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Abstract. The adjacency matrix of a graph is interpreted as a formal
context. Then, the counterpart of Formal Concept Analysis (FCA) tools
are introduced in graph theory. Moreover, a formal context is seen as
a Boolean information table, the structure at the basis of Rough Set
Theory (RST). Hence, we also apply RST tools to graphs. The peculiarity
of the graph case, put in evidence and studied in the paper, is that both
FCA and RST are based on a (different) binary relation between objects.

1 Introduction

The aim of this work is to define a framework that enables us to apply Formal
Concept Analysis (FCA) tools, and to some extent also Rough Set Theory (RST)
tools, to graphs. In order to do so, we will view the adjacency matrix of a
graph as a formal context (Boolean Information Table in case of RST). It is well
known that RST and FCA are similar but complementary disciplines that can
be integrated in several ways. A key difference between the two theories is the
binary relation on which they are based, in the RST case it is a relation between
objects and in the FCA case between objects and properties. However, in this
particular framework the two theories are even closer, since objects coincide with
attributes. The two relations remain different but they can be interpreted in the
same setting, understanding their complementarity. We will consider not only the
standard operators: formal concepts in FCA and lower/upper approximations in
RST but a more general framework arising from the theory of oppositions [5].

The relationship between graphs and FCA is not new, however it is has not
yet been clearly outlined and developed. The paper [10] defines a bipartite graph
from a formal context and proves that (X,Y ) is a concept iff X∪Y is a maximal
bi-clique of the corresponding graph. The same result is mentioned briefly in
[6]. Here, we work in the other direction: starting from a general graph, we use
the adjacency matrix to define a formal context. Then, we show that concepts
coincide with bipartitions of the maximal bi-cliques (see Theorem 3.1). This
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result is also mentioned in [13], but with no formalization nor proof. We focus
then on complete and complete bipartite graphs studying their concept lattice.
In Section 3.3 some considerations on other Galois connections than the standard
one are given. Section 4 is devoted to rough sets: we study the partition and the
approximations that can be introduced on a given graph.

2 Preliminary Notions

The basic notions of Graph Theory, Formal Concept Analysis and Rough Set
Theory are recalled.

2.1 Graphs

We denote by G = (V (G), E(G)) a finite simple (i.e. no loops and no multiple
edges are allowed) undirected graph, with vertex set V (G) = {v1, . . . , vn} and
edge set E(G). If v, v′ ∈ V (G), we will write v ∼ v′ if {v, v′} ∈ E(G) and
v � v′ otherwise. We denote by Adj(G) the adjacency matrix of G. We recall
that Adj(G) is a n × n matrix (aij) such that aij := 1 if vi ∼ vj and aij := 0
otherwise. If v ∈ V (G), we set

NG(v) := {w ∈ V (G) : {v, w} ∈ E(G)}.

NG(v) is usually called neighborhood of v in G. Graph of particular interest for
our discussion will be complete and bipartite ones.

Definition 2.1. The complete graph on n vertices, denoted by Kn, is the graph
with vertex set {v1, . . . , vn} and such that {vi, vj} is an edge, for each pair of
indexes i 6= j.

Definition 2.2. A graph B = (V (B), E(B)) is said bipartite if there exist two
non-empty subsets B1 and B2 of V (B) such that B1 ∩B2 = ∅, B1 ∪B2 = V (B)
and E(B) ⊆ {{x, y} : x ∈ B1, y ∈ B2}. In this case the pair (B1, B2) is called
a bipartition of B and we write B = (B1|B2). It is said that B = (B1|B2) is a
complete bipartite graph if E(B) = {{x, y} : x ∈ B1, y ∈ B2}. If p and q are
two positive integers and B1 = {x1, . . . , xp}, B2 = {y1, . . . , yq}, we denote by
Kp,q the complete bipartite graph having bipartition (B1, B2).

Definition 2.3. A biclique B of G is a complete bipartite subgraph of G. We
say that a biclique B = (B1|B2) of G is maximal if for any biclique B′ = (B′1|B′2)
of G such that B1 ⊆ B′1 and B2 ⊆ B′2 it results that B1 = B′1 and B2 = B′2.

2.2 Formal Concept Analysis

We start by recalling the general definition of formal contexts and their basic
properties (see [9]).



Definition 2.4. A Formal Context is a triple K = (Z,M,R), where Z and M
are sets and R ⊆ Z ×M is the binary relation involving them. The elements of
Z and M are called objects and attributes (or properties) respectively. We write
gRm instead of (g,m) ∈ R. If O ⊆ Z and Q ⊆M , we set

O↑ := {m ∈M : (∀g ∈ O) gRm} ⊆M

and

Q↓ := {g ∈ Z : (∀m ∈ Q) gRm} ⊆ Z.

In this way the following two mappings are defined: ↑ : P(Z)→ P(M), O 7→ O↑

and ↓ : P(M)→ P(Z), Q 7→ Q↓. By suitable compositions of these two mappings
we are able to construct the two new mappings ∗ : P(Z) → P(Z), O 7→ O↑↓

and � : P(M)→ P(M), Q 7→ Q↓↑, which are closure operators on, respectively,
P(Z) and P(M) [9].

Definition 2.5. A concept of the Formal Context K = (Z,M,R) is a pair
(O,Q), where O ⊆ Z, Q ⊆ M , O↑ = Q and Q↓ = O. If (O,Q) is a concept, O
is called extent of (O,Q) and Q is called intent of (O,Q). We denote by B(K)
the set of all the concepts of the Formal Context K.

If (O1, Q1) and (O2, Q2) are two concepts in B(K), it is usual to consider
the relation (O1, Q1) v (O2, Q2) if and only if O1 ⊆ O2 (that is equivalent to
Q1 ⊇ Q2). Thenv is a partial order on B(K) and (B(K),v) is a complete lattice,
called concept lattice (or also Galois lattice) of the Formal Context K, whose meet
and join operations on an arbitrary family of formal concepts {(Oα, Qα) : α ∈ A}
are the following: ∧

α∈A
(Oα, Qα) =

( ⋂
α∈A

Oα, (
⋃
α∈A

Qα)�
)

∨
α∈A

(Oα, Qα) =
(

(
⋃
α∈A

Oα)∗,
⋂
α∈A

Qα

)

2.3 Rough Set Theory

In the context of RST a table representing a formal context is named Boolean
information table (or Boolean information system). More formally, a Boolean
information table is a structure I = 〈U,Att, V al, F 〉, where U (called universe
set) is a non empty set of objects, Att (called attribute set) is a non empty set
of attributes, V al = {0, 1} is called the value set (in the general case it is not
assumed to be Boolean) and F : U ×Att→ V al (called information map) is an
application from the direct product U ×Att into the value set V al.

If A ⊆ Att, it is usual to consider the binary relation IA on the universe set
U defined as follows: if u, u′ ∈ U then

uIAu
′ ⇐⇒ F (a, u) = F (a, u′),∀a ∈ A. (1)



The binary relation IA is an equivalence relation on U and it is called A-
indiscernibility relation. If u ∈ U , we denote by [u]A the equivalence class of
u with respect to IA. We also set πA(I) := {[u]A : u ∈ U} and we call πA(I) the
A-indiscernibility partition of the information system I.

Definition 2.6. Let I = 〈U,Att, V al, F 〉 be an information table, A ⊆ Att and
Y ⊆ U . The A-lower approximation of Y is the following subset of U :

lA(Y ) := {x ∈ U : [x]A ⊆ Y } =
⋃
{C ∈ πA(I) : C ⊆ Y }.

The A-upper approximation of Y is defined as:

uA(Y ) := {x ∈ U : [x]A ∩ Y 6= ∅} =
⋃
{C ∈ πA(I) : C ∩ Y 6= ∅}.

The subset Y is called A-exact if and only if lA(Y ) = uA(Y ) and A-rough
otherwise.

The lower approximation represents the elements that certainly, with respect
to our knowledge expressed by A, belongs to Y . On the other hand, the upper
approximation is the set of objects possibly belonging to A.

We will denote by COA(I) the set of all the A-exact subsets. The following
result is well known (where ŝ = {1, 2, . . . s}).

Proposition 2.1. (i) If πA(I) contains exactly s elements (i.e. equivalence
classes), then COA(I) is a Boolean algebra isomorphic to 〈P(ŝ),⊆,∩,∪,c , ∅, ŝ〉.
(ii) More specifically, a non-empty subset Y of the universe U is A-exact if and
only if Y is a set theoretical union of blocks of the set-partition πA(I).

2.4 The Cube of Oppositions

Starting from a binary relation R ⊆ X × Y and generalizing the Aristotelian
square of oppositions, it is possible to define a cube of oppositions [8]. Given a
subset S ⊆ Y , the eight vertices of the cube are defined by R(S) = {x ∈ X|∃s ∈
S, xRs} and all the interaction of three kinds of negation: the complement on
X, on Y and the negation of the relation R. More in detail, let us assume that R
and its negation R (xRy if and only if ¬(xRy)) are both not empty and serial,
and define xR = {y ∈ Y |xRy}. Then, we can obtain from R four vertices, that
form a classical square of oppositions (in what follows S := Y \ S):

(I) R(S) = {x ∈ X|∃s ∈ S, xRs} = {x ∈ X|S ∩ xR 6= ∅}
(O) R(S) = {x ∈ X|∃s ∈ S, xRs}
(E) R(S) = {x ∈ X|∀s ∈ S,¬(xRs)}
(A) R(S) = {x ∈ X|∀s ∈ S,¬(xRs)} = {x ∈ X|xR ⊆ S}

We remark that E and A are the complement of I and O, respectively, and that
A is a subset of I and E a subset of O. The other four corners are obtained using
the complementary relation R:



(o) R(S) = {x ∈ X|∃s ∈ S,¬(xRs)}
(i) R(S) = {x ∈ X|∃s ∈ S,¬(xRs)} = {x ∈ X|S ∪ xR 6= Y }
(a) R(S) = {x ∈ X|∀s ∈ S, xRs} = {x ∈ X|S ⊆ xR}
(e) R(S) = {x ∈ X|∀s ∈ S, xRs}

All these sets can have a nice interpretation both in FCA and RST [5]. In the
case of FCA, R is the standard relation R defining a formal context, and in the
case of RST, R is the indiscernibility relation IA, hence it is defined on the same
domain X ×X. As we will discuss, in our particular case, also for FCA we have
X = Y , so both relations are defined on X × X even if they are not the same
relation.

3 Simple Undirected Graphs viewed as Formal Contexts

We begin now the study of the finite simple undirected graphs as particular
types of formal contexts.

Definition 3.1. Let G = (V (G), E(G)) be a finite simple undirected graph, with
vertex set V (G) = {v1, . . . , vn} and edge set E(G). We call Formal Context of
the graph G the Formal Context K[G] := (V (G), V (G),RG), where vRGv′ if
and only if {v, v′} ∈ E(G) for all v, v′ ∈ V (G).

Hence the object subset and the attribute subset of the Formal Context K[G]
are both equal to the vertex set V (G), whereas the binary relation which defines
this formal context is exactly the incidence relation between vertices of the graph
G. Let us also note that, since the graph G is undirected, the relation RG is
symmetric.

3.1 Concepts of a Graph

Given the above considerations, in the Formal Context K[G] induced by a simple
undirected graph G, the maps ↑ : P(V (G)) → P(V (G)) and ↓ : P(V (G)) →
P(V (G)) are coincident. Therefore in the sequel we denote with the same symbol
′ the map ′ : P(V (G)) → P(V (G)) such that O 7→ O′ := O↑ = O↓, when O
is any vertex subset of G. This implies obviously that also the two operators
∗ : P(V (G)) → P(V (G)) and � : P(V (G)) → P(V (G)) coincide. Therefore in
the sequel we set O 7→ O′′ := O∗ = O�, for all O ⊆ V (G).

Let us now see how O′ and O′′ are defined in terms of neighborhood of
vertices.

Proposition 3.1. If O ⊆ V (G) then

O′ =
⋂
v∈O

NG(v) = {w ∈ V (G) : O ⊆ NG(w)} (2)



Proof. We have that

O′ := {w ∈ V (G) : (∀v ∈ O)vRGw} = {w ∈ V (G) : (∀v ∈ O)w ∈ NG(v)},

that is O′ =
⋂
v∈ONG(v). For the other set equality, if w ∈ V (G) is such that

O ⊆ NG(w) and v ∈ O, then w ∈ NG(w), therefore w ∈
⋂
v∈ONG(v). On

the other hand, if w ∈
⋂
v∈ONG(v) and v0 is an arbitrary vertex in O then

w ∈ NG(v0). Hence v0 ∈ NG(w), and this shows that O ⊆ NG(w). ut

Remark 3.1. The identity in (2) is valid also when the subset O = ∅. In fact, in
this case, we always have ∅↑ = M and ∅↓ = Z, that is O′ = O↑ = O↓ = V (G)
in the formal context K[G]. On the other hand, it is usual (in elementary set
theory) to interpret the intersection

⋂
v∈ONG(v) as coincident with the whole

set V (G) when O is the empty set.

Corollary 3.1. If O ⊆ V (G) then

O′ ⊆ V (G) \O (3)

Proof. If w ∈ O′ and w ∈ O, by (2) it follows that w ∈ NG(w), i.e. {w,w} ∈
E(G), but this contradicts the hypothesis that G is a simple graph. This proves
(3). ut

Remark 3.2. If G is a finite simple undirected graph, a vertex subset O ⊆ V (G)
is the extent [intent] of some concept of the Formal Context K[G] if and only
if O′′ = O. In this case, both the pairs (O,O′) and (O′, O) are concepts of
K[G]. Moreover, since G has no loops, the cross table of the Formal Context
K[G] (that is, the adjacency matrix of G) has zeroes in all its diagonal places,
and this obviously implies that V (G)′ = ∅. Hence both the pairs (∅, V (G)) and
(V (G), ∅) are always concepts of the Formal Context K[G].

We re-interpret now the notion of concept in the case of the formal context K[G].
Recalling the definition of biclique of a graph (see definition 2.3), we have then
the following characterization.

Theorem 3.1. Let O and Q be two subsets of V (G). Then, the pair (O,Q) is
a concept in K[G] if and only if (O,Q) is a bipartition of some maximal biclique
of G. On the other hand, if B = (B1|B2) is a maximal biclique of G, then the
pair (B1, B2) is a concept in K[G]. Hence the concepts in K[G] are exactly the
bipartitions of the maximal bicliques of G.

Proof. Let (O,Q) be a concept in K[G]. By definition of concept we have in this
case that:

O′ := {v ∈ V (G) : (∀u ∈ O)u ∼ v} = Q

and
Q′ := {u ∈ V (G) : (∀v ∈ Q)u ∼ v} = O.

Since G has no loops, the subsets O and Q are disjoint. Moreover, if u ∈ O and
v ∈ Q, then u ∼ v. Thus (O|Q) is a biclique of G.



Let B = (B1|B2) be a biclique of G such that O ⊆ B1 and Q ⊆ B2. By
definition of bipartite graph, if u ∈ O ⊆ B1 and v ∈ B2, u ∼ v, then B2 ⊆ O′ = Q
and thus B2 = Q. Similarly if v ∈ Q ⊆ B2 and u ∈ B1, u ∼ v, then B1 ⊆ Q′ = O
and thus B1 = O. It follows that (O|Q) is a maximal biclique of G.

Let now (O|Q) be a maximal biclique of G. Then, by definition of biclique,
Q ⊆ O′ and O′ ⊆ Q. Moreover we have:

O′′ := {u ∈ V (G) : (∀v ∈ O′)u ∼ v}.

It follows that O ⊆ O′′ and that (O′′|O′) is a biclique of G. Then, by maximality
of (O|Q), we obtain that Q = O′ and O = O′′ = Q′, so (O,Q) is a concept in
K[G]. ut

One of the consequences of this result is the possibility to apply algorithms devel-
oped for formal concept generation [11] to improve results to compute maximal
bicliques on graphs [1]. We leave this comparison to a future study.

When G = Kn is a complete graph, the context coincide with the contra-
nominal scale (V (G), V (G), 6=) [9], hence we obtain that the map ′ behaves as
the set complement.

Proposition 3.2. If G = Kn and O ⊆ V (G) we have that O′ = V (G) \ O and
O′′ = O.

In the case of a complete bipartite graph G = Kp,q we obtain:

Proposition 3.3. If G = Kp,q = (B1|B2) and O is a non-empty subset of V (G)
then

O′ =

B1 if O ⊆ B2

B2 if O ⊆ B1

∅ otherwise
(4)

and

O′′ =

B1 if O ⊆ B1

B2 if O ⊆ B2

V (G) otherwise
(5)

Proof. Let B1 = {x1, . . . , xp} and B2 = {y1, . . . , yq}. By definition of Kp,q we
have that NG(xi) = B2 for i = 1, . . . , p and NG(yj) = B1 for j = 1, . . . , q. There-
fore, if O ⊆ B2, then

⋂
v∈ONG(v) = B1, hence O′ = B1 by (2). Analogously if

O ⊆ B1. Finally, we assume that xi ∈ O, for some i = 1, . . . , p, and also yj ∈ O,
for some j = 1, . . . , q. Then, by (2) it follows that O′ ⊆ NG(xi) ∩ NG(yj) =
B2 ∩ B1 = ∅ since B1|B2 is a set-partition of the vertex set of G. This proves
(4). On the other hand, if O ⊆ B1, by (4) we deduce that O′ = B2, there-
fore O′′ = (O′)′ = B′2 = B1 again by (4). Analogously, we obtain O′′ = B2 if
O ⊆ B2. Finally, if O ∩ B1 6= ∅ and O ∩ B2 6= ∅, by (4) we have that O′ = ∅,
hence O′′ = (∅)′ = V (G). This proves (5). ut



3.2 The Concept Lattice of a Graph

We explicitly introduce now the notion of concept lattice for a finite simple
undirected graph.

Definition 3.2. We call concept lattice (or also Galois lattice) of the graph
G the concept lattice of the Formal Context K[G] and we denote it simply by
(B(G),v) instead of (B(K[G]),v).

At first let us recall some basic notions about posets. If P = (X,≤) is a
partially ordered set (briefly poset), we can consider the usual dual poset of P ,
that is the poset P ∗ = (X,≤∗), where ≤∗ is the partial order on X defined by
x ≤∗ y : ⇐⇒ y ≤ x, for all x, y ∈ X. A poset P = (X1,≤1) is said isomorphic
to another poset P2 = (X2,≤2) if there exists a bijective map φ : X1 → X2 such
that x ≤1 y ⇐⇒ φ(x) ≤2 φ(y), for all x, y ∈ X1. A poset P is called self-dual
if P is isomorphic to its dual poset P ∗.

Then, the following basic result about concept lattices of a graph holds.

Proposition 3.4. Let G be a finite simple undirected graph. Then the concept
lattice (B(G),v) is self-dual.

Proof. By Remark 3.2 we know that a pair (O,Q) ∈ P(V (G)) × P(V (G)) is a
concept if and only if also (Q,O) is a concept, that is, (O,Q) ∈ B(G) if and
only if (Q,O) ∈ B(G). We define then the map φ : B(G) → B(G) such that
φ((O,Q)) := (Q,O). Obviously the map φ is surjective, therefore, since the set
B(G) is finite, it is also bijective. Finally, if (O1, Q1) and (O2, Q2) are any two
concepts in B(G), by definition of the partial order v and definition of dual
order v∗ we have that

(O1, Q1) v (O2, Q2) ⇐⇒ (Q2, O2) v (Q1, O1) ⇐⇒ φ((O1, Q1)) v∗ φ((O2, Q2))

Hence the map φ is an order-isomorphism between the concept lattice (B(G),v)
and its dual lattice (B(G),v∗). ut

In the next result we determine the concept lattice when G is the complete
graph Kn.

Proposition 3.5. If n ≥ 1 then B(Kn) = {(O,Oc) : O ⊆ V (Kn)} and (B(Kn),
v) ∼= (P(V (Kn)),⊆).

Proof. It is a consequence of the equivalence of K(Kn) with the contranominal
scale [9]. ut

For the complete bipartite graph we have the following result.

Proposition 3.6. Let Kp,q = (B1|B2) and V = V (Kp,q). Then

B(Kp,q) = {(∅, V ), (B1, B2), (B2, B1), (V, ∅)} (6)

and the Hasse diagram of the concept lattice (B(Kp,q),v) is the following:



(V, ∅)

(B1, B2) (B2, B1)

(∅, V )

Hence (B(Kn),v) ∼= (P(2̂),⊆).

Proof. By Remark 3.2, a concept of B(Kp,q) is a pair (O,O′), where O′′ = O.
Therefore, by (5) we deduce that the unique concepts of B(Kp,q) are (∅, V ),
(B1, B2), (B2, B1), (V, ∅). This proves (6). Finally, by definition of the partial
order v we immediately deduce that the Hasse diagram of (B(Kp,q),v) is that
given above. ut

3.3 Other Operations in FCA

The operation ′ is one of the four operations that can be introduced in FCA
in analogy with possibility theory [7]. These four operations generate the sets
A,I,a,i defined in section 2.4 (the other four are just their complement). In the
particular case of formal contexts induced by graphs, they read as:

– R∆(O) := R(O) = O′;
– R∇(O) := R(O) = {v ∈ V |NG(v) ∪ O 6= V } the set of vertices that are

missing at least a link outside O;
– RΠ(O) := R(O) = {v ∈ V |NG(v) ∩ O 6= ∅} the set of vertices connected

with at least one vertex in O;

– RN (O) := R(O) = {v ∈ V |NG(v) ⊆ O} the set of vertices connected with
no vertex outside O.

As discussed above, the Galois connection induced by R∆ is of particular
interest in the case of graphs. The interpretation of the Galois connections in-
duced by the other operations in terms of graphs is not so easy. In [10], the Galois
connection induced by RΠ is nicely interpreted in terms of maximal connected
components. However, this result can be hardly translated to our framework
(let us remark that the graph in [10] is obtained from a given formal context,
we operate in the other direction). The problem lies in the fact that X and
Y = RΠ(X) are generally not disjoint hence they do not form a bipartition of
X ∪ Y as it happens in [10]. More constraints needs to be considered on the
starting graph in order to have some geometrical interpretation of this kind of
operator. We deserve this issue to a further investigation.

Finally, let us notice that as an easy consequence of the definitions of RΠ

and NG(v), RΠ can be expressed in terms of neighborhoods as

O′ ⊆ RΠ(O) =
⋃
v∈O

NG(v) (7)



4 Simple Graphs as Boolean Information Tables

Analogously to the formal context case, the adjacency matrix of a graph G can
be interpreted as a Boolean information table I[G], where the universe set and
the attribute set are both V and the information map is defined as F (vi, vj) := 1
if vi ∼ vj and F (vi, vj) := 0 otherwise.

The equivalence relation IA (where A is a set of verteces) is in relation with
the notion of neighborhood as can be seen in the following theorem.

Theorem 4.1. Let A ⊆ V (G) and v, v′ ∈ V (G). The following conditions are
equivalent:
(i) vIAv

′.
(ii) For all z ∈ A it results that v ∼ z if and only if v′ ∼ z.
(iii) NG(v) ∩A = NG(v′) ∩A.

Proof. (i) =⇒ (ii): Let z ∈ A and v ∼ v′, we show that v′ ∼ z. By (i) we
have that F (v, a) = F (v′, a) for all a ∈ A, therefore F (v, z) = F (v′, z). Since
v ∼ z it follows that F (v, z) = 1, and hence also F (v′, z) = 1, that is v′ ∼ z. By
symmetry of the relation IA, if we assume that v′ ∼ z, we obtain v ∼ z. This
proves (ii)
(ii) =⇒ (iii): By symmetry of the condition (ii), it is sufficient to prove that
NG(v) ∩ A ⊆ NG(v′) ∩ A. Let therefore z ∈ NG(v) ∩ A, then v ∼ z and z ∈ A.
By (ii) we have then that v′ ∼ z, that is z ∈ NG(v′). Hence z ∈ NG(v′) ∩A.
(iii) =⇒ (i): Let a ∈ A. We show that F (v, a) = F (v′, a). Let us note that

F (v, a) = F (v′, a)⇐⇒ (v ∼ a⇐⇒ v′ ∼ a). (8)

Then, if v ∼ a, we have that a ∈ NG(v) ∩ A =(by (iii))= NG(v′) ∩ A, hence
a ∈ NG(v′), that is v′ ∼ a. Analogously, by symmetry of (iii), if v′ ∼ a then
v ∼ a. By (8) we deduce therefore that F (v, a) = F (v′, a). Since a ∈ A is
arbitrary, this proves (i). ut

Corollary 4.1. If v ∈ V (G) and A ⊆ V (G), then [v]A = {v′ : NG(v) ∩ A =
NG(v′) ∩A}.

That is two vertices are equivalent if they have the same neighborhood (rela-
tively to A). The Theorem 4.1 also provides a sufficient condition for two vertices
of the graph to have no common edges.

Corollary 4.2. If vIAv
′ and {v, v′} ∩A 6= ∅, then v � v′.

Proof. It follows directly by Theorem 4.1 because there are no loops into G. ut

4.1 The Partitions of a Graph

Now, we turn our attention to the partition generated by the relation IA on
complete and bipartite graphs. Let us start with an example.



1

2 3

4
1 2 3 4

1 0 1 1 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 0

Fig. 1. The complete graph K4.

Example 4.1. Let us consider now the complete graph K4 and the corresponding
information table in Figure 4.1.

In this case we can easily compute all the set partitions πA(K4), where A ⊆
{1, 2, 3, 4}. Once denoted a partition πA = X1| · · · |Xn with Xi the equivalence
classes induced by IA, we have :
π∅ = 1234, π{1} = 1|234, π{2} = 2|134, π{3} = 3|124, π{4} = 4|123, π{1,2} =
1|2|34, π{1,3} = 1|3|24, π{1,4} = 1|4|23, π{2,3} = 14|2|3, π{2,4} = 13|2|4, π{3,4} =
12|3|4, π{1,2,3} = π{1,2,4} = π{1,3,4} = π{2,3,4} = π{1,2,3,4} = 1|2|3|4.

As the previous example suggests, we can determine the general form of any
partition πA(Kn), for all n ≥ 1 and all A ⊆ V (Kn).

Proposition 4.1. Let n ≥ 1 and let A = {w1, . . . , wk} be a subset of V (Kn) =
{v1, . . . , vn}. Then

πA(Kn) = w1|w2| . . . |wk|Ac, (9)

where Ac is the complementary subset of A in V (Kn).

Proof. Let v, v′ ∈ V (Kn), with v 6= v′. By Corollary 4.2, since v ∼ v′, it holds
that if vIAv

′, then v, v′ ∈ Ac. On the other hand, if v, v′ ∈ Ac, then ∀z ∈ A,
F (z, v) = F (z, v′) = 1, namely vIAv

′. The proposition is proved. ut

Example 4.2. Let us consider now the complete graph K3,4 in Figure 4.2.
It is easy to verify then that in this case we have only two possibilities:

π∅ = x1x2x3y1y2y3y4 and πA = x1x2x3|y1y2y3y4 if A 6= ∅.

Also in this case we can generalize the previous example to any complete
bipartite graph.

Proposition 4.2. Let p and q be two positive integers. Let Kp,q = (B1|B2),
where B1 = {x1, . . . , xp} and B2 = {y1, . . . , yq}. Then πA(Kp,q) = x1 . . . xp|y1 . . . yq
for each subset A ⊆ V (Kp,q) such that A 6= ∅.

Proof. Let A ⊆ V (G) be a non-empty subset of V (G) and let v, v′ ∈ V (G). If
v, v′ ∈ B1 or v, v′ ∈ B2, then for each z ∈ A we have F (z, v) = F (z, v′), so
vIAv

′. If v ∈ B1 and v′ ∈ B2, then for each z ∈ A we have F (z, v) 6= F (z, v′), so
¬(vIAv

′). Thus πA(G) = B1|B2. ut



x1

x2

x3

y1

y2

y3

y4

x1 x2 x3 y1 y2 y3 y4
x1 0 0 0 1 1 1 1

x2 0 0 0 1 1 1 1

x3 0 0 0 1 1 1 1

y1 1 1 1 0 0 0 0

y2 1 1 1 0 0 0 0

y3 1 1 1 0 0 0 0

y4 1 1 1 0 0 0 0

Fig. 2. The graph K3,4 and the corresponding information table.

4.2 Upper and Lower Approximations

In this section we provide some results and discussion on rough set approxima-
tions, at first in the general graph case and, then, in the case of complete and
bipartite graphs.

Proposition 4.3. Let G = (V (G), E(G)) be a simple undirected graph and let
I[G] be the Boolean information system associated to G. Let A and Y be two
subsets of V (G). Then:
(i) lA(Y ) = {v ∈ V (G) : (u ∈ V (G) ∧NG(u) ∩A = NG(v) ∩A) =⇒ u ∈ Y }.
(ii) uA(Y ) = {v ∈ V (G) : ∃u ∈ Y : NG(u) ∩A = NG(v) ∩A}.

Proof. It follows directly by (iii) of Theorem 4.1 and the definitions of the ap-
proximations. ut

The lower approximation of a set of vertices Y represents a subset of Y such
that there are no elements outside Y with the same connections of any vertex
in lA(Y ) (relatively to A). The upper approximation of Y is the set of vertices
with the same connections (w.r.t. A) of at least one element in Y .

We study now the cases of complete G = Kn and bipartite G = Kp,q graphs.

Proposition 4.4. Let G = Kn be the complete graph on n vertices and let A
and Y be two subsets of V (G) = {v1, . . . , vn}. Then:
(i) the A-lower approximation of Y is

lA(Y ) =

{
Y ∪Ac if Ac ⊆ Y
A ∩ Y otherwise .

(ii) The A-upper approximation of Y is

uA(Y ) =

{
Y if Y ⊆ A
Y ∪Ac otherwise

(iii) Y is A-exact if and only if Y ⊆ A or Ac ⊆ Y .



Proof. In this proof we denote V (G) simply by V . If v ∈ V , by definition of Kn

we have NG(v) = V \ {v}, therefore NG(v) ∩ A = A \ {v}. By Corollary 4.1 we
obtain then [v]A = {v′ ∈ V : A \ {v} = A \ {v′}}, hence

[v]A =

{
{v} if v ∈ A
Ac otherwise .

(10)

By definition of A-lower approximation of Y and by (10) we have then

lA(Y ) = {v ∈ V : (v ∈ A =⇒ v ∈ Y ) ∨ (v ∈ Ac =⇒ Ac ⊆ Y )}. (11)

It is immediate to note then that (11) is equivalent to (i). This proves (i). By
definition of A-upper approximation of Y and by (10) we have then

uA(Y ) = {v ∈ V : (v ∈ A =⇒ v ∈ Y ) ∨ (v ∈ Ac =⇒ Ac ∩ Y 6= ∅)}. (12)

It is immediate to note then that (12) is equivalent to (ii). This proves (ii). In
order to prove (iii), if Y ⊆ A then Ac * Y , therefore uA(Y ) = Y by (ii) and
lA(Y ) = A ∩ Y = Y by (i), hence Y is A-exact. If Ac ⊆ Y and Ac 6= ∅ then
Y * A therefore lA(Y ) = (A ∩ Y ) ∪ Ac by (i) and uA(Y ) = (A ∩ Y ) ∪ Ac by
(ii), hence Y is A-exact. If Ac = ∅ then A = V (G), therefore lA(Y ) = Y by (i)
and uA(Y ) = Y by (ii), hence Y is A-exact. On the other hand, if Y * A and
Ac * Y , then Ac 6= ∅ and uA(Y ) = (A ∩ Y ) ∪ Ac by (ii), lA(Y ) = A ∩ Y by
(ii). Since Ac 6= ∅, we obtain then lA(Y ) 6= uA(Y ), hence Y is not A-exact. This
proves (iii). ut

We now examine for Kp,q the results similar to those described previously
for Kn.

Proposition 4.5. Let Kp,q = (B1|B2), where B1 = {x1, . . . , xp} and B2 =
{y1, . . . , yq}. Let A and Y be two non-empty subsets of V = V (Kp,q) such that
Y 6= V . Then:
(i) the A-lower approximation of Y is

lA(Y ) =

B1 if B1 ⊆ Y
B2 if B2 ⊆ Y
∅ otherwise .

(ii) The A-upper approximation of Y is

uA(Y ) =

B1 if Y ⊆ B1

B2 if Y ⊆ B2

V otherwise .

(iii) Y is A-exact if and only if Y = B1 or Y = B2.

Proof. (i) Let B1 ⊆ Y . If x ∈ B1, by Proposition 4.2 follows that [x]A = B1 ⊆ Y ,
therefore, by definition of lA(Y ), we obtain B1 ⊆ lA(Y ). On the other hand, if
it were x ∈ B2 ∩ lA(Y ), for some vertex x ∈ V , then, again by Proposition 4.2



and by definition of lA(Y ), we would have that B2 = [x]A ⊆ Y . Since B1|B2 is
a set-partition of V , the last inclusion implies that Y = V , which is contrary to
our hypothesis. Hence B1 ⊆ lA(Y ) and B2 ∩ lA(Y ) = ∅, and since B1|B2 is a
set-partition of V we deduce that lA(Y ) = B1 if B1 ⊆ Y . A similar reasoning
also shows that if B2 ⊆ Y then lA(Y ) = B2. Finally, let B1 * Y and B2 * Y .
Since each vertex x ∈ V is such that x ∈ B1 or x ∈ B2, by Proposition 4.2 we
have respectively [x]A = B1 * Y and [x]A = B2 * Y , that is x /∈ lA(Y ) for each
vertex x ∈ V , hence lA(Y ) = ∅.
(ii) Let Y ⊆ B1. If x ∈ B1, by Proposition 4.2 follows that [x]A = B1 ∩ Y 6= ∅
because Y is non-empty subset of B1. Hence x ∈ uA(Y ). On the other hand, if
x ∈ uA(Y ) by definition of uA(Y ) we have [x]a ∩ Y 6= ∅. Let y ∈ [x]A ∩ Y . Since
y ∈ Y ⊆ B1, by Proposition 4.2 we obtain B1 = [y]A = [x]A, therefore, again by
Proposition 4.2 we deduce that x ∈ B1. Hence uA(Y ) = B1. The case Y ⊆ B2 is
exactly similar. Finally, let Y * B1 and Y * B2. Since B1|B2 is a set-partition
of V , we deduce that B1 ∩ Y 6= ∅ and B2 ∩ Y 6= ∅. Now, if we take an arbitrary
vertex x ∈ V , then x ∈ B1 or x ∈ B2. If x ∈ B1, then, by Proposition 4.2 it
follows that [x]A∩Y = B1∩Y 6= ∅, therefore x ∈ uA(Y ). Analogously if x ∈ B2.
This shows that V ⊆ uA(Y ), that is V = uA(Y ).
(iii) It follows at once by Proposition 2.1 (ii) and by Proposition 4.2. ut

4.3 Other Operations in RST

Let us consider the sets introduced in subsection 2.4. The vertex (A) corresponds
to the lower approximation and the corner (I) to the upper one [5]. Then, (E)
is the negation of the upper approximation, called the exterior region e and it
represents the objects (vertices in our case) surely not belonging to the set under
approximation. In the graph case, a vertex x belongs to e(O) if there is no vertex
in O sharing all the connections with x. As a simple corollary of the results on
the upper approximation we get the following.

Corollary 4.3. Let G = (V (G), E(G)) be a simple undirected graph and let
I[G] be the Boolean information system associated to G. Let A and Y be two
subsets of V (G). Then:
(i) eA(Y ) = {v ∈ V (G) : @u ∈ V (G) : NG(u) ∩A = NG(v) ∩A)}.
(ii) If G is complete, then

eA(Y ) =

{
Y c if Y ⊆ A
A ∩ Y c otherwise

(iii) If the graph is bipartite, i.e., G = Kp,q = (B1|B2), then

eA(Y ) =

B2 if Y ⊆ B1

B1 if Y ⊆ B2

∅ otherwise .

The corner (a) is named in RST a sufficiency operator and (i) is the dual
sufficiency. In case of R being an equivalence relation, the sufficiency operator



is trivial since it gives either the emptyset or the set O under approximation.
Similarly, the dual sufficiency either results in the complement of O or in the
universe. Both the operators become more interesting in a generalized setting,
for instance when R is a similarity instead of an equivalence relation. However,
this generalized situation is out scope of the present work.

Let us stress once more that, in the particular case of formal context induced
by graphs, objects coincide with attributes and the relation R is defined on the
same set, as in case of rough-set indiscernibility relation. Hence, FCA tools can be
compared and/or combined with RST ones. For instance, from the fact that both
′′ and u are closure operators on objects, we have that O ⊆ O′′ and O ⊆ u(O).
So, we can wonder which is the relationship among the two mappings O′′ and
u(O). In case of complete bipartite graphs we have that O′′ = u(O) (and also
O′ = e(O)), as can be seen by propositions 3.3 and 4.5. Also in case of complete
graphs and A = V (G) we have O′′ = u(O) = O (by propositions 3.2 and 4.4).
However, in the general case, nothing can be said as it is shown by the following
example.

Example 4.3. Let us consider the following (bipartite and not complete) graph:

v1 v2 v3

v4

v5

If we set O = {v1, v3}, then we get O′′ = {v1, v3, v4} and u(O) = O. So,
u(O) ⊂ O′′. On the other hand, considering the complete graph of Figure 4.1
with O = {2, 3} and A = {1, 2}, we have u(O) = {2, 3, 4} and O′′ = O leading
to O′′ ⊂ u(O).

5 Conclusion

We laid bare the possibility to investigate graphs using techniques from Formal
Concept Analysis and Rough Set Theory. Several results exploring the corre-
sponding on graphs of operators in the two theories have been given. The pic-
ture, however, is far from being complete. Indeed, a complete description of the
structure of oppositions arising from FCA and RST in the case of graphs, as
well as the interaction between FCA and RST operators is still missing. More-
over, as far as RST is concerned, we only explored the approximations defined
by the standard indiscernibility relation. A natural extension would be to con-
sider more general rough set models and to explore other concepts such as rough
membership, attribute dependencies and reducts.
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