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Abstract

In this tool paper, we present the release of UPMurphi, a uni-
versal planner for PDDL+ domains. Planning for hybrid do-
mains has found increasing attention in the planning commu-
nity, motivated by the need to address more realistic scenar-
ios. While a number of techniques for planning with a subset
of PDDL+ domains have been proposed, UPMurphi is able
to handle the full range of PDDL+ features, including non-
linear continuous processes, exogenous events, Timed Initial
Literals and numeric Timed Initial Fluents.
This paper describes the UPMurphi framework and presents
its main features, together with a guide for using the tool,
and some examples where UPMurphi has been successfully
applied.

1 Introduction
A hybrid system is one in which there are both continu-
ous control parameters and discrete logical modes of oper-
ation. It represents a powerful model to describe the dy-
namic behaviour of modern engineering artefacts. Hybrid
systems frequently occur in practice, e.g., in robotics or em-
bedded systems. Dealing with hybrid systems is becoming
more and more an important challenge, as many real-world
scenarios feature a mixture of discrete and continuous be-
haviours. Some example applications include coordination
of activities of a planetary lander, oil refinery management,
autonomous vehicles. Such scenarios motivate the need to
reason with mixed discrete-continuous domains.

Planning for hybrid domains has found increasing atten-
tion in the planning community, motivated by the need to
address more realistic scenarios and to interact with robotics
and control frameworks. PDDL+ (Fox and Long 2006) is
the extension of PDDL which allows the modelling of hy-
brid domains through the use of discrete actions, processes
(that model continuous change over time), and exogenous
events (that model changes that are initiated by the environ-
ment).

A number of techniques for PDDL+ planning have been
proposed (Penberthy and Weld 1994; McDermott 2003; Li
and Williams 2008; Coles et al. 2012; Shin and Davis 2005;
Coles and Coles 2014; Molineaux, Klenk, and Aha 2010;
Bryce and Gao 2015; Bogomolov et al. 2014; 2015). How-
ever, despite the recent efforts in proposing new algorithms
and approaches for this domain, UPMurphi is currently the

only available tool able to handle the full range of PDDL+
features.

The purpose of this paper is to accompany the release of
the UPMurphi tool. To this aim, in the rest of the paper we
overview the main features of the planner and we then de-
scribe the main techniques used for dealing with hybrid do-
mains. In Section 3 we describe the general framework and
provide a guide for using the tool. In Section 4 we survey
some applications for which UPMurphi has been success-
fully used. Section 5 concludes the paper.

What UPMurphi Can Do. UPMurphi is a forward-
search planner for PDDL+ domains. It can handle the
whole PDDL+ language, including nonlinear continuous
processes, exogenous events, Timed Initial Literals and nu-
meric Timed Initial Fluents. It can be used either to find
a single plan from the initial state to a goal state or to find
a universal plan, i.e., a policy for handling the state space
generated from the initial state.

2 How UPMurphi Works
UPMurphi is based on the planning-as-model-checking
paradigm (Cimatti et al. 1997), and it is built on top of the
CMurphi model checker (Cached Murphi Web Page 2006).

Planning in hybrid domains is challenging because in ad-
dition to the discrete state explosion problem, the continuous
behaviour causes the reachability problem generally even
to be undecidable. UPMurphi handles the hybrid dynamics
through discretisation of time and continuous variables and
by planning within a finite horizon. In this way, the state
space is finite.

UPMurphi implements theDiscretise and Validateap-
proach (Della Penna et al. 2009) which is sketched in Fig-
ure 1. Here, the continuous dynamics of the system is re-
laxed into a discretised model, where discrete time steps and
corresponding step functions for continuous values are used
in place of the original continuous dynamics. Then, UP-
Murphi performs a forward reachability analysis in the dis-
cretised state space, searching for a path from the initial state
to a state satisfying the goal condition. The discrete solution
is then validated against the continuous model through the
plan validator VAL (Howey, Long, and Fox 2004) to check
whether the solution is valid or not. If it is invalid, the dis-
cretisation is refined and the process iterates. If UPMurphi
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fails to find a plan at one discretisation the process can be it-
erated at a finer grained discretisation. The validation output
can guide the user in identifying a suitable finer discretisa-
tion.

Figure 1: Graphical representation of the D&V approach

3 How to Use UPMurphi
The overall UPMurphi architecture is sketched in Figure 3.
UPMurphi can be invoked through theupmc command by
passing both the PDDL+ domain and problem as arguments.
This intitiates the following chain of operations.

PDDL+ translation: the PDDL-to-UPmurphi com-
piler, built on top of the VAL PDDL+ parser,
takes as input a PDDL+ model and outputs a se-
mantically equivalent UPMurphi model (up to the
discretisation of time and continuous variables)1

<domain name>.m. This, in turn, is compiled into an
executable<domain name> planner.

PDDL+ Planning: The executable generated in the previ-
ous phase can now be invoked to start the planning/uni-
versal planning tasks. Several options can be specified
to fine-tune this phase, as we describe below. The UP-
Murphi engine applies an explicit algorithm for building
the system dynamics, and searches it through a forward
search.

Plan output: Once the final plan(s) have been generated,
they are written by default as PDDL+ plans, but the user
can choose among a variety of different output formats
(i.e., text, binary, and CSV), even in verbose mode.

Plans VALidation: UPMurphi is designed to automatically
interface with the VAL plan validator, so that the gener-
ated plans are executed and validated. To enable this func-
tionality, the user must install VAL separately.

This process is completely automatic. When running the
planner, the user can specify the discretisation to be used for

1The translation process is fully detailed in (Della Penna, Mag-
azzeni, and Mercorio 2012).

time and continuous variables, although the default settings
can be used.

3.1 UPMurphi Features
In this section we give details of the main UPMurphi fea-
tures.

Disk-based Search. Starting with an initial discretisation
(e.g., the one provided by default), the Discretise and Vali-
date process should be iterated until a valid discretisation is
used. However, the finer the discretisation, the larger the re-
sulting state space, and this may lead to the state explosion
phenomenon too early. To mitigate this issue, in this release
UPMurphi employs the disk during the forward-search for
storing both the state space generated so far and the cur-
rent solution. Specifically, UPMurphi exploits the disk to
store the full state description (i.e., the state values) whereas
only the state signature is stored in memory using 40-bits
for the encoding. This approach is beneficial for continuous
domains as they often present a high number of discretised
real values that grow the state size. Furthermore, it also al-
lows trying several discretisation settings without affecting
the number of states that can be visited during the search.
UPMurphi is able to adapt its algorithm to increase or de-
crease the disk usage with respect to the user specified op-
tions and the size of the system under analysis. Furthermore,
to avoid an excessive time overhead, the disk structures have
been designed and implemented by taking into account their
usage patterns, i.e., how (and how frequently) each structure
is accessed during each phase of the planning process. This
makes it possible to reduce the number of disk seek-and-read
operations, which are the bottleneck of any disk algorithm,
as seeks suffer from a latency time that is much higher than
the actual read/write time. To give an example, UPMurphi
privileges sequential read/writes, at the cost of duplicating
some information and/or requiring more disk space, which
is not a problem as large disks are nowadays very common.

Serialisation. Thanks to the disk-based exploration, UP-
Murphi can store the system graph, and access to it directly
without having to load data into memory. This would allow
one toresumethe analysis by loading a (previously visited)
system graph also on another machines.

State Compression. UPMurphi inherits from CMurphi
a number of techniques to optimise the state representa-
tion (i.e., thebit compressionand hash-compaction), and
adapts them working even with the disk-based exploration
described above.

Exploration Strategy. UPMurphi distinguishes between
two planning modalities, namely (i)Planning in which a
feasible plan is generated to reach a goal and (ii)Univer-
sal Planningthat could be seen as acollectionof plans (aka
a set of policies) able to bring the system to the goal from
any reachable state for which a plan exists in the given set-
ting. Note that both these modalities support the specifica-
tion of the optimality requirement for minimising the plan
makespan2.

2Here optimality is dependent on the discretisation and the fi-
nite horizon used for planning.
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(Some) Exploration Settings. UPMurphi provides some
other options that can be set for customising the state space
exploration. They include the specification of the (highest)
amount of memory to be used by the planning process, the
enabling of a deadlock check (here intended as a non-goal
state without any action applicable), and the specificationof
either the maximum number of BFS levels to explore or a
maximum plan length.

Stepwise Exploration. UPMurphi allows the use of a
step-by-step exploration useful for debugging purposes. At
each step the user can specify which action has to be applied
(among the ones applicable in the current state). The values
of each PDDL+ predicate and fluent are shown to the user
and the process iterates.

Discretisation settings. By default, UPMurphi discre-
tises the time to0.1 units while real scale and real fraction
digits are set to8 and2 respectively. Although we found
these values suitable for a number of planning problems, the
user is free to specify different values by passing them as
arguments while invoking the UPMurphi planner.

Supporting the PDDL+ semantics. UPMurphi has been
designed to support the PDDL+ semantics according to
the start-process-stop model introduced by (Fox and Long
2006), that works by transforming a durative-action into a
chain of PDDL+ elements, namely: (i) a pair start/end ac-
tions that apply the discrete effectsat startandat endof the
action respectively; (ii) a process that applies the continu-
ous change over the action execution (iii) and an event that
checks whether all theoveralldurative-action conditions are
satisfied during its execution. This motivated the need to
properly model the processes and events interaction within
UPMurphi to fully support the whole PDDL+ semantics.
Figure 2 shows an example of how UPMurphi represents and
reasons with the PDDL+ elements as a whole over the dis-
cretised time-line. The time is uniformly discretised in clock
ticks (T ) and a built-in action time-passing (TP ) is respon-
sible for advancing the time accordingly. Then, an action
A1 can activate a processP1 that, after three clock ticks,
triggers eventE3, which in turn activates processP2. UP-
Murphi is able to handle process/events interleaving as well
as Timed Initial Literals and numeric Timed Initial Fluents.
Clearly, a fine enough discretisation must be used in order
to capture the happenings of TIFs and TILs. On the other
hand, the time granularity of TIFs and TILs can be used as a
guidance for choosing the initial time discretisation.

Limitations. The main limitation of UPMurphi is that
currently there is no heuristic to guide the search, and a blind
BFS is performed. UPMurphi also requires the PDDL+ do-
main to be typed for being processed. Finally, the only
metric actually supported by UPMUrphi is:minimize
total-time.

4 UPMurphi’s Track Record
UPMurphi has been applied to several challenging PDDL+
domains. In the following we present some of them.

The Planetary Lander (Fox and Long 2006). A rover
has to perform two observation tasks, that require either to
perform the corresponding preparation tasks or to execute
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Figure 2: Processes in the discretised plan timeline

Figure 3: Overview of the UPMurphi architecture

a single cumulative preparation task for both observations.
The goal is to find a solution minimising the plan makespan.
As a challenge, the domain presents a nonlinear system dy-
namics, deriving from the system equations (e.g., the en-
ergy generated by solar panels is influenced by the position
of the sun), concurrence between processes (i.e., the rover
may generate energy while is charging the battery), and pro-
cesses/events interactions that may invalidate the plan due to
tight resources and time constraints. In Figure 4 we show a
log of a UPMurphi execution for the planetary lander. UP-
Murphi here searches for a feasible plan using up to 1Gb
RAM and outputs the resulting plan in PDDL+ format. Fi-
nally, the plan is shown and saved into a file as well. More
details on the use of UPMurphi in this domain can be found
in (Della Penna, Magazzeni, and Mercorio 2012).

The Batch Chemical Plant. A production system is de-
signed to obtain a concentrated saline solution recycling the
remaining part for the next cycle. The system has many
tightly connected components, regulated by a nonlinear dy-
namics (due to the equations modelling temperature and
concentration variations), unknown action durations and a
large set of safety constraints. UPMurphi has been used to
synthesise a set of policies for many different initial produc-
tion configurations. Note that thanks to the efficient use of
the disk during the state space exploration, UPMurphi was
able to generate up to 7 million plans. More details on the
use of UPMurphi for the batch chemical plant can be found
in (Della Penna et al. 2010).
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cmd: ./planetary_lander_planner -search:f -m1000 -format:pddl

* Source domain: planetary_lander.pddl

* Source problem: planetary_lander_problem.pddl

* Planning Mode: Feasible Plan

* Output format: PDDL+

* Epsilon separation: 0.001

* Output target: "planetary_lander_problem_plan.pddl"

* UPMurphi Model: planetary_lander

* State size 498 bits (rounded to 64 bytes).

* Allocated memory: 1000 Megabytes

** Time Discretisation = 0.1

** Digits for representing the integer part of a real = 8

** Digits for representing the fractional part of a real = 2

=== Analyzing model... ===============================

* Maximum size of the state space: 64726931 states.

with states hash-compressed to 40 bits.

[0:0:2.87] states explored: 100000, actions fired: 101880

BFS level: 63, states queued: 7368, goals found: 0, errors: 0

max plan length: 6.30

34843.21 states/sec, 35498.26 actions/sec, 0.15\% memory used

....

[0:1:30.32] states explored: 3000000, actions fired: 3194058

BFS level: 170, states queued: 7657, goals found: 0, errors: 0

max plan length: 17.00

33215.23 states/sec, 35363.80 actions/sec, 4.63\% memory used

======================================================

Model exploration complete (in 92.76 seconds).

3282884 actions fired

1 start states

3084414 reachable states

1 goals found

=== Building model dynamics... =======================

Transition Graph mode: Memory Image

Model dynamics rebuilding complete (in 97.71 seconds).

3084414 states

3282884 transitions

out degree: min 0 max 10 avg 1.06

=== Finding paths... =========================

* Search Algorithm: Feasible Plan.

=== Collecting plans... ==============================

Plan(s) generation complete (in 98.41 seconds).

1 plans

plan length (actions): min 186 max 186 avg 186.00

plan duration (time): min 0 max 180 avg 180.00

plan weight: min 0 max 180 avg 180.00

=== Writing final results... =========================

* Output format: PDDL+

* Output target: "planetary_lander_problem_plan.pddl".

; --Plan #00001--------------------------

; -- Discretisation: 0.100----------------

; ---------------------------------------

0.000: ( fullprepare dum unit1) [3.000]

3.001: ( observe2 unit1) [8.000]

11.002: ( observe1 unit1) [7.000]

; ---------------------------------------

; --Plan duration: 18.002, weight: 0180----

; ---------------------------------------

Figure 4: Log of a UPMurphi exeuction for thePlanetary
Landerdomain

Planetary Lander Chemical Plant
State Space Size 10

24
10

29

Reachable States 31, 965, 220 29, 968, 861

Generated Plans 5, 309, 514 7, 154, 464

Table 1: Some statistics for Planetary Lander and Chemical
Plant domains

Nonlinear generator. It is the continuous model of the
well-known generator domain (Howey and Long 2003). A
generator is powered by a fuel tank with a limited capacity
of 60 fuel units and consumes one fuel unit per second. Dur-
ing the generator activity (modelled by the consume durative
action), two fuel tanks of 25 fuel units each can be used to
refuel it (through the refuel durative action). The refuelling
process has a variable duration (i.e., its duration must be de-
cided by the planner) and is described by the Torricelli’s law,
which makes the system dynamics nonlinear. Moreover, the
domain also involves concurrency, since the consume and
refuel actions take place continuously and concurrently, and
are modelled through continuous processes. The goal is to
make the generator run for 100 seconds. Table 2 summarises
the results of the universal planning process after three Dis-
cretise and Validate iterations. We first considered a time
discretisation of5.0 and2.5, both resulting in invalid solu-
tions. We then refined the discretisation to1.0 which proved
to be fine enough for obtaining valid plans.

Time discretisation (sec) 5.0 2.5 1.0

State space size 10
15

10
16

10
18

Reachable states 26, 276 399, 189 29, 119, 047

Generated plans 0 10, 015 126, 553

Total synthesis time 3.7 20.71 1, 430.11

Valid NO NO YES

Table 2: Universal Plan statistics for the generator domain
with time discretisation from5.0 down to1.0 seconds

Other examples were UPMurphi has been applied can
be found in (Della Penna, Magazzeni, and Mercorio 2012),
while works built on top of UPMurphi are described in (Fox,
Long, and Magazzeni 2012; Campion et al. 2013; Boselli et
al. 2014) and (Mezzanzanica et al. 2015).

5 Concluding Remarks
In this paper we presented the release of the PDDL+ plan-
ner UPMurphi, overviewing its main features that allow it
to handle the full range of PDDL+ features, including non-
linear continuous processes, exogenous events, Timed Ini-
tial Literals and numeric Timed Initial Fluents. On a practi-
cal note, UPMurphi has been designed to work natively on
Linux distributions (Ubuntu specifically), but it has been ex-
tensively tested on Windows with Cygwin environment, too.
Finally, a MacOS compilation is also supported. Please refer
to the UPMurphi web page (UPMurphi Web Page 2015) for
download, installation instructions, more details, and news
about UPMurphi development.
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