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Abstract

By using analytical results for the constrained minimum energy of magnetic
knots we determine the influence of internal twist on the minimum magnetic
energy levels of knots and links, and by using ropelength data from the
RIDGERUNNER tightening algorithm (Ashton et al 2011 Exp. Math. 20 57-90)
we obtain the groundstate energy spectra of the first 250 prime knots and 130
prime links. The two spectra are found to follow an almost identical logarithmic
law. By assuming that the number of knot types grows exponentially with the
topological crossing number, we show that this generic behavior can be justified
by a general relationship between ropelength and crossing number, which is in
good agreement with former analytical estimates (Buck and Simon 1999 Topol.
Appl. 91 245-57, Diao 2003 J. Knot Theory Ramifications 12 1-16). Moreover,
by considering the ropelength averaged over a given knot family, we establish a
new connection between the averaged ropelength and the topological crossing
number of magnetic knots.
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(Some figures may appear in colour only in the online journal)

1. Magnetic knots and links in an ideal fluid

The search for possible relationships between energy and topology has a long history, which
has its roots in Lord Kelvin’s vortex atom theory and Tait’s knot tabulation (see, for instance,
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Figure 1. Magnetic link given by the linking of two magnetic flux tubes.

Kelvin’s original papers reproduced in [9]). Recent advances in knot theory and topological
fluid dynamics have triggered a renewed interest in this problem [14, 16]. Of particular
relevance is the study of magnetic knots, as this study offers a good prototype for a variety
of other problems, where mathematical techniques and results are not readily available. So,
let us consider magnetic knots and links in an ideal, incompressible and perfectly conducting
fluid in $* (i.e. R? U {00}, simply connected). Let u = u(x, ¢) be the fluid velocity, a smooth
function of the position vector x and time ¢, with V - u = 0 in S* and u = 0 at infinity. The
magnetic field B = B(x, ) is frozen in the fluid and has finite energy of

Be{V-B=0, 90B=V x (uxB), L,—normj}. (1)

A magnetic knot is a magnetic flux tube prescribed by the knot type I and the magnetic
field B, defined on a regular tubular support 7 (K) centered on K. We assume K to be a
C?-smooth, closed loop (i.e. a submanifold of S*> homeomorphic to S'), simple (i.e. non-self-
intersecting) and parametrized by the arc-length s. The tube 7 = KL ® S, given by the cartesian
product of KC and the circular disk S is centered on the knot, whose total length is L = L(K)
(hence s € [0, L]), local radius of curvature p > 0, and cross-sectional area A = 7 R? of radius
R > 0.

The knot topology is identified by standard knot tabulation, such as that given in [19]. The
knot is said to be trivial, if IC (the unknot) bounds a smoothly embedded disk, or essential, if
otherwise. A magnetic link is just a finite collection of magnetic knots (as in the example of
figure 1).

Since the magnetic knot is a physical object, it is useful to introduce the volume V (7°), the
magnetic flux ® and the magnetic energy M. The total volume is given by V = V(7)) = nR?L,
with a tubular boundary 97 that is a magnetic surface, i.e.

supp(B) := T (K), B.-v, =0 ond7, 2)

where b, is a unit normal to 97 . The existence and regularity of non-self-intersecting nested
tori, the support of the magnetic field inside 7, is guaranteed by the tubular neighborhood
theorem [20], provided p > R all along K. The magnetic flux ® is defined by

¢=/B.ad2x, 3)
S

where now v is the unit normal to S; the magnetic energy M is given by

_1 2 13
M= B[~ d’x. “)
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Figure 2. Ideal relaxation of magnetic flux tubes: (a) trefoil knot and (b) Hopf link.

2. The prototype problem

For a magnetic knot, whose field is confined to a single tube of signature (V, ®), the
combined action of magnetic stresses and Lorentz force induces the field lines to shrink
like elastic bands, shortening the knot, while conserving volume and flux [11]. Magnetic
energy gradually gets converted into kinetic energy and becomes dissipated by viscosity or
other equivalent effects. As the relaxation progresses, the average cross-section increases
proportionately and the tubular knot becomes thicker and tighter, until the knot topology
prevents any further adjustment. The final state is reached when the relaxation comes to a
complete stop (see figure 2). During this process the knot is also gradually deformed by the
action of a signature-preserving flow (a diffeomorphism), which governs the relaxation from
the initial configuration. Since the tight configuration of the end-state resembles that of an
ideal knot of platonic features [21], magnetic relaxation also provides a physical mechanism
to investigate geometric properties of ideal knots.

Let (r, 9g, s) denote an orthogonal, curvilinear coordinate system centered on /C (see
[10]); r € [0, R] and ¥ € [0, 27] are the radial and azimuthal coordinates on the cross-
sectional plane of S, with origin O at s = 0 (where O is an inflexion-free point of k), and
g = 0 given by the direction of the principal normal to X at O. The metric is orthogonal,
with scale factors i, = 1, hy, = r2, hy = 1 — crcos ©, where ¢ = c(s) is curvature,

ﬂ:ﬁ(ﬁR,s)=ﬁR—fr(s‘)ds‘, (5)
0

and T = 7(s) torsion. Orthogonality is ensured by equation (5), which provides the necessary
correction to the standard azimuthal angle by the torsion contribution (see details in [10],
section 3). The results presented below were derived by using this metric.

The magnetic field B may be decomposed into meridian and longitudinal components;
that is

B = (0, By, (r), Bs(r)), (6)

and in general we assume that the longitudinal field is far greater than the meridian field,
i.e. B; > By,. This is consistent with the usual definition of a twisted flux tube, whose field
lines wind around the knot axis in a longitudinal direction. By using the solenoidal condition
V - B = 0, the magnetic field can be expressed in terms of poloidal (meridian) and toroidal
(longitudinal) fluxes ®p and ®7, i.e.

1dd, 1 ddy oY
B = 07__9__ O’_’__ ) 7

( L dr 2nmr dr>+( as  00g ™

where the total field is given by the sum of an average field plus a fluctuating field with zero
net flux, in terms of the flux function v = ¥ (r, ¥, s). The twist h = $p/ D7 of the field
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lines provides the magnetic field framing given by (27r)~! times the turns of twist required to
generate a poloidal field from a toroidal field, starting from ®p = 0.

According to the process described above, knot topology dictates a lower bound on the
relaxation of magnetic energy M, which must be bounded from below by a minimum My, > 0,
which on dimensional grounds is given by (see [12])

Mipin = m(h)®*V~173, (8)

where m(h) is a positive, dimensionless function of the internal twist 4. Of particular interest
is the value of & for which m(h) is minimal (my,;,). Here, a fundamental problem is this [13]:

Problem. Determine i, for knots of minimum crossing number 3, 4, 5, . ...

If & = 0 (a condition referred to as zero-framing), we can prove [15] that for zero-framed
flux tubes we have m(0) = (2/71)1/3cmm; thus

1/3
Mmin = (;) Cmin (DZV_I/S s (9)

where cpin is the topological crossing number of the knot. Equation (9) establishes a
correspondence between the minimum energy levels and topology, since M, X Cmin, @
result of general validity, but still rather loose. From a direct inspection of the knot table (see,
for instance, the standard tabulation in [19]) we have only one knot for ¢y, = 3 (the trefoil)
and ¢y = 4 (the four-crossing knot), but for all the other values of ¢, > 4 there are several
distinct knot types, whose numbers grow exponentially for increasing values of cp, (2 for
Cmin = 3, 3 for cyin = 6, 7 for cpin = 7, 21 for ¢y = 8, and so on). Hence, a natural question
is to determine whether different knot types of the same cpi,-family have the same minimum
energy level or not. This problem will be addressed in the following section.

3. Relaxation of magnetic energy and constrained minima

Let us consider the relaxation of a flux tube in some generality. Let V, = 7L be the partial
volume of the tubular neighborhood of radius r; the ratio of the partial to total volume is
given by V,/V(T) = (r/R)>. Now, let f(r/R) be a monotonically increasing function of r/R;
for example f(r/R) = (r/R)?, with y > 0; y = 2 gives the standard ratio of partial to
total volume, which defines the standard flux tube. A detailed analysis of the relaxation of a
magnetic flux tube with twist was made by Maggioni and Ricca (see [10], section 5). By using
the orthogonal, curvilinear system (r, 9, s) and the magnetic field decomposition given by
(7), a standard minimization of (4) was carried out, subject to the periodicity of ¥ and s. This
led to the following result:

Theorem 1. Let K be an essential magnetic knot with signature {V, ®} and the magnetic field
given by (7). By assuming that
(i) {V, ®} is invariant;
(ii) the circular cross-section is independent of s;
(iii)  is independent of s;
(iv) the knot length is independent of h,

the constrained minimization of magnetic energy yields

2L*2 h2
M* = < Y + 770 ) 92, (10)

8(y — 1)V 2L*
where L* is the minimal tube length of the tight knot.

4



J. Phys. A: Math. Theor. 47 (2014) 205501 R L Ricca and F Maggioni

m(A, h) X =
\ minima for h = — - T
\ N m "
15 \ \“\\ pe //“/
X e o o
\ ///
h h=2 =
\ -~ .
N\ _— P
10 \ * _—— g
e 4 e s
— ¢~ — L
\ h=1 "~
il g
// //
o e a
N i
e i
O e e =t ] =
///’
0 25 5 [ 75 10 125 15 17.5 A
Ao =27

Figure 3. Influence of twist 4 on the energy function m(A, h), plotted against the
ropelength A, according to equation (13). The absolute minimum is given by the tight
torus, for which A = Ay = 27 and m, =~ 2.70.

For the standard flux tube case, we have y = 2 and (10) reduces to

= (T g 11
=\t , (1D
which is equivalent to the functional relation obtained by a scaling argument by Chui and
Moffatt (see [6], equation (4.2), with coefficients left undetermined). Note that because of
the constraints, for any given knot family we have (M*). . > Mp;,, where angular brackets
denote averaging over the number of knots of the same ¢y, family.

In order to investigate the relation between energy and knot topology, let us confine
ourselves to the case of standard flux tubes. It is useful to rewrite equation (11) in terms
of ropelength, a powerful indicator of knot complexity [3]: this is defined by A = L*/R*,
where L* is the minimal length and R* the maximal cross-sectional radius of the knot in tight
configuration. In the case of the unknot, the least possible value of A (say Ag) is that given by the
tight torus; hence A > Aq = 27r. By using V = mR*’L* = cst., and after some straightforward
algebra, we have

. < )\'4/3 7.[4/3],12

2v,-1/3
s T )CDV . (12)

By comparing (8) and (12), we can state (within the validity of the assumptions of the above
theorem) that m(h) can be re-written as

2473 TR
272/3 +
showing explicitly the effect of ropelength and framing on the energy levels.

m(h, h) = (13)

22/3

4. Groundstate energy spectra of knots and links

First, let us investigate the minima i, = mmin(h) by plotting (13) against A for h =
0,1,2,3,...(see figure 3). The absolute minimum 1, corresponds to the zero-framed unknot
(tight torus), givenby & = Oand A = Ag = 27m:m, = (2m2)'/? & 2.70. The groundstate energy
of the zero-framed flux tubes provides the absolute minimum energy level; m(h) remains a
monotonic increasing function of A for 7 < 2: at Ao = 27 we have m(h = 1) = 4.05 and
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Figure 4. Energy spectrum m = m(#x) of tight knots plotted against the knot number
#x, given by the position of the knot K listed according to the increasing value of
ropelength Ax = A(#k). Best fit goodness: 95% confidence bounds, summed square of
residuals (SSE) = 80.27, R? = 0.98, root mean squared error (RMSE) = 0.57.

m(h = 2) = 8.11. For h > 2 the energy minima are attained for # = A/ ; thus, by substituting
the optimal value A = wh in (13), we have

Mumin () = 302507 (h > 2). (14)

For & > 2 (and A > X) the functional dependence of m(h) on A ceases to be monotonic. It is
interesting to note that the same 4** power—law of equation (14) was also found by Chui and
Moffatt by means of a scaling argument (see [6], p 206, equation (4.15)).

The minimum energy spectra of the first prime knots and links is determined by setting
h = 01n (13) and by using the ropelength data (Ag) obtained by the RIDGERUNNER tightening
algorithm [1] for each knot/link type K. A particularly simple expression is obtained by
normalizing m(Ag, 0) with respect to the minimum energy value m, of the tight torus; thus,

we have
4/3
m(K) = m(hg. 0) — ()‘_K) i (15)
2
which gives the one-to-one relationship between minimum energy level and knot ropelength.
Since the relation Ax = A(K) is not known analytically, it must be reconstructed from
numerical data. We take Ax = A(#k), where #x denotes the position of the knot/link K
listed according to the increasing value of ropelength as given by RIDGERUNNER. Hence,
instead of plotting energy levels as functions of the knot/link position according to standard
knot tabulation, by taking Ax = A(#k) in (15) we plot m = m(#), according to increasing
ropelength data. The energy spectra are shown in figures 4 and 5 for the first 250 prime knots
(up to ten crossings) and 130 prime links (up to nine crossings), respectively.

The curve, dotted with circles, is a result of the linear fit made over each ¢, family, whilst
the continuous curve is the best-fit interpolation over all available data. To the first decimal
place, we find that the best-fit interpolations follow an almost identical logarithmic law, given

by

me

I/;l(#K) =a1n#K+b, (16)
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Figure 5. Energy spectrum m = rm(#g) of tight links plotted against the link number
#x, given by the position of the link K listed according to increasing value of ropelength
Ax = A(#g). Best fit goodness: 95% confidence bounds, summed square of residuals
(SSE) = 55.9, R*> = 0.98, root mean squared error (RMSE) = 0.66.

where a = 4.5 and b = bx = 10.5 for knots, b = by = 9.3 for links. This unexpected result
is quite remarkable and calls for some justification. Ropelength is certainly an increasing
function of topological complexity (given by cpin), simply because an increasing number of
crossings implies an increase in the minimal length necessary to tie a flux tube into a knot or
a link. Results on ropelength bounds [3, 5, 7, 8] show that

0(c)l) < ax < O(eminIn® amin), (17)
where O(-) denotes order of magnitude. From (15) we have that m(#x) oc [A(#x)]*/?; by
combining this with (16), we have

[L#)TY? o« aln#tg + b. (18)

Now, if we assume that the number of knots grows exponentially with ¢y, (a plausible
assumption), then #x ~ C“» for some constant C. Hence, by (18) we have [A #HO1Y? X Cmins
or

A#g) oc (19)

min’
providing a result that, if not true in full generality, is certainly in good agreement with the
lower estimate given by (17). Furthermore, let us set (for simplicity) V = ® = 1 in (9), and
define

— Mmin 1
m(cmin) = = —Cmin- (20)
m, b4
We can then relate (9) to (15), and write
1
(’/’N’l(K»cmi“ > m(cmin) = —Cmin, (21)
b4

since for any given K (as was remarked in section 2) 7(K) could be further decreased to the
actual minimum by relaxing the constraints (i)—(iv) of theorem 1. By writing (15) in terms of
#x and substituting this into the above equation, we have

(A#)) ey = 214 (22)

min’
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which gives a new relationship between ropelength, averaged over each cpi, family, and cpip.
Note that the coefficient 27'/4 ~ 2.66 is independent of the knot family, and this result,
in good agreement with (17), is the best analytical result valid for any cp, so far (see, for
instance, [3]).

5. Conclusions

By using the analytical results for the constrained minimum energy of magnetic knots obtained
by Maggioni and Ricca [10], we have established a general functional relationship between
minimum energy levels of knots, links and internal twist &, given by an h*3 power law.
In the case of standard flux tubes our result is in good agreement with an earlier result by
Chui and Moffatt, [6] obtained by a scaling argument. Then, by using ropelength data from
the RIDGERUNNER tightening algorithm developed by Ashton et al [1] we have computed
the groundstate energy spectra of the first 250 prime knots and 130 prime links. We have
shown that the two spectra follow an almost identical logarithmic law. By assuming that the
number of knot types grows exponentially with the topological crossing number cp,, we
have shown that this generic behavior can be justified by the general relationship between
ropelength and crossing number, which is independent of the number of components (knots
or links). Moreover, by considering the ropelength averaged over a given knot family, we have
established a new relation between this averaged ropelength and c;/ii, valid for knots/links
of any cnin. However, as recent analytical work demonstrates [8], these results cannot be
considered fully general and further improvements must be expected. In the context of magnetic
relaxation, corrections are expected to come from a finer realization of the analytical constraints
(for instance, by allowing the cross-section to adapt to an optimal shape) and from further
improvements to the tightening procedure. In any case, our results demonstrate the great
potential of magnetic energy methods to investigate and establish new relationships between
the energy contents and topological properties of complex systems, and to study optimal
properties of 3D—packing and global geometry. These results have useful applications in many
disparate fields, from the study of structural complexity in physical and biological systems
[4, 17], to applications in plasma physics and solar physics [18]. They may also provide a
fresh insight into the ongoing search for fundamental aspects in the mass-energy relations of
modern theoretical physics [2].
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