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Abstract. We discuss the construction of Sp(2) Sp(1)-structures whose
fundamental form is closed. In particular, we find 10 new examples of
8-dimensional nilmanifolds that admit an invariant closed 4-form with
stabiliser Sp(2) Sp(1). Our constructions entail the notion of SO(4)-
structures on 7-manifolds. We present a thorough investigation of the
intrinsic torsion of such structures, leading to the construction of explicit
Lie group examples with invariant intrinsic torsion.

1. Introduction

A quaternionic Kähler structure on a manifold M of dimension 4n > 8 is
an Sp(n) Sp(1)-structure preserved by the Levi-Civita connection; equiv-
alently, the 4-form Ω associated to the structure is required to be parallel
(cf. [Gr]). This condition makes M a quaternionic Hermitian manifold,
and forces the underlying metric to be Einstein (see [Sa3]).

[Sw] was the first to realise that if the dimension of M is at least 12,
then Ω cannot be closed unless it is parallel. However, his arguments also
showed that in dimension 8, the condition dΩ = 0 fails to fully determine
the covariant derivative, thereby leaving open the possible existence of har-
monic Sp(2) Sp(1)-structures, that is 8-manifolds admitting an Sp(2) Sp(1)-
form which is closed but not parallel. This problem can be viewed as a
quaternionic analogue of the search for strictly almost Kähler manifolds
in almost Hermitian geometry.

This use of the adjective “harmonic”, consistent with [Wi, Definition 26],
refers to harmonicity of Ω: as Ω is self-dual, the condition dΩ = 0 implies
d∗Ω = 0, which means Ω is a harmonic 4-form.

Quaternionic Kähler manifolds are very rigid objects. In fact, there are
no non-symmetric compact quaternionic Kähler 8-manifolds of positive
scalar curvature, and a conjecture by [LS] asserts that the same result holds
in dimensions 4n > 12. This scarceness of examples motivates the study
of almost quaternionic Hermitian geometries which are, in some sense,
close to being quaternionic Kähler. In dimension 8, harmonic Sp(2) Sp(1)-
structures constitute one such class.

It was [Sa4] who first constructed an example of a harmonic
Sp(2) Sp(1)-structure. The basic idea, which was developed further by [Gi]
in his PhD thesis (see also [Ca]), uses the identification of Sp(2) Sp(1) ∩
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SO(6) with SO(3) acting diagonally on R3 ⊕R3; one constructs the fun-
damental form Ω on T2 × N6 from a triple of forms, namely a pair of
3-forms α̃, β̃ ∈ Ω3(N) and a non-degenerate 2-form τ ∈ Ω2(N). In addi-
tion to the condition Stab(α̃, β̃, τ) ∼= SO(3), one imposes the closedness of
these three forms so as to ensure dΩ = 0. Salamon also posed the idea
that one can generalise the construction by starting from the subgroup
Sp(2) Sp(1) ∩ SO(7) ∼= SO(4). We confirm that this is the case: then the
fundamental form Ω on S1 × N7 arises from a 3-form α and a 4-form β on
N whose stabilisers are different copies of the non-compact exceptional
Lie group G∗2 with intersection isomorphic to SO(4). Closedness of Ω is
enforced by requiring that both of the forms α and β are closed. This con-
dition, dα = 0 = dβ, can be rephrased in terms of the intrinsic torsion
ξ ∈ T∗N ⊗ so(4)⊥; it forces ξ to take its values in a 49-dimensional sub-
module. As ∗α = β, we have dubbed such SO(4)-structures as harmonic.

Whilst our construction recovers one of the known examples of a har-
monic Sp(2) Sp(1)-structure, it also enables us to find several new exam-
ples. More precisely, we show that if Ni, 1 6 i 6 11, is a nilpotent Lie
group associated with the algebra ni in Table 1.1, then Ni admits a left-
invariant harmonic SO(4)-structure, hence Ki = R×Ni admits a harmonic
Sp(2) Sp(1)-form. By choosing a lattice Γi ⊂ Ki, we obtain 11 examples of
compact harmonic Sp(2) Sp(1)-manifolds. Except for the case correspond-
ing to (0, 0, 0, 0, 0, 0, 12, 13), these examples are new.

Theorem 1.1. Each of the nilmanifolds Mi = Γi\Ki, 1 6 i 6 11, admits a
harmonic Sp(2) Sp(1)-structure.

As these nilmanifolds are not Einstein (cf. [Mi]), Ω cannot be paral-
lel. In fact, for any Sp(2) Sp(1)-structure on R× N induced by an SO(4)-
structure on N, Ω can be parallel only if the associated metric is hyper-
Kähler. In this case, the underlying SO(4)-structure is torsion-free, i.e.,
ξ = 0. In the compact setting this implies that N is finitely covered (via
a local isometry) by a flat torus or the product of a flat torus with a K3
surface (cf. Theorem 2.9).

Harmonic Sp(2) Sp(1)-structures appear to be fairly rigid objects. In-
deed, case-by-case computations for the above nilmanifold examples show
that, at the infinitesimal level, the SO(8) orbit of the Sp(2) Sp(1)-structure
contains no other harmonic structures than those obtained by Lie algebra
automorphisms.

On a 7-dimensional nilpotent Lie algebra, there is a very useful obstruc-
tion to the existence of a calibrated G2-structure [CF, Lemma 3]. As the
forms α and β are very similar to the calibrated G2-form, in that they have
open GL(7, R)-orbit and are calibrated, one might be tempted to look for
similar obstructions in our setting so as to classify nilpotent Lie algebras
admitting a harmonic SO(4)-structures. This, however, turns out to be less
tractable than expected. The main complication originates from the fact
that the form v 7→ (vy α) ∧ (vy α) ∧ α, similarly for β, has split signature.
In addition to being closed and non-degenerate, the forms α and β are
required to satisfy certain compatibility conditions. This is reminiscent of
the case of half-flat SU(3)-structures, defined by a pair (ψ, σ) of closed
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n1 (0, 0, 0, 12, 23,−13, 26− 34− 16 + 25) (3, 7, 10)

n2 (0, 0, 0, 0, 0, 12, 13) (5, 13, 21)

n3 (0, 0, 0, 0, 12− 34, 13 + 24, 14) (4, 11, 16)

n4 (0, 0, 0, 0, 12 + 34, 23, 24) (4, 11, 17)

n5 (0, 0, 0, 0, 12, 13, 34) (4, 11, 16)

n6 (0, 0, 0, 12, 13, 23 + 14, 25 + 34) (3, 6, 10)

n7 (0, 0, 0, 12, 13, 15 + 35, 25 + 34) (3, 6, 10)

n8 (0, 0, 0, 0, 0, 12, 34) (5, 12, 18)

n9 (0, 0, 0, 0, 0, 12, 14 + 23) (5, 12, 18)

n10 (0, 0, 0, 0, 0, 13 + 42, 14 + 23) (5, 12, 18)

n11 (0, 0, 0, 0, 12, 13, 14 + 25) (4, 9, 13)
Table 1.1. The Lie algebras ki = R⊕ni, with ni listed above,
all admit a harmonic Sp(2) Sp(1)-structure. The rightmost
column gives the Betti numbers b1(ni), b2(ni), b3(ni). The
notation should be understood as follows. The dual n∗2 of
the Lie algebra n2 has a basis n1, . . . , n7 such that dn1 = 0 =
· · · = dn5, dn6 = n1 ∧ n2 and dn7 = n1 ∧ n3.

forms (cf. [H2]). Nilmanifolds with a half-flat structure were classified in
[Co1], using a cohomological obstruction based on the fact that a simple 2-
form γ satisfying γ∧ ψ = 0 = γ∧ σ is necessarily zero. However, this way
of expressing the compatibility conditions is not appropriate in the case of
SO(4), because the equation γ ∧ α = 0 alone implies γ = 0. In summary,
a classification of harmonic SO(4)-structures on nilmanifolds remains an
open problem.

As already mentioned, compact 7-manifolds with an SO(4)-structure
whose holonomy reduces are very rare. It is therefore natural to consider
generalisations of the torsion-free condition, e.g., the case of invariant in-
trinsic torsion. In our case, this means ξ lies in a trivial SO(4)-submodule
of T∗N ⊗ so(4)⊥; this condition is complementary to the harmonic con-
dition in the sense that an SO(4)-structure which satisfies both criteria
is torsion-free. Whilst being relatively unexplored, the invariant intrinsic
torsion setting is already known to include interesting geometries such as
nearly-Kähler manifolds and nearly parallel G2-manifolds (see also [CM]).
As it is the case for these latter two types of geometries, we show (Propo-
sition 4.1) that any SO(4)-structure with invariant intrinsic torsion, in fact,
has constant torsion, i.e., ξ is independent of n ∈ N.

In the final part of the paper, we explain the principle behind a potential
classification of invariant intrinsic torsion SO(4)-structures on Lie groups,
and use this approach to provide a number of examples. The basic idea
is that for a Lie group H, any left-invariant SO(4)-structure is obtained by
specifying an adapted coframe e1, e2, e3, e4, w1, w2, w3 of the Lie algebra h.
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This structure has invariant intrinsic torsion if and only if the torsion τ
of the flat connection on H lies in 2R⊕ ∂((R7)∗ ⊗ so(4)), where ∂ denotes
the canonical alternating map (see (4.1)). In order to obtain concrete exam-
ples, we pick an adapted coframe and make a suitable ansatz for the form
of τ. Subsequently, we check that the equations specified by τ actually
determine a Lie algebra structure.

For the groups Hi, corresponding to the Lie algebras appearing in Ta-
ble 1.2, we also describe the type of the associated product Sp(2) Sp(1)-
structure on S1×Hi. On each of these Lie groups, the same adapted frame
that determines the Sp(2) Sp(1)-structure also determines a reduction to
Sp(2). In particular, S1×Hi is an almost hyper-Hermitian manifold, mean-
ing Riemannian with a compatible almost hypercomplex structure. Whilst
many of the examples are, in fact, (integrable) hyper-Hermitian, only two
of them are hyper-Kähler (hence, necessarily, flat).

In summary, our analysis of invariant intrinsic torsion SO(4)-structures
leads to:

Theorem 1.2. Let H be a Lie group whose Lie algebra h belongs to the list in
Table 1.2. The left-invariant SO(4)-structure on H determined by the coframe
e1, e2, e3, e4, w1, w2, w3 of h∗ has invariant intrinsic torsion.

If H corresponds to either h1 or h0
5 = h0

6, then the associated product structure
on S1 ×H is flat and hyper-Kähler. In the remaining cases, the non-zero com-
ponents of the intrinsic torsion are EH and KH, meaning these are quaternionic
Hermitian structures which are not quaternionic Kähler.

2. Dimensional reduction

The key ingredient in our construction of harmonic Sp(2) Sp(1)-structures
is a “dimensional reduction” in the sense that we break down the 8-
dimensional geometry into 7 + 1 dimensions and identify a suitable sub-
group

SO(4) ∼= SO(7) ∩ Sp(2) Sp(1)

that characterises the 7-dimensional building blocks.
In terms of representation theory, it is useful to keep in mind the iso-

morphism
SO(4) ∼= Sp(1)×Z/2Z Sp(1) = Sp(1) Sp(1).

Then it is clear that the real irreducible representations of SO(4) take the
form

S p,q := [SpH+ ⊗ SqH−],

where p + q is an even number, dimS p,q = (p + 1)(q + 1), and the square
brackets, [V], are used to indicate that we are considering the real vector
space underlying V.

The 7-dimensional representation of SO(4) can now be expressed as

T = R7 ∼= R4 ⊕Λ2
− = S1,1 ⊕ S2,0.

For later computations, it is worth recalling (see, e.g., [Sa1, Theorem 1.3])
that the tensor product of SO(4) representations can be worked out via the
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h1 dei = ∑j,s(eiyvj) ∧ ws, dws = 0

h2 dei = 0, dws = wsyw123

h3 dei = 0, dws = ωs

h4 dei = ∑s(eiyωs) ∧ ws, dws = −2wsyw123

ha
5 de1 = 0 = de2, de3 = e14, de4 = −e13,

dw1 = aω1, dw2 = aω2 + e1 ∧ w3, dw3 = aω3 − e1 ∧ w2

ha
6 de1 = 0 = de2, de3 = e14, de4 = −e13,

dw1 = aw23, dw2 = aw31 + e1 ∧ w3, dw3 = aw12 − e1 ∧ w2

ha,κ
7 de1 = 0, de2 = e12, de3 = e13 + κe14, de4 = e14 − κe13,

dws = aωs − 1
a wsyw123 + (κe1 − e2) ∧ wsyw23

−e3 ∧ wsyw31 − e4 ∧ wsyw12

ha,κ
8 de1 = 0, de2 = e12 + κe13, de3 = −κe12 + e13, de4 = 2v3,

dws = aωs − 2
a wsyw123 + (κe1 − e4) ∧ wsyw12

−2e3 ∧ wsyw31 − 2e2 ∧ wsyw23

Table 1.2. The Lie algebras hi, listed above, all admit an
SO(4)-structure with invariant intrinsic torsion. In each
case, e1, . . . , e4, w1, w2, w3 is an adapted coframe, and the
2-forms ωs, vs are defined in (2.2). Parameters appearing
as denominators are implicitly assumed not to be zero.

formula

S p,q ⊗ S r,s ∼=
min(p,r),min(q,s)⊕

m,n=0

S p+r−2m,q+s−2n.

Let e1, · · · , e7 denote the standard basis of R7 and e1, . . . , e7 the dual
basis of T∗. Via the inclusion SO(4) ⊂ SO(7) we obtain splittings

T∗ ∼= (R4)∗ × (R3)∗ = Λ1,0 ⊕Λ0,1, ΛkT∗ ∼=
⊕

p+q=k

Λp,q.

In particular, we can naturally identify 〈e1, e2, e3, e4〉 with (R4)∗ ⊂ T∗, and
so forth. Consider now the pair of forms (α, β) ∈ Λ3T∗ ×Λ4T∗ given by

α = ω1 ∧ w1 + ω2 ∧ w2 + ω3 ∧ w3 − 3w123,

β = −ω1 ∧ w23 −ω2 ∧ w31 −ω3 ∧ w12 − 3e1234,
(2.1)

where we have fixed a basis of the space Λ2(R4)∗ = Λ2
− ⊕Λ2

+ of the form

ω1 = e12 − e34, ω2 = e13 − e42, ω3 = e14 − e23,

v1 = e12 + e34, v2 = e13 + e42, v3 = e14 + e23,
(2.2)

whilst ws = e4+s, s = 1, 2, 3, span the annihilator of R4 ⊂ R4 ×R3.
The forms α and β are stable in the sense that the associated GL(7, R)-

orbits in Λ∗T∗ are open. Straightforward computations show:
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Lemma 2.1. The stabilisers of α and β in gl(7, R) are two different copies of g∗2
that intersect in a copy of so(4).

Proof. We have the well-known decomposition End T ∼= R⊕ S2
0T ⊕ Λ2T,

where

S2
0T ∼= R⊕ S1,1 ⊕ S2,2 ⊕ S0,4 ⊕ S1,3, Λ2T ∼= so(4)⊕ S0,2 ⊕ S1,1 ⊕ S1,3.

The stabilisers of α and β are computed with respect to the action that
identifies Λ2T∗ with so(7) by letting Λ2T∗ act on T as

Λ2T∗ × T 3 (ω, v) 7→ vyω, (2.3)

meaning e12 is identified with e1 ⊗ e2 − e2 ⊗ e1, and so forth.
Straightforward computations, using (2.3), now show that the copy

so(4) ∼= 〈v1, v2, v3〉 ⊕ 〈ω1 − 2w23, ω2 − 2w31, ω3 − 2w12〉 (2.4)

annihilates α and β.
In addition to this copy of so(4), each of the forms α and β is annihilated

by a copy of the module S1,3; neither of these (different) copies of S1,3 is
contained in so(7). In particular, we conclude that each form has stabiliser
g∗2 rather than g2. �

Remark 2.2. Starting from an SO(4)-structure (α, β), with associated metric
g = gH + gV , we may use the splitting of T into R4 ×R3 so as to obtain a
family of metrics. Up to conformal transformation, this family is obtained
by rescaling in the fibre directions V , meaning ws 7→ λws =: w̃s, where λ >
0. The metric g̃ and defining forms, (α̃, β̃), associated with this rescaling
are:

g̃ = gH + λ2gV , α̃ = λ(ω1 ∧ w1 + ω2 ∧ w2 + ω3 ∧ w3)− 3λ3w123,

β̃ = λ2(−ω1 ∧ w23 −ω2 ∧ w31 −ω3 ∧ w12)− 3e1234.

From the pair (α, β) we construct a 4-form Ω on R8 ∼= 〈e8〉 ⊕ T as fol-
lows:

Ω = α ∧ e8 + β = 1
2 (σ

2
1 + σ2

2 + σ2
3 ), (2.5)

where

σ1 = ω1 + e58 − e67, σ2 = ω2 + e68 − e75, σ3 = ω3 + e78 − e56. (2.6)

It is well known [Sa3, Lemma 9.1] that Ω has stabiliser Sp(2) Sp(1) in
GL(8, R).

Conversely, consider a manifold M endowed with an Sp(2) Sp(1)-structure
whose associated fundamental form is given by 2Ω = σ2

1 + σ2
2 + σ2

3 . Let
ι : N → M be an oriented hypersurface, with induced metric g, and sup-
pose the unit normal direction is given by n = −e8. Then

β = ι∗Ω = −(e12 − e34) ∧ e67 − (e13 − e42) ∧ e75 − (e14 − e23) ∧ e56 − 3e1234,

and its Hodge star is

α = ι∗(nyΩ) = (e12 − e34) ∧ e5 + (e13 − e42) ∧ e6 + (e14 − e23) ∧ e7 − 3e567.

Consequently, N inherits an SO(4)-structure which is determined by
fixing any two of α, β, and g.
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As already mentioned, the 7-dimensional representation of SO(4) can
be written as R4 ⊕ Λ2

− = S1,1 ⊕ S2,0, and in the proof of Lemma 2.1, we
used this fact to write:

Λ2T ∼= 2S0,2 ⊕ S2,0 ⊕ S1,1 ⊕ S1,3 ∼= Λ5T.

Another straightforward computation shows that

Λ3T ∼= 2R⊕ S0,2 ⊕ S0,4 ⊕ 2S1,1 ⊕ S1,3 ⊕ S2,2 ∼= Λ4T. (2.7)

In particular, the space of invariant forms (Λ∗T∗)SO(4) is 4-dimensional.
Indeed, the decomposable forms υ = e1234 and ∗υ = w123 are clearly in-
variant.

The pair of forms α + 4∗υ, β + 4υ ∈ (Λ∗T∗)SO(4) are distinguished by
having stabiliser the same copy of g2 ⊂ so(7); this is an alternative way to
phrase the fact that given any SO(4)-structure, the inclusion SO(4) ⊂ G2
determines a natural G2-structure.

On a 7-manifold with an SO(4)-structure, defined as above, SO(7) acts
on the pair (α, β) with stabiliser SO(4). Differentiation therefore gives a
map

so(7)→ Λ3T∗ ⊕Λ4T∗, A 7→ A · α + A · β
whose kernel is so(4). In particular, we have an inclusion of the orthogonal
complement of so(4) in so(7):

so(4)⊥ ↪→ Λ3T∗ ⊕Λ4T∗, A 7→ A · α + A · β.

The intrinsic torsion ξ of an SO(4)-structure takes values in the 105-
dimensional space

T∗⊗ so(4)⊥ ∼= 2R⊕ 3S0,2⊕ 2S0,4⊕ 3S1,1⊕ 3S1,3⊕S1,5⊕S2,0⊕ 2S2,2⊕S2,4,

and, due to the above inclusion, the map

ξ 7→ ∇α +∇β = ξ · α + ξ · β (2.8)

is an isomorphism.
If we let a denote the alternation map T∗⊗ΛrT∗ → Λr+1T∗, we have the

well-known relation d = a ◦∇. Taking into account the isomorphism (2.8),
one expects that the exterior derivatives of α and β could encode valuable
information about ξ. Indeed, a computation shows that (dα, dβ) encodes
the maximal possible amount of information in the following sense.

Lemma 2.3. The map

T∗ ⊗ so(7)→ Λ4T∗ ⊕Λ5T∗, ei ⊗ A 7→ ei ∧ A · α + ei ∧ A · β (2.9)

is surjective.

Proof. Set T̃ := T ⊕ 〈e8〉, and write Ω = α ∧ e8 + β. The map appearing in
the statement can be identified with the restriction to T∗ ⊗ so(7) of

T̃∗ ⊗ so(8)→ Λ5T̃∗, ei ⊗ A 7→ ei ∧ A ·Ω.
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By [Sw], this map is surjective with kernel KS3H⊕ T̃∗⊗ (sp(2)⊕ sp(1)),
and the component KS3H can be identified with the kernel of the skew-
symmetrisation map a : T̃∗ ⊗ (sp(2) ⊕ sp(1))⊥ → Λ3T̃∗. It therefore suf-
fices to prove that the composition

T∗ ⊗ so(7) π−→ T̃∗ ⊗ (sp(2)⊕ sp(1))⊥ a−→ Λ3T̃∗

is surjective.
If we write so(7) as

so(7) = so(4)⊕ so(3)⊕R4 ⊗R3, so(3) = 〈ω1 + 2e67, ω2 + 2e75, ω3 + 2e56〉,
we see that the projection π is zero on T∗ ⊗ so(4) and is the inclusion on
T∗ ⊗ so(3). On T∗ ⊗R4 ⊗R3, it has the form

ec ⊗ eab 7→ ec ⊗ 1
4 (3eab − eay σs ∧ eby σs).

Clearly, the restriction of a ◦ π to 〈e8〉 ⊗R4⊗R3 is injective, with image
e8 ∧Λ1,1. It follows that

a ◦ π : (〈e8〉 ⊕Λ0,1)⊗R4 ⊗R3 → Λ1,2 ⊕ e8 ∧Λ1,1

is surjective. Likewise,

a ◦ π : Λ1,0 ⊗R4 ⊗R3 → Λ2,1 ⊕ e8 ∧Λ2,0

is an isomorphism. We conclude that a ◦ π is surjective by considering its
restrictions to Λ1,0 ⊗ so(3) and (〈e8〉 ⊕Λ0,1)⊗ so(3). �

As a consequence of the above observation, dα and dβ can only both be
zero if ξ takes values in the modules

S0,4 ⊕ S1,3 ⊕ S1,5 ⊕ S2,2 ⊕ S2,4.

In summary:

Proposition 2.4. The conditions dα = 0 = dβ characterise SO(4)-structures
whose intrinsic torsion takes values in the 49-dimensional submodule

W =W0,4 ⊕W1,3 ⊕W1,5 ⊕W2,2 ⊕W2,4

with each component being isomorphic to the SO(4)-module S p,q with the same
indices.

We shall say an SO(4)-structure is harmonic if the forms α and β are
closed. This terminology reflects the fact that, as α = ∗β, the conditions
dα = 0 = dβ imply that α and β are harmonic forms.

Remark 2.5. It is curious that the expression (2.5) of Ω resembles that of a
4-form defining a Spin(7)-structure:

Φ = 1
2 (σ

2
1 + σ2

2 − σ2
3 )

= ((−e14 + e23 − e56) ∧ e7 + (e125 + e136 + e246 − e345)) ∧ e8

+ 1
2 (−e14 + e23 − e56)2 + (−e126 + e135 + e245 + e346) ∧ e7

= 1
2 (−e14 + e23 − e56)2 + (−e126 + e135 + e245 + e346) ∧ e7

+ (−e14 + e23 − e56) ∧ e78 + (e125 + e136 + e246 − e345) ∧ e8.
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In the above, the second expression of Φ emphasizes the inclusion G2 ⊂
Spin(7) (fixing a normal direction e8) and the last one is related to SU(3) ⊂
G2 (fixing additionally the direction e7); note that each of these rewrit-
ings also involves stable forms. In contrast with Sp(2)Sp(1), however,
an attempt to use the dimensional reduction to seven or six dimensions
as a means of solving dΦ = 0 (by imposing closedness of the involved
stable forms) is extremely restrictive and leads to holonomy reductions
G2 ⊂ Spin(7) and SU(3) ⊂ Spin(7), respectively.

There are obvious obstructions to the existence of a harmonic SO(4)-
structure on a 7-manifold:

Proposition 2.6. If N is a 7-manifold with an SO(4)-structure, then N is spin.
If, in addition, N is compact and the structure is harmonic then H3(N) and
H4(N) are non-trivial.

Proof. The first assertion follows since SO(4) is contained in G2. The state-
ment concerning harmonic structures follows by observing that α ∧ β is a
volume form; in particular, neither α nor β can be exact. �

Proposition 2.7. For a harmonic SO(4)-structure, one can identify dυ with the
component W1,3 of the intrinsic torsion, and d∗υ with the components W2,2 ⊕
W0,4.

Proof. At each point, dυ is determined by the intrinsic torsion via an SO(4)-
equivariant map. By Schur’s lemma, this implies that dυ takes values in
the component isomorphic to S1,3. Computing the rank of

T∗⊗ so(7)→ Λ4T∗⊕Λ5T∗⊕Λ5T∗, ei⊗A 7→ ei ∧A · α+ ei ∧A · β+ ei ∧A · υ

we conclude that the kernel of (2.9) does not contain this S1,3.
A similar argument applies for ∗υ. �

Following [Br], we shall say a subgroup G of GL(n, R) is admissible if
G is the largest subgroup that fixes the space (Λ∗Rn)G of invariant forms
on Rn. G is strongly admissible if, on G-structures, the closedness of the
invariant forms is equivalent to the vanishing of the intrinsic torsion. For
instance, Sp(2) Sp(1) ⊂ SO(8) is admissible, but not strongly admissible.
Similarly, the above observations imply:

Corollary 2.8. SO(4) ⊂ SO(7) is admissible, but not strongly admissible.

As a final general remark on SO(4)-structures, note that for any given
harmonic structure, the product Sp(2) Sp(1)-structure can be Einstein only
when it is Ricci-flat, due to flatness of the S1 factor. Thus, the holonomy
can reduce to Sp(2) Sp(1) only when the 8-manifold is hyper-Kähler, and
so the 7-manifold has holonomy contained in SO(4). On the other hand, if
the holonomy reduces to SO(4), the product 8-manifold is hyper-Kähler,
and so the Ricci tensor is zero.

In the compact case, we can use standard arguments from Riemann-
ian geometry to completely characterise the 7-manifolds whose holonomy
reduces to SO(4):
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Theorem 2.9. Let N be a compact 7-manifold with a torsion-free SO(4)-structure.
Then, up to a finite cover, N is isometric to T3×K, where T3 is a flat torus, and K
is either a flat torus or a K3 surface.

Proof. By a splitting theorem due to Cheeger and Gromoll (see [Be, Corol-
lary 6.67]), the universal cover of N has the form Ñ × Tk, where Ñ is a
compact, simply-connected Ricci-flat manifold, and Tk is a flat torus. If N
is flat then k = 7, so N is covered by a torus. Otherwise, since Ñ×Tk → N
is a local isometry, Ñ ×Tk has non-trivial holonomy contained in SO(4).
As the holonomy representation is reducible, the holonomy of Ñ × Tk,
hence of Ñ, is in fact contained in SU(2). In addition, Ñ is irreducible,
otherwise de Rham’s theorem would give Ñ ∼= Ñ′ ×R. Also note that Ñ
cannot be locally symmetric, by Ricci-flatness. According to Berger’s holo-
nomy classification, this implies that Ñ is a 4-dimensional manifold with
holonomy SU(2), accordingly a K3 surface (cf. [Jo, Theorem 7.3.13]). �

3. Explicit harmonic SO(4)-structures

We have already noticed that any SO(4)-structure determines a G2-
structure with the same underlying metric. Hence, it might be tempting
to look for harmonic SO(4)-structures on the total space of the bundle
of anti-self-dual forms over a self-dual 4-manifold [Sa3]. By duplicating
and modifying the construction of G2-metrics in [Sa3, Theorem 11.10], we
can find an SO(4)-structure on a domain of the total space of the bundle
Λ2
−T∗X π−→ X over a self-dual 4-manifold X. In contrast with the G2 case,

however, the closedness of the defining forms lead to two incompatible
equations when X has non-zero scalar curvature. More precisely, we can
always achieve either dα = 0 or dβ = 0, separately, but not dα = 0 = dβ.
In addition, the examples always have dυ = 0; one finds that d∗υ vanishes
if and only if X has zero scalar curvature. The fact that we can always
achieve dβ = 0 = dυ is clearly equivalent to the following result by [Sa2]:

Proposition 3.1. If X is a self-dual 4-manifold, an open subset of Λ2
−T∗X admits

a cocalibrated G2-structure.

3.1. Proof of Theorem 1.1. Another possible setting for producing exam-
ples is that of Lie algebras. In fact, we have found two ways of manufac-
turing harmonic SO(4)-structures on semidirect products of Lie algebras.
In the following, we explain these constructions and use them to exhibit
a number of harmonic structures on nilpotent and solvable algebras; the
nilpotent ones are those appearing in Table 1.1.

The construction methods are based on relations between harmonic
SO(4)-structures and certain types of half-flat structures on hypersurfaces
thereof. Recall that on R6 we can define an SU(2, 1)- or SL(3, R)-structure
by the stabiliser of the forms

ω = e12 + e34 + e56, ψ+ = Re(e1 + ie2) ∧ (e3 + ie4) ∧ (e5 − ie6)

or
ω = e12 + e34 + e56, ρ = e135 + e246,
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respectively. In each case another 3-form is induced by

ψ− = Im(e1 + ie4) ∧ (e2 + ie5) ∧ (e3 − ie6) and ρ̂ = e135 − e246.

The adjective “half-flat” refers to the condition that defining forms ψ+

(resp. ρ) and ω2 are closed.
Notice that if we take an SU(2, 1)-structure and fix an extra 2-form, say

γ = e56, the structure group is reduced to S(U(2)×U(1)). Also observe
that the structure group SL(3, R) fixes an additional 3-form, namely

γ = (e1 − e2) ∧ (e3 − e4) ∧ (e5 − e6).

Our first construction of harmonic structures is as follows.

Proposition 3.2. Let (α, β) be a harmonic SO(4)-structure on a Lie algebra g.
Let η be a unit 1-form in Λ0,1 such that n = ker η is a Lie subalgebra (i.e.
dη ∧ η = 0). Then n has an induced half-flat S(U(2) × U(1))-structure such
that

α|n =
√

3ψ+, β|n = 3
2 ω2, γ = 1

8 (η
]y α−ω).

Assume, in addition, that n is an ideal in g (i.e η is closed). Then the derivation
b ∈ Der(n) associated to the adjoint action of

√
3η] on n satisfies

b · ψ+ − dω− 8dγ = 0 = 1
2 b ·ω2 + dψ−. (3.1)

Conversely, given a 6-dimensional Lie algebra n with a derivation b and a
half-flat S(U(2)×U(1))-structure satisfying (3.1). Then the semidirect product
g = n boR has a harmonic SO(4)-structure.

Proof. Choose an adapted frame e1, . . . , e7 such that η = e7. Then

α|n = ω1 ∧ e5 + ω2 ∧ e6, β|n = −ω3 ∧ e56 − 3e1234,

and consequently

ψ+ = Re(e1 + ie4) ∧ (e2 − ie3) ∧ ( 1√
3
e5 + i√

3
e6),

ω = e14 − e23 − 1
3 e56, γ = − 1

3 e56.

These forms determine an S(U(2)×U(1))-structure on n which has an
adapted coframe (E1, . . . , E6) = (e1, e4, e2,−e3, 1√

3
e5,− 1√

3
e6), and is half-

flat because ψ+ and ω2 are restrictions of closed forms.
If n is an ideal in g, we can express the exterior derivative d on the

exterior algebra over the semidirect product g = noR as

dχ = η ∧ ad∗(η]) · χ + dnχ = η̃ ∧ b · χ + dnχ,

where η̃ = 1√
3
η.

In terms of the adapted coframe, we have

ψ− = Im(e1 + ie4)∧ (e2− ie3)∧ ( 1√
3
e5 + i√

3
e6) = 1√

3
(e126− e135 + e425 + e436),

so that α and β can be expressed as

α =
√

3
(
ψ+ + η̃ ∧ (ω + 8γ)

)
, β = 3

( 1
2 ω2 − ψ− ∧ η̃

)
.

Thus

η]y dα = b · ψ+ − dnω− 8dnγ, η]y dβ =
√

3
( 1

2 b ·ω2 − dnψ−
)

,



12 DIEGO CONTI AND THOMAS BRUUN MADSEN

from which (3.1) follows.
For the last part of the statement, let η be a 1-form on g = noR that

annihilates n and satisfies dχ = 1√
3
η ∧ b · χ + dnχ.

If E1, . . . , E6 is a coframe on n, adapted to the given S(U(2) × U(1))-
structure, set

(e1, . . . , e7) = (E1, E3,−E4, E2,
√

3E5,−
√

3E6, η).

The considerations above imply that the SO(4)-structure on g associated
to this coframe is harmonic. �

Remark 3.3. The 2-form γ can be expressed in terms of ∗υ. Inspection
shows that γ = η]y ∗υ. In particular, it follows that if d∗υ = 0, then γ is
closed. In that case, (3.1) reads

b · ψ+ = dω, b ·ω2 = −2dψ−.

These equations are algebraic analogues of the flow equations one en-
counters in the study of half-flat SU(3)-structures in the context of G2-
holonomy metrics (cf. [H2]).

The method described above enables us to construct harmonic SO(4)-
structures on two nilpotent Lie algebras, corresponding to the first two
algebras of Table 1.1.

3.1.1. The algebra n1. The nilpotent Lie algebra

(0, 0, f 27, f 27+ f 17, f 12, f 14+ f 23+ f 57, 0)

admits a harmonic SO(4)-structure whose adapted coframe is given by

(e1, . . . , e7) = ( f 1 + f 2, f 6,− f 5, f 3,
√

3 f 4,−
√

3 f 1,
√

3 f 7).

In terms of the classifications of [Go, CF], this Lie algebra is the dis-
tinguished member of the 1-parameter family of Lie algebras, denoted by
147E1, which carries a calibrated G2-structure. Specifically, it can be writ-
ten as

n1 = (0, 0, 0, 12, 23,−13, 26− 34− 16 + 25).

3.1.2. The algebra n2. The second example of a harmonic structure is found
on the Lie algebra (0, 0, 0, 0, f 27+ f 12, f 37+ f 13, 0). The adapted coframe is

(e1, . . . , e7) = ( f 2 − f 6, f 1,− f 4, f 5,
√

3 f 3,−
√

3 f 6,
√

3 f 7).

The underlying Lie algebra can also be expressed as n2 = (0, 0, 0, 0, 0, 12, 13)
and is clearly a decomposable Lie algebra. In fact, it can be decomposed
as

〈 f 1, f 2, f 3, f 5, f 6, f 7〉 ⊕ 〈 f 4〉;
the 6-dimensional component inherits an SO(3)-structure, in the sense of
[Gi]. Its defining forms are

−e45 − e16 + e27, e125 − e426 + e147 − 3e567, −e467 − e175 − e256 + 3e124.

The associated Sp(2) Sp(1)-structure is already known due to [Sa4, Gi].
In this case, there is a 4-dimensional subalgebra so(3) ⊕ u(1) of so(8)

that preserves the Lie algebra structure; its intersection with sp(2)⊕ sp(1)
is the 1-dimensional component. By construction, the infinitesimal action
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of so(3) on the closed 4-form gives a space of closed forms; the infinitesi-
mal orbit under the action of so(8) contains no other closed form.

Similar techniques as in the proof of the Proposition 3.2 lead to:

Proposition 3.4. Let (α, β) be a harmonic SO(4)-structure on a Lie algebra g.
Let η ∈ Λ1,0 be a unit 1-form on g such that n = ker η is a subalgebra. Then n
has an induced half-flat SL(3, R)-structure such that

α|n =
√

6
3 ρ, β|n = − 1

6 ω2.

Assume, in addition, that n is an ideal. Then the derivation b ∈ Der(n) associated
to ad(

√
2η]) satisfies

b · ρ + dω = 0, − 1
4 b ·ω2 + dρ̂ + 2dγ = 0. (3.2)

Conversely, given a 6-dimensional Lie algebra n with a derivation b and a half-
flat SL(3, R)-structure satisfying (3.2), then the semidirect product g = n boR

has a harmonic SO(4)-structure.

Remark 3.5. Expressing the 3-form γ in terms of υ, γ = 2
√

2η]y υ, we see
that if dυ = 0 then γ is closed. Consequently, the system (3.2) reduces to
the equations

b · ρ = −dω, 1
4 b ·ω2 = dρ̂.

The method of Proposition 3.4 results in harmonic SO(4)-structures on
9 different nilpotent Lie algebras; these are the last 9 algebras of Table
1.1. In addition, we find harmonic structures on different (non-nilpotent)
solvable Lie algebras, as explained in the next section.

3.1.3. The algebras n3, . . . , n7. A harmonic structure is found on the family
of Lie algebras given by(
0, 0, (c f 1 − b f 2) f 7, (3b f 2 − 2c f 1) f 7 + f 12, (a f 1 + 3 f 2−3b f 3 − b f 4) f 7 + f 13,

− (3 f 1 + a f 2 + c f 4 + 2c f 3) f 7 + f 23, 0
)

where a, b, c ∈ R. The adapted coframe is

1√
2
( f 2 − f 5, f 6 − f 1,− f 3, 2 f 7,− 1√

3
(5 f 3 + 2 f 4), 1√

3
( f 1 + f 6), 1√

3
( f 2 + f 5)).

There are three cases, depending on the value of b and c. First, let
us assume both b and c are zero. Then the space of exact 2-forms is a
3-dimensional subspace V ⊂ Λ2〈 f 1, f 2, f 3, f 7〉. The form d f 4 is decompos-
able, and the subset {γ ∈ V | γ2 = 0} is the union of straight lines parallel
to d f 4. Taking its image in the quotient space V/〈d f 4〉, we obtain the tri-
vial space when |a| < 3, a line when |a| = 3, and two lines when |a| > 3.
Now, using the classification of nilpotent Lie algebras, we conclude that
our Lie algebra is isomorphic, respectively, to

n3 = (0, 0, 0, 0, 12− 34, 13 + 24, 14), n4 = (0, 0, 0, 0, 12 + 34, 23, 24),

n5 = (0, 0, 0, 0, 12, 13, 34).
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Secondly, let us consider the case when exactly one of b or c is zero.
Then the Lie algebra is isomorphic to n6 = (0, 0, 0, 12, 13, 23 + 14, 25 + 34).
This can be seen, e.g., by considering the coframe

( f 2, b f 7,− 3
b f 1,− f 3, 3

b ( f 4 + 3 f 3 − a
b f 1),− f 6 + a

b f 3, 3
b ( f 5 + 3

b f 3))

when b 6= 0 and

( f 1,−c f 7,− 3
c f 2,− f 3,− 3

c ( f 4 + 2 f 3 + a
c f 2),− f 5 + a

c f 3, 3
c ( f 6 + 3

c f 3))

when c 6= 0.
Finally, we are left with the case when b, c are both non-zero. Then the

first Betti number is three and, in addition, the dimension of [g, [g, g]] is
two. Going through the classification of [Go] (see also [CF]), this leaves
us with 22 possibilities. We can easily rule out 14 of these, namely by
observing that the space 〈d f i ∧ d f j | 1 ≤ i, j ≤ 7〉 has dimension two. For
each of the remaining 8 possibilities, we then consider the unique (up to
non-zero multiple) element f̃ of g∗ satisfying

dim
(

B2 ∧ f̃ + Λ3([g, g]o)
)
= 2.

In our case, f̃ = −c f 1 + b f 2 − bc f 7 and f̃ ∧ d([[g, g], g]o) = 〈bc f 127〉. Since,
by assumption, we have bc 6= 0, this space is 1-dimensional. These obser-
vations leave us with only two possibilities which are

(0, 0, 0, 12, 13, 35+ 24+ 15+ 14, 34+ 25), n7 = (0, 0, 0, 12, 13, 35+ 15, 34+ 25).

Considering finally the dimension of B3(g), we can rule out the first of
these.

3.1.4. The algebras n8, . . . , n10. The family of nilpotent Lie algebras

(0, 0, 0, 0, a f 27 + f 12 + 2 f 37,−a f 37 + e13 − 2 f 27, 0),

a ∈ R, admits a harmonic SO(4)-structure with adapted coframe given by

1√
2
( f 3 − f 5, f 6 − f 2, f 1, 2 f 7,− 1√

3
( f 1 + 2 f 4), 1√

3
( f 2 + f 6), 1√

3
( f 3 + f 5)).

This is a decomposable Lie algebra which is isomorphic to

n8 = (0, 0, 0, 0, 0, 12, 34), n9 = (0, 0, 0, 0, 0, 12, 14 + 23),

n10 = (0, 0, 0, 0, 0, 13 + 42, 14 + 23),

according to whether |a| > 2, a = ±2, or |a| < 2. We might as well assume
that a ≥ 0, since the symmetry f 1 7→ − f 1, f 2 7→ − f 2, f 6 7→ − f 6, f 4 7→ − f 4

corresponds to an element of Sp(2) Sp(1) whose only effect is to change
the sign of a.

As in the section 3.1.2, we can choose a decomposition of the Lie algebra
so as to obtain an SO(3)-structure on the 6-dimensional component. The
defining forms, however, will not be closed in this case. This explains why
the algebra is absent from [Gi].
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A straightforward computation shows that, in terms of the adapted
frame, the Ricci tensor of the associated 8-dimensional metric is given by

4
3+

a2

6
4a
3 0 0 0 0 − 4

√
3

3 −
√

3a2

6 0

4a
3

4
3+

a2

6 0 0 0 4
√

3
3 +

√
3a2

6 0 0

0 0 − 8
3 0 0 0 0 0

0 0 0 − 8
3−

2a2

3 0 0 0 0
0 0 0 0 0 0 0 0

0 4
√

3
3 +

√
3a2

6 0 0 0 − 4
3−

a2

6 − 4a
3 0

− 4
√

3
3 −

√
3a2

6 0 0 0 0 − 4a
3 − 4

3−
a2

6 0
0 0 0 0 0 0 0 0


;

we give the Ricci tensor explicitly in this case, because it will be of im-
portance for us as a means of comparing the algebras appearing in this
section with those found in the next.

In accordance with [Wi], the component of the traceless Ricci tensor that
commutes with the almost-complex structures of the quaternionic struc-
ture is zero.

By studying the infinitesimal action of so(8), we find that all the closed
4-forms are induced by automorphisms: for a = 0, the subalgebra that
preserves the Lie bracket is R2 ⊕ so(3); its intersection with sp(2)⊕ sp(1)
is 1-dimensional, giving rise to a 3-dimensional space of closed 4-forms.
If a = ±4, the subalgebra that preserves the Lie bracket is R2; it inter-
sects sp(2)⊕ sp(1) trivially. It gives rise to a 2-dimensional space of closed
4-forms. Finally, in the case when a 6= 0,±4, there is a U(1) of automor-
phisms that acts as a circle action on 〈 f4, f8〉; this U(1) clearly does not
preserve the 4-form, so we find a 1-dimensional space of closed 4-forms.

An explicit calculation and a dimension count show that in each case,
the infinitesimal orbit contains no other closed 4-forms.

3.1.5. The algebra n11. The proof of Theorem 1.1 is completed by consider-
ing the family of nilpotent Lie algebras

(−a f 27, 0, a f 27, 0,−b f 47 − a f 17 − a f 37 − f 27, b f 27 + f 47 + f 12, 0),

carrying an harmonic SO(4)-structure with adapted coframe

1√
2
( f 4 − f 6, f 5 − f 2, f 1, 2 f 7,− 1√

3
( f 1 + 2 f 3), 1√

3
( f 2 + f 5), 1√

3
( f 4 + f 6)).

For the parameter values a = 0 = b, the Lie algebra is decomposable
and isomorphic to (0, 0, 0, 0, 0, 12, 14 + 23). When a = 0 6= b, we obtain
(0, 0, 0, 0, 0, 12, 34). Finally, if a 6= 0, we see that the underlying Lie algebra
is isomorphic to

n11 = (0, 0, 0, 0, 12, 13, 14 + 25).

Again, in the reducible case, the structures cannot be decomposed so as to
fit into the construction of [Gi].

If we set a = 0, the Lie algebra is

(0, 0, 0, 0,−b f 47 − f 27, b f 27 + f 47 + f 12, 0).
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We can assume that b ≥ 0, since the symmetry f 1 7→ − f 1, f 2 7→ − f 2,
f 3 7→ − f 3, f 5 7→ − f 5 is an element of SO(4) with the only effect that it
changes the sign of b.

Note that the resulting SO(4)-structures are not the same as those that
appear in section 3.1.4. However, the resulting harmonic Sp(2) Sp(1)-
structures are related through an automorphism of the 8-dimensional Lie
algebra which only acts on the 2-dimensional center.

More precisely, denote by e1, . . . , e7 the adapted frame we have fixed on
the present Lie algebra, and by ẽ1, . . . , ẽ7 the adapted frame considered
in section 3.1.4. If we now set a = 2

√
b2 + 1, we can construct a linear

isomorphism between the two Lie algebras that maps eigenvectors of the
Ricci tensor to eigenvectors of the same eigenvalues, as follows:

ẽ3 7→ 2
a (be3+e4), ẽ4 7→ 2

a (−e3+be4), ẽ5 7→ e5,

ẽ1∓ẽ2±
√

3ẽ6+
√

3ẽ7 7→ 1√
a

(√
a∓2e1∓

√
a±2e2±

√
3
√

a± 2e6+
√

3
√

a∓ 2e7

)
,

∓
√

3ẽ1+
√

3ẽ2+ẽ6±ẽ7 7→ 1√
a

(
−
√

3
√

a∓2e1±
√

3
√

a±2e2±
√

a±2e6+
√

a∓2e7

)
.

Up to a scale factor, this mapping is a Lie algebra isomorphism, and it
maps the 4-form Ω̃, corresponding to section 3.1.4, to

e3467 − e3458 − 3e5678 − e1267 − 3e1234 + e1258 + e147(ke8 − 2he5)

+e23 ∧ (ke5 + 2he8) ∧ e6 + e246(ke8 − 2he5) + e24(ke5 + 2he8)e7

+e136(ke8 − 2he5)− e14(ke5 + 2he8)e6 + e13(ke5 + 2he8)e7 − e237(ke8 − 2he5),

where k = a2−8
a2 and h = 2

√
a2−4
a2 . As k2 + 4h2 = 1, it now suffices to set

ẽ5 = ke5 − 2he8, ẽ8 = 2he5 + ke8,

so as to obtain an isomorphism, up to scale, of the two 8-dimensional Lie
algebras that preserves the Sp(2) Sp(1)-structures. However, the SO(4)-
structures are not equivalent because this transformation mangles the pos-
sibility to separate e5 from e8.

This completes the proof of Theorem 1.1.
�

3.2. Examples on solvable Lie algebras. Using the same procedures as
above enables us to find harmonic SO(4)-structures on the following fa-
milies of solvable Lie algebras.

Example 3.6. The family of completely solvable unimodular Lie algebras

(c f 27−4 f 17, 4 f 27,−4 f 37, 4 f 47−a f 37, b f 27+a f 17+ f 12+ f 37, f 34−be37−ce47− f 27, 0),

a, b, c ∈ R, admits a harmonic structure whose adapted coframe is given
by

1√
2
( f 5 − f 3, f 2 − f 6, f 1 − f 4, 2 f 7,− 1√

3
( f 1 + f 4), 1√

3
( f 2 + f 6), 1√

3
( f 3 + f 5)).

This determines a harmonic structure on a compact solvmanifold if the
corresponding Lie group admits a lattice.
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In order to address the existence of a lattice, we first observe that each
Lie group in this family is an almost nilpotent Lie group of the form G =
R nµ N where N is nilpotent and

µ(t) = expN ◦(exp tA) ◦ logN, A = ad f7 : n→ n .

For simplicity, we will only consider the case when a = b = c = 0.
Prompted by [Bo, Equation (4)], we set e4t1 = 1

2 (3 +
√

5) and consider the
basis

f̃1 = f1 − 4 f2 + f6, f̃2 = 18+8
√

5
7+3
√

5
f1 − 8

3+
√

5
f2 +

2
3+
√

5
f6,

f̃3 = −4 f3 + f4 + f5, f̃4 = −4(18+8
√

5)
7+3
√

5
f3 +

2
3+
√

5
f4 +

18+8
√

5
7+3
√

5
f5,

f̃5 =
√

5 f5, f̃6 =
√

5 f6.

The automorphism exp(t1A) is then represented by the matrix

exp(t1A) =

 3 1 0 0 0 0
−1 0 0 0 0 0
0 0 3 1 0 0
0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.3)

Since the structure constants of N are given by

[ f̃1, f̃2] = 4 f̃5, [ f̃3, f̃4] = 4 f̃6,

we can make the explicit identification N ∼= R6 by defining the product
law as

(x1, . . . , x6)(y1, . . . , y6) = (x1 + y1, . . . , x4 + y4, x5 + y5− x1y2, x6 + y6− x3y4),

and identify the basis { f̃ j} with the left-invariant vector fields

f̃1 =
∂

∂x1
, f̃2 =

∂

∂x2
− x1

∂

∂x5
, f̃3 =

∂

∂x3
,

f̃4 =
∂

∂x4
− x3

∂

∂x6
, f̃5 =

1
4

∂

∂x5
, f̃6 =

1
4

∂

∂x6
.

The exponential map expN(tai f̃i) is determined by solving the ODE
g′(t) = Lg(t)∗(ai f̃i). Concretely, we have

expN(ai f̃i) = (a1, . . . , a4, 1
4 a5 − 1

2 a1a2, 1
4 a6 − 1

2 a3a4),

and

logN(x1, . . . , x6) = x1 f̃1 + · · ·+ x4 f̃4 + (4x5 + 2x1x2) f̃5 + (4x6 + 2x3x4) f̃6.

Since the lattice Γ ⊂ N corresponding to the inclusion Z6 ⊂ R6 is clearly
preserved by µ(t1), the discrete subgroup

Zt1 nµ Γ

forms a lattice in G = R nµ N.

Example 3.7. A harmonic structure can be put on the family of unimodular
solvable Lie algebras given by

(2 f 17,−4 f 27,−a f 27−2 f 37− f 17−b f 47, 6 f 47, f 12+b f 17−2 f 57, a f 17+ f 27+ f 15, 0),
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for a, b ∈ R. The associated coframe is
1√
2
( f 6− f 2, f 5− f 4, f 1− f 3, 2 f 7,− 1√

3
( f 1+ f 3), 1√

3
( f 4+ f 5), 1√

3
( f 2+ f 6)).

It would be interesting to know whether the corresponding solvable Lie
groups admit a lattice; this case appears to be more involved than Exam-
ple 3.6 because the nilradical has step three.

4. Invariant intrinsic torsion

The intrinsic torsion of an SO(4)-structure is dubbed invariant if it takes
values in the trivial submodule 2R ⊂ T∗ ⊗ so(4)⊥. We may think of the
latter space as the cokernel of the alternating map

∂ : T∗ ⊗ so(4) ↪→ T∗ ⊗ T∗ ⊗ T → Λ2T∗ ⊗ T. (4.1)

Then the trivial module 2R is the image of 〈τ1, τ2〉 ⊂ T∗ ⊗ so(7), where

τ1 =
7

∑
i=1

ei ⊗ eiy α, τ2 = w1 ⊗ w23 + w2 ⊗ w31 + w3 ⊗ w12,

and we have identified vectors with covectors using the metric.
Using the alternation map a (cf. section 2), we compute

a(τ1 · α) = −2β + 6ν, a(τ2 · α) = 2β + 6ν,

a(τ1 · ∗υ) = 2β + 6ν, a(τ2 · ∗υ) = 0.

Thus if the intrinsic torsion has the form λτ1 + µτ2, then we obtain

dα = 2(−λ + µ)β + 6(λ + µ)υ, d(∗υ) = 2λ(β + 3υ).

In particular, the “λ component” of the intrinsic torsion is completely de-
termined by d(∗υ).

Since there are no invariants of degree 5, the forms υ and β are closed.
Using this fact and by imposing d2 = 0, we obtain the equations

2(−dλ + dµ) ∧ β + 6(dλ + dµ) ∧ υ = 0 = 2dλ ∧ (β + 3υ),

which, by injectivity of the map T∗ 3 δ 7→ δ ∧ (β + 3υ) ∈ Λ5T∗, implies
that λ and µ are necessarily constant.

Proposition 4.1. Any SO(4)-structure with invariant intrinsic torsion has con-
stant torsion.

4.1. The proof of Theorem 1.2. The simplest examples of SO(4)-structures
with invariant intrinsic torsion are given by Lie groups H. Let e1, . . . , e4,
w1, w2, w3 be a basis of h∗ adapted to an SO(4)-structure. The torsion τ of
the flat connection can be expressed as dws ⊗ ws + dej ⊗ ej, and its projec-
tion to T∗ ⊗ so(4)⊥ is invariant if and only if τ lies in 2R⊕ ∂(T∗ ⊗ so(4)),
where so(4) is given by (2.4), and the 2R component is

ϑ = aωs ⊗ ws + cejyωs ∧ ws ⊗ ej.

Throughout the section, we shall use the Einstein summation convention.
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4.1.1. The algebra h1. Consider the element ∑s,t ws⊗vt of the module S2,2 ⊂
T∗ ⊗ so(4). Its image under the map ∂ is given by:

(e2 + e3 + e4) ∧ w⊗ e1 − (e1 − e3 + e4) ∧ w⊗ e2

−(e1 + e2 − e4) ∧ w⊗ e3 − (e1 − e2 + e3) ∧ w⊗ e4,

where w = w1 + w2 + w3. It follows that the solvable Lie algebra h1, given
by

de1 = (e2 + e3 + e4) ∧ w, de2 = −(e1 − e3 + e4) ∧ w,

de3 = −(e1 + e2 − e4) ∧ w, de4 = −(e1 − e2 + e3) ∧ w

dw1 = 0 = dw2 = dw3,

has an SO(4)-structure with vanishing intrinsic torsion.
The three 2-forms of (2.6) are globally defined and hence determine an

almost hypercomplex structure on S1 ×H1 which is compatible with the
product metric. In other words, we have an Sp(2)-structure on S1 ×H1.
As dσi = 0, we see that this structure is, in fact, hyper-Kähler and flat (cf.
[H1, Lemma 6.8]).

To obtain examples with a non-flat metric, consider next the element

χ = w1 ⊗ (e12 − e34 − 2w23) + w2 ⊗ (e13 − e42 − 2w31)

+w3 ⊗ (e14 − e23 − 2w12)

that spans the trivial component R ⊂ S0,2 ⊗ S0,2 ⊂ T∗ ⊗ so(4). Straight-
forward computations show that

τ = ϑ + b∂(χ) = (aωs − 4bwsyw123)⊗ ws + (b + c)(ejyωs ∧ ws)⊗ ej.

Now, let us write p = a, q = −4b, and r = b+ c and, in addition, impose
d2 = 0 so as to get:

Lemma 4.2. If p, q, r ∈ R satisfy the equations

pq = 0 = pr = r(q + 2r), (4.2)

then the relations

dej = rejyωs ∧ ws, dws = pωs + qwsyw123 (4.3)

are the structural equations of a Lie algebra with an SO(4)-structure whose in-
trinsic torsion is invariant.

Note that, in terms of a, b, c, we find that λ = −a/2 and µ = a− 2c. In
particular, the intrinsic torsion is independent of the component ∂(χ) of τ,
as expected.

Up to a scale factor, (4.3) gives rise to exactly three non-trivial examples.

4.1.2. The algebra h2. If we take (p, q, r) = (0, 1, 0) then dei = 0, dws =
wsyw123 which characterises the product H2 = Sp(1) × T4. Using the
relations

λ = − p
2 , µ = p− q

2 − 2r,

we see that (λ, µ) = (0,−1/2) and hence dα = −β− 3υ, d(∗υ) = 0.
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The product of H2 with an S1, M = S1× Sp(1)×T4, can also be viewed
as the product of two quaternionic manifolds of dimension 4; one of the
factors is hyper-Kähler and the other is locally conformal hyper-Kähler. It
is not difficult to verify that the 2-forms σi define a hypercomplex structure
on M. In fact, the associated hyper-Hermitian structure is “hyper-Kähler
with torsion” (briefly hkt), which, by [MS, Proposition 6.2], means it sat-
isfies the condition I1dσ1 = I2dσ2 = I3dσ3.

In the notation of [Sw], the two factors of M have intrinsic torsion in
EH, and the product has intrinsic torsion in EH ⊕ KH. This is consistent
with the fact that the ideal generated by σ1, σ2, and σ3 is not a differential
ideal.

A more systematic way of determining the intrinsic torsion is as follows.
The Levi-Civita connection is w1 ⊗ w23 − w2 ⊗ w13 + w3 ⊗ w12, and the in-
trinsic torsion is minus its projection to T∗m M⊗ (sp(2) + sp(1))⊥. Compos-
ing with the skew-symmetrisation map a : T∗m M ⊗ so(8) → Λ3T∗m M, we
obtain

3
20 (w

1 ∧ σ1 + w2 ∧ σ2 + w3 ∧ σ3) + γ, γ ∈ KH.
The second term is not zero, and the first term lies in a submodule iso-
morphic to EH, namely the image of the equivariant map

EH → Λ3T∗M, v 7→ (vy σs) ∧ σs.

Now observe that the kernel of a intersects T∗m M ⊗ (sp(2) ⊕ sp(1)))⊥

in KS3H, so this determines all of the intrinsic torsion except possibly for
KS3H. Since we have already observed that the structure is quaternionic,
this component is forced to be zero. Summing up, the only non-trivial
components in the intrinsic torsion are KH and EH.

4.1.3. The algebra h3. Consider the case when (p, q, r) = (1, 0, 0). Then
we have the structural equations dei = 0, dws = ωs, giving the quater-
nionic Heisenberg group H7. In this case, the intrinsic torsion is (λ, µ) =
(−1/2, 1) which implies dα = 3β + 3υ, d(∗υ) = −β− 3υ.

The product M = S1 ×H7 is not hkt. It is, however, a so-called qkt

manifold (see [MS, Definition 7.1]) and interestingly appears in [FG].
The same arguments as used for h2 show that the non-vanishing com-

ponents of the intrinsic torsion are KH and EH.

4.1.4. The algebra h4. If (p, q, r) = (0,−2, 1), we obtain the Fino-Tomassini
example H4 = Sp(1)n R4 (cf. [FT]), meaning the Lie group whose Lie
algebra is given by dei = eiyωs ∧ws, dws = −2wsyw123. Note that we may
view H4 as Sp(1)n H by defining multiplication by i, j, k via the adjoint
action of w1, w2, and w3. The manifold H, notably, has a compact quotient.

Again, we can compute the exterior derivatives of α and ∗υ by using
(λ, µ) = (0,−1). We find dα = −2β− 6υ and d(∗υ) = 0.

The same arguments we have used before apply to the product
Sp(2) Sp(1)-structure and show that it has non-zero intrinsic torsion in
both components of EH ⊕ KH. In particular, we have provided another
example of a qkt structure which is not hkt.

Remark 4.3. The equations used to construct invariant intrinsic torsion
structures on h2, h3, h4 also apply to give homogeneous examples that are
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not Lie groups. For instance, the 7-dimensional sphere, S7, viewed as
the homogeneous space Sp(2) Sp(1)/ Sp(1) Sp(1) (cf. [Co2, Example 5]),
admits a natural SO(4)-structure with invariant intrinsic torsion. This cor-
responds to (p, q, r) = (1, 0, 1).

The remaining classes of examples, appearing in Theorem 1.2, are closely
tied to self-dual Einstein Lie groups. In order to arrive at these classes, one
can impose suitable conditions on the torsion of the flat connection in or-
der to ensure h has structural equations given by

dei = −φ(ws) ∧ eiyωs − ψ(ws) ∧ eiyvs,

dws = pωs + qwsyw123 − φ(wt) ∧ wsy (−2wtyw123).

In the above, φ, ψ : R3 → R4 are linear maps representing the component
of the torsion in ∂((R4)∗ ⊗ so(4)), and as before we identify vectors and
covectors via ei 7→ ei, ws 7→ ws. These equations define a Lie algebra if and
only if d2 = 0; then the standard coframe defines an SO(4)-structure with
invariant intrinsic torsion.

In this case, we can view 〈e1, . . . , e4〉 as the dual of a Lie algebra k,
and the projection h → k is a Lie algebra homomorphism. The exterior
derivative is required to satisfy

0 = d2w1

= pq(ω2 ∧ w3 −ω3 ∧ w2) + 4φ(w1) ∧ (φ(w2) ∧ w2 + φ(w3) ∧ w3)

−φ(ws) ∧ (−2φ(w2)yωs ∧ w3 + 2φ(w3)yωs ∧ w2),

−ψ(ws) ∧ (−2φ(w2)yvs ∧ w3 + 2φ(w3)yvs ∧ w2),

which, by considering the cyclic permutations, leads to the relation:

φ(wt)∧ φ(ws)yωt + ψ(wt)∧ φ(ws)yvt = 〈φ∧ φ, wsyw123〉 − 1
2 pqωs. (4.4)

Thus, h is a Lie algebra if and only if k is a Lie algebra and (4.4) holds.
Decreeing e1, . . . , e4 to be an oriented orthonormal basis of k, we can

interpret this equation in terms of the Levi-Civita connection, −φ(ws) ⊗
ωs − ψ(ws)⊗vs, on k. Indeed, its associated curvature is given by

R = −dφ(ws)⊗ωs − dψ(ws)⊗vs +
1
2 φ(ws) ∧ φ(wt)⊗ [ωs, ωt]

+ 1
2 ψ(ws) ∧ ψ(wt)⊗ [vs, vt]

which means that (4.4) is equivalent to

R = − 1
2 pqωs ⊗ωs − dψ(ws)⊗vs + 〈ψ ∧ ψ, wtyw123〉 ⊗vt.

In particular, k is Einstein and self-dual with scalar curvature 3pq (see
[Sa1]).

From the classification of flat and anti-self-dual metrics on 4-dimensional
Lie groups in [Mi] and [DS], we deduce that there are essentially three
non-trivial possibilities.
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4.1.5. The families ha
5, ha

6. Assume first that k is flat, but not Abelian (oth-
erwise we would recover the examples h2 and h3). Then, by [Mi], we can
assume k = (0, 0, 14,−13) so that

φ(w1) = −ψ(w1) =
1
2 e1, φ(w2) = 0 = ψ(w2) = φ(w3) = ψ(w3).

By construction pq = 0; for (p, q) = (a, 0) we obtain ha
5, and ha

6 for (p, q) =
(0, a). In either case, the almost hypercomplex structure defined by the
forms σi on S1×H is not integrable; the non-vanishing components of the
intrinsic torsion are EH and KH, apart from the case a = 0 when h0

5 = h0
6

is flat and hyper-Kähler.

4.1.6. The family ha,κ
7 . If h is only conformally flat, but not flat, the Einstein

condition implies that it has constant sectional curvature. The 4-sphere has
no Lie group structure, so we are dealing with hyperbolic space, which has
a one-parameter family of Lie group structures (cf. [Je]) corresponding to
k = (0, 12, 13 + κ14, 14− κ13). We then compute

φ(w1) =
κ
2 e1 − 1

2 e2, ψ(w1) = − κ
2 e1 − 1

2 e2,

φ(w2) = − 1
2 e3 = ψ(w2), φ(w3) = − 1

2 e4 = ψ(w3),

and pq = −1. The corresponding 8-manifold S1×H is only hypercomplex
when κ = 0; regardless of κ, the non-zero intrinsic torsion is in EH ⊕ KH.

4.1.7. The family ha,κ
8 . If k is not conformally flat, based on the study of

[DS], we deduce that k is a solvable algebra belonging to the family:

k = (0, f 12 + κ f 13,−κ f 12 + f 13, 2 f 14 + f 23).

A multiple of ( f 1, 1
2 f 2, 1

2 f 3, 1
2 f 4) forms an orthonormal basis. In other

words, up to scale, we have an orthonormal basis ei such that

k = (0, e12 + κe13,−κe12 + e13, 2e14 + 2e23).

Considering the connection form of k, we deduce that

φ(w1) = −e2, φ(w2) = −e3, φ(w3) = − 1
2 e4 +

κ
2 e1,

ψ(w1) = 0 = ψ(w2), ψ(w3) = − 3
2 e4 − κ

2 e1.

So in this case, the relation (4.4) is satisfied with pq = −2, and the curva-
ture form of h is given by

ωs ⊗ωs + 3v3 ⊗v3.

In summary, we have obtained a 2-parameter family of 7-dimensional
Lie algebras with a constant intrinsic torsion SO(4)-structure; actually,
there are three parameters, namely p, q, κ, but these are subject to the con-
straint pq = −2.

The Sp(2)-structure, induced on the 8-manifold S1 ×H via the 2-forms
σi, does not correspond to an integrable hypercomplex structure nor sat-
isfies the differential ideal condition. In terms of the intrinsic torsion, we
find that the only non-zero components are EH and KH.

We emphasise that the only Einstein examples obtained above are the
flat ones, i.e., the structures on h1 and h0

5 = h0
6. Similarly, one can check

directly that among the Sp(2) Sp(1)-structures constructed in this section,
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the only ones that satisfy the differential ideal condition are those corre-
sponding to these two, consistently with the intrinsic torsion calculations.

This concludes the proof of Theorem 1.2.
�
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