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Introduction

An almost complex manifold is a differentiable manifold M endowed with an
almost complex structure, i.e. an endomorphism J on the tangent bundle
of M such that J2 = −id. By a remarkable result by Newlander-Nirenberg,
[22], an almost complex manifold is a complex manifold if and only if the
Nijenhuis tensor, defined as

NJ(X,Y ) := [JX, JY ]−[X,Y ]−J([JX, Y ]+[X, JY ]), ∀X,Y ∈ Γ(TM),

vanishes. In such a case, the complex manifolds are locally equivalent, in
other words, they have the same complex structure locally, but we cannot
say the same for the almost complex manifolds in general. In this thesis we
have studied the almost complex manifolds whose image of the Nijenhuis
tensor forms a non integrable bundle (that is, it is not closed with respect
to the Lie brakets) and we found some results when the real dimension of
M is 4.

In general, the almost complex manifolds are not parallelizzable, that is,
there exist no a global frame (X1, X2, ..., Xn) formed by n (the dimension of
the manifold) globally defined vector fields which are linearly independent
at every point (see [23], [37] and [30]). When (M4, J) is an almost com-
plex manifold of dimension 4 admitting a non-integrable subbundle given
by the image of the Nijenhuis tensor, it is possible to give a double ab-
solute parallelism on it. This means that, for any point p ∈ M4, there
are two adapted frames of the tangent space: (X1, X2, X3, X4)p ∈ TpM and
(−X1,−X2, X3, X4)p ∈ TpM . This provide a Z2-structure F on (M4, J). As
a consequence, it results that the group of the automorphisms Aut(M4, J)
of (M4, J) is a Lie group of dimension less or equal to 4, and its isotropy
subgroup has at most two elements.

When (M4, J) is locally homogeneous, one can define the Lie algebra g
associated to (M4, J) thanks to the absolute parallelisms on (M4, J). These
facts allow us to make the classification of the almost complex structures
related to (M4, J). Such a classification is complete when the Lie algebra
g is not solvable (in this case it is reductive too), while several examples
are shown to explain how to make the classification when the algebra g is
solvable (since the latter has more cases than the former).
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Finally, we studied if it is possible to introduce an invariant Riemannian
metric on (M4, J) such that it becomes an almost Kähler manifold.

More precisely, this thesis is structured as following.

The first chapter is an introduction of the relevant material and the
notations about (almost) complex manifolds, (almost) CR manifolds and
(almost) Kähler manifolds. The last two sections of the chapter are focused
on the theory of the principal fiber bundles and G-structures; here, the
most important theorems and properties useful to set the general problem
are given.

In the second chapter we recall the principal properties of 2n-dimensio-
nal almost complex manifolds (M2n, J) and we define the torsion bundle V
of (M2n, J) as the subbundle of TM obtained as image of the Nijenhuis
tensor. Here, we focus our study on the manifolds (M2n, J) with non-
degenerate torsion bundle, that is, with non-integrable V. In particular,
when the almost complex manifold (M4, J) is of dimension 4, such torsion
bundle V induces a filtration of the tangent bundle TM given by

V ⊆ V−2 ⊆ V−3 ⊆ Γ(TM),

where
V−1 := Γ(V),
V−2 := Γ(V) + [Γ(V),Γ(V)] 6= Γ(V),
V−3 := V + [Γ(V),Γ(V)] + [Γ(V), [Γ(V),Γ(V)]].

The behavior of the filtration in any point p ∈ M4 gives rise to two types
of torsion bundles: we will say that Vp is fundamental when V−3|p = TpM ,
otherwise Vp is non-fundamental. It results that there are two distinguished
sections ±X in V, for which the filtration can be refined by

V+p ⊆ Vp ⊆ V−2|p ⊆ V−3|p ⊆ TpM,

where V+p is the vector space generated by Xp. If ±X are the distinguished
sections, we have that the bases (±Xp,±JXp, [X, JX]p, J [X, JX]p), for p in
M4, form a couple of adapted frames, where (Xp, JXp) is a base of Vp and
(Xp, JXp, [X, JX]p) is a base of V−2|p. One of the main results is announced

in this chapter (here we set TX := [X, JX] to be concise):

Theorem. If (M4, J) is an almost complex manifold of dimension 4 and
with non-degenerate torsion bundle V, then, for each point p ∈ M , there
exists an unique pair of adapted frames

(Xp, JXp, T
X
p , JT

X
p ),

(−Xp,−JXp, T
X
p , JT

X
p ),

where ±X are the distinguished sections of V+ in a neighborhood of p.
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The theorem above leads to the following consequences: the set of all
adapted frames forms a reduction F of the principal bundle of linear frames
on (M4, J) having structure group isomorphic to Z2; the dimension of the
symmetry algebra autp(M

4, J) is less or equal to four; moreover, one can
define a natural metric and a norm on (M4, J). In this way there is an
Z2-structure on (M4, J) and an {e}-structure on F . In particular, the Z2-
structure on (M4, J) allows to solve the problem of the locally equivalence
between four dimensional almost complex manifolds with non-degenerate
torsion bundle: we have that two almost complex manifolds are locally
equivalent if and only if they have the same structure functions (up to sign)
associated to the adapted frame. The remaining part of this chapter is
devoted to graded Lie algebras associated to the filtration given above.

The third chapter is devoted to the classification of the connected lo-
cally homogeneous almost complex manifolds (M4, J), with non-degenerate
torsion bundle. Here, we expose how the adapted frame (Xp, JXp, T

X
p , JT

X
p )

forms the Lie algebra g associated to (M4, J). It allows us to classify these
manifolds depending on the types of compatible Lie algebras. Because of the
existence of an Z2-structure on (M4, J), it is possible to classify the almost
complex structures J in such a way to study the locally equivalence of these
manifolds. The classification is complete when g is non-solvable and it is
summarized in the following tables. We restrict our study to the general-
ization of some examples when g is solvable, because of the large number of
cases. Moreover, in the latter, we show with examples that there exist man-
ifolds M4 = M3 × R for which M3 is locally equivalent to a 3-dimensional
hypersphere, but also for which M3 is not.

Theorem. If (M4, J) is a connected locally homogeneous almost complex
manifold with a non-degenerate torsion bundle V, and its associated Lie al-
gebra g is non-solvable, we have the following classification for the almost
complex structures J :

V is non-fundamental

V ⊆ L V 6⊆ L

L = so(3) ξ = ka,be1, ka,b 6= 0
[e1, e2] = e3 Jξ = ae1 + be2, ab 6= 0 not possible
[e2, e3] = e1 η = ka,bbe3
[e3, e1] = e2 Jη = e0 + ca,be3
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V is fundamental

V ⊆ L V 6⊆ L

L = so(3) ξ = e1
not possible Jξ = ae1 + b(e0 + e2), b 6= 0

[e1, e2] = e3 η = be3

[e2, e3] = e1 Jη =
2yz(a2 + 1)

z2 + 2abz − b2
e1 + ye2 + ze3+

[e3, e1] = e2 +
z2 + 2abz − b2 + y2

y
e0,

z2 + 2abz − b2 6= 0

V is non-fundamental
V ⊆ L V 6⊆ L

V has all regular elements
(except the null matrix)

L = sl(2,R) ξ = kH ξ = H
[X,H] = X Jξ = ak,t,bX + bY + ck,t,bH Jξ = e0 + aX + bH
[X,Y ] = 2H η = k(−ak,t,bX + bY ) η = −aX
[H,Y ] = Y Jη = e0 + t(−ak,t,bX + bY ) Jη =

a

2
(t+ 2b)X + yY

+2(b2 + 1)H + te0
with ak,t,bbk 6= 0

with a 6= 0, y 6= 0

V has exactly two lines made
by non-regular elements

L = sl(2,R) ξ = X
[X,H] = X Jξ = aX + bY + cH
[X,Y ] = 2H η = 2bH + cX

[H,Y ] = Y Jη = e0 +
cz

2b
X + zH

with b 6= 0
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V is fundamental

V ⊆ L V 6⊆ L

v with negative determinant

L = sl(2,R) ξ = H
[X,H] = X not Jξ = e0 + aX + bY + cH
[X,Y ] = 2H possible η = −aX + bY
[H,Y ] = Y Jη = xX + yY + zx,y,a,b,cH + tx,y,a,b,ce0

with (a, b) 6= (0, 0)
ay + bx− 2abtx,y,a,b,c 6= 0

v with positive determinant

L = sl(2,R) ξ = H
[Z,H] = W not Jξ = e0 + aH + bW
[Z,W ] = 2H possible η = bZ
[H,W ] = Z Jη = xa,b,y,zH + yW + zZ + ta,b,y,ze0

with b 6= 0
bta,b,y,z 6= y

v with null determinant

L = sl(2,R) ξ = X
[X,H] = X not Jξ = e0 + aX + bY + cH
[X,Y ] = 2H possible η = cX + 2bH
[H,Y ] = Y Jη = xa,b,c,y,zX + yY + zH + ta,b,c,y,ze0

with b 6= 0
btx,y,a,b,c 6= y

In the last section of the third chapter, there are some significant examples
showing that, when (M4, J) is homogeneous, it is not possible to have two
independent absolute parallelisms globally on (M4, J), but this is possible
only locally.

The fourth chapter is devoted to the metrics, invariant and not, which
are compatible with the almost complex structure J of an almost complex
manifold having non degenerate torsion bundle; the study is focused on
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some significant examples. In particular, when the manifold (M4, J) is ho-
mogeneous, there is not an invariant metric on (M4, J) (see [6]). Here, are
touched only a few aspects of the theory; the topics we deal with are good
starting points for further research.

Other possible developments can be oriented to the study of almost com-
plex manifolds in six dimension. One can find some relevant material about
this topic in [2].



Chapter 1

Preliminaries

In this chapter we give a brief exposition of special structures on differen-
tiable manifolds. We set up notation and terminology summarizing, often
without proofs, the relevant material (for more details see, for example,
[7, 16, 37, 43]).

1.1 Almost complex manifolds and complex man-
ifolds

Definition 1.1. An almost complex structure on a real differential manifold
M is an endomorphism J : TM → TM of the tangent bundle TM such that
J2 = −id. A manifold with an almost complex structure is called almost
complex manifold and it will be written as (M,J).

An almost complex structure has real even dimension 2n and the integer
n is called complex dimension of M .

A typical example of an almost complex structure is the standard com-
plex structure Jst on Cn. If zj = xj + iyj (with j = 1, ..., n) are complex
coordinates of Cn, the standard complex structure Jst is defined by

Jst

(
∂

∂xj
(p)

)
=

(
∂

∂yj
(p)

)
, j = 1, ..., n.

Definition 1.2. Let (M,J) and (M ′, J ′) be two almost complex manifolds.
A differential mapping F : M →M ′ is called (J,J’)-holomorphic, or briefly
holomorphic, if its differential satisfies

dF ◦ J = J ′ ◦ dF.

If F is also a diffeomorphism, we say that F is (J,J’)-biholomorphic.

The existence of holomorphic functions on manifolds is not granted in
general, but there are some results on almost complex manifolds: see [20,
21, 12, 13].
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Definition 1.3. A complex manifold is an almost complex manifold (M,J)
such that every point p ∈M has a neighborhood (J, J ′)-biholomorphic to an
open set of Cn. In such a case, the structure J is called complex structure.

We recall the following

Theorem 1.1.1 (Newlander-Nirenberg (see [22])). An almost complex
structure J is a complex structure if and only if it is integrable, that is the
Nijenhuis tensor

NJ(X,Y ) := [JX, JY ]− [X,Y ]− J([JX, Y ] + [X, JY ]) (1.1)

vanishes ∀X,Y ∈ Γ(TM).

We use Γ to indicate smooth sections of a fiber bundle.
Since NJ is a (1, 2)-tensor, we can define

NJ(X,Y ) := [JX ′, JY ′]− [X ′, Y ′]− J([JX ′, Y ′] + [X ′, JY ′])

∀X,Y ∈ TpM and ∀p ∈M , where X ′, Y ′ are vector fields that coincide with
X and Y at p respectively.

1.2 Almost CR manifolds and CR manifolds

Let M be a differentiable manifold endowed with a (almost) complex struc-
ture J and N any submanifold of M . The vector space defined as

HpN := TpN ∩ J(TpN), ∀p ∈ N

is the largest J-invariant subspace of the tangent space TpM and it is called
holomorphic tangent space. When the dimension of HpN does not depend
on the point p, then HN :=

⋃
p∈N HpN gives a fiber bundle which is called

holomorphic tangent bundle and the manifold N is an (immersed) almost
CR manifold.

Definition 1.4. A differentiable manifold M is an (abstract) almost CR
manifold 1 if there exist a subbundle HM of TM and an almost CR struc-
ture, that is, an almost complex structure J : HM → HM with J2 = −id,
such that

[X,Y ]− [JX, JY ] ∈ Γ(HM), ∀X,Y ∈ Γ(HM), (1.2)

or equivalently

[X, JY ] + [JX, Y ] ∈ Γ(HM), ∀X,Y ∈ Γ(HM). (1.3)

1Almost CR manifolds are a generalization of almost complex manifolds with HM 6=
TM .
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The dimension of HpM , with p ∈M , is even.

Definition 1.5. If rkRHM = 2n, we say that n is the CR dimension of M
and we indicate it as

dimCRM = n.

Writing the dimension of M as m = 2n+ k, we say that k is the (real) CR
codimension of M and we write

codimCRM := dimM − 2n.

When k = 1, we call M of hypersurface type.

Remark 1.1. Let A,B ∈ Γ(HM). By definition of almost CR manifold we
have,

[A,B]− [JA, JB] ∈ Γ(HM) and [JA,B] + [A, JB] ∈ Γ(HM),

so also

NJ(A,B) := [JA, JB]− [A,B]− J([JA,B] + [A, JB]) ∈ Γ(HM).

Moreover, the following properties hold:

(i) NJ(A, JB) = −JNJ(A,B) = NJ(JA,B),

(ii) NJ(JA, JB) = −NJ(A,B),

(iii) NJ(A,B) = −NJ(B,A),

(iv) NJ(A,A) = 0.

Definition 1.6. An almost CR manifold (M,J) such that

NJ(X,Y ) = 0, ∀X,Y ∈ Γ(HM)

is called CR manifold.

Lemma 1.2.1. Let (Mm, HM, J) be an almost CR manifold endowed with
a holomorphic tangent bundle, with CR dimension dimCRM = 1. Then
(Mm, HM, J) is a CR manifold.

Proof. If X ∈ Γ(HM), also JX ∈ Γ(HM) (by definition of J) and every
Y ∈ Γ(HM) can be written as Y = aX + bJX, for some differentiable
functions a, b. Then, ∀X,Y ∈ Γ(HM), we have

NJ(X,Y ) = NJ(X, aX + bJX) =
= aNJ(X,X) + bNJ(X, JX) =
= −bJNJ(X,X) = 0.

Remark 1.2. If m = 2, we have that HM = TM and so (M2, HM, J) is
a complex manifold, in other words, (M2, HM, J) is a Riemann surface.
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1.3 Almost Kähler manifolds and Kähler mani-
folds

Definition 1.7. Let (M,J) be an almost complex manifold of dimension
2n with an almost complex structure J . We say that (M,J,G) is an almost
Kähler manifold if

(i) G is a Riemannian metric such that G(JX, JY ) = G(X,Y ),

(ii) the fundamental 2-form Ω, defined as Ω(X,Y ) = G(X,JY ), is such
that dΩ = 0.

An almost Kähler manifold is called Kähler manifold if the Nijenhuis tensor
vanishes.

1.4 Principal fiber bundles and G-structures

In this section we recall some well-known notions on principal fiber bundles
(see [37, 16, 30]).

Definition 1.8. Let M be a manifold and G be a Lie group. A principal
fiber bundle on M , with structure Lie group G, is a manifold P on which is
defined a right action

R :

{
G× P → P

(g, p) 7→ p · g

such that

1. the action R is free, that is, if ∃p ∈ P such that p ·g = p, then g = idG;

2. the canonical projection π : P →M is differentiable;

3. M is the orbit space P/G, that is, if p, q ∈ P then

π(p) = π(q)⇔ (∃g ∈ G : p · g = q);

4. P is locally trivial, that is, ∀x ∈ M,∃U neighborhood of x such that
π−1(x) is G-equivalent to U ×G.

The manifold M is called base of the fiber P and the set π−1(x) (for all
x ∈M) is the fiber on x.

Definition 1.9. Given a principal fiber bundle P on a manifold M , a local
section on U , open set on M , is a smooth application

σ : U ⊆M → P
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such that π ◦ σ = id|U .
The fiber bundle P is called trivial when P is G-equivalent to M × G,

in other words, there exists a global section

σ : M → P.

Definition 1.10. Let P1 e P2 be two fiber bundles with structure groups
G1 e G2 respectively, such that G1 ⊆ G2.

We say that P1 is a subbundle of P2 if there exists a regular immersion
φ : P1 → P2 which is G1-equivariant.

We say that P1 is a reduction of P2 (with structure group G1) if the
induced regular immersion between the basis, φ̃ : M1 → M2, is surjective
(φ̃(M1) = M2).

Definition 1.11. Let M be a manifold with dimension n. A linear frame
fx at a point x ∈M is a non singular linear map

fx : Rn → TxM.

If (e1, ..., en) is the canonical base of Rn, a linear frame is equivalent to give a
base of the tangent space (X1, ..., Xn) at a point x ∈M given by fx(ei) = Xi

for i = 1, ..., n.
The vector space Rn is called model vector space.

Proposition 1.4.1. The set of all linear frames on a manifold M , denoted
with L(M), forms a principal bundle with structure group GL(n,R).

Definition 1.12. Let G be a Lie subgroup of GL(n,R). A G-structure on a
manifold M is a reduction PG of the frame fiber L(M) with structure group
G. So PG is a submanifold of L(M) with the property

∀p ∈ PG,∀g ∈ GL(n,R) we have that p · g ∈ PG ⇔ g ∈ G.

Remark 1.3. When G = {e}, the neutral element of the group, there is a
biunivocal correspondence between the {e}-structures on M and the fields
(X1, X2, ..., Xn) of linear frame on M . Hence, the following definition makes
sense.

Definition 1.13. A manifold M is called parallelizable when it admits an
{e}-structure (that is so called absolute parallelism).

Theorem 1.4.2 (Kobayashi, see [17] and [30]). Let G = Aut({Xi}) be the
group of the automorphisms of an {e}-structure

G = {ϕ : M →M ; ϕ∗Xi = Xi i = 1, ..., n}.

The group G is a Lie group of transformations of M and it has dimension

dimG ≤ dimM.
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In particular, for any point x on M , the map{
Aut({Xi}) → M

ϕ 7→ ϕ(x)

is injective and its image {ϕ(x), ϕ ∈ Aut({Xi})} is a closed regular subman-
ifold of M . The submanifold structure of the orbit G(x) induced by M is
compatible with the Lie group structure of G.

1.5 {e}-structures and structure functions

For more information about this section, see [30] and [37].
Let us fix an absolute parallelism (X1, ..., Xn) on the manifold M ; it is

the same that to fix a global section

γ : M → L(M),

where the vector fields (X1, ..., Xn) are defined by

Xi|p = γp(ei), i = 1, ..., n,

and (e1, ..., en) is the canonical base of Rn.
We call torsion of the {e}-structure γ the application

cγ : M → Hom(Λ2Rn,Rn)

cγ(v1 ∧ v2)|p = γ−1([γ(v1), γ(v2)]p).

If w1, ..., wn are the 1-forms given by the dual bases of the bases defined by
Xi = γ(ei), we can determine the components ckij of cγ with respect to the
base (e1, ..., en) as following:

cγ(ei ∧ ej) =
∑
k

ckijek =

n∑
k=1

wk([Xi, Xj ])ek.

The functions ckij = wk([Xi, Xj ]) are called structure functions of γ.

Remark 1.4. When M is a Lie group G and the {e}-structure is given by
the left invariant vector fields, the structure functions are constants and are
called structure constants of G.

To prove the opposite implication we need the hypothesis of completeness
on the vector fields defined on M , as we see in the following Lemma.

Lemma 1.5.1. Let Mn be a connected differentiable manifold and let X1, ...,
Xn be n complete independent fields at every point of Mn such that the
structure functions are constant. Then it is defined a group structure G on
Mn such that the Lie algebra g of G is generated by X1, ..., Xn.
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Proof. Let us fix a point x0 on Mn and let x and y be two generic points of

Mn. Since Mn is connected, there exist ϕ
Xi(1)
t1

, ϕ
Xi(2)
t2

, ..., ϕ
Xi(p)
tp and ϕ

Yj(1)
s1 ,

ϕ
Yj(2)
s2 , ..., ϕ

Yj(q)
sq , such that x = ϕ

Xi(1)
t1

◦ · · · ◦ ϕXi(p)tp (x0) and y = ϕ
Yj(1)
s1 ◦ · · · ◦

ϕ
Yj(q)
sq (x0), where each ϕ

Xi(k)
tk

is the flux of Xi(k) with tk ∈ R and Xi(p), Yi(q)
vary in (X1, ..., Xn).

For simplicity, we put ϕXt := ϕ
Xi(1)
t1

◦ · · · ◦ ϕXi(p)tp and ϕYs := ϕ
Yj(1)
s1 ◦ · · · ◦

ϕ
Yj(q)
sq . We can define the product of x and y as

x · y := Ry(x) = Lx(y) = ϕYs ◦ ϕXt (x0).

It is easy to check that Mn, endowed with this product, is a Lie group.
We show that X1, ..., Xn are left invariants vector fields for Mn. For every
g ∈ Mn we have that Lg∗Xξ = Xξ (in other words, X1, ..., Xn are left

invariants vector fields) if and only if Lg ◦ϕ
Xξ
tξ

= ϕ
Xξ
tξ
◦Lg, for all ξ = 1, ..., n.

Since

(Lg ◦ ϕ
Xξ
tξ

)(y) = Lg(ϕ
Xξ
tξ
◦ ϕYs (x0)) = ϕ

Xξ
tξ
◦ ϕYs ◦ ϕZu (x0),

where g = ϕZu (x0) := ϕ
Zk(1)
u1 ◦ ϕZk(2)u2 ◦ · · · ◦ ϕZk(r)ur (x0), and

(ϕ
Xξ
tj
◦ Lg)(y) = ϕ

Xξ
tξ
◦ ϕYs ◦ ϕZu (x0)

are equal, we have that X1, ..., Xn are left invariants vector fields for Mn

and so g =< X1, ..., Xn >.

The following Lemma will be useful later.

Lemma 1.5.2. The Lie bracket between right and left invariant vector fields
of any Lie group G is zero.

Proof. If X is a left invariant vector field and Y is a right invariant vector
field, we denote with ϕXt the flux of X at time t and ϕYs the flux of Y at
time s. Note that any diffeomorphism commutes with every left translation
Lg, with g ∈ G, if and only if it is a right multiplication. Then, since X is a
left invariant vector field if and only if Lg ◦ϕXt = ϕXt ◦Lg, there must exists
a h ∈ G such that ϕXt = Rh, where Rh is the right multiplication of h. For

the same reason there exists a h′ ∈ G such that ϕYs = Lh′ . So we have:

ϕXt ◦ ϕYs − ϕYs ◦ ϕXt = Rh ◦ Lh′ − Lh′ ◦Rh = 0,

that is equivalent to (see [16] pag.16)

[X,Y ] = 0.





Chapter 2

Almost complex manifolds

2.1 Almost complex manifolds of dimension 2n

Let (M2n, J) be an almost complex manifold of real dimension 2n. For any
p ∈M , we set

Vp = {X ∈ TpM : X = NJ(A,B) for some A,B ∈ TpM}.

If (M2n, J) is a complex manifold, then Vp = {0} and
⋃
p∈M Vp is the trivial

bundle.

Lemma 2.1.1. Vp is J-invariant.

Proof. It follows from (i) of Remark (1.1).

Definition 2.1. Suppose that the rank of Vp is constant ∀p ∈M2n, we have
that

V :=
⋃
p∈M
Vp

forms a bundle called torsion bundle.

Definition 2.2. Let V be the torsion bundle, V is called non-degenerate at
p ∈M2n if we have

[X,Y ]p /∈ Vp,

for some X,Y ∈ Γ(V). The torsion bundle V is called non-degenerate if it
is non-degenerate at all p ∈M2n.

Remark 2.1. If V is non-degenerate at a point p, then V is non-degenerate
in a neighborhood of p.

Let us consider the complexification of the tangent bundle CTM :=
C ⊗R TM and let J be the C-linear extension to it, in such a way to have
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J : CTM → CTM . We have that J admits two eigenvalues i and −i, whose
eigenspaces are

T 1,0M = {X − iJX : X ∈ TM} and T 0,1M = {X + iJX : X ∈ TM}

respectively. So, it is possible to decompose CTM in the direct sum:

CTM = T 1,0M ⊕ T 0,1M.

A section of T 1,0M is called a (1, 0)-vector field.

Remark 2.2. The integrability (see Theorem 1.1.1) of an almost complex
structure is equivalent to say that

[Γ(T 1,0M),Γ(T 1,0M)] ⊆ Γ(T 1,0M),

where we recall that Γ indicate the smooth sections of the fiber bundle
T 1,0M .

Remark 2.3. The Nijenhuis tensor (see (1.1)) of two (1, 0)-vector fields is
a (0, 1)-vector field and vice versa; while the Nijenhuis tensor of two vector
fields of different type is null. In particular, ∀X ∈ Γ(TM) and ∀Y ∈ Γ(TM)
we have

(i) NJ(X − iJX, Y − iJY ) = 2(NJ(X,Y ) + iJNJ(X,Y )),

(ii) NJ(X + iJX, Y + iJY ) = 2(NJ(X,Y )− iJNJ(X,Y )),

(iii) NJ(X + iJX, Y − iJY ) = 0.

If we denote as X1,0 the component in T 1,0M of a vector field X ∈ Γ(TM),
we also have that

(iv) [X − iJX, Y − iJY ]0,1 = −1

4
NJ(X − iJX, Y − iJY ),

(v) [X + iJX, Y + iJY ]1,0 = −1

4
NJ(X + iJX, Y + iJY ).

2.1.1 Infinitesimal automorphisms

Definition 2.3. Let (M2n, J) be an almost complex manifold1. An in-
finitesimal automorphism is a tangent vector field V ∈ Γ(TM) that satisfies

[V, JX] = J [V,X], ∀X ∈ Γ(TM). (2.1)

1This definition can be generalized to the case in which (M2n, J) is an almost CR
manifold: it is sufficient to consider the equation (2.1) with X ∈ Γ(HM).
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Remark 2.4. The condition (2.1) is equivalent to

[V,Z] ∈ Γ(T 1,0M), ∀Z ∈ Γ(T 1,0M).

It is also equivalent to LV J = 0, where LV is the Lie derivative of the
vector field V . Therefore, an infinitesimal automorphism is a Lie derivative
that commutes with J .

Definition 2.4. The symmetry algebra autp(M,J) of an almost complex
manifold (M,J) at p ∈M is the set of germs of infinitesimal automorphisms
at p.

Definition 2.5. We denote with aut0p(M
4, J) the set of infinitesimal auto-

morphisms that fix the point p ∈ M4, that is, when A ∈ aut0p(M4, J) we
have that Ap = 0. We call aut0p(M

4, J) the isotropy algebra of p.

For a compact almost complex manifold the following theorem, due to
Boothby, Kobayashi and Wang, holds.

Theorem 2.1.2. (see [8] and [17] Corollary 4.2 pag.19) The automorphism
group of a compact almost complex manifold (M,J) is a Lie transformation
group.

2.2 Almost complex manifolds of dimension 4

Proposition 2.2.1. Let (M4, J) be an almost complex manifold with real
dimension 4 and with NJ 6= 0 at p ∈M . Then Vp has real dimension 2.

Proof. Since Vp is J-invariant, Vp is even dimensional, so its dimension is 2
or 4. If (X,JX, Y, JY ) forms a base of TpM , we have that

NJ(X,X) = 0 and NJ(X, JX) = −JNJ(X,X) = 0,

NJ(Y, Y ) = 0 and NJ(Y, JY ) = −JNJ(Y, Y ) = 0;

hence, Vp is locally generated by NJ(X,Y ) and NJ(X,JY ).

Remark 2.5. Under the assumption of the Proposition 2.2.1, we have that

• ∀X ∈ Vp, with X 6= 0, we have that (X, JX) gives a base of Vp;

• there exists a neighborhood U of p such that ∀q ∈ U the dimension of
Vq is constant (and is 2).

Remark 2.6. By Lemma 1.2.1, we have that (M4,V, J|V) is a CR manifold;
in particular, if A,B ∈ Vp, then NJ(A,B) = 0.
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Let (M4, J) be an almost complex manifold with real dimension 4, with
NJ 6= 0 at p and such that V is non-degenerate (see Definition 2.2). Then

[Γ(V),Γ(V)] * Γ(V) (V is non-degenerate)

and we set

V−1 := Γ(V),

V−2 := Γ(V) + [Γ(V),Γ(V)] 6= Γ(V).

From here on we always suppose that V is non-degenerate at a fixed
point p, and so it is possible to construct the following vector spaces:

V−1|p := Vp,

V−2|p := Vp + [Γ(V),Γ(V)]p 6= Vp.

Proposition 2.2.2. If X ∈ Γ(V−1) is a vector field such that Xp 6= 0, we
have that

(Xp, JXp, Tp)

is a base of V−2|p, where we set Tp := [X, JX]p.

Proof. Let X ∈ Γ(V−1) be a vector field such that Xp 6= 0. Then (Xp, JXp)
forms a base of V−1|p.

Since we are considering the case in which V is non-degenerate at p, we
have that 0 6= Tp /∈ V−1|p and in particular, the vectors (Xp, JXp, Tp) form
a base of V−2|p. So dimR V−2|p ≥ 3 and can not be dimR V−2|p = 4, because
the Lie bracket of two generic vector fields of V−1|p

[α(p)X + β(p)JX, γ(p)X + δ(p)JX]p

(where α(p), β(p), γ(p), δ(p) are functions depending on p) can be written as
linear combination of (Xp, JXp, Tp).

Iterating the Lie brackets, we have the following cases:

[Γ(V), [Γ(V),Γ(V)]]p ⊆ Vp + [Γ(V),Γ(V)]p = V−2|p, (∗)

[Γ(V), [Γ(V),Γ(V)]]p * Vp + [Γ(V),Γ(V)]p = V−2|p. (∗∗)

Remark 2.7. If p ∈M is such that the second case (∗∗) happens, then the
(∗∗) also holds in a neighborhood U of p.

Definition 2.6. When the case (∗∗) occurs, then Vp is called fundamental,
otherwise Vp is called non-fundamental.
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If we set

V−3|p := Vp + [Γ(V),Γ(V)]p︸ ︷︷ ︸
= V−2|p

+[Γ(V), [Γ(V),Γ(V)]]p,

we have that

V−3|p =

{
V−2|p if (∗) occurs,

TpM if (∗∗) occurs.

In particular, the dimension of V−3|p must be:

dimR V−3|p =

{
3 if (∗) occurs,

4 if (∗∗) occurs.

In both cases we obtain a filtration of the tangent space TpM :

Vp := V−1|p ⊆ V−2|p ⊆ V−3|p ⊆ TpM

(we have an equality between V−2|p and V−3|p when (∗) holds, while the
equality is between V−3|p and TpM when (∗∗) holds).

2.3 Absolute parallelisms on (M 4, J)

In this and in the next section, we will consider (M4, J) as an almost complex
manifold with real dimension 4 and with non-degenerate torsion bundle V.

Remark 2.8. From Theorem 2.1 in [20] and Theorem 1.5 in [13], since
(M4, J) is an almost complex manifold having Nijenhuis tensor of rank 2,
the number of independent holomorphic functions on (M4, J) is at most 1.
More precisely, because of the non degeneracy of the torsion bundle V, there
are not holomorphic functions on (M4, J).

Remark 2.9. When (M4, J) is an almost complex manifold of real dimen-
sion 4, one can write the normal form of its non-integrable almost complex
structures J (see [39]).

Definition 2.7. For p ∈M4 and A ∈ Γ(V), with Ap 6= 0, we set

TAp := [A, JA]p.

Note that [A, JA]p /∈ Vp, because V is non-degenerate.

Proposition 2.3.1. If A′ is a vector field of V that coincides with A at p,
we have

TAp ≡ TA
′

p mod Vp.
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Proof. It is clear that TAp depends on the field A ∈ Γ(V) by definition. Since,
by varying the point p in M , we have that (Ap, JAp) forms a base of Vp, we
can write

A′ = fA+ gJA,

with f and g differentiable functions such that f(p) = 1 and g(p) = 0. Then
we have

[A′, JA′]p = [fA+ gJA, fJA− gA]p
=

(
f(p)2 + g(p)2

)
[A, JA]p+

+
((
g(p)− f(p)

)
JA(f)p − f(p)A(g)p − g(p)JA(g)p

)
Ap+

+
(
f(p)A(f)p + g(p)JA(f)p − f(p)JA(g)p − g(p)A(g)p

)
JAp

= [A, JA]p −
(
A(g)p + JA(f)p)Ap + (A(f)p − JA(g)p

)
JAp.

Hence, in general
[A′, JA′]p 6= [A, JA]p.

Quotienting modulo Vp, we have

[A′, JA′]p ≡ [A, JA]p mod Vp.

Definition 2.8. We call τTAp the linear application associated to TAp and
defined by

τTAp :

{
Vp → Vp
Xp 7→ N(Xp, T

A
p ),

where TAp is a fixed vector which is not null, since Ap 6= 0 (it is a consequence
of the previous proposition).

Remark 2.10. The application τTAp is not the null application and we have

τTAp ◦ J|Vp = −J|Vp ◦ τTAp .

Since (Ap, JAp) gives a base of Vp, the matrix which represents τTAp with
respect to this base is of the form(

a b
b −a

)
,

with a, b ∈ R. The matrix is symmetric with null trace, hence it is diago-
nalizable and it has two not null opposite eigenvalues:

λ+ =
√
a2 + b2 and λ− = −

√
a2 + b2.

If we set V+p and V−p the eigenspaces associated to the two eigenvalues λ+

and λ−, we have
JV+p = V−p .



2.3 Absolute parallelisms on (M4, J) 29

Proposition 2.3.2. Varying the field A ∈ Γ(V), with Ap 6= 0, the linear ap-
plication τTAp varies of a positive constant, in other words: ∀B ∈ Γ(V), Bp 6=
0, we have

τTBp = ατTAp , with α > 0.

Proof. Let B ∈ Γ(V), Bp 6= 0, then TBp = [B, JB]p /∈ Vp. Since TBp ∈
V−2|p and (Ap, JAp, T

A
p ) gives a base of V−2|p, we can write TBp as linear

combination of vectors of this base

TBp = αTAp + βAp + γJAp

for certain α, β, γ ∈ R.

Since B is a vector field of V, it can be write as

B = fA+ gJA,

for certain functions f, g ∈ C∞, with f(p)2 + g(p)2 6= 0. Hence, we have
the following equalities, similarly to the calculation given in the proof of
Proposition 2.3.1:

TBp = [B, JB]p
= [fA+ gJA, fJA− gA]p
= [fA, fJA]p − [fA, gA]p + [gJA, fJA]p − [gJA, gA]p
= (f2 + g2)︸ ︷︷ ︸

=α>0

[A, JA]p + βAp + γJAp

ans so α must necessarily be positive. Furthermore

τTBp (Xp) = N(Xp, T
B
p )

= N(Xp, α[A, JA]p + βAp + γJAp)
= αN(Xp, [A, JA]p) + βN(Xp, Ap) + γN(Xp, JAp)
= αN(Xp, [A, JA]p)
= ατTAp (Xp),

where βN(Xp, Ap) and γN(Xp, JAp) are zero because the Nijenhuis tensor
of fields in V is always zero.

From the previous proof, we deduce that f(p) = 1 and g(p) = 0 when
Bp = Ap, so the following corollary holds.

Corollary 2.3.3. If a field B coincides with the field A at a point p, then
we have that τTAp = τTBp . In other words, τTp does not depend on the choice
of the field A, but only from its value at the point.

Corollary 2.3.4. The eigenspaces V±p do not depend on the choice of the
field A in the definition of τTAp .
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Proof. We have that τTBp (Xp) = ατTAp (Xp) with α > 0, so the matrix asso-
ciated to τTBp is of the form

α

(
a b
b −a

)
,

which has eigenvalues αλ+ and αλ−. Hence, the associated eigenspaces are

V±p (τTBp ) = V±p (τTAp ).

Let U and V be two open sets of M containing the point p and let
A ∈ Γ(U,V) and B ∈ Γ(V,V) be two sections of V such that Aq 6= 0 and
Bq 6= 0, for all q ∈ U ∩ V . Because of the previous corollary, the eigenspace
associated to the field B, V±q (τTBq ), coincide with the eigenspace associated

to the field A, V±q (τTAq ), at each point q of U ∩ V . Then the following
notation makes sense.

We denote by

V± =
⋃
p∈M
V±p

the fiber bundles obtained by varying p ∈M .

Remark 2.11. We have the following filtration of the fiber bundle of the
almost complex manifold M :

V+ $ V $ V−2 $ TM.

Proposition 2.3.5. A distinguished section X is locally determined 2 in
V+; such a section is unique up to sign and is such that τTXq has eigenvalue
1, for all q in an open neighborhood U of p ∈M .

Proof. Let U be a neighborhood of p ∈ M such that Z : U → V+ is a
section of V+, with Zq 6= 0 for all q ∈ U . We want to find another section
Y : U → V+, such that τTYp has eigenvalue 1.

Computing τTZp , we have

τTZp (Zp) = λ+p Zp,

for a certain positive eigenvalue λ+p ∈ R+. If we set Yp = cZp, with c ∈ R,
we obtain

2A similar result have been obtained independently by Kruglikov in [18].
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τTYp (Zp) = N(Zp, T
Y
p )

= N(Zp, [Y, JY ]p)
= N(Zp, [cZ, cJZ]p)
= c2N(Zp, [Z, JZ]p)
= c2N(Zp, T

Z
p )

= c2τTZp (Zp)

= c2λ+p Zp.
Choosing the constant c as

c = ± 1√
λ+p

,

we have that

τTYp (Zp) = Zp,

in other words, Y : U → V+ is a section such that Zp is an eigenvector
associated to the eigenvalue 1. In particular, the section Y is univocally
determined in V+ up to the sign:

Yp = ± 1√
λ+p

Zp. (2.2)

Let q ∈ U , then

τTYq (Zq) = λ+q Zq,

for a certain λ+q ∈ R+ depending on q in U and λ+p = 1. We want to find
a section X : U → V+ such that the positive eigenvalue λ+q of τTXq is 1 for
every point q ∈ U . Such a section is univocally determined when the sign
of Y in (2.2) is determined.

All the sections of V+ coinciding to Y at p are of the form X = fY , with
f ∈ C∞(U), f(p) = 1 and f(q) 6= 0, ∀q ∈ U ; in particular, f > 0.

We have that the eigenvalue of Zq computed with respect to τTXq is 1 for
all points q ∈ U when

τTXq (Zq) = Zq ⇔ τ
T fYq

(Zq) = Zq

⇔ f2τTYq (Zq) = Zq
⇔ f2λ+q Zq = Zq
⇔ f = + 1√

λ+q
(because f > 0).

Therefore, the section X we are looking for is univocally determined (up
to the sign) on varying q in U , and it is

Xq =
1√
λ+q

Yq.
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Definition 2.9. We say that the section X, which is univocally determined
up to sign in Proposition 2.3.5, is the distinguished section of V+.

Definition 2.10. For any point p ∈M , the isomorphisms

fp :

{
(R4, J) → (TpM,J)

(e1, e2, e3, e4) 7→ (Xp, JXp, T
X
p , JT

X
p )

are called adapted frames at a point p, where (e1, e2, e3, e4) is the canonical
base of R4 and (Xp, JXp, T

X
p , JT

X
p ) is a base of TpM , with X the distin-

guished section of V+.

Remark 2.12. If X is the distinguished section of V+ relative to the posi-
tive eigenvalue, that is NJ(X,TX) = X, with X in Γ(V+), we note that JX
is the distinguished section of V− relative to the negative eigenvalue:

NJ(JX, T JX) = NJ(JX, [JX,−X]) = −JNJ(X, [X, JX]) = −JX.

Remark 2.13. Since TX = [X, JX] = [−X,−JX] = T−X , with X the
distinguished section of V+, we have that T and JT do not depend on
the sign, hence we have two adapted frames: (Xp, JXp, T

X
p , JT

X
p ) and

(−Xp,−JXp, T
X
p , JT

X
p ).

From the Proposition 2.3.5 and the Remark 2.13 it follows:

Theorem 2.3.6. If (M4, J) is an almost complex manifold with dimension
4 and with non-degenerate torsion bundle V, then, for each point p ∈ M ,
there exists an unique pair of adapted frames

f ′p(e1, e2, e3, e4) = (Xp, JXp, T
X
p , JT

X
p )

f ′′p (e1, e2, e3, e4) = (−Xp,−JXp, T
X
p , JT

X
p ),

where X is one of the two distinguished sections of V+ in a neighborhood of
p.

Corollary 2.3.7. Let ϕ : M → M ′ be a diffeomorphism of (M4, J) in
(M ′4, J ′) such that ϕ(p) = p′, with p ∈M e p′ ∈M ′. Then we have either

dϕ(Xp, JXp, T
X
p , JT

X
p ) = (X ′p′ , JX

′
p′ , T

X′
p′ , JT

X′
p′ ),

or
dϕ(Xp, JXp, T

X
p , JT

X
p ) = (−X ′p′ ,−JX ′p′ , TX

′
p′ , JT

X′
p′ ),

that is, ϕ sends adapted frames into adapted frames.
In particular, when (M4, J) = (M ′4, J ′) and p = p′, we have either

dϕ(Xp, JXp, T
X
p , JT

X
p ) = (Xp, JXp, T

X
p , JT

X
p ),

or
dϕ(Xp, JXp, T

X
p , JT

X
p ) = (−Xp,−JXp, T

X
p , JT

X
p ).
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Remark 2.14. If two transformations ϕ and ϕ′ of (M4, J) fix a point
p of M and have the differentiable that coincides at that point, that is
dϕ(p) = dϕ′(p), than ϕ = ϕ′.

Proposition 2.3.8. The set of all adapted frames fp, by varying the point
p in M , forms a reduction F of the principal bundle of linear frames L(M)
on M which has structure group G0 ' Z2.

Proof. We have that F is a submanifold of L(M).
Moreover, the matrices A ∈ GL(4,R) that send bases of TpM of the

form (Xp, JXp, T
X
p , JT

X
p ), with 0 6= Xp ∈ Vp, into bases of the same form

(Yp, JYp, T
Y
p , JT

Y
p ) are like

a −b c −d
b a d c
0 0 a2 + b2 0
0 0 0 a2 + b2

 ,

with a, b, c, d ∈ R.
Now, taking Xp as the distinguished vector of V+p , we have that the

matrices A, which send bases of the form (Xp, JXp, T
X
p , JT

X
p ) into bases of

the same form or of the opposite form (−Xp,−JXp, T
X
p , JT

X
p ), become

I4 and

(
−I2 0

0 I2

)
.

So, if G0 is the set of these matrices, from the definition of G-structure, it
follows that F is a G0-structure, with structure group G0 ' Z2.

Remark 2.15. From the proposition above it is clear that there is an {e±}-
structure on (M4, J) (where {e±} = Go), given by the adapted frames

f ′p(e1, e2, e3, e4) = (Xp, JXp, T
X
p , JT

X
p ),

f ′′p (e1, e2, e3, e4) = (−Xp,−JXp, T
X
p , JT

X
p ).

On the other hand, there is an {e}-structure on F . Indeed, if π : F →M is
the canonical projection of F on M , for any point f := fp(e1, e2, e3, e4) in
F , we have that the isomorphism

(π∗|f )−1 ◦ f : R4 → TfF

is an adapted frame for F . Hence, (F, J) has an absolute parallelism, where
we denote the lift of J to F with the same letter.

Definition 2.11. Two almost complex manifolds (M,J) and (M ′, J ′) are
locally equivalent at points p ∈M and p′ ∈M ′, if there exist a neighborhood
U of p, a neighborhood U ′ of p′ and a (J, J ′)-biholomorphic map ϕ : U → U ′,
such that ϕ(p) = p′ and ϕ∗(J) = J ′.
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Remark 2.16. Since there is a double absolute parallelism on (M4, J), the
problem of local equivalence of two almost complex manifolds is solved in
the case of four-dimensional almost complex manifolds (M4, J) with non-
degenerate torsion bundle. Indeed, it is sufficient to compute the adapted
frames of the two manifolds, to find their structure functions (up to sign) and
to compare them: if the structure functions are the same, the two manifolds
are locally equivalent.

If we denote with Aut(M,J) the group of the automorphisms of an
almost complex manifold (M,J), we have the following results.

Corollary 2.3.9. There exists a bijection between the automorphisms ϕ ∈
Aut(M,J) and ϕ̃ ∈ Aut(F, J), where ϕ̃ is the lift of ϕ to F .

Theorem 2.3.10. The group of automorphisms Aut(M,J) of (M4, J) is a
Lie group and it has dimension dimAut(M,J) ≤ 4 and so the symmetry al-
gebra of (M4, J) at p also has dimension dim autp(M,J) ≤ 4. In particular,
the group of automorphisms Aut0(M,J) of (M4, J) that fix a point p has at
most two elements and

aut0p(M,J) = {0}.

Proof. Since, for Remark 2.15, there is an absolute parallelism on F , from
Kobayashi’s Theorem 1.4.2 it follows that Aut(F, J) is a Lie group of di-
mension less or equal to 4. Moreover, the lifts of the automorphisms of
(M4, J) on (F, J) are automorphisms of (F, J) that conserve the absolute
parallelism. Hence, for Corollary 2.3.9, we have that also Aut(M,J) is a
Lie group and that dimAut(M,J) ≤ 4. As a consequence, the same holds
for the dimension of autp(M,J). For the Corollary 2.3.7, we deduce that
Aut0(M,J) has at most two elements and aut0p(M,J) = {0}.

Remark 2.17. When (M4, J) is an almost complex manifold with non-
degenerate torsion bundle, we have that Theorem 2.1.2 is true without the
hypothesis of compactness.

Definition 2.12. We define a metric on M taking as orthogonal base of
TpM , with p ∈M , the following

(Xp, JXp, T
X
p , JT

X
p ),

where X is the distinguished section of V+ in a neighborhood of p.

Corollary 2.3.11. To fix a frame (Xp, JXp, T
X
p , JT

X
p ), with X the dis-

tinguished section of V+ and p ∈ M , is equivalent to have an invariant
canonical norm on TpM . In particular, the J-holomorphic transformations
are isometries of M .
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2.4 Graded Lie algebras of (M 4, J)

Now, we are going to apply the theory of prolongations developed by Tanaka
in [38] and Alekseevsky and Spiro in [3] on the torsion bundle V of (M4, J).

Let as consider the filtration

Vp := V−1|p ⊆ V−2|p ⊆ V−3|p ⊆ TpM

of the tangent space TpM made in Section 2.2 (see consequences of the
Definition 2.6). It induces a structure of graded Lie algebra M associated
to the filtered algebra (see [38] p. 9-10 and [3] p. 10). Indeed, quotienting
we have

m−1 := V−1|p ⇒ dimR m−1 = 2,

m−2 := V−2|p/V−1|p ⇒ dimR m−2 = 1,

m−3 := V−3|p/V−2|p = V−2|p/V−2|p = 0 if (∗) holds ⇒ dimR m−3 = 0,

m−3 := V−3|p/V−2|p if (∗∗) holds ⇒ dimR m−3 = 1,

from which we obtain

M := m−1 ⊕m−2 ⊕m−3,

where the term m−3 is not trivial only when (∗∗) holds.

Definition 2.13. (see [38], p. 10) Let V be the torsion bundle and M(p)
be the graduated Lie algebra generated by V associated to the point p. The
fiber bundle V is called (strongly) regular if the graduated algebras M(p),
p ∈M4, are all isomorphic one with respect to the other.

Remark 2.18. (see [10]) If M =
∑µ

i=1m
−i is a graded algebra (of µ-th

kind), with dimm−1 = 2 and dimM ≤ 5, then we have the following 5
cases:

• dimM = 2, µ = 1 (dimm−1 = 2);

• dimM = 3, µ = 2 (dimm−1 = 2, dimm−2 = 1);

• dimM = 4, µ = 3 (dimm−1 = 2, dimm−2 = dimm−3 = 1);

• dimM = 5, µ = 3 (dimm−1 = 2, dimm−2 = 1, dimm−3 = 2);

• dimM = 5, µ = 4 (dimm−1 = 2, dimm−2 = dimm−3 = dimm−4 = 1).

Definition 2.14. We denote with gl(TpM) the algebra of the linear applica-
tions on the vector space TpM . We say linear representation of the isotropy
of aut0p(M

4, J) the homomorphism of Lie algebras

ρ :

{
aut0p(M

4, J) → gl(TpM)

A 7→ Ã,
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such that Ã(Zp) := [A, Z]p, ∀Zp ∈ TpM, and Z is a germ of vector fields
that in p is Zp.

Proposition 2.4.1. The definition of linear representation of the isotropy
is well defined, that is, it does not depend on the choice of Z.

Proof. Let Z and Z ′ be two vector fields of TpM such that

Zp = Z ′p,

then, ∀q ∈M4, Z ′ can be written as

Z ′ = Z + α(q)W,

with W ∈ TpM and α(p) = 0. We have

[A, Z ′]p = [A, Z]p + [A, α(p)W ]p
= [A, Z]p + α(p)[A,W ]p +A(α(p))Wp

= [A, Z]p,

where the term A(α(p))Wp is zero because Ap =
∑4

i=0 ai
∂
∂xi

= 0, with
ai = 0.

Since any linear application Ã preserve the filtration of TpM , Ã induces
a linear application on M in a canonical way (that we also denote with Ã).
We denote Ã|m−i , with i = 1, 2, 3, the application Ã restricted to the vectors

of m−i.

Proposition 2.4.2. Let A ∈ aut0p(M4, J) be a germ of infinitesimal auto-

morphisms that fixes a point p. Then the linear application Ã associated to
A preserve the degree of M, in other words, ∀i = 1, 2, 3, we have

Ã|m−i : m−i → m−i.

In particular,

Ã : M→M.

Let us study how Ã can be written.

Since Ã sends elements of m−1 in elements of m−1 and it commutes with
J , we have that Ã|m−1 is of the form

Ã|m−1 = αI + βJ, (2.3)

where α, β ∈ R and I is the identity. If (Xp, JXp) is a base of m−1, called
Tp := [X, JX]p, we have that (Tp) (here, for simplicity of notation, we
represents the class of equivalence [Tp] of Tp without square brackets) forms
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a base of m−2 because of the assumption of non-degeneracy of V; hence,
considering Ã restricted to m−2, we have

Ã|m−2(Tp) = Ã|m−2([X, JX]p) = [Ã|m−1X, JX]p + [X, Ã|m−1(JX)]p =

= [αX + βJX, JX]p + [X,αJX − βX]p =
= α[X, JX]p + α[X, JX]p =
= 2α[X,JX]p =
= 2αTp.

Proposition 2.4.3. Let (M4, J) be an almost complex manifold of real di-
mension 4, with NJ 6= 0 in p ∈M4 and such that V is non-degenerate.

Then if X ∈ m−1, setting S = [X, [X,JX]]p and S′ = [JX, [X,JX]]p,
the following equalities hold

1. Ã(S) = 3αS + βS′,

2. Ã(S′) = 3αS′ − βS,

where α and β are defined as in (2.3).

Proof.
1. Ã(S) = Ã([X, [X, JX]]p) =

= [Ã|m−1X, [X, JX]]p + [X, Ã|m−2 [X,JX]]p =

= [αX + βJX, [X, JX]]p + [X, 2α[X, JX]]p =
= α[X, [X, JX]]p + β[JX, [X, JX]]p+
+2α[X, [X,JX]]p =
= 3α[X, [X, JX]]p + β[JX, [X, JX]]p =
= 3αS + βS′.

2. Ã(S′) = Ã([JX, [X, JX]]p) =

= [Ã|m−1JX, [X, JX]]p + [JX, Ã|m−2 [X,JX]]p =

= [αJX − βX, [X, JX]]p + [JX, 2α[X, JX]]p =
= α[JX, [X, JX]]p − β[X, [X,JX]]p+
+2α[JX, [X, JX]]p =
= 3α[JX, [X, JX]]p − β[X, [X, JX]]p =
= 3αS′ − βS.

We have the following proposition.

Proposition 2.4.4. Let (M4, J) be an almost complex manifold of real di-
mension 4, with NJ 6= 0 in p ∈M4 and such that V is non-degenerate. Then
the linear representation of the isotropy is trivial, i.e.

ρ(aut0p(M
4, J)) = 0.

This result is in agreement with the fact that the isotropy algebra fixing
a point p is zero: aut0p(M

4, J) = {0}.
To prove the proposition we need to consider both cases: fundamental

and non-fundamental Vp.
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2.4.1 Non-fundamental Vp
When Vp is non-fundamental, we have

Vp := V−1|p $ V−2|p = V−3|p $ TpM,

and so quotienting

M := m−1 ⊕m−2.

Since M � TpM (because dimM = 3 6= 4 = dimTpM), there exists a
”missing direction” n, such that

M := m−1 ⊕m−2 ⊕ n ∼= TpM.

Such a n can be defined by

n := TpM/V−2|p.

Proposition 2.4.5. We have that ([JT ]) forms a base of n, where [JT ] is
the equivalence class whose representative is JT := {JT +X : X ∈ V−2|p}.

Proof. Since the dimensions of m−1 and m−2 are respectively 2 and 1, and
the dimension of TpM is 4, then dimR n = 1.

Moreover, for the Proposition 2.2.2, (X, JX, T ) forms a base of V−2|p,
and JT cannot be generated by (X,JX, T ), otherwise there exist a, b, c ∈ R
such that

JT = aX + bJX + cT ;

so, appling J to both members of the equality, we have

T = −aJX + bX − cJT.

Comparing the two equalities we have that a = b = 0 and c = −1 = +1, a
contradiction.

Remark 2.19. When Vp is non-fundamental, S and S′ defined in Proposi-
tion 2.4.3 belong to V−2|p.

If A ∈ aut0p(M4, J) and Ã is the associated application, we already saw
that

Ã|m−1 = αI + βJ, α, β ∈ R;

moreover, if X = NJ(A,B) ∈ m−1, we have

Ã(NJ(A,B)) = NJ(Ã(A), B) +NJ(A, Ã(B)), ∀A,B ∈ TpM.



2.4 Graded Lie algebras of (M4, J) 39

Remark 2.20. We note that, when we compute the Nijenhuis tensor of
two vector fields, we can always suppose to take one vector in V−1|p and
the other vector outside of V−1|p. Indeed, if A and B were both in V−1|p,
because of the Remark (2.6), we would have

NJ(A,B) = 0.

If A and B were both outside of V−1|p, we can take A as T , since T generates
m−2, and B as JT , since JT generates n; we would have

NJ(T, JT ) = −JNJ(T, T ) = 0.

Therefore, we can always take

A ∈ V−1|p and B /∈ V−1|p.

From the remark above, we can take A ∈ V−1|p and B /∈ V−1|p, in
particular, we can choose B = T (we have the same result choosing B = JT ).
Then

Ã(NJ(A, T )) = NJ(Ã(A), T ) +NJ(A, Ã(T ))
= NJ(αA+ βJA, T ) +NJ(A, 2αT ))
= αNJ(A, T ) + βNJ(JA, T ) + 2αNJ(A, T )
= αNJ(A, T )− βJNJ(A, T ) + 2αNJ(A, T )
= (αI − βJ)NJ(A, T ) + 2αNJ(A, T )
= (3αI − βJ)NJ(A, T ).

On the other hand, we have

Ã(NJ(A, T )) = (αI + βJ)NJ(A, T ),

therefore, we must have necessarily

α = 0, β = 0.

In conclusion
Ã = 0,

so we proved Proposition 2.4.4 with non-fundamental Vp.

2.4.2 Fundamental Vp
When Vp is fundamental, we have

Vp := V−1|p $ V−2|p $ V−3|p = TpM,

and quotienting
M := m−1 ⊕m−2 ⊕m−3 ∼= TpM.
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Since Remark 2.20 also holds when Vp is fundamental (with the difference
that JT generates m−3 instead of n), if X = NJ(A,B) ∈ m−1, we can always
suppose that

A ∈ V−1|p and B /∈ V−1|p;

in particular, choosing B = T ∈ m−2 (it is the same if we take B = JT , but
when Vp is fundamental, we have that B = JT belongs to m−3), we have
the same result of the non-fundamental case:

α = 0, β = 0

and so
Ã = 0.

When Vp is fundamental, this conclusion can be shown in an alternative
way, using the following remark.

Remark 2.21. When Vp is fundamental, there exists a field Y ∈ m−1, with
Y 6= 0, such that

[Y, [Y, JY ]] 6= 0 and [JY, [Y, JY ]] = 0.

Indeed, if X ∈ m−1, X 6= 0, we have that the application

φ :

{
m−1 → m−3

Xp 7→ [X,T ]p

is linear and surjective, where we set T = [X, JX]p for brevity. Therefore,
since

dimR(m−1) = dimR(kerφ) + dimR(Imφ),

we have that dimR(kerφ) = 1, this means that So there exists at least one
Y ∈ m−1 such that [Y, T ]p = 0. We note that it cannot be [JY, T ]p = 0,
otherwise we would have [Y, T ]p = [JY, T ]p = 0, that is

[Y, [Y, JY ]]p = [JY, [Y, JY ]]p,

and so m−3 should be null, against the assumption that Vp is fundamental.

By the preceding remark, we can choose an appropriate X ∈ m−1 such
that S′ = [JX, [X, JX]]p = 0 and S = [X, [X, JX]]p 6= 0. Then, by the
second equality of Proposition 2.4.3, we have

Ã([JX, [X, JX]]p)︸ ︷︷ ︸
=0

= 3α[JX, [X, JX]]p︸ ︷︷ ︸
=0

−β[X, [X, JX]]p

and, since [X, [X,JX]]p 6= 0, it must be

β = 0.
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Moreover, because of the first equality of Proposition 2.4.3, we have

Ã([X, [X, JX]]p) = 3α[X, [X,JX]]p.

So, Ã acts on the elements X, JX, T, S as follows:

ÃX = αX,

Ã(JX) = αJX,

ÃT = 2αT,

ÃS = 3αS.

In particular, since J commutes with Ã, from ÃT = 2αT , we also have

Ã(JT ) = JÃ(T ) = J(2αT ) = 2αJT.

Therefore, T and JT are both eigenvectors related to the eigenvalue 2α
and they are linearly independent. So, the eigenspace related to 2α has
dimension at least 2, against the hypothesis dimRm

−2 = 1. Necessarily it
must be α = 0 and so Ã = 0.

In conclusion
Ã = 0,

so we proved Proposition 2.4.4 with fundamental Vp.





Chapter 3

Locally homogeneous almost
complex manifolds

3.1 Lie algebras associated to locally homogeneous
almost complex manifolds (M 4, J)

Let us consider a connected almost complex manifold (M4, J) of dimension
4 with non-degenerate torsion bundle V. In the previous chapter we gave
an adapted frame (X, JX, T, JT ) unique up to the sign of X and JX on
(M4, J). From Theorem 2.3.10, we obtain that Aut(M,J) is a Lie group
(having dimension dimAut(M,J) ≤ 4), hence, we can consider the left
action of the connected component G of Aut(M,J) on (M4, J) given by

l : G×M −→M,

such that l(ϕ, p) = ϕ(p). (For more details about Lie groups and Lie alge-
bras, see for example [1, 24, 25, 26, 27, 33, 40, 41].)

In this chapter we assume that (M4, J) is locally homogeneous (with the
exception of the last section or when specified).

Under this assumption, if (±X1,±X2, X3, X4) are the adapted frames of
(M4, J), we have that the structure functions ckij associated to (±X1,±X2,
X3, X4) (see Section 1.5) are locally constant, and are defined by

[Xi, Xj ] = ckijXk, i, j = 1, ..., 4

(it is clear that some of these constants differ for the sign). We denote
with g the Lie algebra generated by < X1, X2, X3, X4 >. We note that
the existence of two adapted frames on (M4, J) imply that lg∗(Xi) = Xi,
∀i = 1, ..., 4, for any g ∈ G, that is, X1, X2, X3 and X4 are left invariant
vector fields under the action l.

For conciseness, from now on we will say that the Lie algebras built above
are associated to the (locally) homogeneous almost complex manifold.
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Now we are going to study the Lie algebra g; in order to do this, we need
some notations.

Given a Lie algebra a, we denote by a(k) its derived algebras

a(0) := a, a(k) := [a(k−1), a(k−1)],

for any k = 0, 1, 2, ....
We denote by ak the descending central series of a given by

a0 := a, ak := [a, ak−1].

We recall that the algebra a is solvable if there exists a j such that a(j) = 0;
the algebra a is nilpotent if there exists a j such that aj = 0.

We denote by z(a) the center of a Lie algebra a given by

z(a) = {Z ∈ a : [Z,A] = 0,∀A ∈ a}.

Remark 3.1. We see at once that for the Lie algebra g, such that g =
Γ(TM), we have

z(g) ∩ Γ(V) = {0}.

Indeed, if we suppose by contradiction that there exists an element Z ∈
z(g) ∩ Γ(V), with Zp 6= 0, we get that Vp =< Zp, JZp >, with [Z, JZ]p = 0,
since Z is in the center. This contradict the non-degeneracy of V.

We have the following result for the Lie algebras g and g(1) = g1. For
simplicity of notation, we will use the same writing for g when its vector
fields are computed into the points p of M4.

Proposition 3.1.1. If (M4, J) is a locally homogeneous almost complex
manifold with non-degenerate torsion bundle, then the derived algebra g(1)

of the Lie algebra g associated to (M4, J) has dimension

2 ≤ dim g(1) ≤ 3.

In particular, if dim g(1) = 2 the algebra g is solvable.

Proof. We note that the dimension of the derived algebra g(1) of g cannot
be zero, because the vector 0 6= Tp ∈ g(1) (since Vp ⊆ g).

The dimension of g(1) cannot be 1 because, otherwise, we had g(1) =<
Tp >, from which

NJ(X,Y ) = [JX, JY ]− [X,Y ]︸ ︷︷ ︸
∈<T>

− J([JX, Y ] + [X, JY ])︸ ︷︷ ︸
∈<JT>

.

In other words, we had that Vp =< Tp, JTp >, because Vp is J-invariant,
and this is a contradiction.

We want to show that the dimension of g(1) cannot be 4.
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If the dimension of g(1) was 4 with g solvable, we had that g(1) = [g, g] 6=
g, a contradiction.

When g is not solvable, for the Levi-Malcev Theorem (see [14], pag.103)
we have

g = Ln r,

where L is the Levi factor (semisimple Lie subalgebra of g) and r is the
radical of g (maximal solvable ideal). Since the dimension of L is not zero
(because g is not solvable), the semisimple factor L must have dimension 3
and so the the radical r has dimension 1 and is abelian, hence

g(1) = [L,L] + [L, r] = L + [L, r].

We have that [L, r] = 0 (so L is an ideal). Indeed, it is sufficient to construct
the homomorphism of algebras

ϕ :

{
L → Der(r)
X 7→ adX |r,

to see that ϕ cannot be injective, because of the dimension of Der(r). Hence,
ϕ must be the null homomorphism, from which adX |r = 0, that is, [L, r] = 0.
In conclusion, when g is not solvable, we have that g(1) = L and that r is
the center of g.

The proof above also implies that the dimension of g(1) cannot be 4 and
that g must be solvable when dim g(1) = 2.

Remark 3.2. When g is non-solvable, we have that the radical r equals
the center z(g) of g. This is equivalent to say that g is a reductive algebra,
that is, it is the direct sum of a semisimple Lie algebra L and an abelian Lie
algebra (see for example [14]). Hence, we can rewrite

g = L⊕ r.

Now we are going to make a complete classification of the almost com-
plex structures related to the locally homogeneous almost complex manifold
(M4, J) having non degenerate torsion bundle when g is non-solvable, and
we will show with examples how to make the classification when g is solvable
(which have more cases than the non-solvable case). For a deeper discus-
sion of invariant complex structure on solvable Lie groups see, for example,
[28, 34, 35, 36].

3.2 (M 4, J) with non-solvable Lie algebras

Let us first consider the case in which the Lie algebra g, formed by the
adapted frames of (M4, J), is non-solvable. For Proposition 3.1.1, we have
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that the dimension of g(1) must be 3, so g(1) have to be isomorphic to so(3)
or sl(2,R). Since g = L⊕ r and g(1) = L, we have

g ∼= so(3)⊕ r or g ∼= sl(2,R)⊕ r,

where r is the center of g.

From now on, we identify g with so(3) ⊕ r, or with sl(2,R) ⊕ r, for
simplicity.

Proposition 3.2.1. Let g = L⊕ r and suppose that Vp is non-fundamental,
with Vp * L. Then L = sl(2,R).

Proof. We have that L is an ideal in g and that V−2|p is a 3-dimensional
subalgebra of g. So, the intersection π := V−2|p∩L is a 2-dimensional subal-
gebra of L (and an ideal in V−2|p), considering that Vp * L by assumption.
Since so(3) has no nontrivial subalgebras, L must be sl(2,R).

Lemma 3.2.2. Let g = L⊕ r, with Vp non-fundamental and Vp * L. Then
L (which is equal to sl(2,R)) has no abelian subalgebras of dimension 2. In
particular, π := V−2|p ∩ L is not an abelian subagebra.

Proof. Suppose, by contradiction, that L has an abelian subalgebra of di-
mension 2. If (e1, e2, e3) is a base of L such that (e1, e2) is a base of its
abelian subalgebra, then we have [e1, e2] = 0, f := [e1, e3] and g := [e3, e2].
Since L = L1, it must be < f, g >= L, a contradiction, because L is 3-
dimensional.

Remark 3.3. Let g = L ⊕ r and Vp ⊆ L. Then Vp is non-fundamental.
Indeed, since L is an algebra containing Vp, we have that V−2|p must be an
algebra (in particular, it coincides with L).

First, let us classify the case in which L = so(3), that is, g = so(3)⊕ r.

3.2.1 Classification for g = so(3)⊕ r

We can choose a base (e0, e1, e2, e3) of g such that

r =< e0 > and so(3) =< e1, e2, e3 >,

and such that

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2, [e0, ei] = 0, ∀i = 1, 2, 3.
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CASE A: g = so(3)⊕ r and Vp non-fundamental

When Vp is non-fundamental, from Proposition 3.2.1 and Remark 3.3 we
have that Vp ⊆ L, so the base (e1, e2, e3) of L can be chosen such that it
satisfies the conditions above and such that Vp is generated by two of the
elements of the base (e1, e2, e3), for example Vp =< e1, e2 >.

Since Vp =< ξ, Jξ >, for any 0 6= ξ ∈ Vp, we can define the almost
complex structure J in such a way that ξ = ke1 (with k 6= 0) and Jξ =
ae1 + be2, for some a, b ∈ R. So, η := [ξ, Jξ] = kbe3 (with b 6= 0, because Vp
is not degenerate) and Jη = e0 + xe1 + ye2 + ze3, for some x, y, z ∈ R (up
to rescaling e0 as base of r).

Computing the Nijenhuis tensor of ξ and η, we obtain

NJ(ξ, η) =
(b2 + a2 − k2)z − 2abk2

bk
ξ+

−(2az + b3 + a2b− bk2)
b

Jξ+

+
ay − bx
bk

η − ky

bk
Jη.

Since NJ only depends on ξ and Jξ, the coefficients of η and Jη must be
zero, hence x = 0, y = 0. Therefore,

NJ(ξ, η) =
(b2 + a2 − k2)z − 2abk2

bk
ξ − (2az + b3 + a2b− bk2)

b
Jξ. (3.1)

To compute the distinguished vector field of Vp, because of the arbitrari-
ness in the choice of ξ in Vp, it is sufficient to impose that NJ(ξ, η) = ξ,
that is, the coefficient of ξ must be 1 and the coefficient of Jξ must be 0 in
formula (3.1), so 

(b2 + a2 − k2)z − 2abk2

bk
= 1,

(2az + b3 + a2b− bk2)
b

= 0.

We observe that a 6= 0, otherwise, from the previous conditions, we have
that bk = 0, against the assumptions. Computing the previous system, we
obtain the parameters k and z as a function of a and b, and so

ξ = ka,be1, ka,b 6= 0,
Jξ = ae1 + be2, ab 6= 0,
η = ka,bbe3,
Jη = e0 + za,be3.

In conclusion, if (M4, J) is a locally homogeneous almost complex mani-
fold with non-fundamental and non-degenerate torsion bundle V, and the Lie
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algebra g associated to (M4, J) is non solvable with g = so(3)⊕ r, we have
the following classification for the almost complex structure J by varying
the coefficients a, b ∈ R:

Vp is non-fundamental

Vp ⊆ L Vp 6⊆ L

L = so(3) ξ = ka,be1, ka,b 6= 0
[e1, e2] = e3 Jξ = ae1 + be2, ab 6= 0 not possible
[e2, e3] = e1 η = ka,bbe3
[e3, e1] = e2 Jη = e0 + ca,be3

Table 3.1: CASE A: g = so(3)⊕ r with non-fundamental Vp.

Here, (ξ, Jξ, η, Jη) is the adapted frame and k = ka,b and c = ca,b are
function depending on the parameters a, b ∈ R and are given as solutions of
the system:  (b2 + a2 − k2)c− 2abk2 − bk = 0,

2ac+ b3 + a2b− bk2 = 0.

CASE B: g = so(3)⊕ r and Vp fundamental

Similar to what is done for the previous case, when Vp is fundamental, since
it must be Vp * L (because of Proposition 3.2.1 and Remark 3.3), the bases
(e1, e2, e3) of L and (e0) of r can be chosen such that Vp ∩ L =< e1 > and
Vp =< e1, e0 + e2 >, without loss of generality. In general, here we cannot
say that e1 can be chosen as the distinguished field of Vp. Then, if we define:

ξ = e1,
Jξ = ae1 + b(e0 + e2), b 6= 0,
η = be3,
Jη = xe1 + ye2 + ze3 + te0,

for appropriate coefficients a, b, c, x, y, z, t of R, we have that (ξ, Jξ, η, Jη)
is not (in general) the adapted frame. The coefficients a, b, c, x, y, z, t of R
must be chosen such that the Nijenhuis tensor of ξ and η only depends on
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ξ and Jξ, i.e. in the formula

NJ(ξ, η) =
(b2y + abx+ (−b2 − a2 + 1)t)z − b2x+ 2abt

b(y − t)
ξ+

+
(2at− bx)z − b3y − ab2x+ (b3 + (a2 − 1)b)t

b(y − t)
Jξ+

+
az2 − 2bz + ay2 + (−bx− at)y + btx− ab2

b(y − t)
η+

+
−z2 − 2abz − y2 + ty + b2

b(y − t)
Jη,

the coefficients of η and Jη must be null, that is az2 − 2bz + ay2 + (−bx− at)y + btx− ab2 = 0,

−z2 − 2abz − y2 + ty + b2 = 0.

Obtaining x and t from the system, we have
x =

2yz(a2 + 1)

z2 + 2abz − b2
,

t =
z2 + 2abz − b2 + y2

y
.

This leads to have the following construction:

ξ = e1,
Jξ = ae1 + b(e0 + e2), b 6= 0,
η = be3,

Jη =
2yz(a2 + 1)

z2 + 2abz − b2
e1 + ye2 + ze3 +

z2 + 2abz − b2 + y2

y
e0,

with z2 + 2abz − b2 6= 0. The Nijenhuis tensor becomes

NJ(ξ, η) =
1

C
(Aξ +BJξ), (3.2)

where

A = (b2 + a2 − 1)z5 + (4ab3 + (4a3 − 6a)b)z4 + ((a2 − 1)y2+
+(4a2 − 2)b4 + (4a4 − 14a2 + 2)b2)z3+
+(−6aby2 − 4ab5 + (8a− 12a3)b3)z2+
+((3− 3a2)b2y2 + b6 + (9a2 − 1)b4)z + 2ab3y2 − 2ab5,

B = 2az5 + (b3 + (9a2 − 1)b)z4+
+(2ay2 + 4ab4 + (12a3 − 8a)b2)z3+
+((3a2 − 3)by2 + (4a2 − 2)b5 + (4a4 − 14a2 + 2)b3)z2+
+(−6ab2y2 − 4ab6 + (6a− 4a3)b4)z+
+(1− a2)b3y2 + b7 + (a2 − 1)b5,

C = b(z2 + 2abz − b2)2.
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To calculate the adapted frame (X, JX, T, JT ), we have to find α and β in
R such that the linear combination αξ + βJξ is the distinguished field X of
Vp, that is

NJ(αξ + βJξ, [αξ + βJξ, J(αξ + βJξ)]) = αξ + βJξ.

In conclusion, if (M4, J) is a locally homogeneous almost complex man-
ifold with fundamental and non-degenerate torsion bundle V, and the Lie
algebra g associated to (M4, J) is non solvable with g = so(3)⊕ r, we have
the following classification for the almost complex structure J by varying
the coefficients a, b, y, z ∈ R:

Vp is fundamental

Vp ⊆ L Vp 6⊆ L

L = so(3) ξ = e1
not possible Jξ = ae1 + b(e0 + e2)

[e1, e2] = e3 η = be3

[e2, e3] = e1 Jη =
2yz(a2 + 1)

z2 + 2abz − b2
e1 + ye2 + ze3+

[e3, e1] = e2 +
z2 + 2abz − b2 + y2

y
e0

with b 6= 0 and z2 + 2abz − b2 6= 0

Table 3.2: CASE B: g = so(3)⊕ r with fundamental Vp.

Here, (ξ, Jξ, η, Jη) is not the adapted frame in general and the Nijenhuis
tensor of ξ and η is given by (3.2).

3.2.2 Classification for g = sl(2,R)⊕ r

For the classification when g = sl(2,R)⊕ r, we first need some notation and
terminology.

Definition 3.1. If L is a Lie algebra of dimension n, we recall that for any
X ∈ L, the characteristic polynomial of adX is of the form

n∑
i=0

ai(X)ti, with ai(X) ∈ R.

If k is the smallest integer such that ak 6= 0, an element is called regular
when ak(X) 6= 0.
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Remark 3.4. (see [9], ch. 7, sec. 2.2, p.16) Let L = sl(2,R), then the set
of its regular elements is formed by the matrices with not null determinant
(and the smallest integer k in the definition is 1).

Proposition 3.2.3. Let L = sl(2,R). If (H,X, Y ) is a base of L such that

[X,H] = X, [X,Y ] = 2H, [H,Y ] = Y, (3.3)

then X and Y are non-regular elements and H is a regular element. If
(H,W,Z) is a base of L such that

[H,Z] = −W, [H,W ] = Z, [Z,W ] = 2H, (3.4)

then H,W,Z are regular elements.

Vice versa, if X is a non-regular element of L, there exists a base
(X,Y,H) containing X such that (3.3) holds; if H is a regular element
of L, we have one and only one of the following cases:

1. there exists a base (H,X, Y ) of L containing H, such that (3.3) holds
and such that X,Y are non-regular elements, whereas H is a regular
element (iff detH < 0);

2. there exists a base (H,W,Z) of L containing H, such that (3.4) holds
and such that H,Z,W are regular elements (iff detH > 0).

Proof. Let (H,X, Y ) be a base of L such that (3.3) holds, then the matrix
of adX with respect to this base is of the form 0 0 0

0 0 2
1 0 0

 .

It has the characteristic polynomial given by pλ(adX) = −λ3, which has
the coefficient of the term of first degree equal to zero. So X is non-regular.
Similarly, we obtain the same result for Y .

The matrix of adH with respect to this base above is of the form −1 0 0
0 1 0
0 0 0

 ,

that has the characteristic polynomial given by pλ(adX) = −λ3 − λ. Since
the term of the first degree is not null, the element H is regular.

Vice versa, let X be a non-regular element of L, then its rank is one (since
the regular elements of sl(2,R) are matrices with not null determinant).
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Hence, X must be similar to the matrix

(
0 1
0 0

)
, that is, there exists a

matrix A, with detA 6= 0, such that

X = A

(
0 1
0 0

)
A−1.

It is sufficient to consider Y and H as

Y = −A
(

0 0
1 0

)
A−1, H = −1

2
A

(
1 0
0 −1

)
A−1,

to satisfy the properties (3.3).
Let H be a regular element of L, then its rank is two. Hence H must be

similar to one of these two matrices:

(
1 0
0 −1

)
,

(
0 1
−1 0

)
.

If H is similar to the first one, then there exists a matrix A, with detA 6=
0 such that

H = −1

2
A

(
1 0
0 −1

)
A−1.

Then it is sufficient to consider X and Y as

X = A

(
0 1
0 0

)
A−1, Y = −A

(
0 0
1 0

)
A−1,

to satisfy the properties (3.3).
If H is similar to the second one, then there exists a matrix A, with

detA 6= 0, such that

H =
1

2
A

(
0 1
−1 0

)
A−1.

Then it is sufficient to consider Z and W as

Z =
1

2
A

(
1 1
1 −1

)
A−1, W = −1

2
A

(
1 −1
−1 −1

)
A−1,

to satisfy the properties (3.4).

The proof of the following proposition is straightforward.

Proposition 3.2.4. If L = sl(2,R), then

1. every plane in L contains a regular element;

2. every plane in L contains a unique line made by non-regular elements
if and only if it is a subalgebra of L;

3. a plane of L, which is not a subalgebra, either contains all regular
elements (except the null matrix), or it has exactly two distinct lines
made by non-regular elements.

Now that we have stated the useful properties, we can proceed with the
classification.
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CASE C: g = sl(2,R)⊕ r, Vp non-fundamental and Vp 6⊆ sl(2,R)

Proposition 3.2.5. Let g = sl(2,R) ⊕ r. If Vp is non-fundamental with
Vp 6⊆ L, then there exists a base (H,X, Y ) of L such that (3.3) holds and

V−2|p =< e0, X,H >,

V−2|p ∩ L =< X,H >,

where (e0) is a base of r.

Proof. Since V−2|p and L are subalgebras, the plane defined by π := V−2|p∩L
is a subagebra of L, so, for Proposition 3.2.4, π contains a unique line made
by non-regular elements. If X is an element of this line, for Proposition 3.2.3
there exists a base (X,Y,H) of L such that Y is non-regular, H is regular,
and (3.3) holds. Hence π =< X, aY + bH >, for certain a, b ∈ R. Since π
is a subalgebra, it must be a = 0, so that we can rewrite π =< X,H >.
From π ⊆ V−2|p and Vp 6⊆ L, we have V−2|p =< e0 + cY,X,H >, for some
c ∈ R, but since V−2|p is a subalgebra, the coefficient c must be zero, hence
V−2|p =< e0, X,H >.

Corollary 3.2.6. Let g = sl(2,R) ⊕ r. If Vp is non-fundamental, with
Vp 6⊆ L, then < v >= Vp ∩ L is a line made by regular elements. In
particular, there exists a base (H,X, Y ) of L such that (3.3) holds and

Vp ∩ L =< H >,

Vp =< H, e0 + aX >, a 6= 0.

Proof. From Proposition 3.2.5, we have < v >:= Vp∩L ⊆ π := V−2|p∩L =<
X,H > . If v is a non-regular element, we have < v >=< X > because
< X > is the unique non-regular line of π (see Proposition 3.2.4). Therefore,
we can write Vp =< X, e0 + bH >, for some b ∈ R, since, for Proposition
3.2.5, (e0, X,H) is a base of V−2|p and Vp 6⊆ L. In this way Vp is degenerate,
against our assumption. Hence v must be a regular element and the base
(X,Y,H) of L can be chosen such that < v >=< H >. As a consequence,
Vp =< H, e0 + aX >, where a is not null because of the non degeneracy of
Vp.

When g = sl(2,R) ⊕ r and Vp is non-fundamental, with Vp 6⊆ L, the
Corollary 3.2.6 asserts that there exists a base (H,X, Y ) of L such that
(3.3) holds and Vp =< H, e0 + aX >, with a 6= 0. Hence a base (ξ, Jξ) of
Vp can be defined taking ξ = H and Jξ = e0 + aX + bH, for some a, b ∈ R,
with a 6= 0. Now, since η = [ξ, Jξ], we have that η = −aX, while Jη is the
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linear combination of X,Y,H, e0, for certain x, y, z, t ∈ R such that NJ(ξ, η)
is the linear combination of ξ and Jξ. Then we have

ξ = H,
Jξ = e0 + aX + bH, a 6= 0,
η = −aX,
Jη = xX + yY + zH + te0, y 6= 0,

where a, b, x, y, z, t are appropriate coefficients in R such that the calculation
of NJ(ξ, η) only depends on ξ and Jξ, that is, since we have

NJ(ξ, η) = (2ay + b2t− bz − t)ξ + (z − 2bt)Jξ+

+

(
2bx

a
− z − bt+ 2

)
η +

(
t+ 2b− 2x

a

)
Jη,

it must be 
2bx

a
− z − bt+ 2 = 0,

t+ 2b− 2x

a
= 0.

This gives 
z = 2(b2 + 1),

x =
a

2
(t+ 2b),

so that we obtain

ξ = H,
Jξ = e0 + aX + bH, a 6= 0,
η = −aX,
Jη =

a

2
(t+ 2b)X + yY + 2(b2 + 1)H + te0, y 6= 0,

and

NJ(ξ, η) = (2ay + b2t− t− 2b3 − 2b)ξ + 2(b2 + 1− bt)Jξ. (3.5)

To calculate the adapted frame (X, JX, T, JT ), we have to find α and β in
R such that the linear combination αξ + βJξ is the distinguished field X of
Vp, that is

NJ(αξ + βJξ, (α2 + β2)η) = αξ + βJξ.

In conclusion, if (M4, J) is a locally homogeneous almost complex man-
ifold with non-fundamental and non-degenerate torsion bundle V, and the
Lie algebra g associated to (M4, J) is non solvable with g = sl(2,R) ⊕ r,
we have the following classification for the almost complex structure J by
varying the coefficients a, b, t ∈ R:

Here (ξ, Jξ, η, Jη) is not the adapted frame in general and the Nijenhuis
tensor of ξ and η is given by (3.5).
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V is non-fundamental

V 6⊆ L

L = sl(2,R) ξ = H
[X,H] = X Jξ = e0 + aX + bH
[X,Y ] = 2H η = −aX
[H,Y ] = Y Jη =

a

2
(t+ 2b)X + yY + 2(b2 + 1)H + te0

with a 6= 0, y 6= 0

Table 3.3: CASE C: g = sl(2,R) ⊕ r, with non-fundamental Vp and with
Vp 6⊆ sl(2,R).

CASE D: g = sl(2,R)⊕ r, Vp non-fundamental and Vp ⊆ sl(2,R)

Consider the case in which g = sl(2,R)⊕ r and Vp is non-fundamental, with
Vp ⊆ L. Since Vp is a plane of sl(2,R) which is not a subalgebra (because
we are assuming that Vp is non-degenerate at any point p of (M4, J)), from
the Proposition 3.2.4 we have that Vp either contains all regular elements
(except the null matrix) or it has exactly two distinct lines made by non
regular elements. Hence, we have two cases: CASE D1, when Vp contains
all regular elements, and CASE D2, when Vp has exactly two distinct lines
made by non regular elements.

CASE D1: g = sl(2,R)⊕ r, Vp non-fundamental and Vp ⊆ sl(2,R)

One can prove that if a plane have all regular elements, they all have negative
determinant. By the Proposition 3.2.3, this implies that for any regular
element H of Vp there exist a base of sl(2,R) of type (H,X, Y ) having H as
regular element and X,Y as non-regular elements of sl(2,R).

If H is such that the base of sl(2,R) is of the type (H,X, Y ) and (3.3)
holds, then we have

ξ = kH, k 6= 0,
Jξ = aX + bY + cH, ab 6= 0,
η = k(−aX + bY ),
Jη = e0 + xX + yY + zH,

for certain k, a, b, c, x, y, z in R taken such that the Nijenhuis tensor of ξ and
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η only depends on ξ and Jξ, that is, since the calculation gives

NJ(ξ, η) =
((−ak2 + ac2 − 4a2b)y + (bk2 − bc2 + 4ab2)x− 4abck2)

2abk
ξ+

+
(−2acky + 2bckx+ 2abk3 + (8a2b2 − 2abc2)k)

2abk
Jξ+

+
(2abz − acy − bcx)

2abk
η +

(aky + bkx)

2abk
Jη,

and since the coefficients of η and Jη must be zero, we obtain{
2abz − acy − bcx = 0,
aky + bkx = 0,

that is {
ay + bx = 0,
z = 0.

As a consequence, obtaining x from the system and replacing it into the
formula of NJ(ξ, η)p, we have

NJ(ξ, η) =
(k2 − c2 + 4ab)y + 2bck2

bk
ξ − 2cky − bk3 + (bc2 − 4ab2)k

bk
Jξ.

Another way to interpret the first equation of the system is as a proportion
between −aX + bY and xX + yY in the definition of η and Jη. This leads
to have

ξ = kH, k 6= 0,
Jξ = aX + bY + cH, ab 6= 0,
η = k(−aX + bY ),
Jη = e0 + t(−aX + bY ),

for any t in R and the Nijenhuis tensor becomes

NJ(ξ, η) =
((k2 − c2 + 4ab)t+ 2ck2)

k
ξ + (2ct− k2 + c2 − 4ab)Jξ. (3.6)

Here (ξ, Jξ, η, Jη) is not the adapted frame in general, but since the
distinguished field of Vp must have negative determinant (because all the
elements of Vp are regular with negative determinant), we can compute
k, a, b, c, t such that H is exactly the distinguished field. In other words, we
impose that NJ(ξ, η) = ξ:

(k2 − c2 + 4ab)t+ 2ck2

k
= 1,

2ct− k2 + c2 − 4ab = 0.
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It gives, for example, a and c as functions of t, k, b:
a =
−k(4kt4 − 4t3 + 8k3t2 − 4k2t+ 4k5 − k)

16b(t2 + k2)2
,

c =
k

2(t2 + k2)
.

In conclusion, if (M4, J) is a locally homogeneous almost complex man-
ifold with non-fundamental and non-degenerate torsion bundle V such that
Vp is a plane containing all regular elements (except the null matrix), for
any p in M , and the Lie algebra g associated to (M4, J) is non solvable with
g = sl(2,R)⊕ r, we have the following classification for the almost complex
structure J by varying the coefficients t, k, b ∈ R:

V is non-fundamental

V ⊆ L

V all is made by regular
elements (except the null matrix)

L = sl(2,R) ξ = kH
[X,H] = X Jξ = ak,t,bX + bY + ck,t,bH
[X,Y ] = 2H η = k(−ak,t,bX + bY )
[H,Y ] = Y Jη = e0 + t(−ak,t,bX + bY )

with ak,t,bbk 6= 0

Table 3.4: CASE D1: g = sl(2,R) ⊕ r, with non-fundamental Vp and with
Vp ⊆ sl(2,R).

Here (ξ, Jξ, η, Jη) is the adapted frame and ak,t,b are functions depending
on the parameters t, k, b in R and are given by the solutions of the system:

a =
−k(4kt4 − 4t3 + 8k3t2 − 4k2t+ 4k5 − k)

16b(t2 + k2)2
,

c =
k

2(t2 + k2)
.

CASE D2: g = sl(2,R)⊕ r, Vp non-fundamental and Vp ⊆ sl(2,R)

When Vp is a plane having exactly two distinct lines made by non-regular
elements, by the Proposition 3.2.3, given a non-regular element X of Vp
there exist a base of sl(2,R) of type (H,X, Y ), with H as regular element
and X,Y as non-regular elements of sl(2,R) such that (3.3) holds.



58 Locally homogeneous almost complex manifolds

We can take a base (ξ, Jξ) of Vp and η = [ξ, Jξ], Jη as (up to rescaling
e0)

ξ = X,
Jξ = aX + bY + cH b 6= 0,
η = 2bH + cX,
Jη = e0 + xX + yY + zH,

for certain a, b, c, x, y, z in R taken such that the Nijenhuis tensor of ξ and
η, given by

NJ(ξ, η) =
(4ab2 − bc2)z + (c3 − 4abc)y − 8b3

2b2
ξ+

+
−4b2z + 4bcy + 2b2c2 − 8ab3

2b2
Jξ+

+
bcz − (c2 − 2ab)y − 2b2x

2b2
η − y

b
Jη,

only depends on ξ and Jξ; this means that the coefficients of η and Jη must
be zero:  bcz − (c2 − 2ab)y − 2b2x = 0,

y = 0,

so that we obtain  x =
cz

2b
,

y = 0.

Because of this system, we can redefine

ξ = X,
Jξ = aX + bY + cH b 6= 0,
η = 2bH + cX,

Jη = e0 +
cz

2b
X + zH,

and the Nijenhuis tensor of ξ and η becomes

NJ(ξ, η) =

(
−c

2z

2b
+ 2a− 4b

)
ξ + (c2 − 2z − 4ab)Jξ. (3.7)

Here (ξ, Jξ, η, Jη) is not the adapted frame in general. To calculate the
distinguished field, it is sufficient to find the opportune linear combination
of ξ and Jξ such that NJ(αξ + βJξ, [αξ + βJξ, αJξ − βξ]) = αξ + βJξ
(the calculation is similar to that of the previous cases). There is no reason
why ξ = X, which is a non-regular element, must be the distinguished field.
Indeed, one can find examples in which the distinguished field of the plane
Vp is regular or non-regular.
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In conclusion, if (M4, J) is a locally homogeneous almost complex man-
ifold with non-fundamental and non-degenerate torsion bundle V, such that
Vp is a plane containing exactly two distinct lines made by non-regular el-
ements for any p in M , and the Lie algebra g associated to (M4, J) is non
solvable with g = sl(2,R) ⊕ r, we have the following classification for the
almost complex structure J by varying the coefficients a, b, c, z ∈ R:

V is non-fundamental

V ⊆ L

V has exactly two lines made
by non-regular elements

L = sl(2,R) ξ = X
[X,H] = X Jξ = aX + bY + cH
[X,Y ] = 2H η = 2bH + cX

[H,Y ] = Y Jη = e0 +
cz

2b
X + zH

with b 6= 0

Table 3.5: CASE D2: g = sl(2,R) ⊕ r, with non-fundamental Vp and with
Vp ⊆ sl(2,R).

Here (ξ, Jξ, η, Jη) is not the adapted frame in general and the Nijenhuis
tensor is given by (3.7).

CASE E: g = sl(2,R)⊕ r, Vp fundamental and Vp 6⊆ sl(2,R)

When g = sl(2,R) ⊕ r and Vp is fundamental, it must be Vp 6⊆ sl(2,R) (as
a consequence of Remark 3.3). As we are going to see, in this context it
is useful to consider the plane π, defined as the intersection of V−2|p and
sl(2,R), and the line < v >, defined as the intersection of Vp and sl(2,R).
There are three cases, CASE E1, CASE E2 and CASE E3, depending on the
vector v: when v is regular of negative determinant, v is regular of positive
determinant, and v is non-regular (of null determinant) respectively.

Proposition 3.2.7. Let g = sl(2,R)⊕ r. If Vp is fundamental (so Vp 6⊆ L),
then we have one of the following cases.

1. There exists a base (X,Y,H) of L such that (3.3) holds and Vp =<
H, e0 + aX + bY >, ab 6= 0 and Vp ∩ L =< H >. In particular,
π := V−2|p ∩ L is plane which is not a subalgebra of L and

• if ab > 0, then all elements of π are regular;
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• if ab < 0, then π has exactly two lines made by non-regular ele-
ments.

2. There exists a base (K,W,Z) of L such that (3.4) holds and Vp =<
K, e0 + cW >, c 6= 0 and Vp ∩ L =< K >. In particular, π :=
V−2|p∩L is plane which is not a subalgebra of L and π has exactly two
lines made by non-regular elements.

3. There exists a base (X,Y,H) of L such that (3.3) holds and Vp =<
X, e0 + aY + bH >, a 6= 0 and Vp ∩ L =< X >. In particular,
π := V−2|p ∩ L is a subalgebra of L and π has exactly one line made
by non-regular elements.

Proof. Since Vp is fundamental, we have that V−2|p is not a subalgebra of g,
but π := V−2|p ∩ L can be or cannot be a subalgebra of g.

Let us first consider that π is a plane which is not a subalgebra. Then,
for the Proposition 3.2.4, we have the following two possibilities.

(a) All the elements of π are regular. Since < v >:= Vp ∩ L is in π,
then v is regular. So, according to Proposition 3.2.3, there exist two
kinds of basis of L, one of the type (X,Y,H), such that (3.3) holds
and such that < v >=< H > and Vp =< H, e0 + aX + bY > (since
Vp is fundamental and not degenerate, we have ab 6= 0; from the fact
that π only contains regular elements, an easy calculation shows that
ab > 0). The other base is of the type (K,W,Z), such that (3.4) holds
and such that < v >=< K > and Vp =< K, e0 + cW + dZ >. An
easy calculation shows that this last case never happens, since π only
contains regular elements.

(b) The palne π has exactly two lines of non-regular elements. If < v >:=
Vp ∩ L is non-regular, from the Proposition 3.2.3 there exist a base
of L of the type (X,Y,H), such that (3.3) holds and such that <
v >=< X > and Vp =< X, e0 + aY + bH >. Hence, V−2|p =< X, e0 +
aY + bH,H >, from which π =< X,H >. Since π has exactly two
lines of non-regular elements, a calculation shows that this case never
happens. This implies that < v > is regular, so, there exist two kinds
of basis, one of the type (X,Y,H), such that (3.3) holds and such that
< v >=< H > and Vp =< H, e0+aX+bY > (since Vp is fundamental
and not degenerate, we have ab 6= 0; from the fact that π has exactly
two lines of non-regular elements, an easy calculation shows that ab <
0). The second base is of the type (K,W,Z), such that (3.4) holds
and such that < v >=< K > and Vp =< K, e0 + cW + dZ > (since
Vp is fundamental and not degenerate, we have cd 6= 0); in particular,
we can chose a base of this type such that Vp =< K, e0 + cW >, with
c 6= 0 (an easy calculation shows that effectively π has exactly two
lines of non-regular elements).
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Now let us consider that π is a subalgebra 2-dimensional of L, then π
has a unique line of non-regular elements. There exist a base (X,Y,H) such
that (3.3) holds and such that π =< X,H + aY >, but the constant a is
zero, since π is a subalgebra.

If < v > is non-regular, then < v >=< X > (since < X > is the unique
line of non-regular elements) and so Vp =< X, e0 + aY + bH > (with a 6= 0
because Vp is not degenerate and fundamental).

If < v > is regular, then < v >=< H+µX > and the base (X,Y,H) can
be chosen such that µ = 0 and Vp =< H, e0+aX+bY > (with ab 6= 0 because
Vp is not degenerate and fundamental), so that π =< X,H >. We have
V−2|p =< H, e0 +aX+ bY,−aX+ bY >, from which π =< H,−aX+ bY >.
As a consequence, b = 0 and this shows that such a case cannot happen.

CASE E1: g = sl(2,R)⊕r, Vp fundamental, Vp 6⊆ sl(2,R) and v regular
of negative determinant

Since v is regular of negative determinant, there exists a base (H,X, Y ) of
L such that (3.3) holds and v = H, then, for Proposition 3.2.7, we have

ξ = H,
Jξ = e0 + aX + bY + cH, ab 6= 0,
η = −aX + bY,
Jη = te0 + xX + yY + zH,

for certain a, b, c, x, y, z, t in R taken such that the Nijenhuis tensor of ξ and
η only depends on ξ and Jξ. The calculation gives

NJ(ξ, η) =
1

2abt− ay − bx

{(
acyz − bcxz − 2abz − 2a2y2 − ac2ty + 4a2bty+

+aty + 2b2x2 + bc2tx− 4ab2tx− btx+ 4abct
)
ξ+

+
(
ayz − bxz + 2abcz − 2acty − 4a2by + 2bctx− 4ab2x+

−2abc2t+ 8a2b2t+ 2abt
)
Jξ+

+
(
ayz + bxz − 2abtz − 2cxy + acty − 2ay + bctx+ 2bx− 2abc

)
η+

+
(

2xy − aty − 2acy + 2bcx− btx+ 2ab
)
Jη

}
,

where the denominator 2abt−ay− bx is not zero because it is equivalent to
the condition of linear independence between ξ, Jξ, η, Jη. We impose that
the coefficients of η and Jη must be zero: ayz + bxz − 2abtz − 2cxy + acty − 2ay + bctx+ 2bx− 2abc = 0,

2xy − aty − 2acy + 2bcx− btx+ 2ab = 0,
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that is, solving in z and t:
z =

2(c2 + 1)(ay − bx)(ay + bx)

a2y2 − 2abxy + 4a2bcy + b2x2 − 4ab2cx− 4a2b2
,

t =
2(xy − acy + bcx+ ab)

ay + bx
.

Here (ξ, Jξ, η, Jη) is not the adapted frame in general. To calculate the
distinguished frame it is sufficient to do the same calculation seen for some
of the previous cases.

In conclusion, if (M4, J) is a locally homogeneous almost complex man-
ifold with non-fundamental and non-degenerate torsion bundle V, and the
Lie algebra g associated to (M4, J) is non solvable with g = sl(2,R)⊕r, such
that < v >:= Vp ∩ sl(2,R) is a negative determinant regular element (for p
in M), we have the following classification for the almost complex structure
J by varying the coefficients a, b, c, x, y ∈ R:

V is fundamental

V ⊆ L V * L

v with negative determinant

L = sl(2,R) ξ = H
[X,H] = X not Jξ = e0 + aX + bY + cH
[X,Y ] = 2H possible η = −aX + bY
[H,Y ] = Y Jη = xX + yY + zx,y,a,b,cH + tx,y,a,b,ce0

with (a, b) 6= (0, 0)
with ay + bx− 2abtx,y,a,b,c 6= 0

Table 3.6: CASE E1: g = sl(2,R) ⊕ r, with fundamental Vp and with
Vp 6⊆ sl(2,R). The vector v, defined by < v >= sl(2,R) ∩ Vp, is regular of
negative determinant.

Here zx,y,a,b,c and tx,y,a,b,c are functions depending on x, y, a, b, c, given
by the system:

zx,y,a,b,c =
2(c2 + 1)(ay − bx)(ay + bx)

a2y2 − 2abxy + 4a2bcy + b2x2 − 4ab2cx− 4a2b2
,

tx,y,a,b,c =
2(xy − acy + bcx+ ab)

ay + bx
.

(3.8)

and (ξ, Jξ, η, Jη) is not the adapted frame in general.
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CASE E2: g = sl(2,R)⊕r, Vp fundamental, Vp 6⊆ sl(2,R) and v regular
of positive determinant

Since v is regular of positive determinant, there exists a base (H,W,Z) of
L such that (3.4) holds and v = H, then, for Proposition 3.2.7, we have

ξ = H,
Jξ = e0 + aH + bW, b 6= 0,
η = bZ,
Jη = xH + yW + zZ + te0,

for certain a, b, x, y, z, t in R taken such that the Nijenhuis tensor of ξ and
η only depends on ξ and Jξ. The calculation gives

NJ(ξ, η) =
2byz − axz − 2b2tz + a2tz − tz + bx− 2abt

bt− y
ξ+

+
xz − 2atz − 2b2y + abx+ 2b3t− a2bt+ bt

bt− y
Jξ+

+
ab2 − az2 + 2bz − ay2 + bxy + abty − b2tx

b(bt− y)
η+

+
z2 + 2abz + y2 − bty − b2

b(bt− y)
Jη,

where the denominator bt − y is not zero because it is equivalent to the
condition of linear independence between ξ, Jξ, η, Jη. We impose that the
coefficients of η and Jη must be zero:

 ab2 − az2 + 2bz − ay2 + bxy + abty − b2tx = 0,

z2 + 2abz + y2 − bty − b2 = 0,

that is, solving in x and t:


x =

2yz(a2 + 1)

z2 + 2abz − b2
,

t =
z2 + 2abz − b2 + y2

by
.

This gives the following Nijenhuis tensor of ξ and η:

NJ(ξ, η) =
1

C
(Aξ +BJξ), (3.9)
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where

A = (−2b2 + a2 − 1)z5 + ((4a3 − 6a)b− 8ab3)z4+
+((a2 − 1)y2 + (4− 8a2)b4 + (4a4 − 14a2 + 2)b2)z3+
+(−6aby2 + 8ab5 + (8a− 12a3)b3)z2+
+((3− 3a2)b2y2 − 2b6 + (9a2 − 1)b4)z + 2ab3y2 − 2ab5,

B = −2az5 + (2b3 + (1− 9a2)b)z4 + (−2ay2 + 8ab4 + (8a− 12a3)b2)z3+
+((3− 3a2)by2 + (8a2 − 4)b5 + (−4a4 + 14a2 − 2)b3)z2+
+(2a(3b2y2 − 4b6) + (4a3 − 6a)b4)z + (a2 − 1)b3y2 + (2b2 + 1− a2)b5,

C = b(z2 + 2abz − b2)2.

Here (ξ, Jξ, η, Jη) is not the adapted frame in general. To calculate the
distinguished frame it is sufficient to do the same calculation seen for some
of the previous cases.

In conclusion, if (M4, J) is a locally homogeneous almost complex man-
ifold with non-fundamental and non-degenerate torsion bundle V, and the
Lie algebra g associated to (M4, J) is non solvable with g = sl(2,R)⊕r, such
that < v >:= Vp ∩ sl(2,R) is a positive determinant regular element (for p
in M), we have the following classification for the almost complex structure
J by varying the coefficients a, b, y, z ∈ R:

V is fundamental

V ⊆ L V * L

v with positive determinant

L = sl(2,R) ξ = H
[Z,H] = W not Jξ = e0 + aH + bW
[Z,W ] = 2H possible η = bZ
[H,W ] = Z Jη = xa,b,y,zH + yW + zZ + ta,b,y,ze0

with b 6= 0
with bta,b,y,z − y 6= 0

Table 3.7: CASE E2: g = sl(2,R) ⊕ r, with fundamental Vp and with
Vp 6⊆ sl(2,R). The vector v, defined by < v >= sl(2,R) ∩ Vp, is regular of
positive determinant.

Here xa,b,y,z and ta,b,y,z are functions depending on a, b, y, z, obtained by
the system: 

xa,b,y,z =
2yz(a2 + 1)

z2 + 2abz − b2
,

ta,b,y,z =
z2 + 2abz − b2 + y2

by
.

(3.10)
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The Nijenhuis tensor is given by (3.9) and (ξ, Jξ, η, Jη) given above is not
the adapted frame in general.

CASE E3: g = sl(2,R)⊕ r, Vp fundamental, Vp 6⊆ sl(2,R) and v non-
regular

Since v is non-regular, there exists a base (H,X, Y ) of L such that (3.3)
holds and v = X, then, for Proposition 3.2.7, we have

ξ = X,
Jξ = e0 + aX + bY + cH, bc 6= 0,
η = cX + 2bH,
Jη = xX + yY + zH + te0,

for certain a, b, c, x, y, z, t in R taken such that the Nijenhuis tensor of ξ and
η only depends on ξ and Jξ. The calculation gives

NJ(ξ, η) =
1

2b(bt− y)

{(
bcz2 − c2yz − 2abyz − 2b2xz − bc2tz + 4ab2tz+

+2acy2 + 2bcxy + c3ty − 4abcty + 4b2y − 8b3t

)
ξ + 2

(
byz+

−2b2tz − b2cz − cy2 + 2bcty + 2ab2y + 2b3x+ b2c2t− 4ab3t

)
Jξ+

+

(
− bz2 + cyz + bctz − 2ay2 + 2bxy − c2ty + 2abty − 2b2tx+

+4b3
)
η + 2

(
2b2z + y2 − bty − 2bcy

)
Jη

}
,

where the denominator 2b(bt− y) is not zero because it is equivalent to the
condition of linear independence between ξ, Jξ, η, Jη. We impose that the
coefficients of η and Jη must be zero −bz

2 + cyz + bctz − 2ay2 + 2bxy − c2ty + 2abty − 2b2tx+ 4b3 = 0,

2b2z + y2 − bty − 2bcy = 0,

that is, solving in x and t:

x =
1

4b3(cy − bz)

(
b2yz2 − 2b3cz2 − 2bcy2z + 4b2c2yz − 4ab3yz+

+c2y3 − 2bc3y2 + 4ab2cy2 − 4b4y

)
,

t =
2b2z + y2 − 2bcy

by
.

This gives the following Nijenhuis tensor of ξ and η:

NJ(ξ, η) =
A

C
ξ +

B

D
Jξ, (3.11)
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where

A = b2y2z2 − 4b4c2z2 + 16ab5z2 − 2bcy3z + 8b3c3yz+
−32ab4cyz − 32b6z + c2y4 − 4b2c4y2 + 16ab3c2y2+
−12b4y2 + 32b5cy,

B = −8b4z3 − 3b2y2z2 + 24b3cyz2 + 4b4c2z2+
−16ab5z2 + 6bcy3z − 24b2c2y2z − 8b3c3yz+
+32ab4cyz − 3c2y4 + 8bc3y3 + 4b2c4y2+
−16ab3c2y2 + 4b4y2,

C = 8b4(bz − cy),

D = 4b2(bz − cy)2.

Here (ξ, Jξ, η, Jη) is not the adapted frame in general. To calculate the
distinguished field, it is sufficient to do the same calculation seen for some
of the previous cases.

In conclusion, if (M4, J) is a locally homogeneous almost complex man-
ifold with non-fundamental and non-degenerate torsion bundle V, and the
Lie algebra g associated to (M4, J) is non solvable with g = sl(2,R)⊕r, such
that < v >:= Vp ∩ sl(2,R) is a non-regular element (for p in M), we have
the following classification for the almost complex structure J by varying
the coefficients a, b, c, y, z ∈ R:

V is fundamental

V ⊆ L V * L

v with null determinant

L = sl(2,R) ξ = X
[X,H] = X not Jξ = e0 + aX + bY + cH
[X,Y ] = 2H possible η = cX + 2bH
[H,Y ] = Y Jη = xa,b,c,y,zX + yY + zH + ta,b,c,y,ze0

with b 6= 0
with b(btx,y,a,b,c − y) 6= 0

Table 3.8: CASE E3: g = sl(2,R) ⊕ r, with fundamental Vp and with
Vp 6⊆ sl(2,R). The vector v, defined by < v >= sl(2,R) ∩ Vp, is non-regular
of null determinant.

Here xa,b,c,y,z and ta,b,c,y,z are functions depending on a, b, c, y, z, obtained
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by the system:

x =
1

4b3(cy − bz)

(
b2yz2 − 2b3cz2 − 2bcy2z + 4b2c2yz+

−4ab3yz + c2y3 − 2bc3y2 + 4ab2cy2 − 4b4y

)
,

t =
2b2z + y2 − 2bcy

by
.

(3.12)

The Nijenhuis tensor is given by (3.11) and (ξ, Jξ, η, Jη) given above is not
the adapted frame in general.

3.2.3 Table of classification when g is non-solvable

In conclusion we have the following classification when g is non-solvable:

Theorem 3.2.8. If (M4, J) is a locally homogeneous almost complex man-
ifold with a non-degenerate torsion bundle V, and its associated Lie algebra
g is non-solvable, we have the following classification for the almost complex
structure J :

V is non-fundamental

V ⊆ L V 6⊆ L

L = so(3) ξ = ka,be1, ka,b 6= 0
[e1, e2] = e3 Jξ = ae1 + be2, ab 6= 0 not possible
[e2, e3] = e1 η = ka,bbe3
[e3, e1] = e2 Jη = e0 + ca,be3

V is fundamental

V ⊆ L V 6⊆ L

L = so(3) ξ = e1
not possible Jξ = ae1 + b(e0 + e2), b 6= 0

η = be3

Jη =
2yz(a2 + 1)

z2 + 2abz − b2
e1 + ye2 + ze3+

+
z2 + 2abz − b2 + y2

y
e0,

z2 + 2abz − b2 6= 0
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V is non-fundamental

V ⊆ L V 6⊆ L

V has all regular elements
(except the null matrix)

L = sl(2,R) ξ = kH ξ = H
[X,H] = X Jξ = ak,t,bX + bY + ck,t,bH Jξ = e0 + aX + bH
[X,Y ] = 2H η = k(−ak,t,bX + bY ) η = −aX
[H,Y ] = Y Jη = e0 + t(−ak,t,bX + bY ) Jη =

a

2
(t+ 2b)X + yY

+2(b2 + 1)H + te0
with ak,t,bbk 6= 0

with a 6= 0, y 6= 0

V has exactly two lines made
by non-regular elements

L = sl(2,R) ξ = X
[X,H] = X Jξ = aX + bY + cH
[X,Y ] = 2H η = 2bH + cX

[H,Y ] = Y Jη = e0 +
cz

2b
X + zH

with b 6= 0
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V is fundamental

V ⊆ L V 6⊆ L

v with negative determinant

L = sl(2,R) ξ = H
[X,H] = X not Jξ = e0 + aX + bY + cH
[X,Y ] = 2H possible η = −aX + bY
[H,Y ] = Y Jη = xX + yY + zx,y,a,b,cH + tx,y,a,b,ce0

with (a, b) 6= (0, 0)
ay + bx− 2abtx,y,a,b,c 6= 0

and (3.8) holds

v with positive determinant

L = sl(2,R) ξ = H
[Z,H] = W not Jξ = e0 + aH + bW
[Z,W ] = 2H possible η = bZ
[H,W ] = Z Jη = xa,b,y,zH + yW + zZ + ta,b,y,ze0

with b 6= 0
bta,b,y,z 6= y

and (3.10) holds

v with null determinant

L = sl(2,R) ξ = X
[X,H] = X not Jξ = e0 + aX + bY + cH
[X,Y ] = 2H possible η = cX + 2bH
[H,Y ] = Y Jη = xa,b,c,y,zX + yY + zH + ta,b,c,y,ze0

with b 6= 0
btx,y,a,b,c 6= y

and (3.12) holds
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3.3 (M 4, J) with solvable Lie algebras

Now, let us consider the case in which the Lie algebra g is solvable. We restric
our study to the generalizaton of several examples, since the classification
of solvable Lie algebras provide a large number of cases.

In [15], Kim and Lee give an example (from now on we will denote it
as KL for simplicity) of an almost complex manifold (M4, J) with non-
degenerate torsion bundle and with symmetry algebra autp(M,J) of dimen-
sion 4.

3.3.1 Kim and Lee example

If (z1, z2) are complex coordinates of C2 (zj = xj + iyj for j = 1, 2) and

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
,

choosing

Z1 =
∂

∂z1
− 2z̄1i

∂

∂z2
,

Z2 = (z1 − z̄1)
∂

∂z1
+ (z1 − z̄1)z̄1

∂

∂z̄1
+ (−2i− z21 + z̄21)

∂

∂z2
+ (−z21 + z̄21)

∂

∂z̄2
,

they define an almost complex structure J on R4 as (1, 0) vector fields. A
base of germs of the infinitesimal automorphisms V1,
V2, V3, V4 of (R4, J) is given by

V1 = Z2 + Z̄2,

V2 = Z1 + Z̄1 − i(z1 − z̄1)V1,
V3 = i(Z1 − Z̄1)− (z1 + z̄1)V1 − (2z1z̄1 + z2 + z̄2)V2,

V4 = i(Z2 − Z̄2)− 2i(z1 − z̄1)V2 − (z1 − z̄1)2V1.

They generate the symmetry algebra autp(R4, J) for any point p.

We want to generalize this example to a particular class of examples.

Remark 3.5. We observe that the Lie algebra associated to the manifold
(R4, J), as we will see, is the solvable Lie algebra A4.1. Moreover, it is
interesting to study this algebra because it is the unique nilpotent algebra
of dimension 4 which is not decomposable (see [27]).

Remark 3.6. The manifold (R4, J) is homogeneous and its associated Lie
algebra is formed by the left invariant vector fields (see the beginning of the
Section 3.1).
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One can compute the distinguished vector field X, that is the vector
field such that NJ(X, [X, JX]) = X (the eigenvalue is positive), hence the
adapted frame is given by:

X =
1√
2

ImZ1,

JX =
1√
2

ReZ1,

T =
1

2
ReZ2,

JT = −1

2
ImZ2,

where

ReZ1 =
1

2

∂

∂x1
− x1

∂

∂x2
+ y1

∂

∂y2
,

ImZ1 = −1

2

∂

∂y1
+ x1

∂

∂y2
+ y1

∂

∂x2
,

ReZ2 = − ∂

∂y2
,

ImZ2 = 2y1
∂

∂x1
− (4x1y1 + 1)

∂

∂x2
.

Moreover, an easy calculation gives that

[ReZ1, ImZ1] = −ReZ2,

[ImZ1, ImZ2] = −2 ReZ1,

and all the other Lie brakets are null. Hence, for the fields of the adapted
frame, it holds

[X, JX] = T, [X, JT ] = JX,

and all the other Lie brakets are null.

We also note that the torsion bundle V in KL is non-fundamental, since
V−2|p =< X, JX, T > is a subalgebra of the Lie algebra g, defined by g =<
X, JX, T, JT >.

Note that g(1) = g1 =< JX, T > and that its derived algebra g(2) is null,
while the descending central series is g2 =< T >. This is the well-known
solvable algebra A4.1 (see [31], [5] and [29]).

One can check that the infinitesimal automorphisms V1, V2, V3, V4, found
by Kim and Lee in KL, generate the Lie algebra ḡ of the right invariant
vector fields as expected (it is sufficient to check that [Vj , Xj ] = 0, for all
j = 1, ..., 4, where the Xj are the fields of the distinguished frame) and that

[V2, V3] = −2V1, [V3, V4] = 4V2,
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with all the other Lie brackets null. Moreover, there is an isomorphism from
g to ḡ given by 

−2V1 7→ T

V2 7→ JX

V3 7→ −X

V4 7→ −4JT.

Remark 3.7. The vector fields V1, V2, V3 are the infinitesimal automor-
phisms of the Heienberg group Ht = {Rez2 + |z1|2 = t}, with t ∈ R, which is
a 3-dimensional CR manifold. Moreover, V1, V2, V3 act transitively on each
Ht and V4 is transversal to Ht. So the manifold (R4, J) of KL is homoge-
neous and it is foliated with spherical hypersurfaces.

3.3.2 Generalizations of Kim and Lee example

Let us consider a locally homogeneous almost complex manifold (M4, J)
of real dimension 4 with non-degenerate torsion bundle V and with the
associated Lie algebra g given by the left invariant vector fields of TpM ,
for any p ∈ M4. Suppose that g is the Lie algebra A4.1 defined by g =<
e1, e2, e3, e4 >, with

[e2, e4] = e1, [e3, e4] = e2.

Here, we are going to study the non equivalent almost complex structures
J on M4 having the same Lie algebra A4.1.

We have that g(1) = g1 =< e1, e2 >, g(2) = 0 and g2 =< e1 >. It is
clear that the center of g is z(g) =< e1 > and that Vp 6= g(1) =< e1, e2 >,
otherwise Vp would be degenerate. So, we have two possibilities: dim(Vp ∩
g(1)) is 1 or 0.

Proposition 3.3.1. If g is the Lie algebra A4.1 associated to a connected
locally homogeneous almost complex manifold (M4, J) with non-degenerate
torsion bundle V, then the following facts are equivalent:

(a) dim(Vp ∩ g1) = 1,

(b) Vp is non-fundamental,

(c) g1 ⊆ V−2|p,

(d) (Vp ∩ g1) = V±p .

Proof. (a) ⇒ (b). Let us suppose that the dim(Vp ∩ g1) = 1, then there
exist k, h ∈ R, with (k, h) 6= (0, 0), such that (Vp ∩ g1) =< ke1 + he2 >,
hence Vp =< ke1 + he2, ae1 + be2 + ce3 + de4 > for some a, b, c, d ∈ R (with
(c, d) 6= (0, 0), otherwise the vector filed ae1 + be2 + ce3 + de4 is in g1). In
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this way we have that V−2|p =< e1, e2, ce3 + de4 >, so that V−2|p is a Lie
subalgebra of g, i.e. Vp is non-fundamental.
(b)⇒ (c). Since Vp is non-fundamental, V−2|p is a 3-dimensional Lie subalge-
bra of g, hence there exist a, b, c, d, x, y, z, t ∈ R such that V−2|p is generated
by

ξ := ae1 + be2 + ce3 + de4,
Jξ := xe1 + ye2 + ye3 + te4,
η := [ξ, Jξ] = (bt− dy)e1 + (ct− dz)e2,

with (ct− dz, bt− dy) 6= (0, 0) and (d, t) 6= (0, 0); moreover

[ξ, η] = −d(ct− dz)e1 ∈ V−2|p,

[Jξ, η] = −t(ct− dz)e1 ∈ V−2|p.

If (ct − dz)(bt − dy) 6= 0, we have e1 ∈ V−2|p and hence e2 ∈ V−2|p. If
(ct− dz) = 0 and (bt− dy) 6= 0, e1 ∈ V−2|p and ce3 + de4 is proportional to
ye3 + te4 so that e2 ∈ V−2|p. If (ct− dz) 6= 0 and (bt− dy) = 0, < e1, e2 >⊆
V−2|p. In all cases g1 ⊆ V−2|p.
(c)⇒ (d). Since < e1, e2 >= g1 ⊆ V−2|p, there esist k, h ∈ R, not both null,
such that ke1 + he2 ∈ Vp. Let us define

ξ = ke1 + he2, (k, h) 6= (0, 0),
Jξ = ae1 + be2 + ce3 + de4, (c, d) 6= (0, 0),
η = [ξ, Jξ] = hde1, hd 6= 0,
Jη = xe1 + ye2 + ze3 + te4.

We have that < ξ, Jξ >= Vp and that the Nijenhuis tensor of ξ and η is

NJ(ξ, η) =
1

h
(ct− dz)ξ +

(
− k

h2d
(ct− dz) +

1

hd
(bt− dy)

)
η − t

d
Jη,

and since the coefficients of η and Jη must be zero, we obtain{
t = 0

y =
k

h
z,

from which

NJ(ξ, η) = −dz
h
ξ.

This means that ξ is the distinguished direction that generates V+p or V−p
(it depends on the sign of the coefficients d, h, z appearing ahead ξ in the
calculation of NJ). We have actually proved (d).
(d)⇒ (a) is trivial.

Proposition 3.3.2. If g is the Lie algebra A4.1 associated to a connected
locally homogeneous almost complex manifold (M4, J) with non-degenerate
torsion bundle V, then the following facts are equivalent:
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(a′) dim(Vp ∩ g1) = 0,

(b′) Vp is fundamental,

(c′) g1 * V−2|p,

(d′) (Vp ∩ g1) = {0}.

Proof. From the previous proposition it is clear that (d′) ⇒ (a′) ⇒ (b′) ⇒
(c′)⇒ (d′).

Remark 3.8. KL is of the same type of Proposition 3.3.1.

Remark 3.9. We note that since z(g) ∩ Vp = {0} (see Remark 3.1) and
e1 ∈ z(g), the space < e1 > is never contained in Vp (in agreement to the
fact that h, which appears into the proof of Proposition 3.3.1, is never zero).

Case A4.1 with non-fundamental Vp

We first analyze the case of Proposition 3.3.1. Since Vp =< ξ, Jξ > for any
ξ not null in Vp, we can choose ξ such that it is one of the two distinguished
vector fields of Vp, for example such that V+p =< ξ >. From the proof of
Proposition 3.3.1 we obtain the following

Corollary 3.3.3. If A4.1 is the Lie algebra g associated to a locally homo-
geneous almost complex manifold with non-fundamental and non-degenerate
torsion bundle V, taking ξ as the distinguished vector field of Vp in p, we
have

ξ = ke1 − dze2,
Jξ = ae1 + be2 + ce3 + de4, d 6= 0,
η = [ξ, Jξ] = −d2ze1, z 6= 0

Jη = xe1 −
k

d
e2 + ze3,

with k, h, a, b, c, d, x, z ∈ R.

Proof. From the proof of Proposition 3.3.1 we obtain the following writings
for any ξ ∈ V+p .

ξ = ke1 + he2, h 6= 0,
Jξ = ae1 + be2 + ce3 + de4, d 6= 0,
η = [ξ, Jξ] = hde1,

Jη = xe1 +
kz

h
e2 + ze3, z 6= 0,

with k, h, a, b, c, d, x, z ∈ R.
Since we want that ξ is the distinguished field in p, that is NJ(ξ, η) = ξ,

computing the Nijenhuis tensor we have that NJ(ξ, η) = −dz
h
ξ, so we have

to put
dz

h
= −1.
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We make another example, which is equivalent to KL, having the same
associated Lie algebra A4.1, formed by the left invariant vector fields.

We choose h = d = 1, z = −1 and k = a = b = c = x = 0, hence we have

ξ = e2,
Jξ = e4,
η = [ξ, Jξ] = e1,
Jη = −e3,

and NJ(ξ, η) = ξ (observe that Je2 = e4 and Je1 = −e3). If we consider
the following realization of the algebra g = A4.1

e1 = ∂1,
e2 = ∂2,
e3 = ∂3,
e4 = x1∂1 + x3∂2 + ∂4,

we can take the following (1, 0)-vector fields

Z1 = e1 − iJe1 = ∂1 + i∂3,

Z2 = e2 − iJe2 = −ix1∂1 + (1− ix3)∂2 − i∂4,

they define an almost complex structure J . In this way the adapted frame
is exactly given by (ξ, Jξ, η, Jη) and it is easy to check that the structure
functions are constants.

Now we are going to find the infinitesimal automorphisms on g. Taking
a generic infinitesimal automorphism as W = αξ + βJξ + γη + δJη, with
α, β, γ, δ differentiable functions, it is sufficient to compute the right invari-
ant vector fields imposing [ξ,W ] = 0, [Jξ,W ] = 0, [η,W ] = 0, [Jη,W ] = 0.
We define

W1 =
1

2
Z1 +

1

2
Z̄1,

W2 =
1

2
x4Z1 +

1

2
x4Z̄1 +

1

2
Z2 +

1

2
Z̄2,

W3 =
1

2
x1Z1 +

1

2
x1Z̄1 −

1

2
(x3 − i)Z2 −

1

2
(x3 + i)Z̄2,

W4 =

(
1

4
x24 +

1

2
i

)
Z1 +

(
1

4
x24 −

1

2
i

)
Z̄1 +

1

2
x4Z2 +

1

2
x4Z̄2,

so that the algebra ḡ of the right invariant vector fields is given by ḡ =<
W1,W2,W3,W4 >; an easy calculation gives

[W2,W3] = −W1, [W3,W4] = W2,

with null all the other Lie brackets. We thus get ḡ1 = ḡ(1) =< W1,W2 >,
ḡ2 =< W1 > and ḡ(2) = 0.
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Remark 3.10. There are vector fields that are both left and right invariant
vector fields, for example η = W1 (they are vector fields belonging to the
center of the algebra).

Infinitesimal automorphisms of g send V±p in itself, as a consequence Vp
is sent in Vp, V−2|p in V−2|p and V−3|p in V−3|p, but it is not possible to find
a canonical isomorphism between ḡ and g.

It should be noted, too, that since V−2|p is a subalgebra of g, there is a
foliation of (M4, J) such that every vector field in V−2|p acts on the leaves
having V−2|p as Lie algebra associated. All these leaves are locally equivalent
to a sphere (because of Remark 3.7). In particular, these vectors send the
points of any leaf in points of the same leaf; while the vector field W4 send
the points of a leaf in points of another leaf.

Case A4.1 with fundamental Vp

It is of interest to know whether it is possible to find almost complex struc-
tures J on the Lie algebra A4.1 that are non equivalent to KL example.

For simplicity, in this section we will study only an example because
its generalization involves the use of too many parameters (although this
generalization can be done).

If we take

ξ = e3,
Jξ = e4,
η = [ξ, Jξ] = e2,
Jη = e1 − e3,

we obtain that NJ(ξ, η) = Jξ. An easy calculation gives that the adapted
frame is

X =
1√
2

(e3 + e4),

JX =
1√
2

(e4 − e3),

T =
2√
2
e2,

JT =
2√
2

(e1 − e3).

Here the Lie algebra associated is again A4.1, but the almost complex struc-
ture J is non equivalent to that of the previous example and to KL: it is
easy to check that not only (Vp ∩ g1) = {0} holds, but Vp is fundamental
too.
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3.3.3 Solvable Lie algebra g associated to a locally homoge-
neous almost complex manifold M3 × R with M3 non-
equivalent to a hypersphere

Unlike the case of KL, we are interested in finding some examples of 4-
dimensional locally homogeneous almost complex manifold with non-degene-
rate torsion bundle and with foliation M3×R such that M3 is non-equivalent
to a hypersphere of dimension 3 (see [11]). Our propose is to extend this
kind of examples to a class of equivalent examples. We will consider the
3-dimensional Lie algebra A3.2 defined by

[e1, e3] = e1, [e2, e3] = e1 + e2, [e1, e2] = 0,

and will assume that the almost complex structure J , defined on the holo-
morphic tangent space HpM

3 in A3.2, is given by

Je1 = e3 + e4,

Je2 = e3,

where e4 is not in A3.2; we also assume that

[e4, ej ] = 0, j = 1, 2, 3,

to get the Lie algebra A3.2 ⊕A1 (for the notation see [31]). It gives
z(A3.2 ⊕A1) =< e4 >= A1.

By a simple calculation we have that NJ(e1, e2) = e3 and, since Vp is
J-invariant, we get Vp =< e2, e3 >. Observe that Vp is non-degenerate,
that Vp = HpM

3 and that V−2|p =< e1, e2, e3 >= A3.2. By construction of
M3 × R and A3.2 ⊕A1, we have

TpR =< e4 > .

A simple calculation gives

ξ =
1√
2

(e2 − e3),

Jξ =
1√
2

(e2 + e3),

η = e1 + e2,
Jη = 2e3 + e4,

as adapted frame.
If we take

e1 = ∂1,
e2 = ∂2,
e3 = (x1 + x2)∂1 + x2∂2 + ∂3,
e4 = ∂4,
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as realization of the given algebra A3.2 ⊕A1, we can choose

Z1 = (1− ix1 + ix2)∂1 − ix2∂2 − i∂3 − i∂4,

Z2 = −i(x1 + x2)∂1 + (1− ix2)∂2 − i∂3

as (1, 0)-vector fields. Hence the Lie algebra ḡ of the right invariant vector
fields is given by

W1 =
1

2
ex3(Z1 + Z̄1),

W2 =
1

2
x3e

2x3Z1 +
1

2
x3e

2x3Z̄1 +
1

2
ex3Z2 +

1

2
ex3Z̄2,

W3 = −1

2
(x1 + x2)Z1 −

1

2
(x1 + x2)Z̄1 −

1

2
(x2 + i)Z2 −

1

2
(x2 − i)Z̄2,

W4 = −1

2
i(Z1 − Z̄1 − Z2 + Z̄2).

Remark 3.11. Since V−2|p is a subalgebra of A3.2 ⊕A1 (V−2|p = A3.2)
and A1 is the center of A3.2 ⊕A1, there is a foliation of (M4, J) such that
the action given by the vector fields of V−2|p sends points of a leaf, having
V−2|p as Lie algebra, in points of the same leaf, and the field e4 sends points
of a leaf in points of another leaf.

Note that we have actually obtained a manifold M3 which is a non-
degenerate CR manifold, in particular, M3 is not diffeomorphic to a hyper-
sphere of dimension 3. For more details we refer the reader to [11] pag.70.

3.3.4 Generalization of M3 × R

A more complete theory may be obtained by a generalization of the exam-
ples seen in the previous section. In this section we will make the follow-
ing assumptions: g =< e1, e2, e3, e4 > is the Lie algebra A3.2 ⊕A1, hence
g1 =< e1, e2 >, g(2) = 0, g2 = g1. We see at once that Vp 6= g1, which is
clear because Vp is non-degenerate, so dim(Vp∩g1) = 1 or dim(Vp∩g1) = 0.

Proposition 3.3.4. If g =< e1, e2, e3, e4 > is the Lie algebra A3.2 ⊕A1 as-
sociated to a connected locally homogeneous almost complex manifold (M4, J)
with non-degenerate torsion bundle V, then the following facts are equiva-
lent:

(a) dim(Vp ∩ g1) = 1,

(b) dim(V−2|p ∩ g1) = 2.

As a consequence, the following facts are equivalent too:

(a′) dim(Vp ∩ g1) = 0,
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(b′) dim(V−2|p ∩ g1) = 1.

Proof. (a)⇒ (b). Let us assume, by contradiction, that dim(V−2|p∩g1) = 1,
we have that (V−2|p ∩ g1) =< ae1 + be2 >, for certain a, b ∈ R with (a, b) 6=
(0, 0), and Vp =< ae1 + be2, xe1 + ye2 + ze3 + te4 >, for certain x, y, z, t ∈ R.
As a consequence, V−2|p =< e1, e2, ze3 + te4 >, a contradiction. The proof
of (b)⇒ (a) is straightforward (it is sufficient to use Grassmann theorem on
the dimension of (V−2|p + g1) considering that g1 ⊆ V−2|p).

Case A3.2 ⊕A1 with dim(Vp ∩ g1) = 1

When dim(Vp ∩ g1) = 1, we can proceed analogously to the construction of

ξ = ke1 + e2,
Jξ = ae1 + be2 + ce3 + de4, c 6= 0,
η = [ξ, Jξ] = c(k + 1)e1 + ce2,
Jη = (2ac+ (k − 1)(y − 2bc))e1 + ye2 + 2c2e3 + te4, t 6= 2cd,

with k, a, b, c, d, x, y, t ∈ R. Here we can assume that the coefficient of e2
in the definition of ξ is 1, because it is not null: if it was null, ξ, Jξ and
η would be dependent one each other (ξ would be proportional to η); the
condition t 6= 2cd arises from the independence of ξ, Jξ, η, Jη. A calculation
gives that

NJ(ξ, η) = c(2bc− y)ξ − c2Jξ.

We note that the condition dim(Vp ∩ g1) = 1 implies that Vp is non-
fundamental, but it is just a sufficient condition: in general the opposite
implication does not hold.

Case A3.2 ⊕A1 with dim(Vp ∩ g1) = 0

When dim(Vp∩g1) = 0, we just consider examples to lighten this case, since
the generalization involves a lot of parameters.

If we take the example

ξ = e3,
Jξ = e1 + e4,
η = [ξ, Jξ] = −e1,
Jη = −e2 + e4,

we have that NJ(ξ, η) = ξ, that is, ξ is the distinguished vector field of Vp
and (ξ, Jξ, η, Jη) is the adapted frame.
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We note that Vp is non-fundamental, but, conversely from the previ-
ous case, the condition dim(Vp ∩ g1) = 0 does not imply that Vp is non-
fundamental in general. Indeed, we have the following counterexample:

ξ = e3,
Jξ = e2 + e4,
η = [ξ, Jξ] = −e1 − e2,
Jη = e2 + 2e3.

The Nijenhuis tensor is NJ(ξ, η) = −2ξ (hence < ξ >= V−p ) and Vp is
fundamental.

3.4 Lie algebras of homogeneous almost complex
manifolds of dimension 4

In this section we assume that (M,J) is a four dimensional connected, homo-
geneous almost complex manifold with non degenerate torsion bundle (see
also [42] for the group of automorphisms of a homogeneous almost complex
manifold). This means that the action of the connected component G of the
Lie group Aut(M,J), given by the automorphisms of (M,J), on (M,J) is
transitive and the following theorem holds (see [40] Theorem 2.9.4, p. 77).

Theorem 3.4.1. Let G be a Lie group, H a closed Lie subgroup. Then
there exist exactly one analytic structure on G/H which converts it into an
analytic manifold such that the natural action of G on G/H is analytic. If
M is any analytic manifold on which G acts analytically and transitively,
x0 in M , and Gx0 is the isotropy subgroup at x0, then the map{

G/Gx0 −→ M
gGx0 7→ g · x0

is an analytic diffeomorphism of G/Gx0 in M .

As a consequence, we have that there exists a diffeomorphism such that

M ∼= G/Gp,

with Gp the isotropy subgroup of G fixing a point p of M .

Let us now consider the double covering F of (M,J) given by

ϕ : F →M, (3.13)

where F is endowed with an {e}-structure and M is endowed with an
{e±}-structure (see Remark 2.15). Now, we have two possibilities based on
the fact that F is connected or non-connected.
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Proposition 3.4.2. Given a connected homogeneous almost complex man-
ifold (M,J) of dimension 4 with non-degenerate torsion bundle, if (F,ϕ) is
the double covering of (M,J) given by (3.13) and G is the connected com-
ponent of Aut(M,J), we have that:

(i) when F is connected, then F ∼= G and it has subgroups of order 2; in
particular, M is a Lie group if and only if the isotropy subgroup Gp of
G is in the center of G;

(ii) when F is non-connected, then F ∼= G× {0, 1} and M ∼= G.

Proof. (i) Since the action of G on F is an immersion, from the connection
of G we have that F ∼= G when F is connected (because the only connected
subgroups of F are the trivial ones). Hence, from M ∼= G/Gp and M ∼=
F/Z2, we obtain M ∼= G/Z2. This means that in this case there must be
subgroups of G of order 2, so we can write Gp =< idG, h >, with h2 = idG
and h 6= idG. In general, M ∼= G/Gp is not a Lie group, but just a manifold.
We have that M ∼= G/Gp is a Lie group if and only if either g−1hg = idG
or g−1hg = h holds, for all g ∈ G. Since h 6= idG, the latter holds, i.e.
Gp ⊆ Z(G), where Z(G) is the center of G. So, G/Gp is a Lie group if and
only if Gp ⊆ Z(G).

(ii) When F is not connected, every sheet of F is isomorphic to G and,
since F ∼= G × {0, 1}, we have that M ∼= G. In this case the isotropy
subgroup of G must be the trivial one.

Let us analyze the KL example in consideration of the previous pro-
preties. A matrix representation of the Lie algebra A4.1 is (for instance see
[4], pag.30)

g =




0 x 0 t
0 0 x z
0 0 0 y
0 0 0 0

 : x, y, z, t ∈ R

 .

An easy computation of the exponential of g gives that a Lie group G̃ asso-
ciated to A4.1 is

G̃ =




1 a

a2

2
d

0 1 a c
0 0 1 b
0 0 0 1

 : a, b, c, d ∈ R

 .

This group is connected and simply connected since it is isomorphic (as
topologic manifold) to R4; in particular, it is equivalent to the manifold
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studied by Kim and Lee in their example. Moreover, G̃ is a nilpotent group
(since also its algebra is) and its center is

Z(G̃) =




1 0 0 α
0 1 0 0
0 0 1 0
0 0 0 1

 : α ∈ R

 .

It is easy to check that G̃ has not subgroups of order two, that is, there
are not non-trivial solution of

1 a
a2

2
d

0 1 a c
0 0 1 b
0 0 0 1


2

= idG̃,

for some a, b, c, d ∈ R.
So, if M is any homogeneous almost complex manifold isomorphic to G̃

and F is its double covering, for Proposition 3.4.2, we have that F has to
be not connected.

Now, we want to build an example in which the double covering F of
(M,J) is connected. Such example is obtained from the Lie group G̃ studied
above.

Since G̃ is connected and simply connected, all the other Lie groups
having A4.1 as Lie algebra are of the form Ḡ ∼= G̃/N (see [25]), where N is
a (normal) dicrete subgroup contained into the center of G̃.

A normal discrete subgroup of G̃ is of the form

Nt =




1 0 0 tk
0 1 0 0
0 0 1 0
0 0 0 1

 : k ∈ Z

 ,

with t ∈ R. We have that G̃/N2 is connected and it is a double covering of
G̃/N1. Moreover, G̃/N2 has non-trivial normal discrete subgroups of order
two as expected: if [N2] and [gN2] are the classes of equivalence of the
elements N2 and gN2 of G̃/N2, with

g =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,

we have that < [N2], [gN2] = [N1] > is a normal subgroup of order two of
G̃/N2.
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Since there is an isomorphism between Nt and Nt′ for any t, t′ in R, we
have the following result.

Proposition 3.4.3. Any homogeneous almost complex manifold (M,J),
with non-degenerate torsion bundle and with the connected component of
the group of automorphisms Aut(M,J) isomorphic to A4.1, is equivalent to
one of these Lie groups:

(i)

G̃ =




1 a

a2

2
d

0 1 a c
0 0 1 b
0 0 0 1

 : a, b, c, d ∈ R

 ,

which has a non-connected double covering F ∼= G̃× {0, 1};

(ii)

G̃/Nt,

where Nt =




1 0 0 tk
0 1 0 0
0 0 1 0
0 0 0 1

 : k ∈ Z

 , which has a connected

double covering F ∼= G̃/Nt.

Remark 3.12. From the examples we have just analyzed, we obtain the
following considerations holding globally on (M,J). When M is any ho-
mogeneous almost complex manifold isomorphic to G̃, the double covering
F is non-connected, hence there are two independent absolute parallelisms
globally on (M,J). Whereas, when M is any homogeneous almost complex
manifold isomorphic to G̃/Nt, the double covering F is connected, hence
there is no a global double absolute parallelism on (M,J). This fact implies
that, in general, there are two absolute parallelisms locally but not globally
on (M,J).

We can find other examples with connected F . Let us consider the Lie
algebra so(3)⊕ r, given by the matrix of the form

0 a b 0
−a 0 c 0
−b −c 0 0
0 0 0 d

 .

If (e1, e2, e3, e4) is a base of so(3)⊕ r such that

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2, [e0, ei] = 0,∀i = 1, 2, 3,
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it s sufficient to take, for example, Vp =< e1, e2 > and the almost complex
stucture defined by Je1 = e1 + e2 and Je3 = e4. An easy calculation gives
that S := SO(3) × R+ is a connected Lie group having so(3) ⊕ r as Lie
algebra. The element

s =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


of S is such that s2 = idS , so < idS , s > is a discrete subgroup of S, then

S → S/ < idS , s >

is a covering of S/ < idS , s >. We found that the group S (having subgroups
of order 2) is a double covering of the almost complex manifold given by
S/ < idS , s > with J defined as above; in particular, S is connected as
wanted.



Chapter 4

Almost Kähler manifolds of
dimension 4

Let us consider an almost complex manifold (M4, J) of dimension 4 on
which is possible to introduce a Riemannian metric G such that G(X,Y ) =
G(JX, JY ), for any X,Y ∈ Γ(TM), and a fundamental 2-form Ω, defined by
Ω(X,Y ) = G(X, JY ), in a way that (M4, J,G) becomes an almost Kähler
manifold, that is dΩ = 0. In [6], Blair shows that there are no almost
Kähler manifolds of constant curvature except in the case of the constant
equal to zero, and then the manifold is Kählerian. In the previous chapter we
developed the theory about the existence of two adapted frames on (M4, J)
and we gave the way to find them. Our intention is to endowed these almost
complex manifolds with a metric induced by such adapted frames.

Let us suppose that (M4, J) is an almost complex manifold of real di-
mension 4 and that (X, JX, T, JT ) is one of the two adapted frames of
(M4, J). When we consider (X, JX, T, JT ) as an orthogonal base of the
tangent space TpM of (M4, J), we have

G(X,X) = a, G(JX, JX) = b, G(T, T ) = c, G(JT, JT ) = d,

for some real differentiable functions a, b, c, d and all the other G are zero.
For every A,B ⊆ TpM , we want that G(JA, JB) = G(A,B), so if we put
A = αXp +βJXp +γTp + δJTp and B = α′Xp +β′JXp +γ′Tp + δ′JTp, with
α, β, γ, δ, α′, β′, γ′, δ′ real constants, we obtain that{

a = b
c = d.

The formula for dΩ is

dΩ(X,Y, Z) =
1

3
{XΩ(Y, Z) + Y Ω(Z,X) + ZΩ(X,Y )

−Ω([X,Y ], Z)− Ω([Z,X], Y )− Ω([Y, Z], X)} ,
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hence, since we want that dΩ = 0, a simple calculation gives
T (a)− G([T,X], X) + G([JX, T ], JX) = 0
JT (a)− c− G([JT,X], X) + G([JX, JT ], JX) = 0
X(c)− G([X,T ], T ) + G([JT,X], JT ) + G([T, JT ], JX) = 0
JX(c)− G([JX, T ], T ) + G([JT, JX], JT )− G([T, JT ], X) = 0.

(4.1)

Remark 4.1. It is known that any almost complex manifold of dimen-
sion 4 has the local symplectic property (it was proved in Lemma A.1 [32]
in an incomplete way, but it is completely proved in [19]), i.e., given an
almost complex structure J on M4 there exists a symplectic form which
is compatible with J in a neighborhood of each point of (M4, J), that is
Ω(JX, JY ) = Ω(X,Y ), for any X,Y ∈ Γ(TM).

Remark 4.2. From Theorem 4.2 in [20], the manifold (M4, J) can not be
nearly Kähler, since (M4, J) is of type 0 (that is, according to the definition
of Muskarov, the maximal number of independent holomorphic functions on
(M4, J) is zero).

Remark 4.3. When (M4, J) is a homogeneous almost complex manifold,
it is not possible to give on it a structure of almost Kähler manifold. Indeed,
since any diffeomorphism of (M4, J) sends an adapted frame into an adaped
frame, it is an isometry, hence it conserves the almost complex structure J
and the metric G, so it also conserve the curvature. Now, because of [6], we
know that (M4, J) must be a (non-almost) Kähler manifold.

4.1 Metric on Kim and Lee example

We want to analyze the KL example in order to find some solutions of (4.1).
From the definition given above of G, we have

G(X,X) = a, G(JX, JX) = a, G(T, T ) = c, G(JT, JT ) = c;

hence, when a and c are constants T (a), JT (a), X(c) and JX(c) are zero in
(4.1), and since in KL we have

[X, JX] = T and [JT, JX] = X,

the system (4.1) becomes
G(0, X) + G(0, JX) = 0
−c− G(0, X) + G(−X, JX) = 0
−G(0, T ) + G(0, JT ) + G(0, JX) = 0
−G(0, T ) + G(X, JT )− G(0, X) = 0,

that is, c = 0 for any a.
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So, when a and c are constants we can not introduce a metric compatible
with J on (M4, J).

There are different results when a and c are differentiable functions: the
system becomes 

T (a) = 0
JT (a)− c = 0
X(c) = 0
JX(c) = 0,

ReZ2(a) = 0
1

2
ImZ2(a) + c = 0

ReZ1(c) = 0
ImZ1(c) = 0,

∂

∂y2
(a) = 0

1

2

(
2y1

∂

∂x1
− (4x1y1 + 1)

∂

∂x2

)
(a) + c = 0(

1

2

∂

∂x1
− x1

∂

∂x2
+ y1

∂

∂y2

)
(c) = 0(

−1

2

∂

∂y1
+ x1

∂

∂y2
+ y1

∂

∂x2

)
(c) = 0.

A solution of this system is a = ex
2
1+x2+y

2
1

c =
1

2
ex

2
1+x2+y

2
1 ,

(4.2)

hence, with a and c differentiable functions chosen as in (4.2), (M4, J,G)
becomes a Kähler manifold.

4.2 Metric on manifolds having non-solvable Lie
algebra

We want to see if it is possible to find a metric on manifolds having non-
solvable Lie algebra g. For example, we can consider g = sl(2,R) ⊕ r with
non-fundamental V ⊆ sl(2,R) such that it has exactly two lines made by
non-regular elements (CASE D2). We can take

ξ = X̃,

Jξ = Y,

η = 2H,

Jη = e0,
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where [X̃, Y ] = 2H, [X̃,H] = X̃, [H,Y ] = Y . An easy calculation gives

X =
1

2
Y,

JX = −1

2
X̃,

T =
1

2
H,

JT =
1

4
e0,

as adapted frame (indeed we have NJ(X,T ) = X). If a and c are constants,
it is easy to check that it is not possible to introduce a metric on the manifold;
taking a and c as differentiable functions, the system (4.1) becomes

T (a) = 0
JT (a)− c = 0
X(c) = 0
JX(c) = 0.

Taking a representation of this algebra as in [31], we obtain

(
x1

∂

∂x1
+ x2

∂

∂x2

)
(a) = 0

1

4

∂

∂x4
(a) = c(

x21
∂

∂x1
+ 2x1x2

∂

∂x2
+ x2

∂

∂x3

)
(c) = 0

∂

∂x1
(c) = 0.

A solution of this system is given by{
a = 4 expx4

c = expx4 .

Remark 4.4. In KL and in this example, we have a = kc, with k ∈ R.
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