)
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where V(Γ) = #{Ti : Ti ∈ Γ|Hi0} and R(Γ) = #{Ti : Ti ∈ Γ}. As the conjoint
hypotheses are Bernoulli random variables with parameters π0 and π1, then
the following theorem holds (Storey, 2002):

Theorem 5. Let us consider m identical hypotheses with independent test statistics
T1, . . . , Tm and a rejection region Γ. If the null hypotheses are true with an a priori
probability equal to π0, then pFDR can be written equivalently as:

pFDR =
π0P(T ∈ Γ|H0)

P(T ∈ Γ)
= P(H0|T ∈ Γ)

It is clear, hence, that pFDR has a natural Bayesian interpretation, under the assump-
tion of independence.

Proof. At first, it is worth to observe what follows:

pFDR(Γ) = E

(
V(Γ)
R(Γ)

∣∣∣∣ R(Γ) > 0
)
=

=
m

∑
k=1

E

(
V(Γ)
R(Γ)

∣∣∣∣ R(Γ) = k
)

P(R(Γ) = k|R(Γ) > 0) =

=
m

∑
k=1

E

(
V(Γ)

k

∣∣∣∣ R(Γ) = k
)

P[R(Γ) = k|R(Γ) > 0]

Under the assumption of independence and identical distribution of the the
test statistics, it holds that:

E[V(Γ)|R(Γ) = k] = E

[
m

∑
i=1

1(Ti ∈ Γ)1(Hi0)

∣∣∣∣∣ (T1, . . . , Tk) ∈ Γ, (Tk+1, . . . , Tm) /∈ Γ

]

= E

[
k

∑
i=1

1(Hi0)

∣∣∣∣∣ (T1, . . . , Tk) ∈ Γ, (Tk+1, . . . , Tm) /∈ Γ

]
=

= E

[
k

∑
i=1

1(Hi0)

∣∣∣∣∣ Ti ∈ Γ

]
= kP(H0|T ∈ Γ)

Hence, in conclusion:

pFDR(Γ) =
m

∑
k=1

kP(H0|T ∈ Γ)
k

P[R(Γ) = k|R(Γ) > 0] = P(H0|T ∈ Γ)
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Under the assumptions of independence and identical distribution of the
test statistics, pFDR is equivalent to E[V]

E[R] , as demonstrated in the following:

Theorem 6. Under the same assumptions of Theorem 5, it holds the following:

E

(
V(Γ)
R(Γ)

∣∣∣∣ R(Γ) > 0
)
=

E[V]

E[R]

Proof. Because of the independence and identical distribution of the m test
statistics, it holds what follows:

E[V(Γ)] = mπ0P(T ∈ Γ|H0)

and
E[R(Γ)] = mP(T ∈ Γ)

Consequently:
E[V]

E[R]
=
6 mπ0P(T ∈ Γ|H0)

6 mP(T ∈ Γ)
= pFDR(Γ)

Accordingly to the notation in Storey (2002), the measurement error pFDR
has been expressed as a function of the test statistic T; in an equivalent way, it
can be easily written as a function of p-values, a widespread custom in multi-
ple testing methods.
The rejection region Γ is referred to the test statistics, under the assumption
of identical distribution; in an equivalent way, the rejection region can be de-
fined with respect to the p-values and is denoted by the interval [0, γ], with
0 ≤ γ ≤ 1.

The result of Theorem 5 can be written with respect to the parameter γ as
follows:

pFDR(γ) =
π0P(pj ≤ γ|H0)

P(pj ≤ γ)
=

π0γ

P(pj ≤ γ)

where pj represents the generic p-value random variable, under the as-
sumption of identical distribution among p-values.

pFDR depends on π0 that corresponds to the unknown a priori probability
of a null hypothesis to be true. A conservative estimate of π0, defined with
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respect to a tuning parameter λ, is given by the following:

π̂0(λ) =
#{pj > λ}
(1− λ)m

=
W(λ)

(1− λ)m
(2.4)

On the other hand, a natural estimate of P(pj ≤ γ) is given by the following
plug-in estimator:

P̂(pj ≤ γ) =
#{pj ≤ γ}

m
=

R(γ)
m

(2.5)

In conclusion, a proper estimate for pFDR, given the rejection parameter γ

and the tuning parameter λ, is equal to:

p̂FDRλ(γ) =
γW(λ)

(1− λ)R(γ)
(2.6)

We have already pointed out that for R(γ) = 0, the pFDR estimate can not
be defined: in order to overcome this limitation, in such a specific case it may
be convenient to replace R(γ) with the constant 1, and the adopted notation is
R(γ) ∨ 1.

In addition, Storey (2002) proposed to conveniently adjust the estimate of
pFDR for small samples.
It is worth to notice, in fact, that 1 − (1 − γ)m represents a lower bound of
the probability P(R(γ) > 0), because γ = P(pj ≤ γ|H0) and, consequently,
(1− γ)m is equal to the probability of not rejecting any null hypothesis, under
the assumption of independence among p-values.
Therefore, a good conservative estimate of pFDR for finite samples is:

p̂FDRλ(γ) =
γW(λ)

(1− λ){R(γ) ∨ 1}(1− (1− γ)m)

A proper estimate for FDR can be define in a similar way, just by recalling that
FDR is not conditioned on the quantity R(γ) to be strictly positive.

F̂DRλ(γ) =
γW(λ)

(1− λ){R(γ) ∨ 1}

The estimation algorithm for pFDR(γ) and FDR(γ), proposed by Storey
(2002), is characterized by the following steps:

1. First, compute the p1, . . . , pm p-values corresponding to the m multiple
comparisons;
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2. As a second step, compute the estimates of the a priori probabilities π0

and of P(pj ≤ γ), accordingly respectively to 2.4 and 2.5;

3. Then, for each rejection region [0, γ], depending on γ, compute the esti-
mate of pFDR(γ) for a chosen λ, accordingly to 2.6;

4. Furthermore, adopt a bootstrap approach on the m p-values, by extract-
ing B bootstrap samples of p1, . . . , pm, and compute the B bootstrap esti-

mates of pFDR, denoted as p̂FDR
b
λ(γ);

5. Define a confidence interval of level 1− α for pFDR(γ) by adopting the

quantile of level 1− α of the estimates p̂FDR
b
λ(γ) as the upper bound.

By means of an analogous step by step procedure, also FDR(γ) can be
estimated, just by recalling that:

F̂DRλ(γ) =
γπ̂0(λ)

P̂(pj ≤ γ)
(2.7)

The estimation algorithm for pFDR guarantees an increase in the test power
when compared to the algorithm proposed by Benjamini and Hochberg (1995).
In order to demonstrate this statement, let us consider at first the m ordered p-
values p(1), . . . , p(m): the method proposed by Benjamini and Hochberg (1995)
aims to determine the value k such that

k = max{i : p(i) ≤
i
m

q∗}

With such an approach, indeed, the first k ordered hypotheses are rejected and
the FDR is controlled at level q∗.
On the contrary, the method proposed by Storey (2002) aims to estimate FDR
accordingly to 2.7. Hypothetically, suppose to choose the most conservative
estimate for the a priori probability of a null hypothesis to be true, namely
π̂0 = 1. As a consequence, FDR is controlled at level q∗ and the first l ordered
hypotheses are rejected when:

l = max{i : F̂DRp(i) ≤ q∗} = max{i : p(i) ≤
i
m

q∗}

We have shown, hence, that by adopting the most conservative estimate
for π0, then l = k and so the two estimation methods lead to reject the same
number of hypotheses at level q∗.
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On the contrary, if the a priori probability is estimated with 2.4, that is a
conservative estimate but not the most conservative one, then l > k at level q∗.
It seems evident, hence, that by adopting a good estimate for π0, the estimation
approach for FDR proposed by Storey (2002) leads to refuse a greater number
of hypotheses than the estimation approach by Benjamini and Hochberg (1995)
and, as a consequence, leads to a greater test power.

We have already introduced the parameter λ as a tuning parameter from
which the estimate of the a priori probability π0 depends. Rather than simply
fix a constant value for λ, Storey (2002) proposed to select the optimal λ, within
a finite set of possible values, by adopting an algorithm that minimizes the
bootstrap mean square error of the pFDR estimates:

λbest = min
λ∈[0,1]

M̂SE(λ)

If pFDR(γ) were known, it would be possible to calculate directly the boot-
strap MSE, depending only on λ, as:

1
B

B

∑
b=1

[( p̂FDR
b
λ(γ)− pFDR(γ)]2

However, the true pFDR(γ) is not known and has to be estimated: because of
Theorem 7, then ∀λ ∈ [0, 1]

E[ p̂FDRλ(γ)] ≥ min
λ

E[ p̂FDRλ(γ)] ≥ pFDR(γ)

Therefore the chosen plug-in estimate for pFDR(γ) is minλ E[ p̂FDRλ(γ)] and,
in conclusion, the mean square error estimate is :

M̂SE(λ) =
1
B

B

∑
b=1

[( p̂FDR
b
λ(γ)−min

λ
E[ p̂FDRλ(γ)]]

2

2.2.4 Properties of FDR and pFDR

Finite Properties

The aim of this Section is to show that the estimates 2.6 and 2.7 referred re-
spectively to pFDR and FDR, are conservative and ensure a strong control of
the quantities of interest ( (Storey, 2002)). In this regard, it holds the following
Theorem:
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Theorem 7. ∀γ and π0:

E( p̂FDRλ(γ)) ≥ pFDR(γ)

E(F̂DRλ(γ)) ≥ FDR(γ)

Proof. The inequality for pFDR is demonstrated by recalling that:

p̂FDRλ(γ) =
γW(λ)

(1− λ){R(γ) ∨ 1}(1− (1− γ)m)

and by observing that pFDR can be equivalently written with the following
formulation

pFDR(γ) = E

[
V(γ)

R(γ) ∨ 1

]
1

P(R(γ) > 0)

Moreover, it has already been noted that P[R(γ) > 0] ≤ 1− (1− γ)m under
the assumption of independence of the test statistics.
For this reason, it holds that:

E[ ˆpFDRλ(γ)]− pFDR(γ)

= E

[
γW(λ)

(1− λ){R(γ) ∨ 1}(1− (1− γ)m)

]
−E

[
V(γ)

R(γ) ∨ 1

]
1

P(R(γ) > 0)

≥ E

[
γW(λ)

1−λ −V(γ)

{R(γ) ∨ 1}(P(R(γ) > 0)

]

By conditioning the expected value on R(γ)

E

[
γW(λ)

1−λ −V(γ)

{R(γ) ∨ 1}(P(R(γ) > 0)

∣∣∣∣∣ R(γ)

]
=

γE[W(λ)|R(γ)]
1−λ −E[V(γ)|R(γ)]
{R(γ) ∨ 1}P(R(γ) > 0)

Under the hypothesis of independence, recalling the definitions of the quanti-
ties of interest, we observe that: E[W(λ)|R(γ)] is a non-increasing function of
R(γ), because for increasing number of {pi ≤ γ} does not increase the number
of {pi > λ}, while E[V(γ)|R(γ)] is a non-decreasing function of R(γ), because
for increasing number of {pi ≤ γ} does not decrease the number of {pi ≤ γ},
given that the null hypothesis is true.
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Accordingly with these considerations on the monotony, we can apply the
Jensen’s inequality, by conditioning on the positive values of R(γ), and we get:

E

[
γW(λ)

1−λ −V(γ)

R(γ)P(R(γ) > 0)

∣∣∣∣∣ R(γ) > 0

]
≥

E
[

γW(λ)
1−λ −V(γ)|R(γ) > 0

]
E[R(γ)|R(γ) > 0]P(R(γ) > 0)

=
E
[

γW(λ)
1−λ −V(γ)|R(γ) > 0

]
E[R(γ)]

Furthermore, by noting that E[R(γ)] ≥ P(R(γ) > 0), the following inequality
holds, by conditioning on R(γ) = 0:

E

[
γW(λ)

1−λ −V(γ)

{R(γ) ∨ 1}(P(R(γ) > 0)

∣∣∣∣∣ R(γ) = 0

]
= E

[
W(λ)γ

(1− λ)P(R(γ) > 0)

∣∣∣∣ R(γ) = 0
]

≥ E

[
W(λ)γ

(1− λ)E[R(γ)]

∣∣∣∣ R(γ) = 0
]
=

E
[

γW(λ)
1−λ −V(γ)|R(γ) = 0

]
R(γ) > 0

In conclusion:

E[ ˆpFDRλ(γ)]− pFDR(γ) ≥ E

[
γW(λ)

1−λ −V(γ)

{R(γ) ∨ 1}(P(R(γ) > 0)

]

≥
E
[

γW(λ)
1−λ −V(γ)|R(γ) > 0

]
E[R(γ)]

P(R(γ) > 0)+
E
[

γW(λ)
1−λ −V(γ)|R(γ) = 0

]
R(γ) > 0

P(R(γ) = 0)

=
E
[

γW(λ)
1−λ −V(γ)

]
E[R(γ)]

≥ 0

The numerator of the last fraction is certainly positive because:

E
[

γW(λ)

1− λ
−V(γ)

]
≥ mπ0(1− λ)γ

1− λ
−mπ0γ = 0

As a consequence the thesis for pFDR is demonstrated.

Having verified the thesis for pFDR, is straightforward to demonstrate the
thesis also for FDR, just by observing that:

1
P(R(γ) > 0)

[E( ˆFDRλ(γ)) ≥ FDR(γ)] = E

[
γW(λ)

1−λ −V(γ)

{R(γ) ∨ 1}(P(R(γ) > 0)

]
≥ 0
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In practical applications, it is necessary to truncate the estimates at 1 as,
by definition, FDR ≤ pFDR ≤ 1: the results of Theorem 7 are demonstrated
under the assumption that this truncation is not performed.
The following Theorem provides further informations on the truncated esti-
mates by showing how such a truncation procedure reduces the variability of
the estimates.

Theorem 8.

E{[ p̂FDRλ(γ)− pFDR(γ)]2} > E{[ p̂FDRλ(γ) ∧ 1− pFDR(γ)]2}

and
E{[F̂DRλ(γ)− FDR(γ)]2} > E{[F̂DRλ(γ) ∧ 1− FDR(γ)]2}

where notation F̂DRλ(γ) ∧ 1 indicates the estimates truncated at 1.

Proof. The proof follows immediately from the property of the iterated ex-
pected value:

E{[ p̂FDRλ(γ)− pFDR(γ)]2| p̂FDRλ(γ) > 1}

> E{[ p̂FDRλ(γ) ∧ 1− pFDR(γ)]2| p̂FDRλ(γ)>1}

In order to conclude the analysis of the main properties of pFDR, we aim
to recall the following Theorem that shows how the estimate 2.6 of pFDR, not
adjusted for finite samples, is a maximum likelihood estimate for a transfor-
mation of pFDR.

Theorem 9. Under the assumptions of independence and identical distribution among
the p-values, the estimate 2.6, referred to as Q̂λ(γ), is a maximum likelihood estimate
for

π0 + π1[1− g(λ)]/(1− λ)

π0
pFDR(γ)

where g(λ) = P(pj ≤ λ|H0) is the test power, depending on λ.

Proof. The likelihood can be written as:

[π0γ + π1g(γ)]R(γ)[1− π0γ− π1g(γ)]m−R(γ)
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It is straightforward to observe that it is the likelihood function of a binomial
random variable with parameter p = π0λ + π1g(λ). Hence, the maximum
likelihood estimate for the parameter p is equal to pML = R(γ)/m. Because
of the invariance property of the maximum likelihood estimates and since
the maximum likelihood estimate of m(1− p) is equal to W(λ), because the
hypotheses are distributed as independent Bernoulli random variables, hence
the thesis is given:

π0 + π1[1− g(λ)]/(1− λ)

π0
pFDRML(γ) =

π0 + π1[1− g(λ)]/(1− λ)

π0

π0γ

pML

=
π0(1− λ) + π1(1− g(λ)

1− λ

mγ

R(γ)
=

γ[m(1− p)]
R(γ)(1− λ)

=
γW(λ)

(1− λ)R(γ)
= Q̂λ

Asymptotic properties

Under the null hypotheses, we recall that the p-values are assumed to be iden-
tically distributed as Bernoulli random variables with parameter equal to π0.
Under the alternative hypotheses, the p-values are still assumed to be iden-
tically distributed with an unknown cumulative distribution that is usually
denoted by F, while the corresponding density distribution is denoted by f .

The following Theorem illustrates the asymptotic behavior of k = max{i :
p(i) ≤ iα

m}, that is the thresholding point of the procedure that controls FDR:

Theorem 10. Under the following assumptions:

1. F is strictly concave;

2. F′(0) > β, where

β =
1− αA0

αA1
;

3. A1 > 0, namely at least one null hypothesis is false.

where A0 = m0/m and A1 = m1/m are, respectively, the proportions of null and
alternative hypotheses.
Let us denote with u∗ the unique solution of the equation F(u) = βu.
Then, for m→ ∞, k/m

p→ u∗/α.

Proof. Because of the assumptions on the cumulative distribution F under the
alternative hypotheses, the solution u∗ of the system F(u) = βu exists and is
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unique.
Furthermore β > 1 because it can be written equivalently as β = 1+ 1−α(A1+A0)

αA1

and 1−α(A1+A0)
αA1

> 0.
These conditions imply that the line βu is above the bisector of the first quad-
rant and crosses F exactly once. Let us define:

am =
mu∗(1− εm)

α

bm =
mu∗(1 + εm)

α

where εm → 0 and εm
√
(m)→ m. By recalling the equation F(u) = βu, we

get:

u∗ =
F(u∗)

β
=

αA1F(u∗)
1− αA0

We can write am and bm in an equivalent way as follows:

am =
mF(u∗)A1(1− εm)

1− αA0

bm =
mF(u∗)A1(1 + εm)

1− αA0

Since A1 ≤ 1− αA0, then 1
β ≤ α and so u∗ ≤ αF(u∗) ≤ α.

As a consequence F(u∗) ≤ F(α) and, because of the concavity of F, f (u∗) < β.
Given

Ni = #
{

j : pj ≤
iα
m

}
=

m

∑
j=1

1
(

pj ≤
iα
m

)
then:

{k > bm} = ∪d>bm{p(d) ≤
dα

m
} = ∪d>bm{N(d) ≥ d}

Hence for the property of sub-additivity of the probability measures:

P(k > bm) ≤ ∑
d>bm

P(Nd ≥ d)

Let us define:
µ(t) = A0αt + A1mF

(
αt
m

)
If d is an integer, then

µ(d) = E(Nd) = ∑
i

P
(

pi ≤
dα

m

)
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At last, Storey (2002) has demonstrated that the estimate of pFDR is con-
servative also for large samples. In this regard, it holds the following:

Theorem 11. The following limit holds with probability 1:

limm→∞

[
p̂FDRλ(γ)

]
=

π0 + π1[1− g(λ)]/(1− λ)

π0
pFDR(γ) ≥ pFDR(γ)

Proof. Because of the law of large numbers:

1.
P̂(pj ≤ γ)

ae→ P(pj ≤ γ);

2.
W(λ)

m
ae→ (1− λ)π0 + (1− g(λ)π1

Since P(pj ≥ λ|H0) = 1− λ and P(pj ≥ λ|H1) = 1− g(λ).

Hence the thesis is given.

A similar result can be demonstrated also for FDR, just by observing that
F̂DRλ(γ) ∼ p̂FDRλ(γ).

pFDR under dependence

With respect to the pFDR, all its relevant properties have been demonstrated
under the assumption of independence and identical distribution among the
p-values. In particular, the hypothesis of independence is commonly not ad-
equate in many application studies. For this reason, the weakening of the
hypothesis of independence is one of the most exciting and studied directions
of research in the field of multiple comparisons.

Given m multiple comparisons and T1, . . . , Tm test statistics, Storey (2003)
has proposed the following Theorem that generalize the definition of pFDR
in case of dependency among the test statistics, under the assumption of a
common rejection region Γ for each test.

Theorem 12.

pFDR(Γ) =
m

∑
k=1

∑
i1,...,ik

1
k

k

∑
j=1

P(Hij = 0, (Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ|R(Γ) > 0)
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Proof.

pFDR(Γ) =
m

∑
k=1

∑
i1,...,ik

E

(
V(Γ)
R(Γ)

∣∣∣∣ (Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ
)

×P((Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ|R(Γ) > 0)

=
m

∑
k=1

∑
i1,...,ik

E

(
∑k

j=1(1− Hij)

k

∣∣∣∣∣ (Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ

)
×P((Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ|R(Γ) > 0)

=
m

∑
k=1

∑
i1,...,ik

1
k

k

∑
j=1

P(Hij = 0|(Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ)

×P((Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ|R(Γ) > 0)

=
m

∑
k=1

∑
i1,...,ik

1
k

k

∑
j=1

P(Hij = 0, (Ti1 , . . . , Tik) ∈ Γ, (Tik+1 , . . . , Tim) /∈ Γ|R(Γ) > 0)

Furthermore, if the conjoint tests are dependent but exchangeable the thesis
of Theorem 12 can be simplified as follows:

Corollary 1. Let us consider (H1, T1), . . . , (Hm, Tm) as exchangeable random
variables, then:

pFDR(Γα) =
m

∑
k=1

P(H1 = 0|(Ti1 , . . . , Tik) ∈ Γα, (Tik+1 , . . . , Tim) /∈ Γα)P(R = k|R > 0)

It is clear, hence, that the fundamental result stated in Theorem 5 does not
hold in case of dependent test statistics; nevertheless, under weaken assump-
tion than the independence, such a result still holds asymptotically (Storey,
2003; Storey and Tibshirani, 2001).

Theorem 13. Suppose with probability 1 that:

m

∑
i=1

(1− Hi)

m
→ π0

In addition, let us define for m→ ∞ and for each α > 0:

Vm(Γα)

∑m
i=1(1− Hi)

=
∑m

i=1(1− Hi)1(Ti ∈ Γα)

∑m
i=1(1− Hi)

→ G0(α)
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Sm(Γα)

∑ i = 1mHi
=

∑m
i=1 Hi1(Ti ∈ Γα)

∑m
i=1 Hi

→ G1(α)

Hence, the continuous functions G0 and G1 are the asymptotic type I error and power,
respectively.
Then, for each δ > 0 such that π0G0(δ) + (1− π0)G1(δ) > 0, the followings state-
ments hold:

i.
lim sup

m→∞

∣∣∣∣ Vm(Γα)

Rm(Γα) ∨ 1
− P∞(H0|X ∈ Γα)

∣∣∣∣ ae
= 0

ii.
lim sup

m→∞
|FDRm(Γα)− P∞(H0|X ∈ Γα)| = 0

iii.
lim sup

m→∞
|pFDRm(Γα)− P∞(H0|X ∈ Γα)| = 0

where
P∞(H0|X ∈ Γα) =

π0G0(α)

π0G0(α) + (1− π0)G1(α)

Proof. It is worth recalling that Vm(Γα)/m is the empirical distribution of the
type I error, since it is defined as the frequency of true hypotheses rejected.
Then its corresponding theoretical distribution is equal to π0G0(α). By the
Glivenko-Cantelli theorem it follows that:

lim
m→∞

sup
α≥δ

∣∣∣∣Vm(Γα)

m
− π0G0(α)

∣∣∣∣ ae
= 0

With an analogous argumentation:

lim
m→∞

sup
α≥δ

∣∣∣∣ [Vm(Γα) + Sm(Γα)] ∨ 1
m

− [π0G0(α) + (1− π0)G1(α)]

∣∣∣∣ ae
= 0

Since [π0G0(α)+ (1−π0)G1(α)] is a positive non decreasing function, then:

lim
m→∞

sup
α≥δ

∣∣∣∣ m
[Vm(Γα) + Sm(Γα)] ∨ 1

− 1
[π0G0(α) + (1− π0)G1(α)]

∣∣∣∣ ae
= 0

Let us define
Qm(α) =

Vm(Γα)

[Vm(Γα) + Sm(Γα)] ∨ 1
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it may be observed that:

|Qm(α)− P∞(H0|X ∈ Γα)|

≤
∣∣∣∣ Vm(Γα)−mπ0G0(α)

[Vm(Γα) + Sm(Γα)] ∨ 1

∣∣∣∣+ ∣∣∣∣ mπ0G0(α)

[Vm(Γα) + Sm(Γα)] ∨ 1
− π0G0(α)

[π0G0(α) + (1− π0)G1(α)]

∣∣∣∣
Hence the first statement of the Theorem is demonstrated.

Furthermore, in order to demonstrate the asymptotic convergence of FDR,
it is worth observing that

|Qm(α)− P∞(H0|X ∈ Γα)|
ae
≤ 2

As a consequence:

0 = E[ lim
m→∞

sup
α≥δ

|Qm(α)− P∞(H0|X ∈ Γα)|] =

lim
m→∞

E[sup
α≥δ

|Qm(α)− P∞(H0|X ∈ Γα)|]

lim
m→∞

sup
α≥δ

E[|Qm(α)− P∞(H0|X ∈ Γα)|] ≥ 0

Where E[Qm(α)] = FDRm(Γα). In conclusion:

lim
m→∞

sup
α≥δ

|pFDRm(Γα)− FDRm(Γα)|] ≤ lim
m→∞

∣∣∣∣ 1
P(Rm(δ) > 0)

− 1
∣∣∣∣ = 0

From the second statement, it follows immediately the asymptotic convergence
of pFDR.

2.2.5 False Non Discovery Rate

Until now, while analyzing the problem of multiple comparisons, we have
focused only on the type I error, that is related to the number of false rejections;
now, we aim to introduce some adequate measures for the type II error, that is
related to the number of false acceptances.

By recalling Table 2.2, and in accordance to that notation, Craiu and Sun
(2008) proposed a new quantity, referred to as Non-Discovery Rate, as a possi-
ble measure of type II error since it is defined as the expected proportion of
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acceptances among false null hypotheses:

NDR =
E(T)

m1

Clearly, if m1 = 0 the NDR is not yet well-defined. The main advantage of this
quantity is that its complement to one can be interpreted as the average power
(Dudoit, Shaffer, and Boldrick, 2003):

1− NDR = 1− E(T)
m1

=
E(S)
m1

Genovese and Wasserman (2002) proposed, instead, a counterpart of FDR,
referred to as the False Nondiscovery Rate, that is defined as the expected pro-
portion of false negatives among all the hypotheses that are not rejected:

FNR = E

(
T
W

)
Differently from NDR, the complement to one of FNR is not equal to the av-
erage power of the multiple comparisons, as one may expect in a frequentist
perspective.
At last, Storey (2003) proposed a natural counterpart of pFDR, referred to as
the positive False Nondiscovery Rate:

pFNR = E

(
T
W

∣∣∣∣W > 0
)

In analogy with Theorem 5 about pFDR, it is easy to prove the following:

Theorem 14. Consider m hypotheses with independent test statistics T1, . . . , Tm and a
common rejection region Γ. If the null hypotheses are true with an a priori probabilities
of π0 then:

pFNR = P(H0|T /∈ Γ)

Proof. At first, it is worth noting that:

pFNR(Γ) = E

(
T(Γ)
W(Γ)

∣∣∣∣W(Γ) > 0
)
=

=
m

∑
k=1

E

(
T(Γ)
W(Γ)

∣∣∣∣W(Γ) = k
)

P(W(Γ) = k|W(Γ) > 0) =

=
m

∑
k=1

E

(
T(Γ)

k

∣∣∣∣W(Γ) = k
)

P[W(Γ) = k|W(Γ) > 0]
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Under the strong assumption that the statistics are independent and identically
distributed, it holds the following:

E[T(Γ)|W(Γ) = k]

= E

[
m

∑
i=1

1(Ti /∈ Γ)1(Hi = 1)

∣∣∣∣∣ (T1, . . . , Tk) /∈ Γ, (Tk+1, . . . , Tm) ∈ Γ

]

= E

[
k

∑
i=1

1(Hi = 1)

∣∣∣∣∣ (T1, . . . , Tk) /∈ Γ, (Tk+1, . . . , Tm) ∈ Γ

]

= E

[
k

∑
i=1

1(Hi = 1)

∣∣∣∣∣ Ti /∈ Γ

]
= kP(H0|T /∈ Γ)

And, hence, the thesis is given:

pFDR(Γ) =
m

∑
k=1

kP(H0|T /∈ Γ)
k

P[W(Γ) = k|W(Γ) > 0] = P(H0|T /∈ Γ)

Sala (2014) investigated the trade-off between pFDR and pFNR, and pro-
posed a method for balancing those two types of error, that has been success-
fully applied on fMRI data.

2.3 Bayes False Discovery Rate and Bayes Power in

Multiple Testing

Let us recall the general setting of multiple comparisons we are interested in
and let us introduce some fundamental definitions. Consider, in fact, m simul-
taneous hypotheses such that H0 denotes the null hypothesis with an a priori
probabilities of π0 = P(H0), while H1 = H̄0 denotes the alternative hypothesis
with an a priori probability of π1 = P(H1) = 1− π0.

In this study, and in the perspective of a brain network construction, we
aim to control, as a function of the rejection region γ, the probability of false
discoveries by means of the Bayes FDR (Efron, 2010):

FDR(γ) = P(H0|pj ≤ γ) =
P(pj ≤ γ|H0)P(H0)

P(pj ≤ γ)
=

γπ0

F(γ)
, (2.8)
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the probability of false non discoveries by means of the Bayes False Non-
discovery Rate (FNR):

FNR(γ) = P(H0|pj > γ) = 1− P(H0|pj > γ) = 1− (1− γ)π0

1− F(γ)
, (2.9)

and the Bayes power (BP) (Berlingeri, 2015):

BP(γ) = P(pj ≤ γ|H0) =
P(H0|pj ≤ γ)P(pj ≤ γ)

P(H0)
=

F(γ)− γπ0

1− π0
, (2.10)

where F represents the p-values cdf.

The Bayes FDR, FNR and BP have been defined under the assumption that
the p-values are uniformly distributed under H0: in particular, it holds that
P(pj ≤ γ|H0) = γ and all the results in the following Sections will be demon-
strated under this specific setting.
In case one assumes, however, the p-values to be valid, accordingly to 1 of
Lemma 1, it holds that P(pj ≤ γ|H0) ≤ γ. As a consequence, the Bayes quan-
tities of interest can be written in this more general case as:

FDR(γ) ≤ γπ0

F(γ)
, (2.11)

FNR(γ) ≤ 1− (1− γ)π0

1− F(γ)
, (2.12)

BP(γ) ≥ F(γ)− γπ0

1− π0
, (2.13)

It is clear that the direction of the inequalities is conservative in all the
three cases: the two errors measurement, in fact, will be overestimated while
the Bayes power will be underestimated.
Hence, the theoretical results demonstrated under the assumption that P(pj ≤
γ|H0) = γ, can be generalized in case of valid p-values.

2.3.1 Not empirical Bayesian estimates

Given the plug-in estimator of the unknown cdf of the p-values:

F̂(γ) =
#{pj ≤ γ}

m
(2.14)
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By substituting 2.14 into 2.8, 2.9 and 2.10, we get the estimates of the Bayes
FDR, of the Bayes FNR and of the BP, respectively, denoted as E[ ˆFDR(γ)],
E[ ˆFNR(γ)] and E[B̂P(γ)]; those estimates are said to be not empirical because
π0 is assumed to be known. Due to:

E[F̂(γ)] = F(γ) = γπ0 + BP(γ)π1 (2.15)

and thanks to the Jensen’s inequality, we obtain the following relations on the
expected values of the estimates:

E[F̂DR(γ)] ≥ γπ0

E[F̂(γ)]
= FDR(γ) (2.16)

E[F̂NR(γ)] ≤ 1− (1− γ)π0

1−E[F̂(γ)]
= FNR(γ) (2.17)

E[B̂P(γ)] =
E[F̂(γ)]− γπ0

1− π0
= BP(γ) (2.18)

Indeed, the estimate of the Bayes FDR is conservative (Storey, 2002) and the
estimate of the BP is correct; conversely the direction of the inequality for the
estimate of the Bayes FNR suggests that, on average, the probability of false
non-discoveries is underestimated. Because of this lack of conservativeness we
choose not to study further the Bayes FNR.

2.3.2 Empirical Bayesian estimates

Let us consider the case in which π0 is unknown and hence it has to be esti-
mated empirically from the data. By applying the conservative estimate of the
a priori probability π0 (Storey, 2002):

π̂0(λ) =
#{pj > λ}
m(1− λ)

=
1− F̂(λ)

1− λ
, (2.19)

which has expected value:

E[π̂0(λ)] =
1− E[F̂(λ)]

1− λ
=

1− F(λ)
1− λ

= π0 +
1− BP(λ)

1− λ
π1 ≥ π0. (2.20)
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And by substituting 2.14 and 2.19 in 2.8 and 2.10, we obtain the following
empirical Bayes estimates:

F̂DRλ1(γ) =
γπ̂0(λ1)

F̂(γ)
, (2.21)

and 1

B̂Pλ2(γ) =
F̂(γ)− γπ̂0(λ2)

1− π̂0(λ2)
(2.22)

.
In order to estimate the optimal values λi (i = 1, 2) of the tuning parame-

ters, we resample the m p-values with replacement B times, we calculate the
Bootstrap versions of 2.21 and 2.22 over a range of λ values (e.g. from 0 to 1
with step 0.1) and we minimize the Bootstrap estimates of the corresponding
mean square errors (Storey, 2002). Such a bootstrap procedure allows us also to
construct the one-sided (1− α)-confidence intervals for the two Bayes param-
eters by taking, respectively, the (1− α)-quantiles of the ˆFDRλ1(γ) Bootstrap
distributions as the corresponding upper confidence bound of the probability
of false discoveries, and the α-quantile of the B̂Pλ2(γ) Bootstrap distribution
as the lower confidence bound of the power. Since it is not sufficient to control
the Bayes FDR alone, we propose to balance these two types of error rates by
choosing a suitable value of the threshold γ such that the Bayes FDR is low
and the BP is reasonably high.

2.3.3 Large Sample Theory

Asymptotic results in case of independence

Let us assume the independence of the m p-values, then by the strong law of
large numbers:

F̂(γ) a.s.→ E[F̂(γ)] = F(γ),

by the continuous mapping theorem (Billingsley, 1986), that states that con-
tinuous functions are limit preserving, it follows that:

π̂0(λ)
a.s.→ E[π̂0(λ)] = π0

[
1 +

F1− BP(λ)
1− λ

π1

π0

]
≥ π0,

1The estimate of the a priori probability π0 is truncated at 1 (Storey, 2002). If π̂0(λ) = 1
then the estimate of the power is not yet well defined. In order to handle this problem, we
suggest, in case π̂0(λ) = 1, to estimate the power with B̂Pλ2(γ) = F̂(γ), according to (Karr,
1993).
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F̂DRλ(γ)
a.s.→ γE[π̂0(λ)]

E[F̂(γ)]
=

γπ0

F(γ)

[
1 +

1− BP(λ)
1− λ

π1

π0

]
=

FDR(γ)
[

1 +
1− BP(λ)

1− λ

π1

π0

]
≥ FDR(γ),

(2.23)

and

B̂Pλ(γ)
a.s.→ E[F̂(γ)]− γE[π̂0(λ)]

1− E[π̂0(λ)]
=

F(γ)− γπ0

[
1 + 1−BP(λ)

1−λ
π1
π0

]
1− π0

[
1 + 1−BP(λ)

1−λ
π1
π0

] =

1− λ

BP(λ)− λ
BP(γ)− γ

1− BP(λ)
BP(λ)− λ

(2.24)

Therefore, when λ is chosen so that BP(λ) is close to 1 (for example, if λ is
near 1), the empirical Bayes estimates asymptotically approximate the actual
values of the corresponding parameters.

Asymptotic results in case of dependence

Let us consider now the general case of not independent p-values: the pattern
of dependency among p-values is unknown, a priori, and also hard to model
from the data. As a consequence, in order to prove similar results as in Section
2.3.3, it is necessary to formalize some hypothesis on the conjoint probability
of the p-values.

For instance, if

P(pi ≤ γ, pj ≤ γ) = F(γ)2 + o(1) f or|i− j| → ∞

then, by the Bernstein’s law of large numbers (Shiryaev and Lyasoff, 2012),

F̂(γ)
p→ E[F̂(γ)] = F(γ),

from which the convergences 2.23 and 2.24 holds only in probability (by
the continuous mapping theorem).
In order to guarantee the almost sure convergence for 2.23 and 2.24, also in
case of dependent p-values, we have then to strengthen some hypotheses.
The Glivenko-Cantelli theorem determines the almost surely convergence of
the empirical distribution function for a set of n independent and identically-
distributed random variables, with n → ∞. Let us extend this theorem for
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stationary ergodic sequences X1, . . . , Xk, . . . defined on a probability space
(Ω, F, P). For each k ≥ 0 and n ≥ 1, if the distribution functions of (X1, . . . , Xn)

and (Xk+1, . . . , Xk+n) are the same, then the sequence is said to be stationary.
More formally, consider a measureable function T on Ω and assume that T is
also measure preserving, that is P(T−1A) = P(A) for all A ∈ F. The func-
tion T is also ergodic if P(A) = 0 or 1 for all A ∈ J, where J ⊂ F is the
sub-field induced by the invariant sets (a set B ∈ F is invariant if T−1B = B).
Consequently, in case of stationary ergodic p-values,

sup
γ
{F̂(γ)− F(γ)} a.s.→ 0

(Dehling and Philipp, 2002).

2.3.4 Simulation Studies

In this Section we propose some numerical results that support and enrich our
theoretical considerations.

Simulations in case of independence

In order to demonstrate numerically the properties of the not empirical Bayes
estimates of FDR, FNR and BP in case of independent p-values we simu-
lated m = 1000 independent and normally distributed random variables Zi ∼
N(µ, 1) where µ = 0 under the null hypothesis while µ = 2 under the alterna-
tive hypothesis. For each i-th multiple comparison, i = 1, . . . , m, we computed
the associated p-value pi = 2− 2Φ(|zi|)], where zi is the observed value of
the i-th normal random variable. We iterated our simulation N = 10000 times
for π0 = 0.1, . . . , 0.9 and for two rejection regions depending on γ = 0.01 and
γ = 0.001. At last, we computed the not empirical Bayes estimates, with π0

known and equal to the real simulated value; the results are reported in Table
2.3.

Accordingly to the theoretical results in Section 2.3.1, we observed that the
expected value, over N iterations, of the Bayes FDR estimates is conservative,
while the expected value of the Bayes FNR systematically underestimate or
is equal to the true value of the probability of false non-discoveries. While
this first simulation allowed us to verified the properties of the not empiri-
cal Bayes estimates, the following simulation studies enabled the analysis of
the empirical Bayes estimates, both in case of independent p-values and under
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specific patterns of dependency. As a consequence, the main aim of the follow-
ing simulation studies was the comparison between the behavior of the Bayes
FDR and of the BP, in case of independent p-values and under some specific
patterns of dependency. Because of the not conservative behavior shown by
the Bayes FNR, according to 2.17, we investigated further only the Bayes FDR
and the BP. All the following simulation studies, both under independence
and under dependence of p-values, were performed for m = 1000 multiple
comparisons and for the parameters π0 = 0.1, . . . , 0.9 and γ = 0.01, 0.001. As
already observed in Section 2.3.2, the empirical Bayesian estimates of FDR and
BP depend not only on γ but, also, on the tuning parameters λ1 and λ2, re-
spectively. In order to estimate the optimal values of those tuning parameters,
hence, we performed our simulations for λ = 0.1, . . . , 0.9. According to Storey
(2002) we selected the optimal λ as the value that minimizes the bootstrap
mean square error (MSE).
With respect to the bootstrap MSE of the Bayes FDR and BP, we considered the
standard plug-in (Shao and Tu, 1995) estimates F̂DRλ(γ) and B̂Pλ(γ), respec-
tively, and hence:

λ
opt
1 = argminM̂SEFDR(λ) = argmin

1
B

B

∑
b=1
{F̂DR

b
λ(γ)− F̂DRλ(γ)}2 (2.25)

λ
opt
2 = argminM̂SEBP(λ) = argmin

1
B

B

∑
b=1
{B̂P

b
λ(γ)− B̂Pλ(γ)}2 (2.26)

In case of independent p-values, we simulated m = 1000 independent and
normally distributed random variables, each one with variance equal to 1 and
mean equal to 0 under the null hypothesis while equal to 2 under the alterna-
tive hypothesis. The simulations results are shown in Table 2.4.

If we compare the MSE of FDR and power, in case of not empirical Bayes
estimates and in case of empirical Bayes estimates, we observe that the a priori
information on π0 induces smaller MSE for both the Bayes FDR and the BP,
for all the parameters considered.
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Simulations in case of dependence

In case of dependent p-values, otherwise, we assumed the set of random vari-
ables Z1, . . . , Z1000 to have a multivariate normal distribution. Each marginal
distribution Zi ∼ N(µ, 1), as well as before, has the same variance and mean
equal to 0 under the null hypothesis while equal to 2 under the alternative hy-
pothesis; in order to explore different pattern of dependency among z-values
we defined different covariance matrices.
Specifically we explored three different pattern of dependency among vari-
ables (Myers et al., 2012): the autoregressive pattern, the constant pattern, and
the unstructured pattern of dependency. With respect to the autoregressive
pattern of dependency, we defined each correlation among couples of random
variables equals to:

Corr(Zi, Zj) = ρ(|i−j|)

And we fixed ρ = 0.8. Conversely, for the constant and the unstructured pat-
terns, we considered an hub-structured matrix of covariances. In particular
we split the z-values into 100 clusters, each one composed by 10 z-values, and
we imposed a pattern of dependency among z-values only if belonging to the
same cluster, while setting to 0 the correlations between z-values belonging to
different clusters. The matrix of variances and covariances thus constructed
results in a block matrix with 100 sub-matrices of size 10×10 on its diagonal.
In case of constant pattern of dependency, we fixed each correlation within
clusters equal to the others; in particular, we simulated this pattern of covari-
ances with respect to three different constant values: c = 0.1, 0.5, 0.9. In case
of unstructured pattern of dependency, differently, the correlations values in
each sub-matrix were randomly assigned in the range (0;0.35). The simulations
results are shown in Tables 2.5 and 2.6.

In Figures 2.1 and 2.2 the true Bayes FDR values and the FDR empiri-
cal Bayes estimates in case of constant pattern of dependency, for the three
constant values simulated (c = 0.1, 0.5, 0.9) are plotted, given γ = 0.01 and
γ = 0.001 respectively,. This comparison reveals that the more high the con-
stant c, the more conservative the estimate of the Bayes FDR. The empirical
Bayes estimates of BP show a similar behavior (Figures 2.3 and 2.4).

Furthermore, we investigated the behavior of Bayes FDR and BP estimates
in case of independence of the p-values versus the case of autoregressive and
hub-unstructured patterns of dependence among p-values. Specifically, we
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Figure 2.1: Comparison between the true FDR (black circle) and
the FDR empirical Bayes estimates in case of constant pattern
of dependency with constant c equal to 0.1 (red triangle), to 0.5
(green triangle) and to 0.9 (blue cross); values are plotted over a

range of π0 = 0.1, . . . , 0.9 and given γ = 0.01.

Figure 2.2: Comparison between the true FDR (black circle) and
the FDR empirical Bayes estimates in case of constant pattern
of dependency with constant c equal to 0.1 (red triangle), to 0.5
(green triangle) and to 0.9 (blue cross); values are plotted over a

range of π0 = 0.1, . . . , 0.9 and given γ = 0.001.
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Figure 2.3: Comparison between the true Power (black circle) and
the Power’s empirical Bayes estimates in case of constant pattern
of dependency with constant c equal to 0.1 (red triangle), to 0.5
(green triangle) and to 0.9 (blue cross); values are plotted over a

range of π0 = 0.1, . . . , 0.9 and given γ = 0.01.

Figure 2.4: Comparison between the true Power (black circle) and
the Power’s empirical Bayes estimates in case of constant pattern
of dependency with constant c equal to 0.1 (red triangle), to 0.5
(green triangle) and to 0.9 (blue cross); values are plotted over a

range of π0 = 0.1, . . . , 0.9 and given γ = 0.001.
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observe that, in case of independence, the MSE of the Bayes FDR and BP are
smaller than the corresponding MSE in case of dependence. Moreover, as the
hub-unstructured correlation matrix induces a weaker pattern of dependency
than the autoregressive correlations matrix, the MSE in Table 2.6 are all smaller
than the MSE in Table 2.5. In Figures 2.5 and 2.6 the Bootstrap confidence in-
tervals of the Bayes FDR are plotted, for γ = 0.01, 0.001: the more the distance
from a condition of independence, the wider the bootstrap confidence inter-
vals.

Figure 2.5: Comparison between the Bayes FDR confidence in-
tervals in case of independence (black line), in case of hub-
unstructured pattern of dependency (light-blue line), and in case
of autoregressive pattern of dependency (green line); values are

plotted over a range of π0 = 0.1, . . . , 0.9 and given γ = 0.01.

Simulation with a block bootstrap procedure

At last, we realized a simulation, in the spirit of the application on real fMRI
data, in order to investigate the adequacy of the bootstrap procedure on the
p-values, as proposed by Storey, versus a block bootstrap procedure on the
original data series, in case of dependency among p-values. First of all, we
have to point out that the standard bootstrap procedure implies the assump-
tion of independence on the bootstrapped values. Whenever the p-values are
dependent the standard bootstrap does not allow to handle the dependency
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Figure 2.6: Comparison between the Bayes FDR confidence in-
tervals in case of independence (black line), in case of hub-
unstructured pattern of dependency (light-blue line), and in case
of autoregressive pattern of dependency (green line); values are

plotted over a range of π0 = 0.1, . . . , 0.9 and given γ = 0.001.

structure. A proper bootstrap procedure in case of dependency is the moving
block bootstrap (MBB) procedure (Lahiri, 2013), in which the only assumption
of independence is adopted among blocks of values.

In fact, in a MBB procedure, usually, one aims to fix the length, l, of each
block long enough such that the observations which are more distant than l
are nearly independent. As a consequence, it is worth to observe that, while
the original data are dependent, the sampled blocks are independent by con-
struction.
One of the main strength of the MBB is that it does not require any parametric
model assumptions on the data; furthermore the MBB allows to capture at any
lag the finite-dimensional joint distribution of the unknown underlying time
series.

This simulation has two levels of complexity: we not only had to simulate
a vector of p-values as in the previous simulations, but we had also to simulate
the dataset from which the p-values are computed. Therefore, let us assume
a network composed by 50 nodes; for each node we collect a time series of
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Figure 2.7: The collection of N overlapping blocks under the
MBB.

n = 200 measurements. In addition, recall that we are interested in the con-
struction of an unweighted and undirected network such that a link between
two nodes is placed if the correlation among those nodes is statistically signif-
icant, namely if the correlation measure is higher than a proper threshold. The
network construction results in a problem of multiple testing; in particular we
have m = 50(50−1)

2 = 1225 conjoint comparisons.
Analogously to the example on real data, we computed the Spearman’s rank
correlation coefficients, whose test statistic is defined in 2.1. We assumed the
set of random variables T1, . . . , T1225 to have a multivariate normal distribu-
tion; each variable, hence, is marginally distributed as a N(0, 1) under H0 and
as a N(2, 1) under H1. The choice of the multivariate normal approximation
guarantees a simplification in this simulation’s step, but depends also on the
numerous properties of the multivariate normal distribution, primarily the
equivalence of the concepts of independence and incorrelation. Given the sim-
ulated z-values, we computed the corresponding p-values pj = 1−Φ(zj) for
i = 1, . . . , m, where Φ is the cdf of a standard normal. In order to explore the
case of dependent p-values, we designed an interpretable and meaningful pat-
tern of dependency. With this regard, we simulated a hub-structured matrix
of correlations among p-values such that the blocks of p-values were induced
by an a priori set of clusters or modules of the original nodes. In particular, let
us assume 5 modules each one composed by 10 nodes; in Table 2.7 is shown a
portion of the matrix of the z-values:

We enumerated the p-values in this order: at first, we enumerated the p-
values given by the comparisons between nodes belonging to the same mod-
ule, and only later we enumerated the remaining p-values. The classification
into modules of the nodes induced a partition of the p-values into 10 blocks,
composed by 10 p-values each, and into 45 blocks composed by 25 p-values
each. It seemed plausible to assume that the p-values belonging to the same
block were dependent, while p-values belonging to different blocks were as-
sumed to be independent.
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Table 2.7: Portion of the p-values symmetric matrix. Each col-
umn and row corresponds to a ROI (or node equivalently). The
p-values are enumerated accordingly to the following rule: the
p-values associated to nodes belonging to the same module are

enumerated first, starting from the top left of the matrix.

Nodes I II III IV V VI VII . . .
I 1 p1 p2 p3 p4 p101 p102
II 1 p5 p6 p7 p106 p107
III 1 p8 p9 p111 p112
IV 1 p10 p116 p117
V 1 p121 p122

VI 1 p11
VII 1
. . . . . .

The pattern of dependency simulated, hence, has an hub-structure, as il-
lustrated in Table 2.8.

Table 2.8: Portion of the p-values symmetric matrix. The pattern
of dependency has an hub-structure: correlations within blocks
are set equal to c, while the remaining correlations are set equal

to 0.

P-values p1 p2 . . . p9 p10 p11 p12 . . .
p1 1 c c c 0 0
p2 1 c c 0 0
. . . 1 c c 0 0
p9 1 c 0 0
p10 1 0 0
p11 0 0 0 0 0 1 c
p12 0 0 0 0 0 1
. . . . . .

We simulated a constant pattern of correlations among p-values, in each
block, and we performed our simulation for c=0.1. We computed the em-
pirical Bayes estimates for FDR and BP, with respect to the parameters τ =

0.05, . . . , 0.25 and λ = 0.1, . . . , 0.9, and given π0 = 0.8; hence we compared the
results obtained with the bootstrap on the p-values with those obtained with
a block-bootstrap on the original data.
In Figure 2.8 we show the true Bayes FDR value compared to the empirical
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Bayes estimates of FDR, computed respectively with a standard bootstrap on
the p-values and with a block bootstrap on the original data, at lag 1.

Figure 2.8: Comparison between the true Bayes FDR (black star),
the Bayes FDR estimates in case of standard bootstrap on the p-
values (red circle) and the Bayes FDR estimates in case of block
bootstrap, with lag 1, on the original data (green triangle); values
are plotted over a range of τ = 0.05, . . . , 0.25 and given π0 =
0.8. The simulated pattern of dependency has a constant hub-

structure, with c=0.1.

The Monte Carlo estimates and also the MSE values are quite similar. This
simulation result suggests that, even in case of dependency among p-values,
the estimation process of FDR, based on the standard bootstrap procedure, is
robust.
Similarly to the previous figure, in Figure 2.9 we show the true power value
compared to the empirical Bayes estimates of BP, computed respectively with a
standard bootstrap on the p-values and with a block bootstrap on the original
data, at lag 1. With the standard bootstrap procedure, for every τ, the power
is underestimated; on the contrary, given a block bootstrap procedure, the BP
is underestimated only for τ ≤ 0.15. In order to assure a fully conservative
approach, hence, the standard bootstrap procedure is preferable.
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Figure 2.9: Comparison between the true BP (black star), the
BP estimates in case of standard bootstrap on the p-values (red
circle) and BP estimates in case of block bootstrap, with lag 1, on
the original data (green triangle); values are plotted over a range
of τ = 0.05, . . . , 0.25 and given π0 = 0.8. The simulated pattern

of dependency has a constant hub-structure, with c=0.1.



Chapter 3

Application on Neuro-functional
data

3.1 Aim of the study

One of the most significant changes in the demography of the last decades is
the continuous increment of estimated-life; projection studies suggest that a
large proportion of those born in western countries from year 2000 might have
a life expectancy of about 100 years (Christensen et al., 2009). Although this
perspective may be exciting, we have to admit that “old age” is a complicated,
and still mysterious, period of human life. As we age we need to cope with a
series of changes that can be more or less significant. This coping process can
be influenced by a large variety of biological, cognitive and social factors that
will inevitably make it more or less successful. In a society that is projected to
grow older and older in the next fifty years, it is not surprising that the study
of these factors and of their interactions became, in the last decade, one of the
most investigated topics in life sciences. With this regard, one of the main
efforts of psychologists and cognitive scientists was to explore the pattern of
age-related behavioural, neurofunctional and morphometrical changes in dif-
ferent cognitive domains.
From 1992, when the first functional neuroimaging study (Tempel and Perl-
mutter, 1992) on aging appeared in the international literature, to October
2015, more than 220 papers had been published on this topic. This large num-
ber of neuroimaging findings, together with a large pool of behavioral studies,
contributed to the development of a number of theories and models about the
aging processes (see Barulli and Stern, 2013; Dennis and Cabeza, 2008, for a
recent review), with the most of them referring to the concept of compensation.

69
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Resting state age-related changes could be addressed in terms of either de-
differentiation, or localization. These two theoretical frameworks make two
opposite predictions about the manifestation of age-related changes in resting
state functional connectivity. According to the de-differentiation hypothesis
healthy aging would be characterized by a significant reduction of the signal-
to-noise ratio (i.e. the ratio between the desired signal and the non-neural
background noise) and, as a result, by a highly dense and less organized neu-
rofunctional network. On the contrary, according to the localization hypothesis
resting state age-related changes would be characterized by a reduction of the
long-term neurofunctional connections and, as a consequence, by a detectable
increment of intra-lobar neurofunctional connections. This means that as we
age, the connections between distant brain regions would get lost in favour of
the neurofunctional connections between brain regions that belong to the same
anatomical macro-structures.
To explicitly test these hypotheses, we constructed subject-specific balanced
unweighted and undirected networks, for the younger and the older partic-
ipants, by adopting a thresholding method which, as already described in
Section 2.3, is based on the identification of a statistical threshold τ capable of
balancing the I error rates and the power, in a bayesian perspective.
Furthermore, to explicitly describe each subject-specific network, we identify
a set of relevant network indexes, each one extracted from each network:

1. the global number of significant links between brain regions;

2. the degree centrality of each node (i.e. each brain region);

3. the mean degree centrality of each network;

4. the number of hubs in each network;

5. the modularity measure (i.e. a measure that quantifies the modular struc-
ture beyond the expected at random one);

6. we created a new index that measured the level of between-modules
(BM) functional connectivity.

We adopted these indexes to explicitly test the de-differentiation and the local-
ization hypotheses according to the scenarios reported in Table 3.1.

The two hypotheses were also tested by means of a distance measure (namely
the length of the significant links) according to the scenarios reported in Figure
3.1.
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Figure 3.1: Graphical representation of the de-differentiation and
of the localization hypothesis in healthy aging.
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Table 3.1: Possible Scenarios. Here we report the expected re-
sults, for each singe network measure, in the context of the de-

differentiation and of the localization hypothesis.

Measure It is a measure of De-differentiation Localization
Number
of links

Size of the network Elderly>Young n.e.

Mean net-
work de-
gree

Density of the network Elderly>Young n.e.

Number
of hubs

Number of vertices char-
acterized by especially
high degree

Elderly>Young n.e.

Modularity Degree to which the net-
work may be subdivided
into such clearly delin-
eated and nonoverlap-
ping groups (modules)

Elderly<Young Elderly>Young

Between-
modules
Index

Proportion of links that
go out from one module
among all the links that
exist outside that module

Elderly>Young Elderly<Young

In the upper panel of Figure 3.1 is represented an hypothetical young
network together with the hypothetical elderly network in the case of de-
differentiation (on the left) and in case of localization (on the right). According
to the de-differentiation hypothesis, healthy elderlies would developed new
short-range neurofunctional links (lower panel on the left, red curve), while
maintaining the long-range neurofunctional links (green) developed during
childhood. As a result, the elderly network would be either denser, or differ-
ently organized, than the youngers’ one. On the contrary, according to the lo-
calization hypothesis, healthy elderlies would progressively loose long-range
connections (lower panel on the right, green curve) in favour of short-range
links (red). As a result, the healthy elderlies network would be as dense as
the youngers’ one, but differently organized. The black dotted lines isolate the
young participants’ age range, while the blue dotted lines isolate the elderlies’
age-range considered for this study. The red and the green pattern in the range
0 < age < 20 has been designed on the basis of the results reported in the study
by Fair et al. (2009).
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3.2 Data Acquisition

In order to verify the hypothesis of de-differentiation in healthy elderlies we
acquired the MRI scans of 70 healthy participants, 35 elderlies (17 males; age
= 66.5 ± 7.4 years, min = 52, max = 81) and 35 young subjects (17 males; age =
26.5 ± 4.3 years, min = 19, max = 34).
All the participants had a normal cognitive profile and none of them had his-
tory of major medical disorders or was under psychotropic medication. All
the participants gave their written informed consent to the MRI scan. The data
were collected in compliance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).

The MRI data were acquired using a 1.5 T General Electrics Scanner at
the Neuroradiology Department of the Niguarda Ca’ Granda Hospital, Milan,
Italy and a 1.5 T Siemens Avanto scanner at the Department of Diagnostic
Radiology and Bioimages of IRCCS Galeazzi, Milan, Italy .
The rsfMRI acquisition parameters for the General Electrics Scanner and for
the Siemens Scanner were as follows:

Table 3.2: Summary of the rsfMRI acquisition parameters

General Electrics Scanner Siemens Scanner
Repetition time (TR) 3000 ms 3000 ms

Echo time (TE) 60 ms 60 ms
Flip angle 90◦ 90◦

Field-of-view (FOV) 240× 240 mm2 280× 210 mm2

During the MRI exam, that lasted for 10 minutes, the subjects were in-
structed to lie down supine with their eyes closed and to try not to think any-
thing in particular while being awake. Foam padding was positioned around
the head to restrict participants’ head motion.
Resting-state functional images were acquired using an Echo Planar Imag-
ing (EPI) sequence sensitive to BOLD contrast, resulting in a series of 200 T2
weighted BOLD volumes.

A total of 35 contiguous transverse slices of 4 mm thickness were collected
with no intersection gap for each volume in both cases.
After the fMRI session, a high-resolution T1 weighted volumetric scan was
acquired by using a 3D Magnetization Prepared Rapid Gradient-Echo (MP-
RAGE) sequence with the following parameters: TE = 60 ms, flip angle = 90◦,
FOV = 256× 192 mm2, inversion time (TI) = 768 ms, thus obtaining 145 slices
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(thickness = 1 mm) with no interslice gap, and acquired on oblique sections
parallel to the AC-PC line in order to cover the entire brain volume. As a final
result, we obtained a high-resolution T1 image with a voxels size of 1× 1× 1
mm for each participant.

All the images were analyzed using Matlab R2014 (MathWorks, Natick,
MA, USA). In particular, the image preprocessing was carried out using a
Matlab toolbox DPARSF-A (’Data Processing Assistant for Resting-State fMRI
Advanced’) (Chao-Gan and Yu-Feng, 2010). DPARSF-A is based on Statistical
Parametric Mapping software functions (SPM8) and REST software (Song et
al., 2011).

After converting DICOM files to NIFTI images, the raw data were corrected
for any movement by means of a least squares approach called the Levenberg-
Marquardt method (Moré, 1978) and a six parameters (rigid body) spatial
transformation. It is worth noting that the subject’s motion parameters did
not exceed 2.5 mm and the 2.5 degrees of rotation in any dimension through
the resting-state run. Afterwords, each individual structural T1 weighted im-
age was coregistered to the mean functional image T2 weighted scan, to obtain
an overlap between functional and anatomical image.

These transformed structural images were then segmented into grey matter
(GM), white matter (WhM) and cerebrospinal fluid (CSF) compartments, us-
ing the so called New Segmentation that is a unified segmentation algorithm
(Ashburner and Friston, 2005).
Motion-corrected functional volumes were stereotactically normalized to the
Montreal Neurological Institute (MNI) template (Collins et al., 1994) using the
normalization parameters estimated during the unified segmentation on T1
weighted image (Ashburner and Friston, 2005). As a result, we obtained 200
normalized volumes with voxels of 3× 3× 3 mm.

The normalized rsfMRI data were then smoothed with a Gaussian isotropic
filter, with a Full-Width-Half-Maximum (FWHM) = 4× 4× 4 mm. In the fol-
lowing step, data preprocessing included removal, by means of a regression
analysis, of the global whole-brain signal (Fox et al., 2005; Fransson, 2005;
Greicius et al., 2003), of the six parameters of head motion, of the CSF and
the WhM signals. This was done to reduce the effects of non-neuronal BOLD

http://www.fil.ion.ucl.ac.uk/spm
http://resting-fMRI.sourceforge.net
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fluctuations (Fox et al., 2005; Kelly et al., 2008).

rsfMRI data were then submitted to a temporal band-pass filtering (0.01 to
0.08 Hz). The choice of this frequency interval was guided by the fact that
prior works on resting-state fMRI functional connectivity have found that low
frequency fluctuations (LFFs) are reported to be of physiological importance
(Biswal et al., 1995) and are supposed to reflect spontaneous neuronal activity
(Lu et al., 2007).

Finally, DPARSF-A allowed us to extract, for each participant, 116 time-
series representing the mean LFFs within the 116 non-overlapping anatomi-
cal Regions of Interest (ROIs), defined by the automated anatomical labelling
(AAL) atlas previously validated by Tzourio-Mazoyer et al. (2002). The MNI
coordinates of the center of the 116 ROIs were taken from Liu et al. (2007)
and are reported in Table 3.3. All regions are bilaterally symmetric; left-hand
and right-hand sided homologues are distinguished by the prefix L and R,
respectively.

Table 3.3: Cortical and subcortical regions defined in AAL tem-
plate image in standard stereotaxic space.

ID Brain region name MNI coordinates
X Y Z

1 L precentral gyrus -39 -6 51
2 R precentral gyrus 41 -8 52
3 L superior frontal gyrus. dorsolateral -18 35 42
4 R superior frontal gyrus. dorsolateral 22 31 44
5 L superior frontal gyrus. orbital part -17 47 -13
6 R superior frontal gyrus. orbital part 18 48 -14
7 L middle frontal gyrus. lateral part -33 33 35
8 R middle frontal gyrus. lateral part 38 33 34
9 L middle frontal gyrus. orbital part -31 50 -10

10 R middle frontal gyrus. orbital part 33 53 -11
11 L opercular part of inferior frontal gyrus -48 13 19
12 R opercular part of inferior frontal gyrus 50 15 21
13 L area triangularis -46 30 14
14 R area triangularis 50 30 14

Continue on next page −→



76 Chapter 3. Application on Neuro-functional data

Continue from previous page←−

ID Brain region name MNI coordinates
X Y Z

15 L orbital part of inferior frontal gyrus -36 31 -12
16 R orbital part of inferior frontal gyrus 41 32 -12
17 L rolandic operculum -47 -8 14
18 R rolandic operculum 53 -6 15
19 L supplementary motor area -5 5 61
20 R supplementary motor area 9 0 62
21 L olfactory cortex -8 15 -11
22 R olfactory cortex 10 16 -11
23 L superior frontal gyrus. medial part -5 49 31
24 R superior frontal gyrus. medial part 9 51 30
25 L superior frontal gyrus. medial orbital part -5 54 -7
26 R superior frontal gyrus. medial orbital part 8 52 -7
27 L gyrus rectus -5 37 -18
28 R gyrus rectus 8 36 -18
29 L insula -35 7 3
30 R insula 39 6 2
31 L anterior cingulate gyrus -4 35 14
32 R anterior cingulate gyrus 8 37 16
33 L middle cingulate -5 -15 42
34 R middle cingulate 8 -9 40
35 L posterior cingulate gyrus -5 -43 25
36 R posterior cingulate gyrus 7 -42 22
37 L hippocampus -25 -21 -10
38 R hippocampus 29 -20 -10
39 L parahippocampal gyrus -21 -16 -21
40 R parahippocampal gyrus 25 -15 -20
41 L amygdala -23 -1 -17
42 R amygdala 27 1 -18
43 L calcarine sulcus -7 -79 6
44 R calcarine sulcus 16 -73 9
45 L cuneus -6 -80 27
46 R cuneus 14 -79 28
47 L lingual gyrus -15 -68 -5

Continue on next page −→
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ID Brain region name MNI coordinates
X Y Z

48 R lingual gyrus 16 -67 -4
49 L superior occipital -17 -84 28
50 R superior occipital 24 -81 31
51 L middle occipital -32 -81 16
52 R middle occipital 37 -80 19
53 L inferior occipital -36 -78 -8
54 R inferior occipital 38 -82 -8
55 L fusiform gyrus -31 -40 -20
56 R fusiform gyrus 34 -39 -20
57 L postcentral gyrus -42 -23 49
58 R postcentral gyrus 41 -25 53
59 L superior parietal lobule -23 -60 59
60 R superior parietal lobule 26 -59 62
61 L inferior parietal lobule -43 -46 47
62 R inferior parietal lobule 46 -46 50
63 L supramarginal gyrus -56 -34 30
64 R supramarginal gyrus 58 -32 34
65 L angular gyrus -44 -61 36
66 R angular gyrus 46 -60 39
67 L precuneus -8 -25 70
68 R precuneus 7 -32 68
69 L paracentral lobule -7 -56 48
70 R paracentral lobule 10 -56 44
71 L caudate nucleus -11 11 9
72 R caudate nucleus 15 12 9
73 L putamen -24 4 2
74 R putamen 28 5 2
75 L globus pallidus -18 0 0
76 R globus pallidus 21 0 0
77 L thalamus -11 -18 8
78 R thalamus 13 -18 8
79 L transverse temporal gyri -42 -19 10
80 R transverse temporal gyri 46 -17 10

Continue on next page −→
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ID Brain region name MNI coordinates
X Y Z

81 L superior temporal gyrus -53 -21 7
82 R superior temporal gyrus 58 -22 7
83 L superior temporal pole -40 15 -20
84 R superior temporal pole 48 15 -17
85 L middle temporal gyrus -56 -34 -2
86 R middle temporal gyrus 57 -37 -1
87 L middle temporal pole -36 15 -34
88 R middle temporal pole 44 15 -32
89 L inferior temporal gyrus -50 -28 -23
90 R inferior temporal gyrus 54 -31 -22
91 L Cerebelum-10 -22 -34 -42
92 R Cerebelum-10 27 -34 -41
93 L Cerebelum-3 -8 -37 -19
94 R Cerebelum-3 13 -34 -19
95 L Cerebelum-4-5 -14 -43 -17
96 R Cerebelum-4-5 18 -43 -18
97 L Cerebelum-6 -22 -59 -22
98 R Cerebelum-6 26 -58 -24
99 L Cerebelum-7b -31 -60 -45

100 R Cerebelum-7b 34 -63 -48
101 L Cerebelum-8 -25 -55 -48
102 R Cerebelum-8 26 -56 -49
103 L Cerebelum-9 -10 -49 -46
104 R Cerebelum-9 10 -49 -46
105 L Cerebelum-Crus1 -35 -67 -29
106 R Cerebelum-Crus1 38 -67 -30
107 L Cerebelum-Crus2 -28 -73 -38
108 R Cerebelum-Crus2 33 -69 -40
109 Vermis-1-2 2 -39 -20
110 Vermis-10 1 -46 -32
111 Vermis-3 2 -40 -11
112 Vermis-4-5 2 -52 -6
113 Vermis-6 2 -67 -15

Continue on next page −→



Chapter 3. Application on Neuro-functional data 79

Continue from previous page←−

ID Brain region name MNI coordinates
X Y Z

114 Vermis-7 2 -72 -25
115 Vermis-8 2 -64 -34
116 Vermis-9 2 -55 -35

End Table

To construct the ROIs we adopted the draw toolbox available with the soft-
ware MRIcron; in particular, we designed 116 independent spherical volume
of interest (VOI) centered in each stereotaxic coordinate with 4 mm of radius
(as a consequence we obtained 116 files, one for each VOI). The 116 .voi files
were then converted into the .nii format to make our ROIs compatible with the
software DPARSF-A.

3.3 Brain Network Construction

For each participant, the first element of the analysis is a 200 × 116 matrix
where 200 is the length of a time-series of the mean LFFs, while 116 are the
non-overlapping anatomical ROIs. The functional connectivity (formally de-
fined in Friston et al. (1993) and Friston (1994) as the temporal correlation,
or, more generally, as the deviation from statistical independence, that exists
between brain units) has been computed for each subject by means of the
Spearman’s rank correlation coefficients r, because such a procedure results in
a completely non-parametric approach; the correlation values, obtained from
the comparison between all possible pairs of ROIs, are stored in a correlation
vector (r1, . . . , rm) of length m = 116(116−1)

2 = 6670.

We therefore tested, for each participant, m hypotheses H0j of null correla-
tion versus the alternative hypotheses of positive correlation:

H0 : ρj ≤ 0 vs H1 = H̄0 : ρj > 0

Under ρj = 0, the statistic test tj

tj =
rj√

1− r2
j

√
n− 2 f or j = 1, . . . , m

http://www.mccauslandcenter.sc.edu/mricro/mricron/
http://www.mccauslandcenter.sc.edu/mricro/mricron/
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is distributed approximately as Student’s t distribution with n-2 degrees of
freedom, where n = 200 is the length of each ROI’s specific time-series. Given
the approximated null distribution of the random variable tj, the p-values are
defined as

pj = 1− Fn−2(tj)

where Fn−2 represents the Student’s distribution function, with n− 2 degrees
of freedom. The same rejection region is assumed for each test, and is thus
defined as

Γ = {rj ≥ τ} = {pj ≤ γ}

where τ is the rejection threshold while

γ = 1− Fn−2(

√
(n− 2)τ2

1− τ2 ) (3.1)

γ represents the Per-Comparison Error Rate (PCER), that is the significance
level of a single comparison. It is worthy to note that the threshold τ and γ are
related, so that at the increasing of the threshold τ corresponds the decreasing
of γ. At this stage, it is worthy to remember that by testing the correlation
vector we are actually simultaneously testing 6670 single hypotheses. From a
multiple testing perspective there are two different kinds of probabilities that
deserve to be controlled: the probability of false discoveries (also called Bayes
False Discovery Rate (Efron, 2010), i.e. FDR(γ) = P(H0 true|pj ≤ γ), and the
power, i.e. BP(γ) = P(pj ≤ γ|H0 not true) (Berlingeri, 2015).
In order to estimate and balance those two probabilities, we adopted here the
empirical Bayes approach illustrated in Section 2.3, that still holds under the
assumption of the p-values to be valid.
With F̂(γ) we denote the empirical distribution of the observed p-values:

F̂(γ) =
#{pj ≤ γ}

m

Let us introduce, now, a second parameter, say λ, such that all the non-
null cases give p-values less then λ. The conservative estimate of the a priori
probability of a null hypothesis to be true is defined by Storey (2002) as:

π0 =
#{pj > λ}
m(1− λ)

Such a procedure, nevertheless, imply the independence of the p-values, that
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seems a too strong hypothesis in our framework. Although the hypothesis of
independence of the p-values seems too strong in our framework, we decided
however to bootstrap directly the p-values for estimating the optimal value of
the tuning parameter λ, according to Storey (2002), in the light of the robust-
ness shown by the estimators (Section 2.3.2).
As in Storey (2002), the optimal value of the tuning parameter λ, i.e. the value
that minimized the bootstrap mean square error of FDR, was selected for each
participant. The empirical estimates (Section 2.3.2) were then used to obtain
the estimates of FDR(γ) and BP(γ):

F̂DRλ(γ) =
γπ̂0

#{pj ≤ γ}/m
=

γ#{pj > λ}
(1− λ)#{pj ≤ γ}

B̂Pλ(γ) =
#{pj ≤ γ}(1− λ)− γ#{pj > λ}

m(1− λ)− #{pj > λ}

To choose an appropriate threshold of the rejection region, it is important
to control the probability of false rejections, but also to take into account the
corresponding power; this means that we select the threshold that guarantees
the best balance between these two forces.
The first step of our procedure consists in the selection of a suitable threshold
γ that permits to control for a certain proportion of false positives; here we
choose to keep the FDR below the 1% for all the participants:

FDRλ(γ) ≤ 0.01 (3.2)

This choice allowed us to control, across participants, for the same overall
amount of FDR. Inequality 3.2 is satisfied for a subset of γ values; hence as a
second step the minimumγ value for which 3.2 is satisfied is chosen (for each
participant). This approach allowed us to create adjacency matrix in which the
choice of the γ threshold, that is related to τ according to 3.1, is completely
data-driven and maximizes the power, given the maximum overall amount
of possible, and acceptable for this specific field of research, false positives.
Finally, by keeping the FDR under the 1% we were able to check, post-hoc,
whether our participants had similar level of threshold τ; this in turn allowed
us to suggest that the overall signal-to-noise ratio across participants was sim-
ilar, at least at a descriptive level.
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Figure 3.2: Rationale of the brain network construction.

In Figure 3.2 it is summarized the rationale adopted to design the subject-
by-subject balanced brain networks. In order to fully illustrate our procedure
of brain network construction first we concentrate on the analysis of a single
participant.

By way of example, let us select the subject 60−th, a 33 years old woman:
the main objective of this application on real data concerned the construction
of a brain map or network that allowed us to capture the structure of func-
tional connectivity among brain regions.

As a first step, we extracted a 200× 116 matrix (that includes the time-series
representing the mean low frequency fluctuations for each ROI of interest) ac-
cording to the procedure describe in 3.2.

Since we did not have any distributional information on the data and in
order to make as few assumptions as possible, as a second step, we computed
the correlation’s coefficients by means of the Spearman’s rank coefficient.
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As we selected 116 anatomical non-overlapping ROIs, we performed 6670 mul-
tiple comparisons. In this regard, we conjointly controlled the probability of
false discoveries and the power; specifically, we adopted the empirical esti-
mates of FDR and BP, as we did not have any additional or a priori informa-
tion on the probability π0.
Furthermore, we carried out the analysis for τ values within the range {0.05, 0.1,
. . . , 0.4, 0.45} and for λ values within the range {0.05, 0.1, . . . , 0.4, 0.45}.
We selected the optimal values of λ1 and λ2 accordingly to 2.25 and 2.26 and
we computed the bootstrap MSE by means of a standard bootstrap procedure
on the p-values. The resulting values of the Bayes FDR and BP, depending
only on γ, are reported in Table 3.4.

Table 3.4: F̂DR(γ) and B̂P(γ)) for τ = 0.2, . . . , 0.45. In bold the
τ that guarantees the maximum BP and that corresponds to the

maximum value under the constraint FDR ≤ 0.01.

τ FDR BP
0.250 0.0017124 0.3456607
0.275 0.0005063 0.2816666
0.300 0.0001195 0.2210831
0.325 0.0000262 0.1685835
0.350 0.0000047 0.1335729
0.375 0.0000007 0.1050432
0.400 0.0000001 0.0836455

As a result, the γ value that ensures the best balance between the Bayes FDR
and the BP is γ = 0.000178 (or equivalently τ = 0.25). In fact, the trade-off
between the Bayes FDR and the BP implies that as the probability of false dis-
coveries increases, the power also increases. The balanced γ is, hence, the max-
imum value of γ value such that the Bayes FDR is smaller than the maximum
error considered to be acceptable. In our application, the maximum acceptable
error was set equal to 0.01: if the maximum γ that guarantees FDR ≤ 0.01 is
chosen than the BP is maximum, under such a constraint. On the contrary, if,
instead of choosing the maximum γ that guarantees FDR ≤ 0.01, we select a
smaller γ, still FDR ≤ 0.01 but the BP would be smaller.

At last, the adjacency matrix can be visualized as a graph in which each
node corresponds to one of the 116 ROIs, and each link corresponds to a sig-
nificant connection between a pair of ROIs (i.e. to the 1 values reported in the
i-adjacency matrix). The resulting brain network is reported in Figure 3.3.



84 Chapter 3. Application on Neuro-functional data

Figure 3.3: Graphical representation in stereotactic coordinates
of the brain network of the healthy participant (woman, 33 years
old). Each red circle corresponds to a ROI: the wider the di-
ameter of the circle, the higher the degree associated to the ROI
(i.e. the number of links starting from that node); each gray line,
otherwise, corresponds to a significant link between couple of
ROIs. Given the 6670 possible links, only 534 were significant
with a probability of false discoveries equal to 0.0017 and an over-

all power of 0.3457.
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Finally, from the subject-by-subject balanced brain networks, i.e. the graph,
we extracted a number of specific network measures that were used to explic-
itly test between-groups differences. This last step is extensively described in
what follows.

3.4 Brain Network Analysis

Graph topology can be quantitatively described by a wide variety of measures;
we selected four different known measures and a new ad-hoc created network
index to investigate the differences between young and elderly participants.
The first and simplest measure is represented by the number of links included
in each subject-by-subject network; in the case of unweighted and undirected
networks, the number of links corresponds to the number of ’1’ values that
are displayed above the main diagonal of the adjacency matrix (Kolaczyk and
Csárdi, 2014).
The second index is the mean network degree: a measure of density of the
network. In general the degree ki of a node i is equal to the number of connec-
tions that links the node it-self to the rest of the network (Rubinov and Sporns,
2010); the mean network degree is obtained by averaging the ki calculated for
the entire network according to:

k̄ =
1
n

n

∑
i=1

ki

where n is the number of all the nodes of the network (in our specific case
n=116).
The third measure considered is the number of hubs of a graph: an hub can
be defined as a node whose specific degree is greater than the mean network
degree (Wijk, Stam, and Daffertshofer, 2010). The number of hubs represents
a measure of network efficiency; the higher the number of hubs, the more in-
terconnected the nodes of the network (Heuvel and Sporns, 2013).
The fourth measure is the Newman’s modularity Q (Newman, 2006) that quan-
tifies the level of intra-regional connectivity and ranges between -1/2 and 1
(Brandes et al., 2008).

Q =
1
l ∑

i,j∈N

(
aij −

kik j

l

)
δmi,mj
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where aij is the connection status between i and j, so that aij = 1 when link
(i, j) exists and aij = 0 otherwise, l is the number of links, mi is the mod-
ule containing node i, δmi,mj is an indicator function that assumes value 1 if
mi = mj and 0 otherwise and finally N is the set of all nodes in the network.
The prefixed regions, i.e. our modules, correspond to the following anatomi-
cal non-overlapping macro-areas: 1) left dorsolateral prefrontal cortex, 2) left
ventromedial prefrontal cortex and diencephalon, 3) left parietal and temporal
cortices, 4) left cerebellum 5) right dorsolateral prefrontal cortex, 6) right ven-
tromedial prefrontal cortex, 7) right lateral parietal regions, 8), right temporal
cortex 9) right cerebellum 10) middle-line structures, 11) retrosplenial region.
The macro-areas were defined by adopting the modified hierarchical clustering
algorithm described in Cattinelli et al. (2013) and by setting a spatial resolution
of 17 mm: a spatial resolution that corresponded to the first percentile of the
distribution of the Euclidean distances between the 116 ROIs (the matrix of
the Euclidean distances is reported in Figure 3.4). A list of the AAL regions
included in each macro-area is reported in Table 3.3 while the medium coordi-
nates and standard deviations of the eleven macro-areas are reported in Table
3.5.

Table 3.5: Centroids and standard deviations of the eleven
macro-areas (modules) as defined by the modified hierarchical

algorithm described in the paper by Cattinelli et al. (2013).

ID ClusterLabel X (SD) Y (SD) Z (SD)
1 Left dorsolateral prefrontal

cortex
-36 (138.654) 28 (100.457) 28 (131.783)

2 Left ventromedial prefrontal
cortex and diencephalon

-23 (134.722) 12 (202.811) -10 (112.086)

3 Left parietal and temporal
cortices

-47 (61.968) -28 (167.465) 22 (246.957)

4 Left cerebellum -11 (146.944) -53 (122.432) -29 (129.849)
5 Right dorsolateral prefrontal

cortex
34 (11.225) 14 (193.915) 0 (21.074)

6 Right ventromedial pre-
frontal cortex

4 (84.722) 44 (7.874) 3 (199.186)

7 Right lateral parietal regions 43 (103.923) -38 (204.613) 48 (101.719)
8 Right temporal cortex 54 (47.223) -23 (120.955) 2 (145.155)
9 Right cerebellum 28 (81.394) -51 (140.633) -32 (125.842)
10 Middle-line structures -1 (105.763) -28 (216.777) 43 (214.975)
11 Retrosplenial region 3 (25.101) -78 (54.328) 12 (152.283)

The last measure computed is the new ad-hoc created index (hence called
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between-modules index; BM) that represents a measure of the between-regional
connectivity. The BM is defined as the proportion of links that connects one
specific module k to others modules on the total number of links that are not
included in k. Thus, this index represents a measure of the neurofunctional
localization, the higher the BM value, the less localized the neurofunctional
connectivity of the macro-areas.

In particular, BM can be defined as

BMk =
∑i∈Ik;j 6∈Ik

aij

n−∑ i, j ∈ Ikaij

where n is the number of nodes and Ik = {i1, . . . , ink} is the set of all nodes
contained in the k− th module, with nk equal to the number of nodes belong-
ing to the k− th module, and N = ∪K

k=1 Ik is the set of all nodes in the network,
with K equal to the total number of modules.
Once computed, for each subject, the network measures described in the previ-
ous section, we tested the differences between elderly and young participants
with respect to each measure.
Let consider, for example, the BM index: the aim is to test whether the mean
measure for the elderlies, BMe, is equal to the mean measure for the youngers,
BMy, versus a unilateral alternative hypothesis.

H0 : BMe = BMy against H1 : BMe > BMy

It is known that the one-sided t-test is the uniformly most powerful unbi-
ased test for this type of hypotheses if the group’s measures originate from
normal distributions. Such an assumption is not easily justifiable in this con-
test; for this reason we adopted a permutation test approach (Lehmann, 2006)
that does not require any specific distributional assumption, and that is also
adequate for small samples.

Finally, to specifically test the localization hypothesis, the length of the links
included in our balanced network were classified into 4 categories according to
the Euclidean Matrix (Figure 3.4) whose elements eij represent the Euclidean
distance between ROIi and ROIj (defined by the stereotactic coordinates re-
ported in Table 3.3). We then computed the deciles of the distribution in order
to empirically determine the cut-points between the 4 categories: 1) short-
range if eij ≤ e0.2, 2) as short.mid-range if e0.2 < eij ≤ e0.5, 3) mid.long-range if
e0.5 < eij ≤ e0.8 and 4) long-range if eij > e0.8.
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Figure 3.4: The figure represents the matrix of the Euclidean dis-
tances between the 116 ROIs computed by the clustering algo-
rithm in Cattinelli et al. (2013). On the basis of this matrix we
identified 11 independent anatomical modules: 1) left dorsolat-
eral prefrontal cortex, 2) left ventromedial prefrontal cortex and
diencephalon, 3) left parietal and temporal cortices, 4) left cerebel-
lum 5) right dorsolateral prefrontal cortex, 6) right ventromedial
prefrontal cortex, 7) right lateral parietal regions, 8), right tem-
poral cortex 9) right cerebellum 10) middle-line structures, 11)

retrosplenial region.

3.5 Results

3.5.1 Young’s networks

We have calculated the estimates of the Bayes FDR and the BP, and their corre-
sponding 95% confidence intervals for each young subject for a range of τ val-
ues T = {0.15, 0.20, . . . , 0.50} and for a range of λ values R = {0.05, . . . , 0.95}.
The 95% CIs were constructed using B = 500 bootstrap replications. The re-
sults of this process of estimation are reported in Table 3.6.
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Table 3.6: Point estimates and 95% confidence interval (CI) for
the FDR and power. in the group of young subjects.

Sub.
ID

τ F̂DRλ(γ) CI 95% FDR B̂Pλ(γ) CI 95% BP

1 0.25 0.00213 [0;0.00233] 0.33130 [0.30461;0.35941]
2 0.25 0.00110 [0;0.00117] 0.52197 [0.49470;0.54891]
3 0.2 0.00999 [0;0.01048] 0.69285 [0.66897;0.71895]
4 0.25 0.00120 [0;0.00127] 0.47391 [0.44747;0.50581]
5 0.25 0.00142 [0;0.00153] 0.42853 [0.40293;0.45654]
6 0.25 0.00143 [0;0.00154] 0.42058 [0.39330;0.44925]
7 0.25 0.00215 [0;0.00233] 0.33134 [0.30369;0.35787]
8 0.25 0.00154 [0;0.00166] 0.42476 [0.38873;0.44410]
9 0.25 0.00168 [0;0.00181] 0.37910 [0.35311;0.40971]
10 0.25 0.00178 [0;0.00193] 0.40745 [0.37901;0.43612]
11 0.25 0.00118 [0;0.00126] 0.43865 [0.41339;0.46655]
12 0.25 0.00144 [0;0.00155] 0.41353 [0.38780;0.44186]
13 0.25 0.00174 [0;0.00188] 0.36346 [0.33683;0.39046]
14 0.25 0.00169 [0;0.00182] 0.36882 [0.34169;0.39566]
15 0.2 0.00871 [0;0.00914] 0.70069 [0.67565;0.72504]
16 0.25 0.00193 [0;0.00209] 0.39457 [0.36282;0.42338]
17 0.25 0.00151 [0;0.00163] 0.43095 [0.40488;0.45927]
18 0.25 0.00171 [0;0.00184] 0.34566 [0.31937;0.36937]
19 0.25 0.00121 [0;0.00129] 0.48324 [0.45693;0.50773]
20 0.2 0.00865 [0;0.00911] 0.72203 [0.69819;0.74617]
21 0.25 0.00220 [0;0.00241] 0.33860 [0.30714;0.36885]
22 0.25 0.00194 [0;0.00212] 0.34260 [0.31597;0.36951]
23 0.25 0.00214 [0;0.00234] 0.33359 [0.30689;0.36271]
24 0.25 0.00305 [0;0.00339] 0.25775 [0.23362;0.28537]
25 0.25 0.00126 [0;0.00135] 0.47695 [0.44939;0.50666]
26 0.25 0.00234 [0;0.00256] 0.32766 [0.29836;0.36070]
27 0.25 0.00153 [0;0.00165] 0.35983 [0.33472;0.38542]
28 0.25 0.00183 [0;0.00199] 0.36259 [0.33283;0.39052]
29 0.25 0.00223 [0;0.00242] 0.30757 [0.28183;0.33604]
30 0.25 0.00174 [0;0.00188] 0.36763 [0.34084;0.39702]
31 0.25 0.00321 [0;0.00354] 0.25417 [0.23198;0.28067]
32 0.25 0.00157 [0;0.00170] 0.41002 [0.38240;0.44147]
33 0.25 0.00171 [0;0.00185] 0.39178 [0.36467;0.42010]
34 0.25 0.00132 [0;0.00141] 0.45168 [0.42425;0.48017]
35 0.25 0.00166 [0;0.00179] 0.38069 [0.35481;0.40670]
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Table 3.7: Point estimates and 95% confidence interval (CI) for
the FDR and power, in the group of elderly subjects.

Sub.
ID

τ F̂DRλ(γ) CI 95% FDR B̂Pλ(γ) CI 95% BP

1 0,25 0,00148 [0;0,00160] 0,43717 [0,41026;0,46618]
2 0,25 0,00163 [0;0,00175] 0,38839 [0,35838;0,41643]
3 0,25 0,00153 [0;0,00165] 0,41161 [0,38324;0,43767]
4 0,25 0,00186 [0;0,00202] 0,34567 [0,31939;0,37211]
5 0,2 0,00964 [0;0,01015] 0,68993 [0,64838;0,70770]
6 0,25 0,00133 [0;0,00143] 0,45203 [0,42404;0,48047]
7 0,25 0,00226 [0;0,00244] 0,31504 [0,28808;0,34711]
8 0,2 0,00838 [0;0,00880] 0,72818 [0,70291;0,75082]
9 0,25 0,00136 [0;0,00146] 0,41295 [0,38669;0,43949]
10 0,25 0,00176 [0;0,00190] 0,39987 [0,38390;0,44090]
11 0,25 0,00161 [0;0,00173] 0,39388 [0,36725;0,42438]
12 0,25 0,00136 [0;0,00144] 0,43867 [0,40968;0,46917]
13 0,25 0,00171 [0;0,00184] 0,38870 [0,35949;0,41767]
14 0,25 0,00154 [0;0,00166] 0,42181 [0,39188;0,45163]
15 0,25 0,00141 [0;0,00151] 0,43798 [0,40978;0,46883]
16 0,25 0,00165 [0;0,00178] 0,38872 [0,36136;0,41561]
17 0,25 0,00147 [0;0,00157] 0,45710 [0,42947;0,48915]
18 0,25 0,00138 [0;0,00147] 0,48486 [0,45742;0,51010]
19 0,25 0,00188 [0;0,00203] 0,34459 [0,31875;0,37159]
20 0,25 0,00195 [0;0,00213] 0,37631 [0,34704;0,40750]
21 0,25 0,00183 [0;0,00198] 0,36259 [0,33473;0,39149]
22 0,25 0,00177 [0;0,00190] 0,39206 [0,36463;0,42149]
23 0,25 0,00182 [0;0,00196] 0,37288 [0,34501;0,40358]
24 0,25 0,00152 [0;0,00163] 0,40719 [0,38087;0,43544]
25 0,2 0,00950 [0;0,01002] 0,63935 [0,61252;0,66610]
26 0,25 0,00174 [0;0,00187] 0,33852 [0,31308;0,36107]
27 0,25 0,00156 [0;0,00168] 0,39214 [0,36596;0,41713]
28 0,2 0,00990 [0;0,01050] 0,73504 [0,70688;0,76067]
29 0,25 0,00244 [0;0,00269] 0,30106 [0,27173;0,33032]
30 0,25 0,00298 [0;0,00329] 0,26155 [0,23531;0,28792]
31 0,25 0,00178 [0;0,00192] 0,35394 [0,32603;0,37963]
32 0,2 0,00799 [0;0,00842] 0,76580 [0,74006;0,78972]
33 0,25 0,00127 [0;0,00134] 0,44199 [0,41645;0,46811]
34 0,25 0,00296 [0;0,00324] 0,27419 [0,24651;0,30680]
35 0,25 0,00123 [0;0,00131] 0,47506 [0,44688;0,50394]
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The selected tuning parameter τ is similar for each subject: only in three
cases τ is equal to 0.2, for the remaining subjects it is equal to 0.25. The
mean FDR in this group is small equal to 0.0024 while the corresponding mean
power is equal to 0.41.

3.5.2 Elderly’s networks

The results of the point estimated of FDR and BP, and the corresponding the
95% bootstrap confidence intervals for the group of elderly subjects over a
range T of values of τ and a range R of values of λ are reported in Table 3.7.

Even for the elderly subjects the tuning parameter τ is similar, equal to 0.2
for five subjects and 0.25 for the others. The mean FDR in this group is small
equal to 0.0028 while the corresponding mean power is equal to 0.4351.

3.5.3 Between-groups Differences: Network Measures

In order to test the two alternative hypotheses, namely the de-differentiation
hypothesis versus the localization hypothesis, we computed subject-by-subject
balanced networks from which we extracted the subject-by-subject network
measures described in the methods section. In Table 3.8, a summary of the
between-groups differences is reported.

Table 3.8: Summary of the network measures. The significant
between-groups differences are reported in bold.

N. of links Mean degree Number of hubs
Elderly Mean 658,7714 11,3581 54,1429

Elderly SD 257,1495 4,4336 4,8881
Young Mean 617,3143 10,6433 53,9143

Young SD 222,6740 3,8392 4,3777
p-value 0,239 0,240 0,429

Bootstrap CI (-68,72; 155) (-1,18; 2,67) (-1,89; 2,43)
H1 Elderly>Young Elderly>Young Elderly>Young

Modularity BM index
Elderly Mean 0,0387 0,0712

Elderly SD 0,0308 0,0028
Young Mean 0,0535 0,0699

Young SD 0,0309 0,0028
p-value 0.026 0,027

Bootstrap CI (-1,29e-04;-0,029) (1,317e-06;0,0026)
H1 Elderly<Young Elderly>Young
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Table 3.9: Relative contribution of each macro-area to the modu-
larity. The significant between-groups differences are reported in

bold.

Modul ID Young Elderly p-value
1 0.01070 0.01607 0.059
2 0.05095 0.06763 0.145
3 0.01578 0.01951 0.302
4 0.07855 0.10062 0.201
5 0.02179 0.03568 0.007
6 0.05238 0.06585 0.287
7 0.03408 0.04311 0.126
8 0.17510 0.13640 0.085
9 0.10977 0.11237 0.864

10 0.40039 0.33487 0.038
11 0.04961 0.06789 0.176

Total 1 1

Table 3.10: Relative contribution of each macro-area to the BM
index. The significant between-groups differences are reported in

bold.

Modul ID Young Elderly p-value
1 0.07167 0.07612 0.355
2 0.16154 0.16549 0.571
3 0.03074 0.03011 0.825
4 0.17646 0.16777 0.173
5 0.05947 0.06110 0.510
6 0.12109 0.10686 0.013
7 0.04912 0.04560 0.480
8 0.03157 0.02887 0.344
9 0.10785 0.10603 0.756

10 0.10578 0.12029 0.153
11 0.08471 0.09086 0.224

Total 1 1
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Even though from the mere descriptive level, the number of links, the mean
degree and the number of hubs may seem higher for the elderlies when com-
pared with the youngers (providing the first hint towards the de-differentiation
hypothesis), those differences were not statistically significant according to the
permutation tests adopted here. On the contrary, significant between-groups
differences emerged in the other two network measures: modularity and BM
index. In particular, while the mean modularity was significantly lower, the
mean BM index was significantly higher in elderlies than in young healthy
participants.

In particular, the highest between-groups differences in the modularity in-
dex emerged from the right dorsolateral prefrontal cortex and the middle-
line structures (Table 3.9); while the module that contributed the most to the
between-group difference in the BM index was the right ventromedial pre-
frontal cortex (Table 3.10).

Table 3.11: Summary of the distance’s distributions among
groups. The significant differences are reported in bold.

Short-range Proportion Short.Mid-range Proportion
Elderly Mean 0.368 0.288
Young Mean 0.377 0.270

p-value 0.1861 0.0027
Bootstrap CI (-0.029;0.011) (0.006;0.030)

H1 Elderly>Young Elderly>Young
Mid.Long-range Proportion Long-range Proportion

Elderly Mean 0.219 0.125
Young Mean 0.225 0.127

p-value 0.1866 0.3549
Bootstrap CI (-0.021;0.008) (-0.016;0.011)

H1 Elderly<Young Elderly<Young

The de-differentiation and the localization hypotheses can also differently
affect the length of functional connections between ROIs. In figure 3.1 we
made clear the expected patterns in the two alternative hypotheses, for the
different classes of links. The mean distribution of the links lengths between
elderly and young participants was statistically different (p-value = 0.01889 of
the two-sample Kolmogorov-Smirnov test). With respect to the proportion of
links included in the 4 categories described previously, only the proportion
of mid-short range connections was significantly different between the two
groups (Table 3.11).
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3.6 Discussion

We adopted here a combination of the most recent techniques and tools to
analyse rsfMRI data, with innovative solutions to control for multiple testing
problems and with graph theory. From the methodological point of view, the
main contribution of this application is the description of a completely data-
driven and robust method to create subject-specific balanced networks. Here,
the attribute “balanced” refers to a network that has been obtained by control-
ling both for the type I error and the power.

When approaching the problem of describing a complex neural network,
one has to consider that each participant, regardless of his/her age, is unique
and, as a consequence, may present a specific pattern of functional connec-
tivity. This inevitably implies that the subject’s uniqueness has to be taken
into account when we are interested in studying functional connectivity at
the group level. In other words, we have to take into account within-group
variability. While in massively univariate neuroimaging studies this problem
has been classically approached by adopting random effects methods, when
dealing with a functional connectivity problem, an alternative solution is (i) to
obtain a balanced network for each single subject, (ii) to describe each balanced
network by means of specific network measures that, in turn, can be used to
make inferences at the group level. By doing this, the problem of subjects’
uniqueness is solved at the first level of analysis, before any group-inferential
process is done. In particular, to obtain subject-by-subject balanced network we
developed a new methodological approach based on subject-by-subject thresh-
old selection. As described previously in Section 1.2.1 to compute a graph that
represents functional connectivity, a correlation matrix between the nodes of
interest has to be computed, as a first step. Secondly, to “transform” a correla-
tion matrix into a binary adjacency matrix we have to identify the significant
correlation and this means that we have to conjointly test a great number of
hypotheses (in our specific case: 6670). In the statistical literature, methods
had been developed to address the problem of multiple testing, but in neu-
roimaging the praxis consists in typically focusing on methods that control for
the type I error, while ignoring, in the most of the cases, the problem of statisti-
cal power. The empirical Bayes approach applied here first on neurofunctional
data permits to bridge this gap. By controlling for the type I error rate we re-
stricted the number of false discoveries and by computing the empirical power
we provided information on the expected number of correct rejections: the
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higher the power, the more reliable and sensible the test and as a consequence,
the more reliable and sensible the resulting subject-specific neural network and
the ensuing network measures. It is worthy to note that beyond the reliability
and sensibility, our methodological approach to construct balanced network
can also be considered robust from the statistical point of view. The robust-
ness is guaranteed by the adoption of a non-parametric approach (Spearman’s
rank correlation coefficient) in the computation of the correlation matrix, i.e.
by the adoption of a test that is free from the distribution assumptions typical
of the parametric tests. Finally, our results, and as a consequence our conclu-
sions, can be considered robust as we implemented, to test between-groups
differences (and hence to test the two alternative theoretical frameworks de-
scribed in the introduction), a distributional-free permutation test, rather than
a classical one-sided t-test.

3.6.1 De-differentiation vs Localization: evidence from the Net-

work Measures

Beyond the methodological innovation described Section 2.3, the aim of this
applicative study was to explicitly test two alternative hypotheses about age-
related changes in resting state functional connectivity: namely the de- dif-
ferentiation hypothesis and the localization hypothesis (this latter hypothesis
being formulated here for the first time in the context of healthy aging). In
particular, the formulation of the localization hypothesis in healthy aging had
been put forward on the basis of a review of the age-related changes across
the entire life span. The two hypotheses were explicitly tested by means of a
collection of network measures, according to the logic described in Table 3.1.
The first, and maybe more intuitive, index computed here was the number
of links included in the balanced networks. This index was used to test the
de-differentiation hypothesis on the basis of a simple consideration: if de-
differentiation manifests it-self in terms of a reduction of the signal-to-noise
ratio, then - once the statistical features of subject-by-subject networks had
been balanced - one could easily expect to find a more dense network (i.e. a
higher number of links) in the group of healthy elderly than in the group of
young participants. In particular, according to the de-differentiation hypothe-
sis the increment of the number of links in the elderlies would be due to the
presence of a higher number of false positive (an inevitable consequence of the
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reduction of the signal-to-noise ratio). Our empirical findings do not support
this hypothesis as we found a relatively similar number, on average, of signifi-
cant links in the young and in the elderly balanced network. A similar pattern
of results emerged also for the mean degree centrality and for the number of
hubs: empirical measures of network density and efficiency respectively. With
this regard, it may be assumed that our negative findings depend by the choice
of the statistical threshold applied to the subject-by-subject correlation matri-
ces. As our method is based on the balancing between the FDR and the BP,
and as de-differentiation may be conceptualized as an artefact due to a decre-
ment of signal-to-noise ratio, one may argue that by balancing FDR and BP
we are inevitably optimizing the signal-to-noise ratio at a subject-by-subject
level. In other words, one may assume that the lack of empirical evidence in
favor of the de-differentiation hypothesis may depend by the specific level of τ

(i.e. by threshold level set to create the balanced adjacency matrix). However,
this does not seem to be the case because the level of τ for the youngers and
the elderlies was similar. A similar level of τ across subjects suggests that the
groups were similarly balanced (see Table 3.6 and 3.7) and that, in turn, the
level of signal-to-noise ratio in the raw data could be considered similar in
these two groups.
The lack of between-group differences in the number of links, hubs and in the
mean network degree may rather suggest that the healthy elderlies’ resting-
state networks globally maintain a “juvenile” level of efficiency. This is to
say that, elderlies’ networks may be de-differentiated not because of a general
lack of network efficiency triggered by a reduction of the signal-to-noise ra-
tio, but rather because the intrinsic organization of the resting state networks
would change as age goes by. This assumption is supported by the results
of the last two network measures: the modularity index and the BM index.
Indeed, the healthy elderly participants showed, on average, a lower level of
modularity and a higher number of between modules connections than young
participants.

3.6.2 De-differentiation vs Localization: evidence from the Dis-

tance Measures

To further address the de-differentiation/localization dichotomy, we classified
each link included in each subject-specific network according to 4 categories:
1) short-range connections, 2) short.mid-range connections, 3) mid.long-range
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links and 4) long-range links. The results of this analysis are straightforward:
young and elderly participants showed, on average, a different distribution of
the links, in particular, the healthy elderlies’ networks were characterized by
a higher proportion of mid-short range connections. The increment of mid-
short range connections, coupled with a stable proportion of long-range con-
nection is, according to the scenarios depicted in Figure 3.1, a clear sign of
de-differentiation. This result is in line with the finding from the network
measures described in the previous section and with the results by Wang et al.
(2010).





Conclusion

The idea of this Thesis arose during a doctoral lesson, when the multiple test-
ing problem caught my attention; at a later stage, I started a collaboration with
Neuro-MI on the analysis of neurofunctional data with a multiple testing ap-
proach. The Thesis, hence, has both a theoretical and practical aim and, as a
consequence, has led to both theoretical and practical results.
We have attempted to describe the multiple testing problem and we have pro-
posed to control for the Bayes FDR and BP, in a Bayesian perspective. We
demonstrated, both with theoretical considerations and via simulation stud-
ies, that our approach is robust with respect to violation of the hypothesis of
independence among p-values. Indeed, we demonstrated that the not empiri-
cal Bayes estimate of FDR is conservative (Section 2.3.1) while the not empirical
Bayes estimate of BP is unbiased (Section 2.3.2). With respect to the empirical
Bayes estimates of FDR and BP, moreover, we studied their asymptotic prop-
erties. In case of independent p-values, we demonstrated the almost sure con-
vergence of those estimates (Section 2.3.3). In case of dependent p-values, on
the contrary, we demonstrated the same almost sure convergence by assuming
stationary ergodic p-values (Section 2.3.3). By means of some simulation stud-
ies, we enriched our analysis on the proposed estimators, by exploring some
patterns of dependency, well-established in the statistical literature (Section
2.3.4). We provided evidence to support the robustness of our estimates and
we also showed that the standard bootstrap approach, although not formally
adequate, can be still adopted in case of moderate dependence.

Furthermore, through a case study, we proved how easily applicable our
Bayesian approach is. In the neurofunctional literature there was not a system-
atic way to choose the threshold τ. A simple approach is to select the threshold
only by controlling the probability of first kind (Achard et al., 2006; Cauda et
al., 2011): clearly this approach does not take into account the power of the
test and can yield to misleading results. Bullmore and Bassett (2011) proposed
a completely empirical approach based on the exploration of network prop-
erties as a function of changing threshold. This method, however, provides
only a heuristic in the threshold selection without quantifying for the false
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positives and false negatives (Seo et al., 2013). Our approach satisfies both the
need for a systematic and reproducible approach of threshold selection, and
the need for a joint control of FDR and power of the tests. In the application
on real data we focused our attention on the analysis of 70 participants and,
hence, we constructed subject by subject brain networks. As a second step,
we analyzed those networks by means of a set of network measures in order
to assess if there exist some differences between elderlies and young subjects,
and whether these differences are in accordance to the de-differentiation hy-
pothesis or to the localization hypothesis.

Our Bayesian approach has the double advantage of enjoying good proper-
ties and of being easily applicable not only in neuroscience, but also in many
different application field, such as economics, social science or computer sci-
ence to mention a few.
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