
Noname manuscript No.
(will be inserted by the editor)

Representative-based classification through covering-based
neighborhood rough sets

Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

May 6, 2015

Abstract Considerable progress has been made in the theory of covering-based
rough sets. However, there has been a lack of research on their application to classi-
fication tasks, especially for nominal data. In this paper, we propose a representative-
based classification approach for nominal data using covering-based rough sets.
The classifier training task considers three issues. First, we define the neighbor-
hood of an instance. The size of the neighborhood is determined by a similarity
threshold θ. Second, we determine the maximal neighborhood of each instance in
the positive region by computing its minimal θ value. These neighborhoods form
a covering of the positive region. Third, we employ two covering reduction tech-
niques to select a minimal set of instances called representatives. To classify a new
instance, we compute its similarity with each representative. The similarity and
minimal θ of the representative determine the distance. Representatives with the
minimal distance are employed to obtain the class label. Experimental results on
different datasets indicate that the classifier is comparable with or better than the
ID3, C4.5, NEC, and NCR algorithms.

Keywords. classifier, covering-based rough set, neighborhood, representative,
similarity

B.-W. Zhang
School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
Department of Computer Science, Sichuan University for Nationalities, Kangding 626001,
China
e-mail: zhbwin@163.com

F. Min(B)
School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
e-mail: minfanphd@163.com

D. Ciucci
DISCo, University of Milano-Bicocca, viale Sarca 336/14, 20126 Milano, Italy
e-mail: ciucci@disco.unimib.it

2 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

1 Introduction

There are two general classification approaches in data mining [1]. One is model-
based learning, such as decision trees [2,3], rule sets [4,5,6], neural networks [7],
and support vector machines (SVM) [8,9]. These approaches build a classifier on
the training set, and then classify new instances using this classifier while ignoring
the training set. The advantages of model-based learning include the low stor-
age requirements of the model and the low time complexity of classification. The
second classification approach is instance-based lazy learning, such as k-nearest
neighbors (kNN) [10,11]. This lazy learning has no training stage. A new instance
is simply compared to existing ones, with the k-nearest neighbors being selected
for classification. An advantage of this approach is that it naturally deals with
changes in the data.

Covering-based rough sets, first introduced by Zakowski [12], have attracted
considerable research interest in recent years [13]. Yao et al. proposed a framework
for the study of covering-based rough set approximations [14], whereas Zhu et al.
explored the topological properties of these sets [15] and studied their connection-
s with relation-based rough sets [16,17]. Wang et al. introduced matroid theory
to covering-based rough sets [18], and proposed three types of existing covering
approximation operators using Boolean matrices [19]. Hu et al. developed a soft
fuzzy rough set model to reduce the influence of noise [20], an attribute reduction
algorithm based on a generalized fuzzy-rough model to efficiently remove redun-
dant attributes [21], and a neighborhood rough set model to classify numeric data
[22]. Du et al. extended the formal theoretical framework to numerical feature
spaces, and derived a neighborhood covering reduction-based approach to extrac-
t rules from numeric data [23]. Qian et al. proposed reduction algorithms using
three parallelism strategies in cloud computing. However, there has been a lack of
research into the application of covering-based rough sets for classifying nominal
data.

In this paper, we propose a representative-based classification approach that
uses covering-based neighborhood rough sets. There are three issues for the classi-
fier training task. First, we define the neighborhood of an instance by considering
the similarity between instances. The size of the neighborhood is determined by
a similarity threshold θ. Second, we determine the maximal neighborhood of each
instance in the positive region. This is done by choosing a minimal θ such that
the whole neighborhood is within the positive region. These neighborhoods, al-
so called blocks, form a covering of the positive region. Third, we employ two
covering reduction techniques to select a minimal subset of these blocks. One re-
moves blocks that are a subset of another block, and the other greedily selects
the block covering the largest number of uncovered instances. Instances forming
these blocks are called representatives. To classify a new instance, we compute its
similarity with each representative [24]. This similarity and the minimal θ of the
representative determine the relative distance. Representatives with the minimal
relative distance are used to obtain the class label. Our approach is essentially
an integration of both model-based and lazy learning techniques. In the training
stage, representatives are selected and their neighborhood thresholds computed.
From this viewpoint, it is a model-based learning approach. In the testing stage,
the distances between a new instance and existing representatives are computed.
From this viewpoint, it is a lazy learning approach.

Representative-based classification through covering-based neighborhood rough sets 3

Generally, our approach is similar to those described by Hu et al. [25] and
Du et al. [23], which both employ covering-based neighborhood rough sets. One
major difference is that these previous studies deal with numeric data, whereas
we consider nominal data. Consequently, to define the neighborhood, we use a
similarity measure instead of a distance measure. Moreover, in the testing stage,
we do not use blocks formed in the training stage, as these blocks may not cover
some new instances. Instead, we define a new distance measure by considering
the similarity measure and threshold learning in the training set. A new instance
is assigned the class label of the nearest representatives. In this way, all new
instances can be classified. Simple voting [26] is employed for conflict resolution,
because the importance of each representative has been considered through the
distance measure.

Experiments are undertaken on 10 UCI datasets [27], including Tic-tac-toe,
Zoo, Voting, Mushroom, and so on. The results show that our approach is more
accurate on Voting and Mushroom. For these two datasets, the number of repre-
sentatives is smaller than the size of the dataset. For the Mushroom dataset, the
ratio is about 2.5%. In other words, the average number of instances covered by
the neighborhood of each representative is around 40. This phenomenon indicates
that our approach is most appropriate for data with low representative ratios. A
comparison study shows that the precision of our approach is often better than
that of the ID3 algorithm [28] and comparable to that of the C4.5 algorithm [29,
30]. Our approach outperforms the NEC [25] and NCR [23] algorithms in terms
of precision for nominal data.

The remainder of this paper is organized as follows. Section 2 introduces some
preliminary knowledge and proposes new definitions for the similarity and neigh-
borhoods. We consider the problem decomposition in Section 3. Section 4 discusses
a representative generation algorithm and a representative-based classification al-
gorithm. In Section 5, we present experimental results that illustrate the classifica-
tion precision of our model. Finally, we state some conclusions from this research,
and suggest further study ideas, in Section 6.

2 Preliminaries

In this section, we review some basic concepts related to decision systems, indis-
cernibility relations and similarity relations, neighborhoods, and covering. Further-
more, we introduce the notion of a minimal threshold that will be used to select
representative elements in the proposed approach.

2.1 Decision system

The concept of a decision system [31,32,33] is widely used in data mining [34] and
machine learning.

Definition 1 [33] A decision system S is a 3-tuple:

S = (U,C,D), (1)

where U is a finite set of instances called the universe, C is the set of conditional
attributes, and D is the set of decision attributes.

4 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

In this paper, we only consider a symbolic decision system with one decision
attribute. This is denoted as S = (U,C, {d}), where C = {a1, . . . , ai} and d is the
decision attribute.

Table 1 An example of a decision table.

U Headache Temperature Lymphocyte Leukocyte Eosinophil Flu
x1 Yes High High Low Normal Yes
x2 No Normal Low High Low Yes
x3 No Normal Low High Low Yes
x4 Yes High High High Normal Yes
x5 Yes High High High High Yes
x6 Yes High High Low High Yes
x7 Yes High Normal Normal High No
x8 No Low Normal Normal High No
x9 Yes Low Normal Normal High No
x10 Yes Normal High Low High No
x11 Yes High High Low High No

For example, Table 1 lists a decision system, where U={x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10, x11}, C = {Headache, Temperature, Lymphocyte, Leukocyte,
Eosinophil}, and d = {Flu}.

2.2 Indiscernibility and Similarity Relations

In a decision system, instances in U can be divided into several subsets according
to arbitrary attributes. Each subset of attributes determines a classification of all
instances into classes having the same description in terms of these attributes.

For example, in Table 1, we can divide the universe into two parts X1, X2

using the decision attribute: U/{d} = {X1, X2}, where X1 = {x1, x2, x3, x4, x5, x6},
X2 = {x7, x8, x9, x10, x11}.

In a decision system, we can describe the relationship between instances through
their conditional attribute values.

Definition 2 [35] Let S be a decision system. Then, ∀A ⊆ C, ∀x, y ∈ U , the
indiscernibility relation IND(A) is defined as:

IND(A) = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ A}. (2)

It is easy to see that the indiscernibility relation defined in this way is an e-
quivalence relation on U that partitions the universe U into equivalence classes:
[x]A = {y ∈ U |(x, y) ∈ IND(A)}. Using these equivalence classes, we are able to
define the lower and upper approximation of any subset of the universe X ⊆ U as:

lA(X) = {x ∈ U |[x]A ⊆ X}, (3)

uA(X) = {x ∈ U |[x]A ∩X 6= ∅}. (4)

The lower approximation lA(X) can be interpreted as the elements definitely be-
longing to X, whereas the upper approximation considers those possibly belonging
to X. Now, let S be a decision system and Xi its decision classes. If two instances

Representative-based classification through covering-based neighborhood rough sets 5

have the same conditional attribute values but different decision attribute values,
they are called contradictory. Decision systems with contradictory instances are
inconsistent. There are certain techniques, including those based on rough sets
[36,37,38], that deal with such inconsistency. However, in this work, we will not
consider such a situation. Therefore, we will remove these contradictory instances
from U to form a new universe. Indeed, using the lower approximation, we can
point out the elements that can be classified with certainty given our knowledge
(represented by a set of attributes A). This collection of elements is named the
positive region:

POSA(d) =
⋃

Xi∈U/{d}

lA(Xi). (5)

We can observe that two objects in U fall into IND(C) if and only if they
have the same values on all attributes in C according to Definition 2. Such a case
may be too strict to be used in many applications. To overcome this issue, several
generalized models have been defined [13,39]. First, by relaxing the transitivity
requirement of the indiscernibility relation, we obtain a similarity relation. In this
case, we do not get a partition, but a covering. That is, the similarity classes are
not necessarily disjoint. In the case of numerical attributes, similarity is usually
defined using a distance. In the case of categorical data, there are several possible
ways of defining similarity relations, usually based on a similarity measure. For an
overview, we refer to [40]. In our work, we consider the overlap measure and the
induced similarity.

Definition 3 Let S = (U,C, {d}) be a categorical decision system. The overlap

measure between x, y ∈ U with respect to A ⊆ C is:

sim(x, y,A) =
|{a ∈ A|a(x) = a(y)}|

|A| , (6)

and the overlap similarity OS(x, y,A) = {(x, y)|sim(x, y,A) ≥ θ} for a given thresh-
old θ ∈ { 1

|A| ,
2
|A| , . . . , 1}.

Note that this concept is the same as the measure for the quantitative indiscerni-

bility relation discussed in [35]. Thus, the overlap measure counts the percentage
of equal attributes between two objects, and if this percentage is higher than a
fixed threshold, the two objects are said to be similar. For example, in Table 1,
because none of the conditional attribute values are shared by x1 and x2, we obtain
sim(x1, x2) = 0

5 = 0. Hence, regardless of the threshold, x1 and x2 are not similar.
On the other hand, x1 and x4 have four conditional attribute values in common,
so sim(x1, x4) = 4

5 = 0.8 and x1 and x4 are similar for any θ ≥ 0.8.
A similarity relation is the first step towards (at least) two different generaliza-

tions of rough sets: relation- and covering-based. We now briefly introduce some
concepts of covering rough sets.

2.3 Neighborhood and Covering Rough Sets

At the heart of standard rough set theory is the notion of a partition, where
equivalence classes cover the universe and are disjoint. If we remove this second
requirement, we obtain a covering.

6 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

Definition 4 Given a universe U , a covering of U is a collection of sets Ci ⊆ P(U)
such that ∪Ci = U .

As a partition is obtained by an equivalence relation, a covering can be obtained
by clustering objects according to a similarity relation.

Definition 5 The neighborhood of x ∈ U with respect to a similarity measure
Sm : U × U 7→ R and a threshold θ ∈ R is:

nh(x, θ) = {y ∈ U |Sm(x, y) ≥ θ}. (7)

Here, the threshold θ is given by the users. Obviously, nh(x, θ) gradually in-
creases as the threshold θ decreases. For example, considering the overlap mea-
sure in Table 1, we get U/{d} = {X1, X2}, where X1 = {x1, x2, x3, x4, x5, x6},
X2 = {x7, x8, x9, x10, x11}. As the similarity degree θ decreases, we can respec-
tively obtain nh(x1, 1) = {x1}, nh(x1, 0.8) = {x1, x4, x6, x11}, and n(x1, 0.6) =
{x1, x4, x5, x6, x10, x11}.

In the extreme case, θ is equal to zero and all instances are neighbors of the
given one. We are more interested in the minimal possible value of θ.

Definition 6 Let S = (U,C, {d}) be a categorical decision system, A ⊆ C, and
U/{d} = {X1, X2, . . . , Xk}. The minimal possible threshold value for x ∈ Xi is:

θ∗x = min{θ|nh(x, θ) ⊆ Xi}. (8)

Note that θ∗x is not specified by the user. Rather, it is determined by the decision
system and x. This determines, in turn, the maximal possible neighborhood of x.

Definition 7 The maximal neighborhood of x ∈ U is:

nh∗(x) = nh(x, θ∗x). (9)

Fig. 1 illustrates the determination of θ∗x1
with overlap similarity. Here, we

observe nh(x4, 1) = {x4}, nh(x4, 0.8) = {x1, x4, x5}, and nh(x4, 0.6) = {x1, x4, x5,
x6, x11}. Since d(x1) = d(x5) = d(x4), θ∗x1

≤ 0.8. However, d(x11) 6= d(x4), and
hence θ∗x4

> 0.6. Consequently, 0.6 < θ∗x4
≤ 0.8, and nh∗(x4) = {x1, x4, x5}. For

simplicity, we let θ∗x1
= 0.8.

Finally, one may wonder whether a covering can be somehow simplified. Indeed,
as the elements of the covering can overlap, a set Ci can be the union of some
others, or it can be a subset of another and so on. According to the application, one
may wish to avoid some of these situations containing redundant information. In
this sense, several notions of covering reduction have been proposed in the literature
[41,42]. Here, we are interested in maximizing the size of the neighborhoods, thus
eliminating small (redundant) ones.

Definition 8 Let C = {Ci} be a covering of a set U . A set Ci ∈ C is redundant

if it is a subset of another set Cj ∈ C. A reduct of C is the covering obtained by
eliminating redundant sets from C.

A covering not containing redundant elements is also called a genuine covering
[43,44].

Representative-based classification through covering-based neighborhood rough sets 7

5x

θ=1

θ=0.8

θ=0.6

θ=0.4

θ=0.2

Fig. 1 An illustration of θ∗x.

3 Problem decomposition

In this section, we consider the general classification problem. Both conditional at-
tributes and decisional attributes are nominal. There is no additional information
such as the weight of each attribute, test cost of data [45,46,47,48], or misclassi-
fication costs for wrong predictions [49,50].

Problem 1 Classification

Input: The training set TR and the test set TS.
Output: Prediction of the decision attribute values of the test set.
Optimization object: Maximize the precision.

Many popular classifiers use the same technique for training and testing. For
example, the ID3 algorithm trains a decision tree using the training set. This
decision tree is employed for classification on the test set.

Here, we propose a new framework for classification. The key issue is to de-
compose Problem 1 into two subproblems, one for training and one for testing.
These problems are given by Problems 2 and 3, respectively.

Problem 2 Representative selection

Input: The training set TR.
Output: A representative set Y ⊆ TR and respective θ∗x for any x ∈ Y .
Constraint: CR = {(x, θ∗x)|x ∈ Y } is a covering of TR, namely ∪CR = TR.
Optimization object: Minimize |Y |.

Problem 3 Representative-based prediction

Input: The test set TS, representative instances set Y , and respective θ∗x for
any x ∈ Y .

Output: Predicted class label of any x′ ∈ TS.
Optimization objective: Maximize the precision.

There are a number of issues concerning Problem 2. First, similar to feature se-
lection, representative selection is essential in reducing the data size. In fact, there
are other popular representative selection techniques such as SVM [8,51], which

8 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

are mainly designed for numeric data. Second, as a representative, each selected
instance should preserve the information of a group of instances. This group is
given by the neighborhood of the representative. Third, the set of representatives
as a whole should preserve certain properties of the data. As indicated by the
constraint, all instances in the training set (or, more accurately, all instances in
the positive region) should be covered by the neighborhoods of one or more rep-
resentatives. Fourth, each representative and respective neighborhood essentially
correspond to a decision rule in the training set. The coverage of the neighbor-
hoods can also be viewed as the coverage of the decision rule set. However, this
rule set is not necessarily employed for classification on the test set. This issue will
be discussed later. Fifth, as indicated by the optimization objective, the number
of representatives should be as small as possible. According to the principle of
Occam’s razor [52], smaller rule sets are more reliable.

There are also a number of issues concerning Problem 3. First, the input of the
problem includes the output of Problem 2, namely the representatives and their
respective thresholds. In other words, many instances in the training set are not
considered in this problem. Second, it is easy to predict instances that fall within
the control range of some representative neighborhoods, as each representative
naturally corresponds to a decision rule. However, for instances beyond the control
of all representatives, prediction is not straightforward if we employ rule-based
approaches. Third, as indicated by the optimization objective, we maximize the
prediction precision.

4 Proposed algorithms

In this section, we propose two algorithms to deal with Problems 2 and 3. These are
the representative generation algorithm and the representative-based classification
algorithm, respectively.

4.1 The representative generation algorithm

In this subsection, we describe the representative generation algorithm. There are
two stages:

1. Neighborhood construction. Based on Definition 7, the maximal neighborhood
of each instance is constructed.

2. Representative selection and redundancy removal. A greedy approach is de-
signed to select a set of representatives whose neighborhoods cover the train-
ing set. Another approach is designed to remove redundant representatives
introduced in the process of greedy selection.

Algorithm 1 lists the representative generation algorithm. Steps 1–3 correspond
to neighborhood construction, and Step 4 corresponds to representative selection
and redundancy removal. Specifically, Step 1 computes the similarity among all
instance pairs in the training set. Step 2 computes the threshold θ∗x for each in-
stance, and Step 3 constructs the neighborhood of each instance. Step 4.1 selects
representatives through covering block selection, and Step 4.2 removes redundant
representatives.

Representative-based classification through covering-based neighborhood rough sets 9

Algorithm 1 Representative generation RG

Input: The decision system S = (U,C, {d}).
Output: A representative instances set Y and a covering CR = {(x, θ∗x)|x ∈ Y }.
Constraint: Y ⊆ U and

⋃
CR = POSC(d).

Optimization objective: Minimize |Y |.

1: Y = ∅, CR = ∅; // initialize the output.
//Step 1: Compute all instances similarity in U .

2: Compute sim(x, y), where (x, y) ∈ U × U ;
//Step 2: Compute θ∗x in U .

3: for (each x ∈ U) do
4: low = 0, upper = 1, middleTheta = (low + upper)/2;
5: while (upper - low)≥ 1

|C| do

6: for (each y ∈ U) do
7: if (sim(x, y) ≥ middleTheta) ∧(d(x) 6= d(y)) then
8: low = middTheta;
9: break;

10: end if
11: if (y = |U | − 1) then
12: upper = middTheta;
13: end if
14: end for
15: end while
16: θ∗x = middleTheta;
17: end for

//Step 3: Construct neighborhood nh∗(x)
18: for (each x ∈ U) do
19: nh∗(x) = ∅;
20: for (y ∈ U) do
21: if (sim(x, y) ≥ θ∗x) then
22: nh∗(x) = ∪{y};
23: end if
24: end for
25: end for

//Step 4: Representative selection and removal.
26: Compute U/{d} = {X1, X2, . . . , X|vd|};
27: for (i = 1 to |vd|) do
28: X = Xi;

//Step 4.1: Selection.
29: while X 6= ∅ do
30: Select x ∈ U ∩Xi st. |nh∗(x) ∩X| is maximal;
31: Yi = Yi ∪ {x};
32: X = X − nh∗(x);
33: end while

//Step 4.2: Removal.
34: for (each x ⊆ CRi) do
35: if (

⋃
x′∈CRi−{x} nh

∗(x′) = Xi) then

36: Yi = Yi − {x};
37: end if
38: end for
39: end for
40: CR = {(x, θ∗x)|x ∈ Y };
41: Return Y and CR.

We describe the algorithm in further detail through an example. Step 1 corre-
sponds to Lines 1–2 of the algorithm. We compute the similarity between instance
pairs in the training set according to Equation (6). The similarity is then used

10 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

in Steps 2 and 3 to calculate the maximal neighborhood of an instance. Table 2
presents the similarity between the instances in Table 1. Naturally, sim(x, y) =
sim(y, x) and sim(x, x) = 1. Therefore, we can ignore approximately half of the
elements.

Table 2 Similarity between instance pairs.

xi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
x1 1 0 0 0.8 0.6 0.8 0.4 0 0.2 0.6 0.8
x2 - 1 1 0.2 0.2 0 0 0.2 0 0.2 0
x3 - - 1 0.2 0.2 0 0 0.2 0 0.2 0
x4 - - - 1 0.8 0.6 0.4 0 0.2 0.4 0.6
x5 - - - - 1 0.8 0.6 0.2 0.4 0.6 0.8
x4 - - - - - 1 0.6 0.2 0.4 0.8 1
x7 - - - - - - 1 0.6 0.8 0.4 0.6
x8 - - - - - - - 1 0.8 0.2 0.2
x9 - - - - - - - - 1 0.4 0.4
x10 - - - - - - - - - 1 0.8
x11 - - - - - - - - - - 1

Step 2 corresponds to Lines 3–17 of the algorithm. We compute θ∗x using a
binary search for each instance according to Definition 6. This takes advantage of
Table 2 and the decision attributes of Table 1. Any instance whose similarity with
x is greater than or equal to θ∗x should be subjected to the same decision as x.
Since there are m attributes, there are m+ 1 possible values of θ∗x, i.e., 0, 1

m , 2
m ,

. . . , and 1. This process is illustrated in Fig. 1.

Step 3 corresponds to Lines 18–28. We obtain the neighborhood according to
θ∗x computed in Step 2. Table 3 lists the maximal neighborhood and respective
θ∗ of each instance. With only five conditional attributes, there are six possible
similarity thresholds, i.e., 0, 1

5 ,
2
5 , . . . , and 1. We observe that θ∗xi

is never equal to
any threshold. This is because we use a binary search to compute θ∗x. In this way,
θ∗x = 0.88 is equivalent to θ∗x = 1, and θ∗x = 0.12 is equivalent to θ∗x = 0.2.

Table 3 Neighborhoods and θ∗.

xi nh∗(xi) θ∗xi

x1 {x1} 0.88
x2 {x2, x3, x4, x5} 0.12
x3 {x2, x3, x4, x5} 0.12
x4 {x1, x4, x5} 0.62
x5 {x5} 0.88
x6 {x6} 0.88
x7 {x7, x9} 0.62
x8 {x7, x8, x9, x10, x11} 0.12
x9 {x7, x8, x9, x10, x11} 0.38
x10 {x10} 0.88
x11 {x11} 0.88

Step 4 corresponds to Lines 26–41. It follows the neighborhood construction
method. Step 4.1 selects some blocks to cover POCC({d}). To minimize the number
of neighborhoods, we use a greedy strategy. Each time we choose the largest block

Representative-based classification through covering-based neighborhood rough sets 11

that could cover the remaining part of POCC({d}). Line 30 allows us to choose
the block that covers the largest part of X. Although some blocks may be larger,
the areas of X they cover are smaller. These are therefore not selected. The main
reason for this situation is that some blocks are interleaved sets. We select blocks
until POCC({d}) has been completely covered. Step 4.2 then removes redundant
blocks (if any). Redundant blocks may occasionally appear as a result of the greedy
selection strategy. Although not redundant when selected, they may be covered
by other blocks that are subsequently added. Therefore, some removal process is
required.

We now analyze the time complexity of Algorithm 1.

Proposition 1 The complexity of Algorithm 1 is O(n2(p+m)), where n is the number

of objects, m is the number of attributes, and p is the number of representatives.

Proof First, we compute the similarity of all instances in U , as described in Step
1. Let m be the number of attributes and n be the number of instances in the
training set. We must compare the current instance with all other instances on
all of the attributes. That is, every instance needs to be compared with another
(n−1) instances on each attribute. Hence, the time cost of comparing and judging
is (n− 1)×m for one instance, and so the time complexity of this step is O(n2m).

Second, we compute the maximal threshold θ∗, as described in Step 2.We use
a binary search to obtain θ∗x. As there are m attributes, there are m + 1 possible
values of θ∗x (i.e., 0, 1

m , 2
m , . . . , and 1). We need to compute the value of dlogme

n times with respect to the other n − 1 instances to determine θ∗. The time cost
of computing θ∗ is n× (n− 1)× dlogme, giving a time complexity for this step of
O(n2 logm).

Third, we also need to obtain the covering block for each instance, as described
in Step 3. If sim(x, y) ≥ θ∗x, instance y belongs to nh∗(x). As we need to compare
the threshold θ∗ with all instance similarities, the time cost in computing the
covering block for each instance is (n − 1). The total time cost for this step is
n× (n− 1), and so the time complexity of this step is O(n2).

Finally, we must select representatives using covering reduction and remove
redundant blocks, as described in Step 4. We employ a greedy strategy to select
representatives that cover maximal instances. Each time a representative is select-
ed, we recalculate the number of instances that are covered by blocks. Thus, we
have n comparisons for each block. Let p be the number of representative selected.
The time cost will be n × (n − 1) × p, giving a time complexity in Step 4.1 of
O(n2p). To remove redundant blocks, we must determine whether each block is
completely covered by other blocks. The time cost is p × (p − 1) × n, and so the
time complexity in Step 4.2 is O(p2n). The number of representatives p is much
smaller than the number of instances n. Hence, the time complexity in this step
is O(n2p).

To summarize, let n be the number of instances, m be the number of attributes
in the training set, and p be the number of representatives. Since p ≤ n, the time
complexity of Algorithm 1 is:

O(n2m) +O(n2 logm) +O(n2) +O(n2p) = O(n2(p+m)). (10)

12 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

4.2 The representative-based classification algorithm

In this subsection, we describe the representative-based classification algorithm.
One approach is to view each neighborhood of the input as a decision rule. A new
instance falling into a neighborhood will be assigned the class label of the respective
representative. However, for many new instances, there may be no neighborhood
that covers it. Therefore, we borrow an idea from the kNN method to design our
algorithm.

A key issue of kNN-like algorithms is how to define or design the distance
function. Let Y be the set of representatives. The distance between instance x′

and a representative x ∈ Y is:

distance(x′, x) =
1

sim(x′, x)
− 1

θ∗x
. (11)

This distance function considers not only the similarity of instances, but also
the minimal neighborhood threshold, which is an input of the problem. Note that
the distance cannot simply be interpreted as that in a Euclidean space. It may be
negative or zero, which means that x′ is in the range of nh∗(x). If the distance
is positive, then x′ is beyond the control range. In Fig. 2, we can observe that
distance(x′2, x2) < 0 and distance(x′2, x3) < 0, whereas distance(x′2, x1) > 0. In
particular, distance(x′1, x1) = distance(x′1, x2) = distance(x′1, x3) = 0.

Fig. 2 The distance between test instances and representatives.

We now discuss how to determine the class label of a new instance x′. We
calculate the distance between x′ and each x ∈ Y . The set of representatives that
are the minimal distance from x′ is:

X = {x ∈ Y |distance(x′, x) = mds(x′, Y)}, (12)

where

mds(x′, Y) = min{distance(x′, x)|x ∈ Y }. (13)

Representative-based classification through covering-based neighborhood rough sets 13

Algorithm 2 Representative-based classification (RC)

Input: A test case x′, representative instances set Y , and covering CR = {(x, θ∗x)|x ∈ Y }.
Output: Predicted class label of x′.

1: DS = 0; //store the current distance.
2: MDS = MAX VALUE; // store the minimum distance.
3: X = ∅; //store representatives for which distance(x′, x) = MDS.
4: for (each x ∈ Y) do
5: Compute sim(x′, x);
6: Compute distance DS = distance(x′, x) according to Equation (11);

//seek the minimum distance.
7: if (DS < MDS) then
8: MDS = DS;
9: X = {x};

10: else {(DS = MDS)}
11: X = X ∪ {x};
12: end if
13: end for

//Predicted class label of x′.
14: Compute d′(x′) according to Equation (14);
15: Return d′(x′).

Equation (13) gives the minimal distance between x′ and Y , which we denote as
MDS. The predicted class of x′ is:

d′(x′) = arg max
1≤i≤|vd|

|{x ∈ X|d(x) = i}|. (14)

In other words, we use the standard voting method according to Equation
(14). In Fig. 2, it is easy to see that the decision attribute value of x′2 is ′+′. The
minimal distance between instance x′1 and all representatives is zero. Hence, the
decision attribute value of x′1 is ′+′, because there exist two representatives whose
attribute values are ′+′ and only one representative that is ′−′.

Algorithm 2 gives the pseudo-code for the representative-based classification
algorithm. This uses Equations (11) and (14). Note that, in Line 9, X is reset to
contain only one representative. Line 11 adds a new representative x to X while
distance(x′, x) = MDS.

In Algorithm 2, we need to compare each test instance with all representatives.
We use all attributes to compute the similarity between a test instance and a
representative. The time cost of computing the similarity between test instances
and all representatives is p ×m, where p is the number of representatives and m

is the number of attributes. The time complexities of computing the distance and
seeking the minimal distance are O(p). Overall, the time complexity of Algorithm
2 is O(pm).

5 Experiments

In this section, we describe the results of extensive computational tests that es-
sentially address the following questions.

1. What kind of datasets is our algorithm most appropriate for?
2. How does the size of the training set influence the performance of our approach?

14 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

3. How does the performance of the proposed approach compare with that of
algorithms such as ID3, C4.5, NEC, and NCR?

To compare with other classifiers, we must consider suitable evaluation mea-
sures. For existing approaches such as ID3, some new instances may not be classi-
fied. Therefore, we must consider not only precision, but also recall. We will adopt
the widely used F-measure [53,54] for this purpose. Let P be the proportion of
correctly classified instances with respect to all classified instances, and R be the
proportion of correctly classified instances with respect to all instances in the test
set. The F-measure is given by

F1 =
2PR

P +R
. (15)

The most important parameter in the NEC algorithm is the threshold δ, which
determines the size of the neighborhood. Hu et al. [25] described a method to
compute this threshold as δ = min(∆(xi, s)) +w · range(∆(xi, s)), w ≤ 1, where xi
is the set of training objects, and min(∆(xi, s)) is the minimal distance between xi
and the test object s. The range(∆(xi, s)) is the value range of ∆(xi, s) with respect
to all training objects. In this case, the threshold δ is dynamically assigned based
on the training objects and test objects. More important is how to determine
the value of the parameter w. To compare with the NEC algorithm, we use an
empirical range of w.

5.1 Experimental setup

Experiments were undertaken on 10 real-world datasets from the UCI machine
learning repository. These include numeric datasets, such as Wpbc, Wdbc, Wine,
and Iris, which were discretized on all attributes. The others contain nominal or
categorical data. A description of these datasets is given in Table 4.

The general experimental scenario was repeated for each dataset. We randomly
divided each dataset into two parts, one for training and the other for testing. To
obtain training and test sets of different scales, we used six different proportions to
divide the datasets. The Mushroom dataset contains a large number of instances,
and there are more attributes contained in the Splice and Kr-vs-kp datasets. Hence,
we varied the proportions for these datasets from 0.02 to 0.12 in steps of 0.02. The
proportion of training data in the other datasets was varied from 0.1 to 0.6 in
steps of 0.1. We compare the accuracy of our RC algorithm with that of ID3 and
C4.5 implemented in WEKA (where C4.5 is also called J48). We also present a
comparison with the NEC and NCR algorithms. We undertook 10 experiments for
each division, and computed the average accuracy.

To conduct the experiments, it was necessary to determine the optimal value of
w, which controls the size of the neighborhood in the method of [25]. We increased
w from 0 to 0.6 in steps of 0.02, and computed the classification accuracies on the
50% split for all datasets except Mushroom, Kr-vs-kp, and Splice. The percentage
split for these three datasets was only 10%. Fig. 3 (a), (b) show the classification
accuracy with respect to w for all datasets. We can see a similar trend in each
curve, with the accuracy first increasing and then decreasing as the threshold w

rises. The optimal accuracies occur near the point w = 0.1; hence, we set the
threshold to w = 0.1 in the NEC algorithm.

Representative-based classification through covering-based neighborhood rough sets 15

Table 4 Description of four datasets.

Attributes Class Instances
Iris 5 3 150

Tic-tac-toe 10 2 958
Wine 14 3 178
Voting 17 2 435
Zoo 17 8 101

Mushroom 23 2 8124
Wdbc 31 2 569
Wpbc 34 2 198

Kr-vs-kp 37 2 3196
Splice 61 3 3190

The NCR algorithm greedily searches the largest neighborhood of instances
in the forward search step, and removes the redundant rules. If the margin of
training instances is less than zero, we set the margins to zero. This indicates that
this instance covers itself while its margin is less than or equal to zero. If no rule
matched the test object, it was classified to the class of the nearest neighborhood.

0 0.1 0.2 0.3 0.4 0.5 0.6

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

w

A
c
c
u
r
a
c
i
e
s

 zoo
voting
mushroom
wdbc
wine

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0.56
0.58
0.6

0.62
0.64
0.66
0.68
0.7

0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

w

A
c
c
u
r
a
c
i
e
s

tic−tac−toe
wpbc
iris
kr−vs−kp
splice

(b)

Fig. 3 Classification accuracy with respect to w.

5.2 Results

Table 5 lists the average number of representatives in some of the datasets. We can
see that the number of representatives increases as the scale increases. The rate of
increase is relatively slow for the Zoo and Mushroom datasets. For example, for the
Voting dataset, the number of representatives increases linearly with respect to the
number of training data, whereas the number of representatives for the Mushroom
dataset only increases from 16 to 21.9 (nearly 40% increase) as the number of
training data increases by a factor of five. The number of representatives can be
viewed as the number of rules. Therefore, a slower increment indicates that our
approach is more appropriate for the dataset.

16 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

Table 5 Average number of representatives for four datasets.

Training-scale 0.1 0.2 0.3 0.4 0.5 0.6
Tic-tac-toe 45.2 72.4 108.6 135.4 170.6 207.4

Voting 6.6 14.2 18.5 22.5 31.1 35.6
Zoo 4.7 6.4 7.3 8.1 8.5 9.2

Training-scale 0.02 0.04 0.06 0.08 0.1 0.12
Mushroom 16 17 19.7 19.8 20.8 21.9

Fig. 4 illustrates the average support of the representatives. The size of a block
denotes the number of instances it contains. Because each representative corre-
sponds to a block, the size of the block is called the support of the representative.
The average support of all representatives indicates the degree of similarity among
objects. Naturally, a larger support indicates more generality in the representative,
and a better ability to predict new instances. The overlap among blocks means
that the average support of the representatives times the number of representa-
tives is greater than the size of the training set. Therefore, we need to study the
average support of each representative independently.

From Fig. 4, we can observe that increasing the size of the training set produces
a different increase in the average support of representatives for each dataset. The
Tic-tac-toe and Voting datasets remain unchanged, indicating that new instances
seldom fall into existing blocks. This suggests these datasets are more irregular. In
contrast, the Mushroom and Zoo datasets display a linear increase, which implies
that they are quite regular. These results indicate again that our approach is more
appropriate for the Mushroom and Zoo datasets. Generally, both Table 5 and Fig.
4 reveal this phenomenon, even though there is no strict relationship between the
average support of representatives, the number of representatives, and the size of
the training set.

0.1 0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

Training set proportion

A
v
e
r
a
g
e

s
u
p
p
o
r
t

voting
zoo
tic−tac−toe

(a)

0.02 0.04 0.06 0.08 0.1 0.12
10

15

20

25

30

35

40

45

Training set proportion

A
v
e
r
a
g
e

s
u
p
p
o
r
t

mushroom

(b)

Fig. 4 Average support of representatives for four datasets.

Fig. 5 shows the runtime and number of basic operations of Algorithm 1 for
three bigger datasets. All the experiments were carried out on a personal computer

Representative-based classification through covering-based neighborhood rough sets 17

running Windows 8.1 with an Intel(R) Core(TM) i5-3210M CPU @2.50 GHz and
4.00 GB memory. We used the Java SE 1.7 programming language.

Fig. 5 (a), (c) shows the runtime and number of basic operations with respect
to n. We can see that the results comply with our complexity analysis. On the
Splice dataset with n = 3, 000, there are some 7.5 billion basic operations taking
about 22 s. Hence, the algorithm is efficient and appropriate for real applications.

Fig. 5 (b), (d) shows the runtime and number of basic operations with respect
to m. We selected 1,000 instances from these three datasets, and varied the number
of attributes from 2 to 21. Although these two subfigures exhibit a similar trend,
the lines are not smooth. This is because the change in p with respect to the
increase in m is somewhat irregular.

500 1000 1500 2000 2500 3000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

x 10
4

n (number of instances)

R
u
n
n
i
n
g

t
i
m
e

(
m
s
)

kr−vs−kp
splice
mushroom

(a)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400

m (number of attributes)

R
u
n
n
i
n
g

t
i
m
e

(
m
s
)

kr−vs−kp
splice
mushroom

(b)

500 1000 1500 2000 2500 3000
0.01

0.51

1.01

1.51

2.01

2.51

3.01

3.51

4.01

4.51

5.01

5.51

6.01

6.51

7.01

7.51

x 10
9

n (number of instances)

B
a
s
i
c

o
p
e
r
a
t
i
o
n
s

kr−vs−kp
splice
mushroom

(c)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0.1

0.6

1.1

1.6

2.1

2.6

3.1

3.6

4.1

4.6

5.1

5.6

6.1

6.6

7.1

7.6

x 10
8

m (number of attributes)

B
a
s
i
c

o
p
e
r
a
t
i
o
n
s

kr−vs−kp
splice
mushroom

(d)

Fig. 5 Runtime and basic operations on three datasets.

Table 6 lists the average classification accuracy and standard deviation for each
dataset. As the number of training instances increases, the classification accuracy
improves. The classification accuracies are different for each dataset. For the first
split percentage, all datasets produced poor classification accuracies. For example,
the classification accuracies of Iris, Wpbc, and Splice are 0.6304, 0.6587 and 0.6504,
respectively. However, the results become more reliable when the scale of the
training set increases beyond 0.6, because the classification accuracies exceed 80%,
except for dataset Wpbc.

18 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

The classification results are excellent for Mushroom, but not so good for Iris,
Wpbc, and Splice. This is because the block size barely changes as n increases. The
number of representatives increases rapidly, indicating that the number of rules
also increases. This indicates that the similarity between these instances is lower.
When the scale is very small, all datasets have very low classification accuracy,
except for Mushroom. This is because the number of representatives remains large-
ly unchanged with the increase in n. Hence, the support of the representatives
increases quickly. Thus, the datasets most suited to our approach have smaller
values of p compared with n and a bigger support for the representatives.

Table 6 Classification performance using the RC algorithm.

Training-scale 0.1 0.2 0.3 0.4 0.5 0.6
Iris 63.04± 8.51 71.75± 6.78 76.38± 5.21 79.11± 2.66 77.87± 6.63 81.68± 3.85

Tic-tac-toe 71.69± 1.81 77.34± 1.93 79.84± 13.9 81.60± 1.3 83.95± 1.26 86.22± 1.13
Wine 73.04± 2.79 83.08± 3.14 87.52± 3.54 87.48± 1.66 89.21± 2.71 91.94± 3.26
Voting 88.90± 2.57 92.13± 1.03 92.20± 0.98 92.15± 1.272 93.26± 1.51 93.51± 1.09
Zoo 76.81± 7.04 85.00± 5.41 90.99± 2.75 92.62± 3.88 92.62± 3.88 95.37± 3.14
Wdbc 91.19± 1.39 92.48± 1.25 92.78± 1.16 92.66± 1.30 94.21± 1.17 93.51± 0.80
Wpbc 65.87± 7.75 66.60± 2.91 67.77± 3.46 68.07± 5.00 71.01± 4.42 69.88± 4.58

Training-scale 0.02 0.04 0.06 0.08 0.1 0.12
Mushroom 97.56± 1.06 98.26± 0.55 99.21± 0.28 99.26± 0.27 99.57± 0.23 99.59± 0.21
Kr-vs-kp 76.01± 1.41 78.92± 2.21 82.34± 1.06 83.17± 1.09 84.79± 0.89 85.33± 1.22
Splice 65.04± 1.82 68.03± 2.25 70.25± 1.72 79.34± 1.23 80.11± 0.59 81.43± 0.67

Fig. 6 compares the RC, ID3, C4.5, NEC, and NCR algorithms in terms of
the F-measure F1 instead of the accuracy. ID3 cannot classify all instances, and
the accuracy is computed as the number of correctly classified instances divided
by the total number. Thus, the single accuracy may not provide a comprehensive
measure.

The other four algorithms classify all instances in the test dataset. It is obvious
that R = P on this occasion, according to Equation (15), and we finally observe
F1 = P . F1 coincides with the accuracy in this situation. With the ID3 algorithm,
the unclassified instances generally cause R to be smaller than P . The value of F1

increases with the scale of the training set on these datasets.

Fig. 6 compares the classification accuracies for different classifiers and per-
centage splits. Fig. 6 (a)–(f) shows the accuracy for nominal data, and the other
subfigures indicate the accuracy with numerical data. Comparing these accuracies,
we find that the classification performance of our approach is superior to that of
the NEC and NCR algorithms for nominal data, but weaker than the NEC and N-
CR algorithms for numerical data. This suggests that our approach is better suited
to nominal data. We can also see that our algorithm produced a better classifica-
tion performance than the ID3 algorithm (Fig. 6 (a), (c), (g), (h), and (i)). The
performance is comparable in Fig.6 (b), (d), (f), and (j), and slightly worse with
the Kr-vs-kp dataset. Overall, this means that our approach is better than the ID3
algorithm. Fig. 6 (a), (c), (g), and (h) indicate that our approach is better than the
C4.5 algorithm, whereas Fig. 6 (b), (e), (f), (i), and (j) suggest the opposite. Only
on the Mushroom dataset is the performance comparable. From the above exper-
imental analysis, we can state the following conclusions: our representative-based

Representative-based classification through covering-based neighborhood rough sets 19

neighborhood classifier is a simple, efficient, and powerful classification system,
especially for nominal datasets.

5.3 Discussion

We can now answer the questions posed at the beginning of this section.

1. Our algorithms are appropriate for datasets in which the number of represen-
tatives is very small compared with the number of objects and the support of
the representative blocks is large. This is because the bigger support indicates
better generality. Table 5, Fig. 4, and Table 6 illustrate this phenomenon.

2. As Table 6 shows, classification quality improves as the scale of the training set
increases. Therefore, our algorithm is more appropriate for larger datasets. The
performance improves smoothly with the increase in training data density.

3. A comparison study showed that the performance of our approach is compa-
rable to that of the classical ID3 and C4.5 algorithms. It is also better than
the NEC and NCR algorithms for nominal data. Because NEC and NCR are
naturally suited to numeric data, our algorithm performed worse with the dis-
cretized data. On the other hand, when we transferred nominal data to numeric
data directly for NEC and NCR, they performed worse than our algorithm.
This indicates that we should choose appropriate algorithms for different data
types.

6 Conclusions and future work

In this paper, we have proposed a classification technique with two subalgorithms
by integrating model-based and lazy learning techniques. A number of represen-
tatives are selected using a covering-based neighborhood rough set. These rep-
resentatives are employed for classification through a kNN-like approach. This
algorithm takes advantages of both types of learning techniques. Its performance
is better than that of the NEC and NCR algorithms for nominal data.

In future work, we intend to compare, under our framework, similarity mea-
sures other than the overlap one studied here. Further, we plan to improve our
method to handle inconsistent datasets. Indeed, we have shown that deleting cer-
tain objects can work effectively, but can cause some errors in classification. Finally,
we would like to design more algorithms under this framework to deal with other
classification problems, such as cost-sensitive scenarios.

Acknowledgements

This work is in part supported by the National Natural Science Foundation of
China under Grant Nos. 61379089, 61379049 and Department of Education of
Sichuan Province under Grant No. 13ZA0136.

20 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

References

1. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery
in databases. AI magazine 17(3) (1996) 37

2. Quinlan, J.: Induction of decision trees. Machine Learning 1 (1986) 81–106
3. Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: a three-

way view decision model. International Journal of Computational Intelligence Systems
4(1) (2011) 1–11

4. Homaifar, A., McCormick, E.: Simultaneous design of membership functions and rule sets
for fuzzy controllers using genetic algorithms. Fuzzy Systems 3 (1995) 129–139

5. Li, H.X., Yao, Y.Y., Zhou, X.Z., Huang, B.: A two-phase model for learning rules from
incomplete data. Fundamenta Informaticae 94 (2009) 219–232

6. Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-
theoretic Rough sets. Fundamenta Informaticae 155(2–3) (2012) 173–188

7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal
approximators. Neural Networks 2 (1989) 359–366

8. Joachims, T.: Making large scale svm learning practical. (1999)
9. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In:

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference
on. Volume 3., IEEE (2004) 32–36

10. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern
Recognition 40 (2007)

11. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning for control. Lazy
Learning 54 (1997) 75–113

12. W. Zakowski: Approximations in the space (u, π). Demonstratio Mathematica 16(40)
(1983) 761–769

13. Yao, J., Ciucci, D., Zhang, Y. In: Generalized Rough Sets. Springer (2015)
14. Yao, Y.Y., Yao, B.X.: Covering based rough set approximations. Information Sciences

200 (2012) 91–107
15. Zhu, W.: Topological approaches to covering rough sets. Information Sciences 177(6)

(2007) 1499–1508
16. Zhu, W.: Relationship between generalized rough sets based on binary relation and cov-

ering. Information Sciences 179(3) (2009) 210–225
17. Zhu, W.: Relationship among basic concepts in covering-based rough sets. Information

Sciences 179(14) (2009) 2478–2486
18. Wang, S.P., Zhu, W.: Matroidal structure of covering-based rough sets through the upper

approximation number. International Journal of Granular Computing, Rough Sets and
Intelligent Systems 2 (2011) 141–148

19. Wang, S.P., Zhu, W., Zhu, Q.X., Min, F.: Characteristic matrix of covering and its appli-
cation to boolean matrix decomposition. Information Sciences 263 (2014) 186–197

20. Hu, Q.H., An, S., Yu, D.R.: Soft fuzzy rough sets for robust feature evaluation and
selection. Information Sciences 180 (2010) 4384–4400

21. Hu, Q.H., Xie, Z.X., Yu, D.R.: Hybrid attribute reduction based on a novel fuzzy-rough
model and information granulation. Pattern Recognition 40 (2007) 3509–3521

22. Hu, Q.H., Yu, D.R., Liu, J.F., Wu, C.X.: Neighborhood rough set based heterogeneous
feature subset selection. Information Sciences 178 (2008) 3577–3594

23. Du, Y., Hu, Q., Zhu, P., Ma, P.: Rule learning for classification based on neighborhood
covering reduction. Information Sciences 181(24) (2011) 5457–5467

24. Sun, L., Xu, J.C., Tian, Y.: Feature selection using rough entropy-based uncertainty
measures in incomplete decision systems. Knowledge-Based Systems 36 (2012) 206–216

25. Hu, Q.H., Yu, D.R., Xie, Z.X.: Neighborhood classifiers. Expert Systems with Applications
34 (2008) 866–876

26. Satterthwaite, M.A.: Strategy-proofness and arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory 10 (1975) 187–217

27. Blake, C.L., Merz, C.J.: UCI repository of machine learning databasesn. http://www.ics.
uci.edu/~{}mlearn/MLRepository.html (1998)

28. Utgoff, P.E.: Id: An incremental id3. (1987)
29. Quinlan, J.R.: C4. 5: programs for machine learning. Volume 1. Morgan kaufmann (1993)
30. Quinlan, J.R.: Bagging, boosting, and c4. 5. In: AAAI/IAAI, Vol. 1. (1996) 725–730

http://www.ics.uci.edu/~{}mlearn/MLRepository.html
http://www.ics.uci.edu/~{}mlearn/MLRepository.html

Representative-based classification through covering-based neighborhood rough sets 21

31. Peterson, R., Silver, E.A.: Decision systems for inventory management and production
planning. Wiley New York (1979)

32. Lin, C.T., Lee, C.S.G.: Neural-network-based fuzzy logic control and decision system.
Computers, IEEE Transactions on 40(12) (1991) 1320–1336

33. Yao, Y.Y.: A partition model of granular computing. Lecture Notes in Computer Science
3100 (2004) 232–253

34. Larose, D.T.: Discovering knowledge in data: an introduction to data mining. John Wiley
& Sons (2014)

35. Zhao, Y., Yao, Y.Y., Luo, F.: Data analysis based on discernibility and indiscernibility.
Information Sciences 177 (2007) 4959–4976

36. Liu, Q.H., Li, F., Min, F., Ye, M., Yang, G.W.: An efficient reduction algorithm based
on new conditional information entropy. Control and Decision (in Chinese) 20(8) (2005)
878–882

37. Liu, Q.H., Chen, L.T., Zhang, J.Z., Min, F.: Knowledge reduction in inconsistent decision
tables. In: Advanced Data Mining and Applications. Springer (2006) 626–635

38. He, X., Min, F., Zhu, W.: Parametric rough sets with application to granular association
rule mining. Mathematical Problems in Engineering 2013 (2013)

39. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Information Sciences 177 (2007)
28–40

40. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: A compar-
ative evaluation. In: Proceedings of the SIAM International Conference on Data Mining,
SDM 2008, April 24-26, 2008, Atlanta, Georgia, USA. (2008) 243–254

41. Zhu, W., Wang, F.Y.: Reduction and axiomatization of covering generalized rough sets.
Information Sciences 152 (2003) 217–230

42. Yang, T., Li, Q.: Reduction about approximation spaces of covering generalized rough
sets. International journal of approximate reasoning 51 (2010) 335–345

43. Bianucci, D., Cattaneo, G., Ciucci, D.: Entropies and co-entropies of coverings with ap-
plication to incomplete information systems. Fundamenta Informaticae 75(1-4) (2007)
77–105

44. Bianucci, D., Cattaneo, G.: Information entropy and granulation co-entropy of partitions
and coverings: A summary. Transactions on Rough Sets X 5656 (2009) 15–66

45. Min, F., Zhu, W.: Attribute reduction of data with error ranges and test costs. Information
Sciences 211 (2012) 48–67

46. Wang, G.Y., Yu, H., Hu, F., et al.: Test-cost-sensitive attribute reduction in decision-
theoretic rough sets. In: Multi-disciplinary Trends in Artificial Intelligence. Springer
(2013) 143–152

47. Min, F., He, H.P., hua Qian, Y., Zhu, W.: Test-cost-sensitive attribute reduction. Infor-
mation Sciences 181(22) (2011) 4928–4942

48. Min, F., Liu, Q.H.: A hierarchical model for test-cost-sensitive decision systems. Informa-
tion Sciences 179(14) (2009) 2442–2452

49. Barakat, N.: Feature ranking utilizing support vector machines’ svs. In: Innovative Com-
puting Technology (INTECH), 2013 Third International Conference on, IEEE (2013) 401–
406

50. Zhao, H., Zhu, W.: Optimal cost-sensitive granularization based on rough sets for variable
costs. Knowledge-Based Systems 65 (2014) 72–82

51. Selakov, A., Cvijetinović, D., Milović, L., Mellon, S., Bekut, D.: Hybrid pso–svm method
for short-term load forecasting during periods with significant temperature variations in
city of burbank. Applied Soft Computing 16 (2014) 80–88

52. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Information
processing letters 24(6) (1987) 377–380

53. Cimiano, P., Staab, S.: Learning by googling. ACM SIGKDD explorations newsletter 6(2)
(2004) 24–33

54. Lu, Q., Getoor, L.: Link-based classification. In: ICML. Volume 3. (2003) 496–503

22 Ben-Wen Zhang · Fan Min(B) · Davide Ciucci

0.1 0.2 0.3 0.4 0.5 0.6

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(a)

0.1 0.2 0.3 0.4 0.5 0.6
0.88

0.885
0.89

0.895
0.9

0.905
0.91

0.915
0.92

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

0.965
0.97

0.975
0.98

0.985
0.99

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(b)

0.1 0.2 0.3 0.4 0.5 0.6
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(c)

0.02 0.04 0.06 0.08 0.1 0.12
0.975

0.98

0.985

0.99

0.995

1

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(d)

0.1 0.2 0.3 0.4 0.5 0.6

0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(e)

0.1 0.2 0.3 0.4 0.5 0.6
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(f)

0.1 0.2 0.3 0.4 0.5 0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(g)

0.1 0.2 0.3 0.4 0.5 0.6
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(h)

0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

0.7
0.72
0.74
0.76
0.78

0.8

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(i)

0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training set proportion

F
1

−
m

e
a

su
re

RC
ID3
C4.5
NEC
NCR

(j)

Fig. 6 Comparison of classification accuracies using the RC, ID3, C4.5, NEC, and NCR
algorithms with (a) Tic-tac-toe, (b) Voting, (c) Zoo, (d) Mushroom, (e) Kr-vs-kp, (f) Splice,
(g) Wine, (h) Wdbc, (i) Wpbc, (j) Iris.

	Introduction
	Preliminaries
	Problem decomposition
	Proposed algorithms
	Experiments
	Conclusions and future work

