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Abstract—Automatic testing, although useful, is still quite
ineffective against faults that do not cause crashes or uncaught
exceptions. In the majority of the cases automatic tests do
not include oracles, and only in some cases they incorporate
assertions that encode the observed behavior instead of the
intended behavior, that is if the application under test produces
a wrong result, the synthesized assertions will encode wrong
expectations that match the actual behavior of the application.

In this paper we present ZoomIn, a technique that extends
the fault-revealing capability of test case generation techniques
from crash-only faults to faults that require non-trivial oracles
to be detected. ZoomIn exploits the knowledge encoded in the
manual tests written by developers and the similarity between
executions to automatically determine an extremely small set of
suspicious assertions that are likely wrong and thus worth manual
inspection.

Early empirical results show that ZoomIn has been able to
detect 50% of the analyzed non-crashing faults in the Apache
Commons Math library requiring the inspection of less than
1.5% of the assertions automatically generated by EvoSuite.

I. INTRODUCTION

To reduce manual verification effort, test case generation
techniques can be used to automatically generate unit [1],
[2], [3], integration [4] and system test cases [5], [6], [7]
that extensively sample the behavior of the application under
test. Developers can thus focus their manual effort on the
cases that have not been well addressed by the automatic
tests. Unfortunately, automatically generated test cases can
easily discover problems like crashes and uncaught exceptions
but cannot reveal problems that require explicit oracles to be
detected [8]. For instance, an automatic test might reveal that
a sum operation implemented by a calculator crashes when
two negative numbers are added, but cannot reveal that a sum
operation erroneously behaves as a multiply operation.

Modern test case generators have the capability to syn-
thesize tests that include assertions encoding the behavior
observed during test case execution [2], [3]. For instance,
EvoSuite can generate a test case that invokes an add
method with values 2 and 4 and incorporates the assertion
assertTrue(6==add(4,2)) in the test. These assert
statements are useful for regression testing, to detect if a
change unintentionally modifies the behavior of the system,
but are almost useless to reveal bugs on the first place. For
instance, if the add method erroneously behaves as a multiply
operation, the assert statement automatically included in the
test would look like assertTrue(8==add(4,2)). This

happens because test case generators produce assert statements
that capture the actual behavior of the tests - ”the execution of
add(4,2) returned 8” - rather than capturing the expected
result - ”the execution of add(4,2) should return 6”.

The difficulty to automatically generate correct assert state-
ments is an instance of a well-known problem: the oracle
problem [8]. Solving the oracle problem, even partially, would
dramatically increase the effectiveness of test case generators,
resulting in a major improvement in software testing: the
automatic tests would scale from tests that can only detect
faults that cause crashes and uncaught exceptions to tests that
can potentially detect any functional fault.

In principle it is possible to turn the assertions encoding
the behavior observed during test execution into assertions
encoding the expected behavior by manually inspecting and
fixing every assert statement generated by test case generators.
However, this approach does not scale to non-trivial programs.
For instance, in our experiments EvoSuite generated 1887 tests
and 4002 assertions for 77 classes in the Apache Commons
Math library [9]. So many tests and assertions cannot be
manually inspected in a reasonable amount of time.

As an alternative to manually fixing assertions, researchers
investigated the use of the crowd [10]. However, to be
successful, crowdsourcing requires a qualified crowd, which
is not easy to find, and a monetary investment that might
be significant when many tests and assertions need to be
inspected.

The automatic tests that expose faulty behaviors with-
out failing due to the lack of proper assert statements,
such as the example of the test with the assertion
assertTrue(8==add(4,2)), might be also detected us-
ing anomaly detection solutions [11], [12], [13]. Anomaly
detection can be used to automatically identify the anomalous
executions that occur in a set of executions. Under the assump-
tion that failures are sparse in the execution space, anomaly
detection techniques can be potentially used as an oracle to
distinguish failures from successful executions.

So far anomaly detection approaches have not been precise
enough to be used as test oracles, as demonstrated in a
recent study by Nguyen, Marchetto, and Tonella [11], where
anomaly detection techniques produced poor results when used
to address the oracle problem. In particular, anomaly detection
generates far too many false positives to be useful.



In this paper we show that anomaly detection can be
effectively used to address the oracle problem if equipped with
proper mechanisms that exploit both the tester’s knowledge of
the application under test and the degree of similarity between
anomalous and regular executions. Our empirical results show
that anomaly detection without these additional mechanisms
is ineffective, confirming the results obtained in the study
by Nguyen, Marchetto, and Tonella [11], while it can reveal
several faults with little inspection effort when augmented as
described in this paper.

The approach that we have defined, called ZoomIn, is
a technique that can be integrated with any unit test case
generator that synthesizes assertions as part of the automatic
tests. ZoomIn can heuristically detect wrong assertions, and
consequentially expose faults that would otherwise go un-
detected. In contrast with state of the art techniques, the
objective of ZoomIn is not to detect all the wrong assertions
(or to recognize all the failing tests), which is hardly doable
without generating many false positives, but to pinpoint an
extremely small number of likely wrong assertions that require
the attention of the developers.

ZoomIn is based on two key ideas: (1) to exploit the knowl-
edge encoded in the test cases implemented by the developers
to detect the erroneous behaviors in the automatic tests, and
(2) to combine anomaly detection with code coverage to make
the detection of erroneous behaviors precise.

On a technical perspective, ZoomIn pinpoints the wrong as-
sertions by comparing the executions produced by the manual
test cases to the executions produced by the automatically gen-
erated test cases. ZoomIn originally performs this comparison
by working at two abstraction levels simultaneously. The first
level is code coverage, that is ZoomIn compares the statements
covered by manual and automatic tests. The second level is
program variables, that is ZoomIn uses Daikon [14] to generate
constraints about the values that can be legally assigned to
program variables when the manual tests are executed. ZoomIn
detects anomalous variable values by checking the executions
produced by the automatic tests using the constraints generated
by Daikon from the manual tests. These two levels are
combined according to the following intuition: the execution
of an automatic test case is likely to constitute a failure if
it produces anomalous variable values while covering a case
already tested by the developers. In practice, we assume that
an automatic test case that follows a path similar to one
covered by a manual test case while generating anomalous
variable values is an automatic test case that reveals a failure
by covering a special untested case of an already tested
functionality. On the contrary, an automatic test that produces
unexpected variable values while executing a case not well
tested by the manual test cases is not necessarily a suspicious
test case. For instance, it could be a test case that covers
untested features.

To properly assist developers, ZoomIn does not simply pin-
point the test cases that are likely to fail, but it directly points
at the suspicious assertions that are likely to encode a wrong
condition (i.e., the assertions that encode the actual behavior

of the application rather than the expected behavior). Fixing
these assertions would cause the tests to fail, thus revealing
bugs in the program. The early empirical results show that
ZoomIn applied to test cases generated by EvoSuite [2] can
discover about 50% of the faults covered by the automatic
tests by recommending the inspection of less than 1.5% of
the generated assertions.
The major contributions of this paper are:
• the definition of ZoomIn, an anomaly detection technique

that demonstrates how anomaly detection augmented with
proper analysis mechanisms is suitable to address the oracle
problem, complementing and extending the previous find-
ings about the lack of effectiveness of anomaly detection
applied to the oracle problem [11].

• the definition of a mechanism to extract information useful
to guide anomaly detection from the manual tests designed
by the developers.

• the use of coverage information to identify the executions
that can be soundly compared.

• the definition of a strategy to pinpoint suspicious assertions.
• the early empirical results that show that the novel mecha-

nisms introduced in this paper increase the fault detection
ability of the EvoSuite test case generator [2] producing a
tolerable set of false positives.
The paper is organized as follows. Section II overviews the

ZoomIn approach. Section III presents how ZoomIn extracts
information from manual test cases. Section IV presents how
ZoomIn detects anomalous behaviors in automatic test cases,
based on the information extracted from the manual tests.
Section V describes how ZoomIn filters out the irrelevant
anomalies from the set of discovered anomalies. Section VI
presents the ranking of the assertions in the automatic tests.
Section VII presents the empirical results. Section VIII dis-
cusses related work. Section IX provides final remarks.

II. ZOOMIN

ZoomIn takes as input the automatic tests generated for a
unit under test and returns a set of assertions that must be
inspected manually. The analysis process is automatic and
consists of four sequential steps as illustrated in Figure 1.

The first step, Extracting Knowledge From Test Cases,
extracts information about the behavior of the class under
test when executed with the passing test cases designed
by developers. ZoomIn records both the return value and
the parameter values for every executed method, and runs
Daikon [14] to derive method pre- and post-conditions, gener-
ically referred as program constraints in this paper. For
instance, step 1 in Figure 1 shows the case of no pre-
condition and one post-condition derived by ZoomIn for
method conjugate() implemented by the class under test
Complex, which is one of the classes studied in our em-
pirical evaluation. The post-condition ret.imaginary!=0
indicates that the field imaginary of the object returned
by method conjugate() is expected to be always different
than zero (method conjugate() returns an object of type
Complex).
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Fig. 1. The ZoomIn approach.

In addition to program constraints, ZoomIn collects the
coverage profile associated with every method in the class
under test. A coverage profile of a method m consists of the
set of statements in the class under test executed by a test
until reaching an exit point of method m. The total number
of profiles associated with a method depends on the number
of times the method is executed by the manual test cases.
For instance, step 1 in Figure 1 shows the case of method
conjugate() associated with two profiles, profile1 and
profile2. In the example we use the generic label stm fol-
lowed by a number to indicate a statement of the program. The
profiles of a method represent the set of program behaviors that
have been used to generate the program constraints (i.e., the
pre- and post-conditions) associated with that method.

The second step, Detecting Constraint Violations, de-
tects the automatic tests that produce anomalous variable
values when executed. An anomalous value is a variable
value that violates any of the constraints derived in step
1. For instance, step 2 in Figure 1 shows the case of the
constraint ret.imaginary!=0 violated by the method
conjugate() when returning a number with the imaginary
part equals to 0. ZoomIn uses the violated constraints to
determine the most suspicious executions and assertions.

In general it is not enough that an automatic test violates
a constraint to claim that the test failed, as done by classic
anomaly detection. In fact, an automatic test might generate
anomalous values simply because it executes behaviors that
have been never tested by the manual test cases. ZoomIn
addresses this problem exploiting the notion of coverage
profile. Every time a constraint is violated, ZoomIn records
its coverage profile. Since the program constraints can only
be method pre- and post-conditions, the coverage profile of a
violated constraint can be defined as the coverage profile of the

method associated with the constraint. ZoomIn uses coverage
profiles to assess if constraint violations have been observed
in contexts that are comparable to the behaviors tested with
the manual test suite. For instance, Step 2 in Figure 1 shows
the case of a constraint violation associated with a profile
composed of five statements.

The third step, Filtering Constraint Violations, has the
objective of eliminating from the analysis all the constraint
violations that have been detected with automatic executions
that are too different from the set of manual executions used
to generate the program constraints. The intuition is that a
violated constraint is likely to detect a faulty behavior only
if it is associated with a coverage profile that is similar to
a profile already observed when executing the manual test
cases. For instance, step 3 in Figure 1 shows the case of the
constraint ret.imaginary!=0 defined on the return value
of the method conjugate() violated by the anomalous
value ret.imaginary=0. The coverage profile of this
constraint violation is compared with the profiles collected
when executing the manual test cases. If the same or a close
coverage profile is found, the violation is considered relevant,
otherwise it is dropped.

The fourth step, Ranking Assertions, splits the assertions in
the automatic test cases into two groups: the safe assertions
and the unsafe assertions. The safe assertions are likely correct
assertions that do not need to be inspected. The unsafe asser-
tions are possibly wrong assertions that are worth inspection.
The unsafe assertions are ranked, the higher the ranking of an
assertion is the more likely the assertion is faulty.

ZoomIn determines the unsafe assertions and places them in
a ranking based on the number of constraint violations that are
related to them. The intuition is that the assertions that use test
variables that are related to program variables that produced



one or more constraint violations are likely to be wrong.
ZoomIn uses dynamic data-flow analysis to discover relations
between program variables and variables in the assertions.
The assertions that are not impacted by any anomalous value
are considered safe. The rest of the assertions are considered
unsafe and are included in the ranking.

To rank unsafe assertions, ZoomIn takes into consideration
the number of constraint violations produced by the related
program variables. However, not all the constraint violations
are equally important. Since erroneous behaviors are not
frequent in adequately tested software, ZoomIn weights each
constraint according to the number of times the constraint has
been violated. The frequently violated constraints are likely
imprecise constraints that erroneously detect legal values as
anomalous values, while constraints that are seldom violated
are likely to carry useful information. ZoomIn captures this
aspect with the uniqueness score. For instance, step 4 in Fig-
ure 1 shows the case of three constraint violations associated
with different uniqueness scores.

ZoomIn associates the unsafe assertions with a score, the
suspiciousness score, that represents the likelihood the as-
sertion is wrong. The suspiciousness score of an assertion
depends on both the number and the uniqueness scores of
the related constraints that are violated. Intuitively the highly
scored assertions, i.e., the most suspicious assertions, are the
ones associated with several constraint violations with high
uniqueness scores.

To keep the inspection effort low and the effectiveness high,
developers are assumed to inspect only the top assertions in
the ranking. Results show that inspecting the top five unsafe
assertions is enough to discover several faults without wasting
time inspecting too many correct assertions.

In the following sections we present each step of the
approach in detail.

III. EXTRACTING KNOWLEDGE FROM TEST CASES

In the first step, ZoomIn extracts information on the behav-
ior of the class under test by executing the manual test cases.
We assume that testers have already written the manual test
cases when the automatic tests are generated. We also assume
that either all the manual test cases pass, that is the faults
revealed by manual test cases have been fixed, or the manual
test cases that fail have been excluded from the analysis.

Since analyzing all the variables in the program might
be extremely expensive, ZoomIn limits the analysis to the
interfaces, that is it observes the values assigned to any
parameter and return value produced by any method and
function in the class under test. The values observed while
monitoring the manual test cases are recorded in trace files.

The recorded values are used to synthesize program con-
straints encoding method pre- and post-conditions. To obtain
these constraints ZoomIn runs Daikon [14], which is an
inference engine that can synthesize Boolean expressions over
a set of variables from a set of observations. The generated
expressions are statistically significant generalizations of the

observations reported in the trace files, that is all the ob-
servations satisfy the expressions returned by Daikon and
there is a small probability that the expressions hold inci-
dentally. For instance, in our experiments Daikon generated
the program constraint ret.imaginary!=0 for the method
conjugate() implemented in the class Complex from the
data recorded during the execution of the test cases available
for the Apache Commons Math library.

The program constraints derived in this phase represent the
knowledge on the behavior of the class under test that has been
automatically extracted from the execution of the manual test
cases. Since the constraints are derived from passing execu-
tions, they essentially represent the values that can be legally
assigned to program variables. Of course it is not possible to
completely prevent the generation of constraints that overfit
the cases covered with the manual tests. For instance, in
our experiments, ZoomIn derived the over-fitting constraint
in.real != ret.real for method divide(Complex
in) implemented by class Complex: it is clearly false that
the real part of the divisor (parameter in) and the real part of
the result (return value ret) cannot be the same.

ZoomIn handles over-fitting constraints by keeping track
of the executions used to derive them and employing the
constraints only in comparable contexts. Intuitively an over-
fitting constraint is an accurate constraint in the restricted
context used to derive it. To enable this analysis, ZoomIn
uses the notion of coverage profile: The coverage profile of a
method m is defined as the set of statements that have been
executed until reaching an exit point of m. ZoomIn records the
coverage profile for all the executed methods.

As shown in step 1 of Figure 1, once the execution of
the manual test suite is completed, each method of the class
under test is associated with a set of program constraints
(representing method pre- and post-conditions) and a set of
coverage profiles: these constraints are expected to hold for
executions similar to the collected profiles.

IV. DETECTING CONSTRAINT VIOLATIONS

In the second step, ZoomIn looks for evidence of failure in
the automatic tests. To this end, it runs the automatic test cases
and checks executions with the program constraints derived
in step 1 from the manual test cases. Every variable value
that violates a constraint is an anomalous value, which is
interpreted as an evidence of failure.

For instance, if an automatic test case causes
conjugate() to return an object of type Complex with the
field imaginary set to 0, the value is considered anomalous
because it violates the constraint ret.imaginary!=0
derived in step 1. Similarly, if an automatic test case divides
two imaginary numbers and the real part of the resulting
number is the same as the divisor, the values are considered
anomalous because they violate the constraint in.real
!= ret.real for method Complex.divide(Complex
in) derived in step 1.

Anomalous values can be generated for two reasons. The
first reason is that there is a fault in the program and when



the fault is executed the application assigns wrong values to
program variables. The second reason is that the constraint
is inaccurate, and new legal executions incidentally produce
values that violate the constraint. Clearly, only the first class
of violations are useful to ZoomIn.

ZoomIn filters out violations caused by inaccurate con-
straints by taking into account the characteristics of the ex-
ecutions that produced the violations. If the execution is too
different from the executions that have been used to generate
the constraints, the anomalous value is likely to be a new legal
value produced by an untested scenario rather than a symptom
of program failure. Thus, the anomalous value should be
dropped. To enable this filtering strategy, ZoomIn collects the
coverage profiles associated with constraint violations.

In particular, given an automatic test t that executes a
method m with parameter and return values that violate a
constraint c on m (i.e., c is either a m’s pre- or post-condition),
the coverage profile of the constraint violation is defined as the
set of statements executed by t until exiting method m. Note
that the definition of coverage profile for constraint violation
matches the definition of method profile given in Section III.

At the end of this step, for every constraint violation
detected during the execution of the automatic tests, ZoomIn
identified the violated constraint, the anomalous values that vi-
olate the constraint, and the coverage profile of the constraint,
as illustrated in the step 2 of Figure 1.

V. FILTERING CONSTRAINT VIOLATIONS

In the third step ZoomIn filters out the constraint violations
that should not be interpreted as evidence of failure. The idea is
that only the constraint violations detected while running the
automatic tests that cover cases similar to the cases already
covered by the manual tests are likely to indicate a problem
in the program.

In the practice, for each constraint violation detected during
the execution of the automated tests (see step 2) ZoomIn
compares the coverage profile of the violation with the
coverage profiles recorded while running the manual tests
(see step 1). More formally, given a constraint violation cv
detected by a program constraint c associated with method
m (i.e., c is either a m’s pre-condition or m’s post-condition),
ZoomIn compares the coverage profile associated with cv to
the collected coverage profiles. Note that the coverage profile
of cv includes statements in the body of m even if c is a pre-
condition. This is useful to discard the constraint violations
generated by pre-conditions violated with legal invocations
that activate behaviors of m that have been never executed
before. The comparison between two profiles returns a value
in the range [0, 1] that defines the similarity between the
profiles. If none of the profiles is similar enough to the profile
associated with the anomalous value, the anomalous value is
dropped.

ZoomIn uses the Jaccard similarity index [15] to compute
the degree of similarity (DoS) between two profiles. Formally,
given two coverage profiles prof1 and prof2, the DoS is:

DoS(prof1, prof2) = stms in prof1∩stms in prof2
stms in prof1∪stms in prof2

where stms indicates of the set of statements in a profile.
The Jaccard index is a popular formula used to measure

similarity between two finite sets. In this case it computes the
number of statements that are present in both profiles divided
by the total number of statements in the profiles.

ZoomIn compares profiles to take decisions about constraint
violations. More formally, given a profile profilecv associated
with a constraint violation cv and given a set of coverage
profiles profiles, the constraint violation cv is discarded if
the following condition holds:

6 ∃profile ∈ profiles s.t. DoS(profilecv, profile) > 0.75

that is the constraint violations detected with a coverage
profile that shares less than 75% of the statements with
the most similar coverage profile collected by executing the
manual tests are dropped. The constraint violations that are not
dropped are significant and used in step 4 of the technique.

We set the threshold for filtering to 0.75 based on our
early empirical results. We did not notice big changes on the
results for small changes to the threshold. A more extensive
study aimed at empirically defining an optimal value for this
parameter is part of our future work.

VI. RANKING ASSERTIONS

In the fourth step ZoomIn splits the assertions into two
disjoint sets: the safe assertions and the unsafe assertions. The
unsafe assertions are ranked according to their suspiciousness
score, which is a positive number that represents the likelihood
the assertion is wrong.

Since an automatically generated assertion encodes the be-
havior observed when running an automatic test, the likelihood
the assertion is wrong depends on the correctness of the
execution produced by the test. The rationale implemented in
ZoomIn is that the more constraint violations are generated
by an automatic test the more likely the assertions in the test
capture a wrong behavior.

Since ZoomIn runs the analysis at the granularity of the
individual assertions, not all the constraint violations generated
by a test are relevant to every assertion. ZoomIn discovers
what constraint violations impact on what assertions using
dynamic data-flow analysis. A constraint violation is relevant
to a given assertion only if the anomalous values that violated
the constraint contribute to the definition of the assertion.
ZoomIn discovers the anomalous values that contribute to the
definition of the assertions in the automatic tests looking at
dynamic data-flow chains [16].

More formally, we say that a variable v is defined by a
statement e if e sets the value of v. A variable v is used by
a statement e if e accesses the value of v. ZoomIn detects
a dynamic def-use pair when the execution of a test case
produces the definition of a variable v and successively the
use of the same variable v, without redefining the value of
v before the use. ZoomIn detects a dynamic def-use chain
between variable v and variable w when the execution of a test
produces a sequence of def-use pairs 〈di, ui〉 i = 1 . . . n with
d1 definition of variable v, (ui, di+1) ∀i = 1, . . . n−1 pairs of



uses and definitions produced by the same statement, and un

use of variable w. Intuitively variables v and w are connected
by a dynamic def-use chain if v contributed to determine the
value of w in a concrete execution.

An anomalous value related to variable v is said to impact an
assertion a defined in the automatic test t if the execution of t
produces a def-use chain that connects v to any of the variables
used in the assertion a. A constraint violation cv affects
an assertion a only if the anomalous values that generated
cv impact the assertion a. According to this definition each
assertion in an automatic test can be associated with a possibly
empty set of constraint violations that affect it. For instance,
step 4 in Figure 1 shows the case of two assertions, one
affected by one constraint violation and another affected by
two constraint violations.

The assertions affected by no constraint violation are con-
sidered safe and dropped from the analysis. The rest of the
assertions are considered unsafe. ZoomIn ranks the unsafe as-
sertions according to the number and severity of the constraint
violations that affect them.

Since erroneous behaviors are not frequent in well tested
software, ZoomIn determines the severity of each constraint
violation according to its observational frequency. In partic-
ular, the more frequently a constraint is violated the less the
violations produced by that constraint are informative. On the
contrary, tricky behaviors and erroneous corner cases are not
expected to occur frequently. To capture this intuition, ZoomIn
weights each constraint violation with a value in the range
[0, 1] that we called uniqueness score.

Given an automatic test suite ATC, and a constraint violation
cv produced by a constraint c, the uniqueness score (US) of
cv is defined as follows:

US(cv) = 1
viol(c,ATC)

where viol(c,ATC) is the number of times the constraint c is
violated by the automatic tests in ATC.

The uniqueness score is used to properly weight the con-
straint violations when computing the suspiciousness of an
assertion. In particular, given an assertion a and a set constraint
violations cvi with i = 1 . . . n that affect a, we define the
suspiciousness (SOSP) of a as

SOSP(a) =
∑n

i=1 US(cvi)
Note that the value of the suspiciousness is not bounded and

can arbitrarily increase depending on the number of constraint
violations that affect the assertion and their uniqueness scores.

The suspiciousness value of the assertions in the automatic
tests is used to generate a ranking. ZoomIn does not aim to
discover all the wrong assertions in the automatic tests, but it is
designed to focus the attention of the developers on the highly
suspicious assertions that are likely to reveal new faults in the
program when inspected. Although developers could inspect
an arbitrary number of assertions following the ranking (e.g.,
all the unsafe assertions), according to our experiments we
recommend using ZoomIn to inspect no more than the top
five assertions. In this way the inspection effort is low, and
the effectiveness of the approach high.

For example, in the Apache Commons Math library ZoomIn
ranked the following assertion at the third position:

assertFalse(complex2.equals(complex1))

with complex1 equals to -1 and complex2 assigned with
the conjugate of complex1 which is by definition still -1.
This wrong assertion exposes a fault in the program. The
fault has been covered by the automatic tests but would go
unnoticed if this assertion is not inspected and fixed. Note
that in our experiments ZoomIn automatically selected this
assertion among 331 assertions generated by EvoSuite.

VII. EMPIRICAL EVALUATION

In this section we briefly illustrate the tool that we used for
the empirical evaluation, we present the subjects used for the
evaluation, and then we present a study that investigates the
effectiveness of ZoomIn using more than 1,400 assertions and
six real life non-crashing faults. The study considers multiple
inspection strategies and includes an empirical comparison
between ZoomIn and classic anomaly detection. Early results
demonstrate that ZoomIn can restrict the set of assertions that
must be inspected to less than 1.5% of the overall set of
generated assertions and reveal 50% of the faults, while regular
anomaly detection ineffectively selected more than 30% of the
assertions for inspection. We also discuss ZoomIn qualitatively
presenting one of the studied faults in detail. We finally discuss
threats to validity.

Prototype Implementation: Our ZoomIn prototype is im-
plemented in Java and integrates different third-party libraries
and tools. Program variables are monitored using the TPTP
Probekit [17] while execution profiles are collected using the
JaCoCo library [18]. Daikon is the inference engine used to
derive program constraints from traces [14]. Runtime checking
of constraints generated with Daikon is again implemented
with TPTP. Dynamic data-flow analysis is implemented using
the Eclipse Java Development Tools (JDT) [19]. Finally we
used the EvoSuite test case generator [2], which is a test case
generation tool that can synthesize test cases with assertions.

TABLE I
REAL FAULTS INVESTIGATED WITH ZOOMIN

Class name Bug ID Bug Descriptor
Complex MATH-221 https://issues.apache.org/jira/

browse/MATH-221
MathUtils MATH-241 https://issues.apache.org/jira/

browse/MATH-241
Max MATH-57 https://issues.apache.org/jira/

browse/MATH-57
Min MATH-57 https://issues.apache.org/jira/

browse/MATH-57
OpenMap-
RealVector

MATH-326 https://issues.apache.org/jira/
browse/MATH-326

Random-
DataImpl

MATH-294 https://issues.apache.org/jira/
browse/MATH-294

Subjects: For the purpose of the evaluation we selected
the Apache Commons Math library [9], which is a popular
open source library available with a suite of test cases and
with several publicly documented bugs. To identify the specific



TABLE II
RESULTS OBTAINED WITH REAL FAULTS

Class Manual Tests Constraints Constraint Violations Tests Assertions PositionTotal/Class Tests Total/Class Cov All Filtered All Unsafe
Complex 819 / 116 92% / 93% 4726 260 85 (33%) 83 331 34 (10%) 3 (1%)
MathUtils 819 / 95 92% / 87% 171 61 8 (13%) 60 67 8 (13%) -

Max 654 /42 93% / 100% 28 9 8 (88%) 26 69 8 (6%) 5 (7%)
Min 654 / 46 93% / 100% 26 33 2 (12%) 22 62 2 (6%) -

OpenMapRealVector 2050 / 7 90% / 88% 5277 17856 44 (1%) 74 170 14 (6%) 3 (2%)
RandomDataImpl 2050 / 37 90% / 92% 1205 250 0 (0%) 52 722 0 (0%) -

faults and classes for our study, we selected all the bugs in
the Apache Commons Math bug repository that fulfill the
following three criteria: (1) belong to either version 1.x or
2.x, (2) are not revealed by the Commons Math test suite, and
(3) fail without generating crashes or uncaught exceptions but
simply generating wrong outputs. We then generated the unit
tests for the classes with the faults using EvoSuite. Evosuite
generated 317 tests and 1421 assertions and has been able to
cover 6 non-crashing faults. We say that a test covers a fault if
it executes the lines that have been modified in the official fix
of the fault and at least one of its synthesized assertions fails
when executed on the fixed version of the program. Table I
shows for each fault the class containing the fault, the bug id
and the url pointing at the corresponding bug report. Note
that none of these faults can be automatically revealed by
state of the art test case generators. In our evaluation, ZoomIn
addresses these faults by working on a set of 1,421 assertions.

Evaluation with Real Faults: We applied ZoomIn to the
subjects cases and manually inspected the ranked assertions
to evaluate the technique.

Table II shows the results. Column Class indicates the class
with the fault. Column Manual Tests provides information
about the manual test suite. Column Total/Class Tests reports
the size of the entire test suite and the number of test cases
that cover the class with the fault. Column Total/Class Cov
reports the statement coverage achieved by the manual test
suite on the whole library and on the class with the fault
only. Column Constraints indicates the number of program
constraints (i.e., method pre- and post-conditions) generated by
ZoomIn when executing the test cases distributed with Apache
Commons Math. Column Constraint Violations All indicates
the number of constraint violations detected by ZoomIn when
executing the tests generated with EvoSuite. Column Con-
straint Violations Filtered indicates the number and percentage
of constraint violations used by ZoomIn to identify and rank
the unsafe assertions, the rest of the violations have been
automatically filtered out by ZoomIn using execution profiles.
The column Tests indicates the number of tests generated by
EvoSuite. The Column Assertions All indicates the number
of assertions generated by EvoSuite. The Column Assertions
Unsafe indicates the number and percentage of assertions that
ZoomIn classified as unsafe. Finally, column Position indicates
the position in the ranking of the first assertion that points
at the fault in the program. In case the assertion has the
same ranking as other assertions, the position is obtained
by referring to the average case. For instance if both the

wrong assertion and a correct assertion are at position 4
of the ranking, the reported value would be 4.5. The value
between parentheses indicates the percentage of the generated
assertions that need to be inspected before reaching the wrong
assertion. The symbol - indicates that no assertion pointing
at the fault is part of the ranking.

ZoomIn generated a variable number of constraints depend-
ing on the complexity of the case. For instance, it generated
more than four thousands constraints for Complex, while
it generated 26 constraints for Min. The reason for this
largely different results is the complexity of the parameters and
return values that occur in the cases. When methods exchange
several complex objects that recursively include attributes that
are objects, ZoomIn recursively records the values of all
these attributes and exploits them to generate many program
constraints. On the contrary, when the parameters and return
values mainly consist of variables with a primitive type, the
number of constraints that are generated decreases drastically.

When running the automatic tests, ZoomIn checks the
executions using the constraints generated from the manual
tests. Again a variable number of constraint violations have
been detected. Interestingly, when a non trivial number of
violations have been detected, ZoomIn always filtered out
many of the violations. For instance, ZoomIn filtered out
67% of the constraint violations for Complex, and more
than 80% of the constraint violations for MathUtils, Min,
OpenMapRealVector, and RandomDataImpl. ZoomIn
kept the majority of the constraint violations only for Max,
where a small number of constraint violations were already
detected on the first place. These results provide evidence of
the capability of the filtering step to rule out the violations that
result from incomparable executions and focus the analysis on
the most relevant constraint violations.

For all the cases, EvoSuite generated a significant number
of tests and assertions. In particular it always generated more
than 60 assertions, generating up to 722 assertions in one case.
To discover the number of wrong assertions in the tests we
executed the EvoSuite test cases on the correct version of
the classes (the investigated bugs have an official fix) and we
discovered that for all the six cases there is only one test with
a single assertion that reveals the fault. Finding the wrong
assertions within such a large set of assertions is extremely
demanding for developers (there are only 6 assertions that can
reveal the six faults among the 1,421 generated assertions).

In this challenging setting, ZoomIn demonstrated its ef-
fectiveness. Overall, ZoomIn isolated 66 unsafe assertions



from a total of 1,421 assertions. In the individual cases, the
percentage of unsafe assertions ranged from 0% to 13% of
the total number of assertions. This strong reduction has been
obtained losing only half of the wrong assertions, that is
ZoomIn effectively selected less than 5% of the assertions
preserving 50% of the wrong assertions.

In some cases the developers might decide to inspect
all the unsafe assertions, such as for Max and Min where
the set of unsafe assertions is small (8 unsafe assertions
for Max and 2 for Min). In some other cases, such as
for Complex and OpenMapRealVector, the number of
unsafe assertions might be too large. It is thus important
to direct the developers’ effort toward the most suspicious
assertions. ZoomIn efficiently implements this capability by
ranking unsafe assertions.

In fact, in the three cases with a faulty assertion, ZoomIn
ranked the faulty assertion fifth in the worst case. This means
that developers could discover new faults that would otherwise
go undetected by just inspecting at most five assertions per
case. If we consider the total number of assertions we started
from, the reduction of the search space has been dramatic,
ranging from 1% to 7% of the overall set of assertions
generated by EvoSuite.
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Fig. 2. Effectiveness of Inspection Strategies.
Stopping Criterion: In the practice developers do not know

if there is any fault that must be discovered by inspecting
assertions, thus they need a criterion to decide when stopping
the inspection of the assertions. The main purpose of ZoomIn
is to keep the inspection activity practical, at the cost of
missing some faulty assertions. Thus the recommendation is
to inspect an extremely small number of assertions located at
the top of the ranking and then stop inspecting.

According to the early evidence collected with the study
presented in this paper, inspecting the top five assertions is
enough to detect most of the faults. We investigated more
in details the inspection strategy by analyzing the tradeoff
between the inspection effort and the number of revealed
faults. Figure 2 plots the number of detected faults and the
average number of inspected assertions for different inspection
strategies. In particular, we consider the Top-<n> inspection
strategy that requires inspecting the n assertions at the top
of the ranking. If after having inspected n assertions there
are other assertions ranked at the same position than the

last assertion that has been inspected, the criterion requires
developers to also inspect the equally ranked assertions. Note
that the average values represented in the plot consider all the
six cases, including the cases where the set of unsafe assertions
includes no wrong assertion.

In the plot we only consider strategies from Top-1 to
Top-10, assuming that inspecting more than 10 assertions is
impractical. Results show that the Top-3 strategy is the best
compromise between the capability to discover faults and
the number of assertions that need to be inspected (3.5 on
average). Note that in the case of the Apache Commons Math
this strategy corresponds to inspecting only 21 assertions from
a total of 1,421 assertions. However, these results cannot be
yet generalized, thus inspecting a higher number of assertions,
for instance by applying the Top-5 or Top-6 strategy, could be
a safer option. Note that in our evaluation the Top-10 strategy
requires inspecting less than 10 assertions because the total
set of unsafe assertions is often smaller than 10.

TABLE III
COMPARISON BETWEEN ZOOMIN AND ANOMALY DETECTION

Approach Bugs Inspected assertions
ZoomIn (Top-<3>) 3/6 21/1,421 (1.5%)
ZoomIn (Top-<5>) 3/6 30/1,421 (2.1%)
Anomaly Detection 6/6 454/1,421 (31.9%)

Comparison to Anomaly Detection: We compared the effec-
tiveness of ZoomIn to classic anomaly detection. As already
done in other studies [11], we use anomaly detection to
learn the legal behavior of the application (i.e., we learn
the method pre- and post-conditions using Daikon) when the
manual tests are executed, and then we check the executions
of the automatic tests against the inferred constraints. The
tests, and the assertions included in these tests, that violate
the inferred constraints are reported to the user. In practice,
anomaly detection implements the learning and the checking
ability of ZoomIn, but does not include any of the other
capabilities that characterize ZoomIn, such as the ability to
collect coverage profiles, the ability of identifying soundly
comparable executions based on the profiles, and the ability
to correlate constraint violations to assertions. Results are
reported in Table III. For ZoomIn we report the results ob-
tained applying both the Top-<3> strategy, which is the most
effective strategy for Apache Commons Math, and the Top-
<5> strategy, which represents a more conservative choice
for the inspection strategy.

We can notice that although anomaly detection can detect
all the faults, it requires the inspection of a so large number
of assertions that the result would not be practically useful in
any context (454 assertions must be inspected). These results
confirm the empirical observations reported in other papers,
such as [11]. On the contrary, ZoomIn detected half of the
faults with a manageable inspection effort: 21 or 30 assertions
must be inspected, corresponding to 1.5% or 2.1% of the
generated assertions, depending on the strategy that is applied.

Qualitative Analysis: To qualitatively demonstrate the abil-
ity of ZoomIn to identify the wrong assertions based on



anomalous values, we discuss more in details one of the
cases considered in our empirical evaluation. Listing 1 shows
the code of one of the tests generated by EvoSuite for the
Complex class. The test covers a bug in the Complex
class and includes a wrong assertion. We indicated the wrong
assertion with the comment “//WRONG”.

In our evaluation ZoomIn has been able to rank this asser-
tion as a highly suspicious assertion (it occurs at position 3 of
the ranking) among more than 300 generated assertions.

Listing 1. Sample test generated by EvoSuite
@Test
p u b l i c vo id t e s t 3 5 ( ) throws Throwable {

Complex complex0 = Complex . I ;
Complex complex1 = complex0 . m u l t i p l y ( complex0 ) ;
Complex complex2 = complex1 . c o n j u g a t e ( ) ;
a s s e r t E q u a l s ( 1 . 0 , complex2 . abs ( ) , 0 . 0 1D ) ;
a s s e r t E q u a l s ( (−1 . 0 ) , complex2 . g e t R e a l ( ) , 0 . 0 1D ) ;
a s s e r t F a l s e ( complex2 . e q u a l s ( complex1 ) ) ; / /WRONG
a s s e r t E q u a l s ( (−1 . 0 ) , complex1 . g e t R e a l ( ) , 0 . 0 1D ) ;
}

The fault that causes the generation of a wrong assertion
is in the equals method of the Complex class, which
returns a wrong result when an imaginary number with +0 as
imaginary part is compared to an imaginary number with the
same real part but with -0 as imaginary part. The test generated
by Evosuite interestingly covered this situation through a
non-trivial sequence of method calls. Variable complex0 is
initialized to the imaginary number i. The variable complex1
is then assigned to -1 (with -1 as real part and +0 as
imaginary part) as a consequence of the call to multiply.
The next invocation to method conjugate() assigns to
complex2 the conjugate of -1 which is still -1 (with -1 as
real part and -0 as imaginary part). Although the sign of the
imaginary part should be ignored when comparing the two
numbers, the implementation of equals compares the bit
level representations of these two numbers, thus incorrectly
taking into account the sign even if the compared value is 0.

ZoomIn ranks this assertion as a highly suspicious
assertion because it is impacted by violated constraints with
high uniqueness scores. The two impacting constraints with
the highest scores are returnValue.imaginary
!= 0 and returnValue.I.real !=
returnValue.imaginary, both of them are associated
with method conjugate() of class Complex. Since
conjugate() is the method that produces the number
with -0 as imaginary part, the constraint violations exactly
characterize the execution that produces the failure among all
the executions of the class Complex.

To determine the presence of a fault in the program the
developer is only asked to inspect the test. There is no need
to inspect the execution trace or to look at the constraint
violations that determined the ranking of the assertion. For
instance, in this case it is enough to follow the test to see that
complex1 and complex2 are both -1 and thus the method
equals must return true and not false as asserted in the test.

Threats to Validity: The most relevant threats to validity
concern internal and external validity.

The main threat to the internal validity is related to the
existence of a causal relation between the effectiveness of
ZoomIn and its capabilities, that is the capability to filter
out the irrelevant constraint violations, to filter out likely safe
assertions, and to create the ranking. Since it was not feasible
to manually inspect all the constraint violations and all the
executions considered in the study, we addressed this threat
by manually inspecting 10% of the violations that have been
filtered out and inspecting all the constraint violations associ-
ated with the assertions that revealed faults in the program. The
inspection of the discarded constraint violations confirmed that
these violations are typically not related to any fault in the code
but are related to over-fitting constraints. The inspection of the
violations associated with the assertions that revealed the faults
confirmed that the assertions have been properly ranked thanks
to multiple well scored constraint violations that are clearly
caused by the fault. The case discussed in the previous section
is a practical example of the way ZoomIn works. We can thus
claim that according to the early empirical evidence that we
obtained, the effectiveness of ZoomIn is directly related to the
effectiveness of its heuristics.

The main threats to external validity relate to the gener-
alizability of the results to other applications and test suites.
The good results obtained with different real faults mitigate
this threat. However more studies with more subjects and test
suites need to be completed to claim the generalizability of
the results to other classes of applications.

In the empirical evaluation reported in this paper we used
EvoSuite as test case generator. Although we do not see any
strong reason why the effectiveness of the technique should
not generalize to other test case generators that synthesize
assertions, this aspect should be confirmed empirically.

VIII. RELATED WORK

In this section we discuss approaches for automatically
detecting failures, with special emphasis on techniques that
do not require user-defined oracles.

Anomaly Detection: Anomaly detection techniques analyze
sets of executions to identify the ones that are anomalous (i.e.,
that differ significantly) compared to the other executions in
the set. The assumption of anomaly detection techniques is
that the executions that exhibit anomalous behaviors are also
the ones that are faulty.

Different techniques look at different aspects to determine
what the anomalous behaviors are. For instance, Zheng et al.
mine predicate rules that represent the conditions that hold at
relevant program points, such as branches and exit points [20].
The executions that violate these rules are classified as poten-
tial failures. In a similar way Raz et al. mine constraints on
the values returned by online data sources [21]. Anomalous
values are discovered by comparing newly collected data to
the mined constraints.

Other approaches identify anomalous executions by looking
at the sequences of operations executed by an application
rather than looking at the values assigned to variables. For
instance, several techniques mine finite state models from



execution traces [22], [23] and use these models to assess the
correctness of newly collected executions [24], [13], [25].

Anomaly detection techniques can easily generate many
false alarms, especially when applied to the oracle problem,
as demonstrated in a recent study [11]. In contrast with these
approaches, ZoomIn can isolate an extremely small number
of assertions that require inspection, thus always maintain-
ing manual effort under control. Moreover assertions can be
cheaply evaluated by inspecting the tests only, while inspecting
an entire execution isolated by a classic anomaly detection
technique might be far more expensive.

Spectra-Based Techniques: Spectra-based techniques com-
pare executions according to a specific aspect of the program
behavior. The ability to compare executions can be exploited
to cluster test cases and identify failing runs. For instance, Yil-
max et al. show that hybrid program spectra can be effectively
used to train a j48 classifier that distinguishes passing and
failing executions [26]. Lo et al. investigate the use of support
vector machines, trained with passing and failing executions,
to classify unknown executions [27].

The main limitation of these approaches is that they require
a set of passing and failing executions to train the classifiers.
ZoomIn does not need to be trained with sample failing execu-
tions, that are difficult to be obtained for multiple applications
and multiple types of failures, but it can be applied relying
uniquely on the manual tests designed by the developers.

Dickinson et al. investigate the classification of unknown
executions using unsupervised hierarchical clustering [28].
Since failures are assumed to end up in clusters that only
contain failures, developers can inspect the output produced
by this technique by inspecting one execution per cluster.

The technique by Dickinson et al. requires estimating the
number of clusters that must be returned by the clustering
algorithm. An optimal estimate is difficult to produce and sub-
optimal choices might significantly impact the quality of the
results. If many clusters are generated, a significant inspection
effort is required, while producing few clusters might lead to
clusters that mix up failing and passing executions. ZoomIn
does not require these kinds of estimates and it always requires
the inspection of a few assertions only.

Specification-Based Oracles: Software specifications have
been extensively exploited to generate test oracles. For in-
stance, Carzaniga et al. recently investigated how to generate
oracles from a specification of the equivalent sequences, which
is a specification that indicates the sequences of method calls
that have the same effect on an object state [29]. In some
cases the specification can be part of the program. For instance
ARTOO uses contracts to generate tests and detect faults [30].

Specification-based approaches are extremely effective, but
require suitable specifications to be applied [8]. Unfortunately,
specifications are often unavailable, and when they are avail-
able are often incomplete, outdated, and inconsistent. ZoomIn
supports testers in the common case no specification suitable
for the generation of program oracles is available.

Test Driven Oracle Generation: Several test case generation
techniques can generate test cases that include assertions that

encode the observed behaviors, such as Randoop [3] and
Evosuite [2]. Techniques that produce a small but effective set
of assertions have been also investigated [31], [32]. ZoomIn
augments these techniques with the capability to identify the
assertions that are likely wrong due to faults in the program.

Some approaches investigated the integration of test case
generation and failure detection. For instance, Eclat [33] and
DSDCrasher [34] can augment an existing test suite with test
cases that are likely to expose failures by causing executions
that violate methods’ post-conditions without violating meth-
ods’ pre-conditions. Pre- and post-conditions are generated
with Daikon. Since this strategy can generate several false
positives, DSDCrasher only reports the program crashes.

Compared to these approaches, ZoomIn is more precise,
because it limits the number of false positives that are gen-
erated while maintaining the capability to reveal non-crashing
faults, and more accurate, because it works at the granularity
of assertions instead of entire executions.

Human-Centric Approaches: While specifying program or-
acles (e.g., writing assertions) is a relatively simple activity
for testers, it is an extremely challenging task for computer
programs. For instance, a recent study by Staats et al. demon-
strated that developers may easily misclassify automatically
generated invariants [35].

Pastore et al. early investigated how to involve humans in
the synthesis of program oracles by using Crowdsourcing to
fix the assertions automatically generated by EvoSuite [10].
The results show that this solution is feasible, although the
performance of the crowd depends on the complexity of the
domain, and the economical advantage of this solution depends
on the number of tests and assertions that must be inspected.

ZoomIn does not require the inspection of many Daikon
invariants and does not involve non-experts in the process,
as potentially done by crowdsourcing. ZoomIn only requires
the developers of the application to inspect a few specific
assertions generated by test case generation tools.

IX. CONCLUSIONS

Test case generation techniques can automatically generate
test cases that include assertions encoding the behavior ob-
served when running the tests. Thus if a test reveals a fault
that makes the program fail by producing a wrong output,
the synthesized assertion, instead of detecting the failure, will
encode a wrong condition. This fact significantly reduces the
fault detection capability of test case generation techniques.

In this paper we presented ZoomIn, a technique that can
augment test case generators with the capability to pinpoint the
assertions that are likely incorrect due to the presence of faults
in the program. The empirical results obtained by integrating
ZoomIn with EvoSuite demonstrated the effectiveness of the
approach. In particular the most effective inspection strategy
identified 50% of the faults in the program by inspecting less
than 1.5% of the assertions synthesized by EvoSuite.

Future work includes gaining experience with ZoomIn with
other faults, applications, and test case generators to increase
confidence on the generality of the results obtained so far.
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