Identification of conductivity by minimising a gradient co-linearity mismatch norm

GIOVANNI F CROSTA Milan, IT: 2015 Jan 12

Kurzfaßung

Let $\Omega \subset \mathbb{R}^2$ be bounded by two heteroclinic orbits, Γ_1, Γ_2 of the ∇u -flow. Then $\nabla \cdot (c\nabla u) = 0$ in Ω implies $c \equiv 0$ in $\overline{\Omega}$ [CHICONE and GERLACH, 1987]. Let $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$ be known. The (unique) conductivity \hat{a} , which complies with $\nabla \cdot (\hat{a}\nabla u) = f$, can be identified by minimising with respect to b the norm of $\nabla \tilde{a}[b] \times \nabla u - \nabla b \times \nabla p$ under constraints, where $\nabla \cdot (b\nabla p) = f$ and $\tilde{a}[b]\partial_j u := b\partial_j p, j = 1$ or 2. This is an attempt at justifying the "comparison model" algorithm [SCARASCIA and PONZINI, 1972], which has seen successful practical applications to inverse hydrogeology ever since.

GIOVANNI F CROSTA