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Abstract

We report the study on formation and thermal annealing of InAs quantum dots grown by droplet epitaxy on GaAs
(111)A surface. By following the changes in RHEED pattern, we found that InAs quantum dots arsenized at low
temperature are lattice matched with GaAs substrate, becoming almost fully relaxed when substrate temperature is
increased. Morphological characterizations performed by atomic force microscopy show that annealing process is
able to change density and aspect ratio of InAs quantum dots and also to narrow size distribution.
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Background
The self–assembly of quantum dots (QDs) attracts a great
interest for the possibility to fabricate advanced photo-
electronic devices such as single photon emitters and
entangled photon sources [1, 2]. In particular, droplet
epitaxy (DE) technique [3–5] has recently demonstrated
the possibility to grow high-quality quantum nanostruc-
tures in lattice-matched and mismatched systems with a
high degree of control over density, size, and shape of the
nanostructures [6–11] suitable for the fabrication of sin-
gle photon emitters at liquid nitrogen temperature and
entangled photon sources [12–14]. The flexibility of DE is
due to the fact that the growth of III-V QDs is performed
in two distinct steps. In the first one, the group-III ele-
ment is deposited on the substrate to form liquid droplets;
in the second step, a flux of group-V element is irra-
diated in order to crystallize the droplets in quantum
nanostructures.
In order to shift the QD-DE emission towards telecom-

munication wavelength range (1.3–1.5 μm) and to reduce
the fine structure splitting (FSS), many efforts have been
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devoted to the fabrication of InAs QDs on GaAs(111)
surfaces [14–17]. Compared to (100), (111) surface is of
extreme interest due to the fact that the C3v symmetry of
(111) surface allows to realize highly symmetric QDs with
a vanishing FSS [15]. Unfortunately, fabrication of InAs
QDs on GaAs(111) by Stranski–Krastanow growth mode
is impossible because strain relaxation takes place by the
introduction of dislocations instead of three-dimensional
island formation [18–20]. Recently, GaAs QDs grown by
DE on GaAs(111)A surface were fabricated [21, 22] and
control of nuclear spin [23], charge tuning [24], magneto-
optical properties [25], interplay between exchange and
Zeeman effect [26], and emission of entangled photon
pairs [27] were studied. Successful deposition of InAs
QDs by DE on GaAs(100) surface have been reported in
[28–30], while recently studies about the formation and
morphology of InAs QDs were reported in [31, 32].
Despite this interest, only few works showed the pos-

sibility to grow In(Ga)As QDs on (111) surfaces. Single
photon emission is reported in [16], and a reduced FSS
for entangled photon emission near telecommunication
wavelength ranges is reported in [14]. Anyway, a study
on formation and morphology of InAs QDs grown on
GaAs(111)A is not available in scientific literature.
In this work, we report the analysis of the different

steps for the growth of InAs QDs by DE technique on
GaAs(111)A surface by reflection high-energy electron
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diffraction (RHEED) to better understand the growth
mechanism of InAs QDs, and we analyze the effect of
annealing on density and size distribution of QDs by
changing the initial size of the QDs and the annealing
temperature. The annealing process is a step necessary to
remove As excess on the surface exposed to high As flux
at low temperature and in particular for QDs formed at
low temperature in order to improve the crystalline qual-
ity [33–35]. In our experiments, we found evidence that
the annealing process changes the density and the aspect
ratio (the ratio between the height and the diameter of a
QD) of InAs islands, narrowing the size distribution. We
also observed from RHEED pattern that it is possible to
fully convert a solid In nano–crystal into an InAs nano–
crystal pseudomorphic with the GaAs substrate, becom-
ing almost fully relaxed when substrate temperature is
increased up to 300 °C.

Methods
Two series of samples were grown on GaAs (111)A sub-
strates inside a Gen II MBE chamber with an As valved
cracker cell. All the different steps for the growth were
monitored with a RHEED system. The electron beam
was generated inside a VG LEG 110 RHEED gun and
acquired by a CCD camera in front of a fluorescent
screen. After oxide removal, a GaAs buffer layer was
deposited to obtain a flat surface. The substrate tempera-
ture was then decreased to 350 °C, and As pressure in the
chamber reduced below 10−9 torr. Indium droplets were
deposited at the same temperature with a beam flux of
3.5 × 1013 atoms s−1 cm−2. Substrate temperature was
then decreased to 100 °C and then an As4 flux of 7.2×1015
atoms s−1 cm−2 supplied for 3 min. Finally, the samples
were submitted to a thermal anneal treatment in As flux
of 7.2 × 1015 atoms s−1 cm−2 for 3 min. Two series of
samples were grown by depositing different amounts of In
and by changing substrate temperature during annealing
procedure. Table 1 reports the different conditions for the
fabrication of the two series of samples. After the growth,
the samples were analyzed by an atomic force microscope

(AFM) in tapping mode, using a ultra-sharp tip, capable of
a lateral resolution of about 2 nm.

Results and Discussion
QD Formation
The RHEED changes observed during the growth of sam-
ple L1 are reported in Fig. 1. Figure 1a shows (2×2) recon-
struction observed on GaAs(111)A surface along [ 211̄]
direction before In deposition. The formation of a (2 × 2)
reconstruction is expected, as reported in [36, 37]. During
In deposition, intensity of the streaks slightly faded, due
to the presence of liquid In droplets, which act as elec-
tron scatterers on GaAs surface. The variation in intensity
of specular beam during In deposition is reported in
Fig. 2a. After In shutter is opened, intensity decreases for
the whole duration of In deposition. No additional fea-
tures appeared in RHEED pattern. This behavior is in
agreement with the data reported in DE experiments per-
formed depositing Ga droplets on GaAs (001) surface [3].
Unlike the case of GaAs(001), where surface is typically
terminated with an excess of As, on GaAs(111)A droplets
nucleates immediately on Ga-terminated surface [36]. In
Fig. 1b, RHEED pattern observed along [ 211̄] direction
after reducing substrate temperature to 100 °C and before
As irradiation is reported. It is important to notice that
during this step, substrate temperature is below melting
point of In. In this pattern, the ratio between spacing of
V-shaped spots (indicated by a white arrow in Fig. 1b)
and the one of streaks related to GaAs (111)A surface is
in good agreement with the inverse of the ratio between
the distance of GaAs planes and the cell parameter of
In crystalline structure [38]. The presence of these spots
can be attributed to body centred tetragonal structure of
solid In. The chevron shape of the spots is related to the
formation of facets [38] on In nano–crystals. The evo-
lution of RHEED pattern thus demonstrates that Indium
is liquid during deposition at 350 °C and turns into a
epitaxial crystalline solid when substrate temperature is
reduced, as also reported for In deposition on GaAs(001)
[31]. Figure 1c reports the RHEED pattern observed along

Table 1 Growth parameters and morphological data for the two sets of samples: In amount deposited (here is reported the equivalent
amount on GaAs(100) surface), substrate temperature during the annealing procedure, density of InAs QDs, percentage of deposited
In incorporated in InAs QDs, mean value of radius, mean value of aspect ratio

Sample In amount T annealing QD density % of In deposited Mean R Mean AR

(ML) (◦C) (×108 cm−2) incorporated in QDs (nm)

L1 1.5 300 161.2 100.0 25.2 ± 4.9 0.123 ± 0.015

L2 0.6 300 5.1 0.7 18.4 ± 4.7 0.055 ± 0.008

L3 0.4 300 0 0.0 - -

H1 1.7 450 18.6 4.1 24.0 ± 2.6 0.084 ± 0.028

H2 1.5 450 10.4 2.9 22.9 ± 3.1 0.062 ± 0.015

H3 1.0 450 0 0.0 - -
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Fig. 1 RHEED pattern during the growth of InAs QDs on sample L1.
a (2 × 2) reconstruction of GaAs(111)A along [ 211̄] direction before
In deposition. b GaAs surface along [ 211̄] direction at 100 °C showing
presence of crystalline In spots (evidenced by arrows). c InAs QD
spots along [011] direction at low temperature during arsenization
showing a lattice matched InAs dots on GaAs(111)A surface. Arrows
evidence the presence of twins. d InAs QD spots along [011] direction
after annealing at 300 °C showing relaxation of InAs QDs

[ 011] direction immediately after As flux irradiation. The
RHEED pattern changes again in less than one second
(intensity variation of a transmission spot is reported in
Fig. 2b). This is the fingerprint of formation of InAs QDs
[3–5]. Despite the presence of In in crystalline phase, the
time required for the arsenization process is in agreement
with the one observed for liquid Ga droplets (see [4]). The
additional spots observed in the pattern (indicated with
white arrows) can be attributed to the presence of twins
in InAs QDs. It is important to note that at low tempera-
ture, the spots related to InAs QDs appear matched with
the streaks of GaAs surface. We can conclude that at this
stage of the growth, InAs QDs are lattice matched with
GaAs buffer layer and consequently that InAs QDs are
under strain, despite the high mismatch (7.2%) between
the lattice parameter of GaAs and InAs.

Annealing
After the annealing step at 300 °C, (2 × 2) reconstruction
on GaAs(111)A surface is again clear, due to removal of
As excess accumulated during the As irradiation, while
the spots related to InAs QDs are slightly shifted towards
specular beam (see Fig. 1d). Calculating the ratio between
spacing of GaAs streaks and the one of InAs spots, we can
estimate a different lattice parameter of about 7%, corre-
sponding to almost fully relaxed InAs. This change can

Fig. 2 RHEED intensity change during In deposition on GaAs(111)A
surface observed on a GaAs streak (a) and during In island
arsenization observed on transmission spot (b)

be related to the nucleation of dislocation at the inter-
face between InAs and GaAs driven by the thermal energy
added to the system by annealing procedure.
In scientific literature, it is reported that InAs layers

on GaAs(111)A grow in planar mode [19, 20] instead of
Stranski-Krastanowmode as reported for the case of InAs
on GaAs(001). This behavior is due to strain relaxation
induced by the introduction of dislocations at the interface
between InAs and GaAs. The presence of these defects
is expected to affect quality and optoelectronic proper-
ties of InAs QDs. The formation of strained (and con-
sequently non–dislocated) InAs islands on GaAs(111)A
was observed for low InAs coverage in [18, 20] and in
our experiments is observed until substrate temperature
is maintained low.
The thermal annealing process is also affecting the

shape and the size of InAs QDs. Figure 3a shows an AFM
image of a 1 × 1 μm2 area on samples L1. Inset of panel
Fig. 3a shows magnification of a single InAs QD. The
shape is hexagonal as reported for GaAs QDs arsenized at
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Fig. 3 1 × 1 μm2 AFM scan on surface of samples L1 (a) and H2 (b). In inset, magnification of a single InAs QD (white bar of inset corresponds to 40
nm). In c, radius distribution of InAs QDs is reported (red bars for sample L1 and green bars for sample H2). d shows size distribution of InAs QDs on
the two samples. Each dot is reported as a red square (sample L1) and green diamond (sample H2)

low temperature on (111)A surface [22]. Total volume of
InAs QDs calculated from AFM scans is in good agree-
ment with the volume calculated from the amount of
deposited In, as reported on Table 1. This means that on
sample L1, almost all deposited In is incorporated inside
InAs QDs. Figure 3b shows an AFM image of a 1× 1 μm2

area on samples H2, grown with the same recipe and
depositing the same amount of In to form InAs QDs,
but with different temperature for the annealing (300 °C
for sample L1 and 450 °C for sample H2). As reported
in Table 1, the QD density on sample H2 is 50 times
lower than the density on sample L1 and only ∼3% of
deposited In is incorporated in InAs QDs. Figure 3c, d
shows a comparison between size distribution of InAs
QDs on samples L1 and H2. The profiles observed for
radius distributions (Fig. 3c) are, to a good approxima-
tion, Gaussian. The mean value of radius is quite similar
for both samples (25.1 nm for sample L1 and 22.9 for
sample H2), but standard deviation and aspect ratio (see
Table 1) decrease by annealing InAs QDs at higher tem-
perature. Aspect ratio decreases from 0.123 of sample L1
to 0.062 of sample H2. Standard deviation is reduced from
4.9 nm of sample L1 annealed at lower temperature, to
3.1 of sample H2 annealed at higher temperature. These
differences between the two samples can be ascribed to
increased diffusion length of In when annealing temper-
ature is increased from 300 to 450 °C. This effect was

already described for Ga and In on (100) surface in
[39, 40] and [41], respectively. It can be explained con-
sidering that, by increasing annealing temperature, an
increasing number of thermally activated In ad–atoms is
generated due to bond breaking. Such ad–atoms diffuse
following the equation [40]

� =
√
D0 exp (−EA/kBT)

Ns
JAs

(1)

where D0 is the diffusivity prefactor, EA the activation
energy for diffusion, T the substrate temperature, Ns the
number of surface sites, and JAs the arsenic flux.
Considering the volume of InAs QDs to be constant, as

re–evaporation of In up to 450 °C is negligible, when dif-
fusion length of In is increased, the radius of each dot is
increased and the height is decreased. If we consider pyra-
midal QDs with an hexagonal base, from the definition of
volume of the pyramid and of aspect ratio, we expect a
relation due to annealing process

AR′

AR
= r3

(r + �)3
(2)

where AR and AR’ are aspect ratios before and after
the annealing, r is the initial radius of the QD (equal to
base edge of the hexagonal pyramid) and � the diffusion
length of In ad–atoms as defined in Eq. 1. The effect of
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the annealing process is then to reduce the height and
increase the radius of the QDs and is more evident on
smaller dots. With rdot � �, we expect a reduction of
aspect ratio of eight times or more. In these conditions,
it is then quite easy to understand that smaller dots can
be flattened to a single monolayer height on the surface
with the formation of a InAs 2–D layer on the surface, as
observed in [42]. The decrease observed in mean aspect
ratio for InAs QDs on samples L1 and H2 confirms this
model, as reported in Table 1. Also an increase of mean
radius is expected, but we have to consider that the for-
mation of a layer originated by flattening of InAs QDs
explains the reason why the centre of radius distribution
is not apparently increased from sample L1 to sample
H2, as reported in Fig. 3c. We have to consider that on
sample H2, InAs QDs are partially buried by the InAs
layer formed on the surface. The flattening of the smaller
dots is also confirmed by the reduction in density of InAs
QDs observed in Table 1 for higher annealing temperature
(wider �) and decreasing amount of In deposited (smaller
mean radius of the dots). As shown by the data presented
in Fig. 3d, the increased diffusion length leads to the for-
mation of InAs QDs with lower aspect ratio [39] and to
completely flatten smaller dots present on surface.
This behavior is confirmed by the two series L and H,

annealed at different temperatures (300 °C for L series and

450 °C forH series). In each series, three different amounts
of In were supplied to the surface. In fact, decreasing the
amount of deposited In for nano–crystal formation, we
leave the density of QDs unchanged, but we decrease the
initial size of each InAs QDs. Figure 4a, b shows AFM
images of 1 × 1 μm2 area on samples L2 and H1, respec-
tively. In Fig. 4c, d, the size (radius–height) of each dot
found in a 2 × 2 μm2 AFM scan is reported. In Fig. 4c, d,
each red square and green diamond stands for a InAs QD
on sample L1 (H1) and L2 (H2), respectively. Reducing
the initial amount of In, the dots after annealing become
smaller and lower, and aspect ratio and density of QDs
are decreased (see also Table 1). Below, a certain critical
value, InAs QDs are completely flattened, as observed on
samples L3 and H3. As reported in Table 1, this critical
value is changing with annealing conditions, being in 0.4–
0.6 ML range for L series (low annealing temperature) and
in 1.5–1.0 MLs range for H series (high annealing tem-
perature). As expected from diffusion length (Eq. 1), the
critical amount of In increases upon increase of annealing
temperature.
It is also interesting to note that size distribution of QDs

is reduced by thermal annealing. As reported in Table 1,
the radius of QDs on samples annealed at higher temper-
atures has a standard deviation on radius reduced by a
factor ∼1.6.

Fig. 4 1 × 1 μm2 AFM scan on surface of samples L2 (a) and H1 (b). Size distribution of InAs QDs grown in series L (c) and H (d). Each dot is reported
as a red square (sample L1 on c and sample H1 on d) and green diamond (sample L2 on c and sample H2 on d)
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Conclusions
We reported the study on formation of InAs QDs grown
by droplet epitaxy on GaAs (111)A surface, performed
by a mean of RHEED pattern and of AFM analysis.
We demonstrated that InAs QDs arsenized at low tem-
perature are lattice matched with GaAs substrate and
become almost fully relaxed when substrate temperature
is increased with the insertion of dislocations. We also
studied the effect of annealing on density and aspect ratio
of InAs QDs, showing that increasing annealing tempera-
ture, size dispersion is reduced, while density and aspect
ratio decrease up to complete flattening of smaller dots.
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