THE COXETER COMPLEX AND THE EULER
CHARACTERISTIC OF A HECKE ALGEBRA

T. TERRAGNI AND TH. WEIGEL

ABSTRACT. For any Hecke algebra H = Hq(W,S) associated to a Coxeter
group (W, S) and a distinguished element ¢ € R of a commutative ring with
unit R we introduce a finite chain complex of left H-modules (Ce, ds) which
reflects many properties of the Coxeter complex of (W, S), i.e., it is acyclic
if (W, S) is non-spherical (cf. Thm. A), and H is of type FP under suitable
conditions on the distinguished element ¢ € R (cf. Prop. B). There exists
a canonical trace function fi: H — R (cf. Prop. 5.1). This trace function fi
evaluated on the Hattori-Stallings rank of (Ce,ds) can be considered as the
Euler characteristic x3 of H. It will be shown that for generic values of ¢
the Euler characteristic coincides with the reciprocal of the Poincaré series of
(W, S) evaluated in ¢ (cf. Thm. C).

1. INTRODUCTION

For any commutative ring R with unit, and any distinguished element ¢ € R
one may define an R-Hecke algebra H = H,(W, S) associated to any Cozeter group
(W, S). This algebra can be seen as a deformation of the R-group algebra of the
Coxeter group (W,S). It particular, it comes equipped with an antipodal map
_B M — HOP| an augmentation e,: H — R, and an R-basis B = {T,, | w € W }.
Moreover, £4(Ty) = ¢“) for w € W, where £: W — Ny denotes the length function
on (W, S). The Poincaré series of (W,S) is given by

(1.1) paw.s(t) = > ) e Z[t].
weWw

It is well known (cf. [4, Chap. IV, §1, Ex. 25 and 26]) that pwy,s)(t) is a ratio-
nal function in ¢. Moreover, if (W,S) is spherical then py,s)(t) € Z[t] is just a
polynomial with integer coefficients. The left H-module R,, which is as R-module
isomorphic to R and which action is given by h.r = g,(h)r for h € H, r € R,, can
be seen as the trivial H-module.

The main purpose of this paper is to introduce a chain complex of left H-modules
C = (C,,ds) concentrated in degrees 0 to |S| — 1, which can be seen as the module
theoretic analogue of the Coxeter complex associated to (W, S) (cf. [1, Chap. 3]).
It is canonical up to the choice of a total ordering of the finite set S. The most
significant properties of the chain complex C' can be summarized as follows (cf. §3).

Theorem A. Let (W,S) be a Coxeter group with 2 < |S| < oo, and let C be the
Cozxeter complex of the R-Hecke algebra H = Hqo(W, S).
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(a) If (W,S) is spherical, then Hx(C) = 0 unless k = 0 or k = |S| — 1.
Moreover, Hyo(C) ~ R, and Hjs_1(C) ~ R_1.
(b) If (W, S) is non-spherical then C is acyclic with Hy(C) ~ R,.

A left A-module M of an associative R-algebra A is called to be of type FP, if it
has a finite, projective resolution (P, 0L cpr). From Theorem A one may deduce
a sufficient criterion on the distinguished element ¢ € R ensuring the FP-property
of the trivial #-module R, (cf. Prop. 5.4).

Proposition B. Suppose that for the distinguished element ¢ € R one has

(1.2) pow;,1)(q) € R
for every spherical parabolic subgroup (Wy,I) of (W,S). Then Ry is of type FP.

Here R* C R denotes the group of invertible elements in R. If ¢ € R satisfies
(1.2), one may define the Hattori-Stallings rank rr, of the trivial left H-module
R, € H/[H,H] by a standard procedure (cf. [5, Chap. IX]). Moreover, every R-
Hecke algebra H has a canonical trace function i: H — R (cf. Prop. 5.1). We will
define the Fuler characteristic of H by x3 = p(rg,), where i is the induced map
on H/[H,H]. For generic values of ¢ the Euler characteristic of H can be computed
explicitly (cf. §5).

Theorem C. If q € R satisfies (1.2), then paw,s)(q) € R* and

(1.3) X =pw,s) (@) "

It might look surprising that the Poincaré series of a Coxeter group can be
recovered from the representation theory of the associated Hecke algebra. On the
other hand the alternating minus signs in the formula which is usually used to
calculate the series explicitly (cf. [8, §5.12]) suggest that its reciprocal value might
be an Euler characteristic of something. In the case that R = R,[q] for some
commutative ring with unit R, there is another interesting phenomenon. Obviously,
q € R satisfies (1.2), and p(w,s)(q) can be rewritten as

(1.4) PH = P(W,S) (q) = Z gq(Tw) ER
T,€B

interpreting py as a series associated to (#,e4,B). Then one has the identity
pr - Xn = 1. In fact, a similar identity is known for a Koszul algebra A, defined
over a field F, i.e., in this case one has

(1.5) hau(t) - hgges e (—t) =1

where ha,(t) (resp. hpe.e(a, r)(t)) denotes the Hilbert series of the graded F-
algebra A, (resp. H**(As., F)) (cf. [9, §2, p. 22, Cor. 2.2]). It would be interesting
to know whether there exist other types of generic R, [q]-algebras (A, !, ¢, B) sat-
isfying the identity pa - xa = 1.

Acknowledgement: The authors would like to thank F. Brenti for some very
helpful discussions.
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2. COXETER GROUPS AND HECKE ALGEBRAS

2.1. Coxeter groups. A Cozeter graphT is a finite combinatorial graph® with non-
oriented edges ¢ labelled by positive integers m(e) > 3 or infinity. The Cozeter group
(W, S) associated to T' consists of the group W generated by the set of involutions
S = {s, | veB()} subject to the relations (s,5,)™ ) = 1, where ¢ = {v,w} €
&(I') is an edge of label m(e) < oo, and the commutation relations s,s, = S Sy
whenever {v,w} ¢ &(T). The length function on W with respect to S will be
denoted by £: W — Ny. Since S = S~ is a set of involutions, ¢(w) = ¢(w™!), and
it is well known that a longest element wy € W exists if, and only if, W is finite. In
this case it is unique and has the property that £(woz) = €(wy) —(x) for all x € W.
A Coxeter group which is finite is called spherical, and non-spherical otherwise.

For a subset I C S let W} be the corresponding parabolic subgroup, i.e., Wy is
the subgroup of W generated by I. It is isomorphic to the Coxeter group associated
to the Coxeter subgraph IV based on the vertices {v € U(T) | s, € I }. The length
function of W restricted to Wi coincides with the intrinsic length function of the
Coxeter group (Wi, I). Put

(2.1) W ={weW|lws)>t(w) forall s € T},
and let {TW = (W1)~1 ie.,
(2.2) "W ={weW]|(sw)>{(w) forall s € T}.

For w € W the right ascent set is given by

(2.3) AP(w) ={s €S| lws) > {(w)}.

One has the following properties (cf. [8, §5.12]).

Proposition 2.1. Let (W, S) be a Cozeter group, let w € W and let I C S.

(a) There exist a unique element wy € Wy and a unique element w' € W such
that w = wlwy. Moreover, £(w) = £(w!) + £(wy).
(b) There exist a unique element ;jw € W and a unique element fw € TW such
that w = jw w. Moreover, £(w) = £(;w) + ((Tw).
(c) W and W are sets of coset representatives, distinguished in the sense that
the decomposition is length-additive.
(d) The element w! € W' is the unique shortest element in wWr.
(e) Let y € W! and w € Wi. Then (yu)! = vy, (yu); = u, and {(yu) =
Uy) + (u).
) Forse S one has W = tW U s(1}W), where U denotes disjoint union.
) Let I CJCS. Then W/ C W, In particular, W = {1} and W =w.
h) AP(w) = Upew: I =max{I |w € Wi},
) The element w is contained in W if, and only if, I C AP(w). In particular,
L(wh) < l(w) if, and only if, I  AP(w).

2.2. Hecke algebras. Let R be a commutative ring with unit and with a dis-
tinguished element ¢ € R.2 The R-Hecke algebra H = H,(W,S) associated to

n this context the graph () with empty vertex set is also considered as a Coxeter graph.
2For certain types it is also possible to consider multiple parameter Hecke algebras. This will
be discussed in [11].



4 T. TERRAGNI AND TH. WEIGEL

(W, S) and ¢ is the unique associative R-algebra which is a free R-module with
basis { Ty, | w € W } subject to the relations

T if £(sw) > £(w)
(24) TsTw = {(q - 1)Tw + quw if E(sw) < E(w),

for s € S, w € W. In particular, one has a canonical isomorphism H; ~ R[W],
where R[W] denotes the R-group algebra of W. The R-algebra H comes equipped
with an antipodal map %: H — H°P, Tfu = T,-1, ie., " is an isomorphism
satisfying _® = idy (cf. [8, Chap. 7.3, Ex. 1]).

For I C S we denote by H; the corresponding parabolic subalgebra, i.e., the
H-subalgebra of H generated by {T | s € I} which coincides with the R-module
spanned by { T}, | w € W; }. For further details see [8, Chap. 7.

2.3. H-modules. Any R-algebra homomorphism A € Homp_as(#, R) defines a
1-dimensional left H-module Ry, i.e., for Ty, € H, w € W, and r € Ry one has
Tw.r = AM(Ty)r. Note that the relations (2.4) force A\(Ts) € {—1,¢} for all s € S.
Moreover, for s,s" € S and m(s, s’) odd, one has A\(Ts) = A(Ts). There are two
particular R-algebra homomorphisms &4, e_1 € Homp-a14(H, R), given by ¢,(Ts) =
g, e-1(Ts) = —1, s € S. One may consider ¢, as the augmentation and €_; as the
sign-character. Note that ,(T,) = ¢“) and e_1(T,) = (—1)*™), and therefore
eq(Tw) = €4(T5) and e_1(T,,) = e_1(T%) for allw € W. For short we put R, = R._,
R_; = R._,, and use also the same notation for the restriction of these modules to
any parabolic subalgebra.

For I C S let H! = spang{T, | w € W!} C H. Multiplication in H induces a
canonical map of right H;-modules H! @r H; — H. Let y € W' and v € W;.
As l(yu) = L(y) + L(u) (cf. Prop. 2.1(e)), one has T, T,, = Ty,,. This shows that
this map is an isomorphism. In particular, H is a projective and thus a flat right
‘Hr-module. This implies that

(2.5) ind} = indzl =H @y, _: Hy-mod — H-mod

is an exact functor mapping projectives to projectives. Moreover, one has the
following.

Fact 2.2. The canonical map cr: H' — indf R, given by c;(Ty) = Twnr, where
nm=T1®1e indf Ry and w € W1, is an isomorphism of R-modules. Moreover,
forw e W, one has Tynr = e¢(Tw;)Towini-

Proposition 2.3. Let I be a subset of S such that Wy is finite. Put T = Zwewf Tw.
Then one has the following:

(a) 77 = pwi,n(Q)71-
Moreover if pew, y(q) € R* is invertible in R, let e; = (pw,,1)(q)) " 77. Then:

(b) The element ey is a central idempotent in Hj satisfying eg =ey.

(c) The left ideal Hey is a finitely generated, projective, left H-module isomor-
phic to ind}9 R,.
(d) Twer =eq(Tw,)Tprer.
Proof. For s € I put Xs = >_, ctoy ;) Tw- Then 7y = (T1+T5) X, (cf. Prop. 2.1(f))
and therefore

Terr = Ts(Tl + TS)XS = [Ts + qu + ((] - 1)Ts} X, = q(Tl + TS)XS = Eq(Ts)TL
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This shows (a). Part (b) is an immediate consequence of (a), and the first part of
(c) follows from the decomposition of the regular module H = He; & H(T1 — ey).
The canonical map 7: H — ind}g Ry, m(Tw) = Twnr, is a surjective morphism of
H-modules with ker(mw) = H(T; — es). This yields the second part of (c¢). Part (d)
follows from part (b) and Proposition 2.1(a). O

Proposition 2.4. Let W be finite with longest element wy. Assume further that
pw,s)(q) € R* and let

= (p(W,S)(Q))71 Z 5—1(Tw>5q(Twow)Tw € H.
weW

Then one has the following.

(a) For w € W one has Tz = €_1(Ty)z, i.e., Hz is isomorphic to R_1 as
H-module.

(b) The element z € H is a central idempotent satisfying 2% = z.

(¢) The left ideal Hz is a finitely generated, projective, left H-module.

Proof. Let a(w) = (paw,s)(q)) " e—1(Tw)eq(Twow). Then

Toz=> aTly= Y a@Tlwt+ Y. aw)(qluw+(q@—1)T,)

weW welstw wg{st W
= Z a(w)Tsy + Z —a(v)T, + Z afw)(qg—1)Ty .
welshw velstw wglstw
A B c

Here we used the fact that for w ¢ {$}W it follows that £(sw) < ¢(w). Hence for
v = sw, one has ¢(v) = ¢(w) — 1 and therefore ga(w) = —a(v).

Forw € {8} and y = sw ¢ {*}W one has £(y) = ¢(w)+1. Hence a(w) = —qa(y)
and A can be rewritten as ng{s}w —qa(v)T,. Then

A4C= Y o@at@-DT=— Y o).
g (s} W g (s} W
This yields (a).
It is easy to check that 2% = z. Thus, by (a), 2 € Z(H). Moreover,

2= (p(W,S) (q))_l Z Efl(Tw)Eq(Twow)Tw-Z = (p(W.,S)(q))_l Z 8q(Tumuz)Z =z
weWw weWw

This shows (b), and (c) is a direct consequence of (b). O

3. THE COXETER COMPLEX OF A HECKE ALGEBRA

3.1. The sign map. Let “<” be a total order (which is supposed to be fixed
throughout) on the finite set S. Then one has a sign-map

(3.1) sgn: S x P(S) —s {£1}, sgn(s, ) = (1)1t It<sH
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where P(S) denotes the set of subsets of S. One has:

(3.2) sgn(s, IU{t}) = sgn(s,I) for t > s,
(3.3) sgn(s, I U{t}) = —sgn(s, I) for t < s,
(3.4) sgu(s, I\ {t}) = sgn(s,I) for t > s,
(3.5) sgn(s, I\ {t}) = —sgn(s, I) for t < s.

Moreover, the following holds.
Fact 3.1. If I C S and s,t €1, s # t, then
(3.6) sgn(t, I)sgn(s, I U{t}) +sgn(s, I)sgn(t, I U{s}) =0.

Proof. Note that either s < ¢t or t < s. By (3.2) and (3.3), the left-hand side of
(3.6) reduces in the first case to

sgn(t, I)sgn(s, I) + sgn(s, I)(—sgn(t, I)) = 0;
while in the second case one has
sgn(t, I)(—sgn(s,I)) + sgn(s, I)sgn(t,I) = 0. O

3.2. Induction. Let I and J be subsets of S such that I C J C S. As induction
is the left adjoint to restriction one has a natural isomorphism

(3.7) ¢: Homy, (Ry, Ry) — Homy,, (indj (R,), R,)
given by ¢(a)(h @ r) = h.a(r), h € indj (R,), r € R,. Put b} = #(idg,), and let
4} = ind5(b]): ind}(R,) — ind$(R,),
A} (T @3, 1) = Ty @4, 7.
3.3. The Coxeter complex. For a subset I C S put deg(l) = |S| — |I| — 1,

(3.8)

thus deg(I) € {—1,...,|S| —1}. For a non-negative integer k let Cj be the left
‘H-module
(3.9) Cv= ][ ind?R,.
ICS
deg(I)=k
The differential 9y : Cy — Ci_1 is defined to be the map
(3.10) o= > O,
1,JCS
deg(I)=k,
deg(J)=k—1
where
nd] ifJ=1U
(3.11) oy — e Ddr it s}
' 0 iftJ 21,

and df is given as in (3.8). Obviously, dx: Cx — Ck_1 are mappings of left H-
modules, and Cj, = 0 for k > |S| — 1.

Remark 3.2. Let C = (C,, 0s) be defined as in (3.9), (3.10) and (3.11).

(a) One may apply the definition also in degree —1, i.e., C_; = indg Ry~ Ry and
one has also a map € = dp: Cy — Ry, where 0y = > gsgn(s, S\ {5})d§\{s}.

(b) In degree |S| — 1, Cigj—1 = indj R, ~ "*H coincides with the regular left
‘H-module.
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(¢) By Fact 2.2, every element of Cj can be written uniquely as a finite R-linear
combination of monomials T,,n7, where I C S, deg(I) =k and w € W1,
(d) The set {Twns | I C S, deg(I) =k, w € W!} is the standard R-basis of C.

Proposition 3.3. For all k one has Op—1 0 O = 0. In particular, (Ce,ds) is a
chain complex of left H-modules.

Proof. f I C S and degI = k then

Ok10k(nr) = k1 | D sen(s, Dnrugs

seS\I
= > sen(s, D) Y sen(t,IU{sHnrgen
sES\I teS\(IU{s})
= Z Sgn(sv I) Sgn(ta Iu {s})nll_l{s,t}
s,teS\I
t#£s
= Z [Sgn(sv I) Sgn(t7 Iu {S}) + Sgn(ta I) Sgn(sv Iy {t})] Nrugs,t}>
s,te€S\I
t<s
which vanishes by Fact 3.1. O

From now on C = (Cl,, 0, ) will be called the Cozeter complex of H. The following
property will turn out to be useful for our purpose.

Proposition 3.4. Let h =3 4., 1=1 2wew: ¥(w,1)Twnr € Ck, k >0, and
ak(h) = Z Z B(v7 ‘]) T'wnJ~
deg(J)=k—1 veW/
Then one has, for J C S, deg(J) =k —1 andv € W7,
(3.12) B, )= Y sen(t, J\{t}) a(va, T\ {t}) eg(To).

te) pew M1

In particular, if (w,1) is such that w € W, a(w,I) # 0 and a(w,I) = 0 for all
w e W with £(w) > £(w) and deg(I) =k, then

(3.13) B(w,J) = sgu(t,J\ {t}) a(w, ]\ {t}).
teJ

Proof. For I C J C S one has W; = WIW;. As W/ c W, one concludes that
Wi =W WL (cf. Prop. 2.1). Hence

O (h) = Z Z a(w, I) Z sgn(t, I) Tw771|_|{t}

deg(I)=k weW! teS\I

S Y Y sen(t I\ ) alw, I\ {t)Tuns

deg(J)=k—1 teJ weWI\{t}

and thus by the previous remark

= > Yo D sen(t, JN\{t) Yo alva, J\{t) Tony

deg(J)=k—1 veW’J teJ IGW}’\{t}
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Thus by Fact 2.2 one concludes that
= Y Y S\ Y alvn I\ () e (Th) Tuny
deg(J)=k—1 veW’J teJ wEW}J\“}

This yields (3.12), and (3.13) is a direct consequence of (3.12). O

Proposition 3.5. If W is infinite, 0|51 is injective; while for W finite and
pw,s)(q) € R* one has ker(dg—1) = Hz ~ R_1 (cf. Prop. 2.4).

Proof. Put 0 = Ojgj—1. Let ¢ = > cw B(w)Twny € kerd C Cjg—1. Proposi-
tion 2.1(f) yields

= Z 5(w)ngn(8,@)Tw77{s}

wew seS
=> sen(s,0) | > Bw)Tungy + Y Bus)TuTangsy
ses wew s} vew (s}
= sgn(s,0) Y (B(x)+ Blxs)q) Tengsy-
sES zeW s}

Hence one must have
(3.14) B(z) 4+ gB(xzs) =0 forall se S and z e Wit

Suppose W is infinite and that there exists zo € W such that S8(zg) # 0. Then
—Dbecause W is infinite— there exists a sequence of elements (zx)ken, zr € W such
that 11 = xSk, s € W and £(zg41) = €(xx) + 1. In particular z; € Wisk}, By
induction and (3.14), one concludes that S(xzy) # 0 for all k¥ € N, a contradiction,
and this shows that 0|5/ is injective in this case.

Let W be finite with longest element wy. Then by (3.14) and induction, one
concludes that f(x) = (—q)““o®) B(wg) for all x € W. In particular, for b =
€_1(Two)Pw,5)(q)B(wo) € R one verifies easily that ¢ = bzng. This yields the
claim. (I

3.4. Acyclicity of the Coxeter complex. Throughout this subsection we will
assume that |S| > 2. Let “<X” be the lexicographic order on Ny x Ny, i.e., (Ngx Ny, <)
is a well-ordered set. For k € {—1,...,|S| —2} and h € C) \ {0} put

Z arny, ar = Z a(w, T, € H,
deg(I)=k wew!
where a(w, I) € R (cf. Fact 2.2). Then the following are well-defined:
supp(h) = { (w,I) | I C S, deg(I) = k, w € W', a(w, I) # 0},
A(h) = max{ {(w) | (w,I) € supp(h) } € Ny,
v(h) = { (w, I) € supp(h) | £(w) = A(h) }| € No.
Obviously, for h,h' € Cy, h # k', and r € R with rh # 0, one has
(3.15) (A, v)(h—h') 2 max{(\,v)(h), A\, v)(h)} and (\,v)(rh) < (\,v)(h).
For short we put Qi = ker 9y \ im 941, and define
A = (M), QU — N x No.
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Proof of Theorem A. Obviously, 0y: Cy — C_;p is surjective. Suppose that for
k€ {0,...,]|S|—2} the set 2 = Q is non-empty, and put A = Ay. As (Ng x Ny, <)
is well-ordered, there exists a unique minimal element min A € im(A) C Ny x Ny.
Let h € Q be such that A(h) = min A. As © does not contain zero, h # 0. Hence
there exists a pair (w,I) € supp(h) such that (w) = A(h). Let A = AP(w) (cf.
(2.3)). By Proposition 2.1(h), one has to distinguish two cases.

Case 1: I = A. By the hypothesis on k, I # (). Choose any element 5 € I, and
let J = I\ {5}. Then one has deg(J) = k + 1, and by Proposition 2.1(g), w € W".
Hence Tzn 7 is an element of the standard basis of Cy41, and

Ori1(Tang) = Y sen(s, J)eg(Tw, ) Torni-
deg(I)=k
I=Ju{s}
Since I = J LU {5} and @w! = @, one has
X

sen (8, )1 (Tuny) = Tang + Y sen(s,J) sgn(s, J)eq(Ta, ., ) Tprot Niugs) -
seS\T
For s € S\ I, one has J U {s} € I = A. Thus the elements @w/"“{*} are of shorter
length than @ (cf. Prop. 2.1(i)). Hence, if X # 0, then A(X) < ¢(w) = A(h). Put
(3.16) h' = h — a(w,I)sgn(s, J)Opr1(Tany) € ker(dy).
As h ¢ im(Ok+1), one has also ' ¢ im(Ok+1). Hence b/ € Q. Moreover, by
(3.15), A(h') < A(h). Thus the minimality of A(h) implies that A(h') = A(h). In
particular, A(h") = A(h). However, by construction,
{(w, ) € supp(h') | {(w) = A(h") } = { (w,]) € supp(h) | £(w) = A(h) }\ { (w,]) },
and thus v(h') <v(h), a contradiction, showing that Case 1 is impossible.
Case 2: I C A. For the chosen (w, I) define the disjoint sets
A={(w, 1) | I CA,deg(I) =k},
B={(w,I)| l(w) =Ah), w#w, I € A(w), deg(I) =k },
C={(w,I)| l(w) <Ah), I CAP(w). deg(I) =k }.
Then supp(h) C AUBUC. Let h = hg + hg + he be the corresponding additive
decomposition of h (cf. Fact 2.2). Then hyg # 0, AM(ha) = A(h), A(hg) < A(h), and
A(he) < A(h).

If I ¢ J C A with deg(J) = k — 1, the element Tzny is an element of the
standard R-basis of Ck_1. By hypothesis, the coefficient of 9 (h) on Tyny equals
0. Thus by the maximality of (@) and Proposition 3.4, one has

(3.17) > sen(t, J\{t}) a(w, T\ {t}) = 0.
teJ
Let
(3.18) o= > a(wn,
ICA
deg(I)=k

i.e., Tgy¢p = ha. Define D, k > —1, to be the R-submodule
Dy, =spangp({nr | I C A, deg(I) = k}) C Cy,
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and let dy: Dy — Dy_1, k > 0, be the R-linear map given by

d.(nr) = Z sen(t, I)nrugey;
te A\I

one easily sees that didi41 = 0 for all k (cf. Fact 3.1). Hence (D.,,d,) is a chain
complex. Moreover, for I C A, deg(I) = k, one has

(3.19) Ok — di)(nr) = > sgnlt, I) nrogey-
teS\A

The chain complex of R-modules (D, d,) concentrated in degrees k > —1 is con-
tractible (as (Dg, dg)k>0 coincides with the singular chain complex of an (JA| — 1)-
dimensional simplex with coefficients in R). Thus there exist homomorphisms of
R-modules o: Dy, = Dy, kK > —1, satisfying dg4+10% + ox—1dr = idp,. Hence
for ¢ € ker dy, one has di41(0k () = ¢. Moreover, by (3.17)

dp, (¢) = Z Sgn(tv I) Oé(w, I) Nru{e}

te A\T
(3.20) = > Nsea(t, I\ {t)a(@, J\{t})ns; =0
deg({]%jk—l teJ

Claim 3.5.1. For all (w,I) € supp(ha — TgOk+1(0k(9))) one has £(w) < £(w).

Proof of Claim 3.5.1. Note that hy = Tg¢. Since di(¢) = 0 (cf. (3.20)), one has
di+1(0k(p)) = ¢. Thus by the previous remark

ha—Tg(Ok+1(0k(8))) = Ta (¢ — Ok+1(0k(9))) = Tio(di+1 — Ok+1) (0K (9))-

By (3.19), (dg+1 — Ok+1)(0k(¢)) is an R-linear combination of elements n; with
I ¢ A deg(I)=k. AsI € A, one has wy # 1 (cf. Prop. 2.1(i)), and therefore,
{(w!) < £(w). This yields the claim. O

Note that ho = h — TisO1(ok(6)) € Q. As
(321)  AUBUC={(wI)]|l(w) < (@), deg(l) =k, we W'},
one concludes from Claim 3.5.1 that
(322)  hy = ha— Ta(Oks1(0x())) € spang{ Ty | (w, 1) € C}.

In particular, A(hg) < A(h). Thus by the minimality of min A one must have
A(ho) = A(h). But in this case one has by construction that v(hg) < v(h), a
contradiction, showing that Case 2 is impossible. From this one concludes that
Q = 0; in particular, kerdy = im941, for all k € {—1,...,]S| —1}. Hence
Proposition 3.5 completes the proof of the theorem. O

4. TRACES AND EULER CHARACTERISTICS

Throughout this section R will denote a commutative ring with unit. Without
further mentioning we will always assume that an associative R-algebra A contains
aunit 1 € A. An R-linear isomorphism _#: A — A°P will be called an antipode, if
_W =ida. If (A,_f) is an R-algebra with antipode then ¢ € Homp-a1¢ (A, R) will
be called an augmentation if £(a) = e(a?) for all a € A.
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4.1. Trace functions. Let A be an associative R-algebra with unit. A homomor-
phism of R-modules 7: A — R satisfying 7(ab) = 7(ba) for all a,b € A is called a
trace function on A. Let [A, A] = spang({ab—ba | a,b € A}), and let A denote
the R-module A/[A, A]®. Then A* = Homg(A, R) is the R-module of all trace
functions of A. The following elementary property will be useful for our purpose.

Proposition 4.1. Let (A,_% ¢) be an augmented, associative R-algebra with an-
tipode, and let B C A be a free generating system of the R-module A with the
following properties:

(a) 1€ B;
(b) B =B;
(¢c) the symmetric R-bilinear form
(4.1) (,):AxA—R, (a,b) = bqpe(a), a,be B,

where 6 denotes Kronecker’s §-function, satisfies
(4.2) (ab,c) = (b, a"c) for all a,b,c € A.
Then i € Hompg (A, R) given by fi(a) = (1,a), a € A, is a trace function.
Proof. By definition, one has for all a,b € A that (a? b%) = (a,b). Hence
(4.3) fi(ab — ba) = (1,ab) — (1,ba) = (af,b) — (b, a) = 0.
for all a,b € A. This yields the claim. O
Remark 4.2. Let (A,_f, ¢, B) be an augmented, associative R-algebra with antipode
containing an R-basis B C A satisfying the hypothesis of Proposition 4.1. Then

the induced map p € Hompg(A, R) can be seen as the canonical trace function
associated to (A, _% ¢, B).

4.2. Hattori-Stallings trace maps. For a finitely generated, projective, left A-
module P let P* = Homa (P, A). Then P* carries canonically the structure of a
right A-module, and it is also finitely generated and projective. One has a canonical
isomorphism vp: P*®a P — Enda (P) given by vp(p* ®@p)(q) = p*(q)p, p* € P*,
p,q € P (cf. [5, Chap. I, Prop. 8.3]). The evaluation map evp: P* @p P — A is
given by evp(p* ® p) = p*(p) + [A, A]. The map

(4.4) trp =evpoyp': Enda(P) — A

is called the Hattori—Stallings trace map on P and rp = trp(idp) € A the Hattori—
Stallings rank of P (cf. [10], [5, Chap. IX.2]). In particular, trp is R-linear, and
for f,g € Enda (P) one has

(4.5) trp(fog) =trp(go f).

From the elementary properties of the evaluation map one concludes that if P; and
P, are two finitely generated projective left A-modules, one has

(46) rp@epP, =TP, T 7P,

Let e € A, e = €2, be an idempotent in the R-algebra A. Then Ae is a finitely
generated, projective, left A-module, and

(4.7 rac =e+[A Al

3In the standard literature (cf. [3], [2], [5]) this R-module is denoted by T'(A).
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4.3. Finite, projective chain complexes. A chain complex P = (P,,dL) of left
A-modules is called finite if {k € Z | P, # 0} is finite and Py, is finitely generated
for all k € Z. Moreover, P will be called projective, if Py is projective for all k.
For P = (P,,0) and Q = (Q.,@? ) finite, projective chain complexes of left
A-modules we denote by (Hom (P, Q)e, ds) the chain complex of right A-modules

=itk

with differential given by
(4.9) (dr(fr))ij—1 = 5? o fij— (=1 fii1j-100F,

for fr = Zj:i+k fij- In particular, fo = >, fi.s € Homa (P, Q)o is a chain map
of degree 0 if, and only if, fy € ker(dp), and fy is homotopy equivalent to the 0-map
if, and only if, fo € im(d1) (cf. [5, Chap. I]). Put Ext®(P,Q) = Ho(Hom, (P, Q)).

Let B = (B,, 0F) be a finite, projective chain complex of right A-modules. Then
(B@4 P, 8?) denotes the complex

(B@Ap)k: H Bi®APja
(4.10) iti=k
05 (b @ p;) = 0P (b)) @ p; + (—1)'b; @ OF (p;).

Let A[0] denote the chain complex of left A-modules concentrated in degree 0 with
Af0]o = A, and let A[0] denote the chain complex of R-modules concentrated in
degree 0 with A[0Jo = A. Then P® = (P2,0F°) = (Hom (P, A[0]), da),

P? = Homa (P_k, A),
A" (1) (pr—x) = (=" PO (1)

is a finite, projective complex of right A-modules. Note that the differential of the
complex is chosen in such a way that the standard evaluation mapping

evp: P® ®5 P — A[0],
evst(Ps @ pt) = 0stt,0 Ps(Pt)s

(4.11)

(4.12)

is a mapping of chain complexes. However, the natural isomorphism
(4.13) v: Homp (L1, A[0]) ®, 5 — Homp (L4, 5)
. Vst (P @A qr)(2—s) = (—1)* pi(z_s)

comes equipped with a non-trivial sign (cf. [5, Chap. I, Prop. 8.3(b) and Chap. VI,
§6, Ex. 1]). In this context the Hattori-Stallings trace map is given by

(4.14) trp = Ho(evpoypp): Extf (P, P) — A.
It has the following properties:

Proposition 4.3. Let P = (P,,0F) be a finite, projective complex of left A-
modules, and let [f],[g] € Extd (P, P), f = > rez [, be homotopy classes of chain
maps of degree 0. Then

(@) trp([f]) = Xrez(—1)" trp (fi);
(b) trp([f] e [g]) = tre((g] o [£])-
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(¢) Let Q = (Q.,@.Q) be another finite, projective complex of left A-modules
which is homotopy equivalent to P, i.e., there exist chain maps ¢: P — Q,
P: Q — P, which composites are homotopy equivalent to the respective
identity maps. Let [h] € Exty(Q, Q) such that [¢] o [f] = [h] o [¢]. Then
tep([f]) = tro([h).

Proof. Part (a) is a direct consequence of (4.13), and (b) follows from (a) and (4.5).
The left hand side quadrangle in the diagram

(4.15) Hom (P, P) <—— P® @, P "> A[0]

d)oowl J(,(/}@ ®¢
Q

Homa (Q, Q) ~——— Q® ©, Q — > A[0]

commutes, and the right hand side quadrangle commutes up to homotopy equiva-
lence. This yields claim (c). O

Let P = (P,,0F) be a finite, projective complex of left A-modules. Then one
defines the Hattori—Stallings rank of P by

(4.16) rp = trp([idp]) = Spen(—1)rp,. € A

Proposition 4.3 implies that if Q@ = (Q., oL ) is another finite, projective, complex
of left A-modules which is homotopy equivalent to P then rp = r¢.

Let IC(A) denote the additive category the objects of which are finite, projective
chain complexes of left A-modules. Morphisms Homyc(a)(P, Q) = MOA(P7 Q) are
given by the homotopy classes of chain maps of degree 0. In particular, JC(A) is
a triangulated category and distinguished triangles are triangles isomorphic to the
cylinder/cone triangles (cf. [7], [12, Chap. 10]). Thus, if

(4.17) A B C A

is a distinguished triangle in KC(A), one has rg =74 + rc.

4.4. Modules of type FP. A left A-module M is called of type FP, if it has a
resolution (P,,dF,eyr), such that P = (P,,dL) is a finite, projective complex of
left A-modules. For such an A-module one defines the Hattori—Stallings rank by
ry = rp € A. The comparison theorem in homological algebra implies that this
element is well defined.

An augmented R-algebra (A, ¢) is called of type FP, if the left A-module R, = R,
ar=c(a)r,a € A, r € R,isof type FP. Let (A, _%, ¢) be an augmented, associative
R-algebra with antipode, and let B C A be a free basis of A as R-module such that

(a) A is of type FP, and
(b) B satisfies the hypothesis of Proposition 4.1.
Then one defines the Euler characteristic of (A,_%, e, B) by
(4.18) XA = X(A, te8) = 1(TR.) € R,
where p: A — R denotes the canonical trace function (cf. Remark 4.2). The

following property will be useful for our purpose.

Proposition 4.4. Let C = (C,,0) be a chain complex of left A-modules concen-
trated in non-negative degrees with the following properties:

(a) C is acyclic, i.e., H,(C) =0 for k € Z, k #0;
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(b) C is finitely supported, i.e., Cx, = 0 for almost all k € Z;
(¢) Cy is of type FP for all k € Z.

Then Hy(C) is of type FP, and one has
(4.19) THy(C) = 2pso(—1)fre, € A.

Proof. Let £(C') = min{n > 0| Cp4,; = 0 for all j > 0} denote the length of C. We
proceed by induction on ¢(C). For ¢(C) = 1, there is nothing to prove. Suppose the
claim holds for chain complexes D, ¢(D) < £ — 1, satisfying the hypothesis (a)—(c),
and let C' be a complex satisfying (a)—(c) with ¢(C) = ¢. Let C" be the chain
complex coinciding with C' in all degrees k € Z \ {0} and satisfying C§* = 0. Then
C"—1] satisfies (a)—(c) and ¢(C"[—1]) < £—1. Then by induction, M = H;(C") =
Hy(C"[—1]) is of type FP, and ryy = >, 5,(—1)*"1rc,. By construction, one
has a short exact sequence of left A-modules 0 — M % Cy — Ho(C) — 0.
Let (P,,dF,e5) be a finite, projective resolution of M, and let (Q.,d%,e¢,) be
a finite, projective resolution of Cy. By the comparison theorem in homological
algebra, there exists a chain map ae: Py — @, inducing a. Let Cone(a,) denote
the mapping cone of «e. Then (Cone(as,), D, €.) is a finite, projective resolution of
Hy(C), i.e., Hy(C) is of type FP. Moreover, by the remark following (4.17) one has

(4.20) THo(C) = TCone(as) =TQ — TP =TCy — TM-

This yields the claim. [

4.5. Induction. Let B C A be an R-subalgebra of A. The canonical injection
7: B — A induces a canonical map

(421) tI’B/AZ B — A.

Induction indg = A ®p _ is a covariant additive right-exact functor mapping
finitely generated projective left B-modules to finitely generated projective left A-
modules. Moreover, if A is a flat right B-module, then indg is exact. Let P be a
finitely generated left B-module, and let Q = indg(P). Then one has a canonical
map t: P — @, «(p) = 1 ® p, which is a homomorphism of left B-modules. As
induction is left adjoint to restriction, every map f € Endg(P) induces a map
to(f) = (Lo f)« € Enda(Q).

Let P* = Homp(P,B) and Q* = Homa (@, A). Then for f € Homg(P,B) one
has an induced map ¢.(f) = (j o f)« € Q* making the diagram

(4.22) Endg(P) <+— P*@p P —'>B

Loi J(L*®L \LtrB/A

evg

Enda(Q) <=~ Q" ©aQ —>A
commute. This shows the following.

Proposition 4.5. Let B C A be an R-subalgebra of A such that A is a flat right
B-module, and let M be a left B-module of type FP. Then ind (M) is of type FP,
and one has

(4.23) TindB (M) = tre/a(rm)-
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Let (A,_f,e,B) be an augmented, associative, R-algebra with antipode and a
distinguished R-basis B satisfying the hypothesis of Proposition 4.1. Let B C A
be an R-subalgebra of A such that

(i) A is a flat right B-module;
(ii) B® = B;
(iii) C = BN B is an R-basis of B.
Let ua: A — R and pup: B — R denote the associated canonical traces. Then one
has a commutative diagram

tre/a

(4.24) B— " _A

IA /,uA
R

From this one concludes the following direct consequence of Proposition 4.5.

Corollary 4.6. Let (A,j‘,s,B) be an augmented, associative, R-algebra with an-
tipode and a distinguished R-basis B satisfying the hypothesis of Proposition 4.1,
and let B C A be an R-subalgebra satisfying (i)-(iil). Let M be a left B-module of

type FP. Then pg(ra) = pa(Tingas (ar))-
5. THE EULER CHARACTERISTIC OF A HECKE ALGEBRA

5.1. The canonical trace of a Hecke algebra. Let H = H,(W,S) be the R-
Hecke algebra associated to the finitely generated Coxeter group (W, S), and let
B={T,|weW} Then % H — HP, T: = T,-1, is an anti-automorphism of
H satisfying _* = idy (cf. [8, Chap. 7.3, Ex. 1]) and g4(a") = ,(a) for all a € H.
One has the following property.

Proposition 5.1. Let H be the Hecke algebra associated to the finitely generated
Cozeter group (W,S). Then the R-bilinear map {_,_): H X H — R associated to
(H,B,_5 ¢) satisfies (4.2). In particular, fig = (T1,_) is a trace function.

Proof. By Proposition 4.1, one has to show that

(5.1) (T, Ty, Tw) =(Ty, Ty—1Ty ) for all u,v,w e W.

Using induction one easily concludes that it suffices to show (5.1) in the case that
u=s € 5. In this case one has:

(52) A= (T.T T, = { PvwsalTon) 1 élov) > £o)
(q — 1)5v,w5q(Tv> + qésv,weq(Tsv) if £(sv) < £(v)
and
61},su15q(ﬂ)) if f(sw) > E(w)

(53) p={To L) {(q ~1)80,wq(To) + q0u,swq(Ts) if £(sw) < £(w)
We proceed by a case-by-case analysis.

Case 1: {(sv) > {(v) and £(sw) > £(w). Suppose that A # 0. Then sv = w, but
Lw) = L(sv) > L(v) = £(sw), a contradiction. Hence A = 0. Reversing the roles of
v and w yields A = p = 0 and thus the claim.

Case 2: {(sv) > £(v) and {(sw) < ¢(w). Then, v # w. If X # 0, then sv = w.
Hence {(w) = £(sv) = L(v)+1, and A = ¢4(T) = €4(T5)eq(Ty). On the other hand,
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p=(q—1)0y weq(Ty) + @0 sweq(Ty) = qeq(Ty) = A. If A =0, then sv # w. Hence
p=(q—1)0y weq(Ty) + v sweq(Ty) =0 = A

Case 3: {(sv) < £(v) and {(sw) > ¢(w). Reversing the roles of v and w one can
transfer the proof for Case 2 verbatim.

Case 4: {(sv) < £(v) and ¢(sw) < £(w). Suppose that sv = w, or, equivalently,
v = sw. Then £(sv) < £(v) = £(sw) < £(w), a contradiction. Hence sv # w and
v # sw. Thus A = p. This completes the proof. O

Remark 5.2. The trace function fi: H — R can be seen as the canonical trace
function on H. It is straight forward to verify that for Hecke algebras of type A,,
B,, or D,, this trace function coincides with the Jones—Ocneanu trace evaluated in
0 (cf. [6]).

5.2. Properties of the Coxeter complex. Let (W, .S) be a finite Coxeter group,
and let ¢ € R be such that pw,g)(q) € R*. Then R, ~ Heg (cf. Prop. 2.3);
in particular, R, is a projective left #-module. This shows that for any Coxeter
group (W, S) and I C S such that W is finite, ind}! ,(Ry) is a finitely generated,
projective, left H-module. As a consequence one has the following (cf. [8, §6.8]):

Proposition 5.3. Let (W, S) be a finitely generated Coxeter group, which is either
affine, or compact hyperbolic and let ¢ € R be such that puy, r)(q) € R* for any
proper parabolic subgroup (Wi, I). Then the Cozeter complex (Co,Ds,€) is a finite
projective resolution of R,.

In the general case one has the following:

Proposition 5.4. Let (W, S) be a finitely generated Coxeter group, and let ¢ € R be
such that piw, r)(q) € R* for any finite parabolic subgroup (W, I). Then (C,,0a)
is a chain complex of left H-modules of type FP; in particular, Ry is a left H-module
of type FP.

Proof. By hypothesis and the previously mentioned remark, ind% ,(Ry) is a finitely
generated projective H-module for any finite parabolic subgroup (W;,I). We pro-
ceed by induction on d = |S|. For |S| < 2, there is nothing to prove. Assume that
the claim holds for all Coxeter groups (W, J) with |J| < d, and that |S| = d. By
induction, for K C S, R, is a left H x-module of type FP. Hence inde (Rq) is a
left H-module of type FP. Thus C}, is a left H-module of type FP for 0 < k < d—1.
If (W, S) is spherical, then R, is a finitely generated, projective, left H-module by
the first remark. If (W, .S) is non-spherical, (C,, d,) is acyclic. Hence R, is a left
‘H-module of type FP by Proposition 4.4. This completes the proof. (I

5.3. The Euler characteristic of a Hecke algebra. Proposition 5.4 has the
following consequence.

Proposition 5.5. Let (W, S) be a finitely generated, non-spherical Cozeter group,
and let ¢ € R be such that paw, 1y(q) € R for any finite parabolic subgroup (Wy,I).
Then

(5.4) TR, = Z(_l)ls\llilrindf(}%q)'
ICS

Proof. By (4.19) and (4.23), one has
(5.5) TR, = Z (—1)fre, = Z(_l)‘S\Il_lrindf(Rq)-

0<k<|S| IcS
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This yields the claim. O

Proof of Theorem C. If (W,S) is spherical, R, ~ Heg where eg is given as in
Proposition 2.3. Hence, as rr, = es + [H, H] (cf. (4.7)), one has x3 = p(rg,) =

pw.s) (@)
If (W,S) is non-spherical, we proceed by induction on |S|. Proposition 4.5,
Corollary 4.6 and Proposition 5.5 imply that

xu = pn(rr,) = Z(—1)|S\I|71MH(TindIS(Rq))
ICS

= S ) g, (Ry)

Ics

and thus by induction

(5.6) = Z(—1)‘S\I|_1P(WI,1)(Q)_1~

Ics

It is well-known that the alternating sum (5.6) is equal to paw,g)(q)~" (cf. [8,
Prop. 5.12)). O
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